1 //===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file contains classes used to discover if for a particular value
9 // there from sue to definition that crosses a suspend block.
10 //
11 // Using the information discovered we form a Coroutine Frame structure to
12 // contain those values. All uses of those values are replaced with appropriate
13 // GEP + load from the coroutine frame. At the point of the definition we spill
14 // the value into the coroutine frame.
15 //===----------------------------------------------------------------------===//
16 
17 #include "CoroInternal.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/Analysis/PtrUseVisitor.h"
21 #include "llvm/Analysis/StackLifetime.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/DIBuilder.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/OptimizedStructLayout.h"
32 #include "llvm/Support/circular_raw_ostream.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
37 #include <algorithm>
38 
39 using namespace llvm;
40 
41 // The "coro-suspend-crossing" flag is very noisy. There is another debug type,
42 // "coro-frame", which results in leaner debug spew.
43 #define DEBUG_TYPE "coro-suspend-crossing"
44 
45 static cl::opt<bool> EnableReuseStorageInFrame(
46     "reuse-storage-in-coroutine-frame", cl::Hidden,
47     cl::desc(
48         "Enable the optimization which would reuse the storage in the coroutine \
49          frame for allocas whose liferanges are not overlapped, for testing purposes"),
50     llvm::cl::init(false));
51 
52 enum { SmallVectorThreshold = 32 };
53 
54 // Provides two way mapping between the blocks and numbers.
55 namespace {
56 class BlockToIndexMapping {
57   SmallVector<BasicBlock *, SmallVectorThreshold> V;
58 
59 public:
60   size_t size() const { return V.size(); }
61 
62   BlockToIndexMapping(Function &F) {
63     for (BasicBlock &BB : F)
64       V.push_back(&BB);
65     llvm::sort(V);
66   }
67 
68   size_t blockToIndex(BasicBlock *BB) const {
69     auto *I = llvm::lower_bound(V, BB);
70     assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
71     return I - V.begin();
72   }
73 
74   BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
75 };
76 } // end anonymous namespace
77 
78 // The SuspendCrossingInfo maintains data that allows to answer a question
79 // whether given two BasicBlocks A and B there is a path from A to B that
80 // passes through a suspend point.
81 //
82 // For every basic block 'i' it maintains a BlockData that consists of:
83 //   Consumes:  a bit vector which contains a set of indices of blocks that can
84 //              reach block 'i'
85 //   Kills: a bit vector which contains a set of indices of blocks that can
86 //          reach block 'i', but one of the path will cross a suspend point
87 //   Suspend: a boolean indicating whether block 'i' contains a suspend point.
88 //   End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
89 //
90 namespace {
91 struct SuspendCrossingInfo {
92   BlockToIndexMapping Mapping;
93 
94   struct BlockData {
95     BitVector Consumes;
96     BitVector Kills;
97     bool Suspend = false;
98     bool End = false;
99   };
100   SmallVector<BlockData, SmallVectorThreshold> Block;
101 
102   iterator_range<succ_iterator> successors(BlockData const &BD) const {
103     BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
104     return llvm::successors(BB);
105   }
106 
107   BlockData &getBlockData(BasicBlock *BB) {
108     return Block[Mapping.blockToIndex(BB)];
109   }
110 
111   void dump() const;
112   void dump(StringRef Label, BitVector const &BV) const;
113 
114   SuspendCrossingInfo(Function &F, coro::Shape &Shape);
115 
116   bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
117     size_t const DefIndex = Mapping.blockToIndex(DefBB);
118     size_t const UseIndex = Mapping.blockToIndex(UseBB);
119 
120     bool const Result = Block[UseIndex].Kills[DefIndex];
121     LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
122                       << " answer is " << Result << "\n");
123     return Result;
124   }
125 
126   bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
127     auto *I = cast<Instruction>(U);
128 
129     // We rewrote PHINodes, so that only the ones with exactly one incoming
130     // value need to be analyzed.
131     if (auto *PN = dyn_cast<PHINode>(I))
132       if (PN->getNumIncomingValues() > 1)
133         return false;
134 
135     BasicBlock *UseBB = I->getParent();
136 
137     // As a special case, treat uses by an llvm.coro.suspend.retcon or an
138     // llvm.coro.suspend.async as if they were uses in the suspend's single
139     // predecessor: the uses conceptually occur before the suspend.
140     if (isa<CoroSuspendRetconInst>(I) || isa<CoroSuspendAsyncInst>(I)) {
141       UseBB = UseBB->getSinglePredecessor();
142       assert(UseBB && "should have split coro.suspend into its own block");
143     }
144 
145     return hasPathCrossingSuspendPoint(DefBB, UseBB);
146   }
147 
148   bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
149     return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
150   }
151 
152   bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
153     auto *DefBB = I.getParent();
154 
155     // As a special case, treat values produced by an llvm.coro.suspend.*
156     // as if they were defined in the single successor: the uses
157     // conceptually occur after the suspend.
158     if (isa<AnyCoroSuspendInst>(I)) {
159       DefBB = DefBB->getSingleSuccessor();
160       assert(DefBB && "should have split coro.suspend into its own block");
161     }
162 
163     return isDefinitionAcrossSuspend(DefBB, U);
164   }
165 
166   bool isDefinitionAcrossSuspend(Value &V, User *U) const {
167     if (auto *Arg = dyn_cast<Argument>(&V))
168       return isDefinitionAcrossSuspend(*Arg, U);
169     if (auto *Inst = dyn_cast<Instruction>(&V))
170       return isDefinitionAcrossSuspend(*Inst, U);
171 
172     llvm_unreachable(
173         "Coroutine could only collect Argument and Instruction now.");
174   }
175 };
176 } // end anonymous namespace
177 
178 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
179 LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
180                                                 BitVector const &BV) const {
181   dbgs() << Label << ":";
182   for (size_t I = 0, N = BV.size(); I < N; ++I)
183     if (BV[I])
184       dbgs() << " " << Mapping.indexToBlock(I)->getName();
185   dbgs() << "\n";
186 }
187 
188 LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
189   for (size_t I = 0, N = Block.size(); I < N; ++I) {
190     BasicBlock *const B = Mapping.indexToBlock(I);
191     dbgs() << B->getName() << ":\n";
192     dump("   Consumes", Block[I].Consumes);
193     dump("      Kills", Block[I].Kills);
194   }
195   dbgs() << "\n";
196 }
197 #endif
198 
199 SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
200     : Mapping(F) {
201   const size_t N = Mapping.size();
202   Block.resize(N);
203 
204   // Initialize every block so that it consumes itself
205   for (size_t I = 0; I < N; ++I) {
206     auto &B = Block[I];
207     B.Consumes.resize(N);
208     B.Kills.resize(N);
209     B.Consumes.set(I);
210   }
211 
212   // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
213   // the code beyond coro.end is reachable during initial invocation of the
214   // coroutine.
215   for (auto *CE : Shape.CoroEnds)
216     getBlockData(CE->getParent()).End = true;
217 
218   // Mark all suspend blocks and indicate that they kill everything they
219   // consume. Note, that crossing coro.save also requires a spill, as any code
220   // between coro.save and coro.suspend may resume the coroutine and all of the
221   // state needs to be saved by that time.
222   auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
223     BasicBlock *SuspendBlock = BarrierInst->getParent();
224     auto &B = getBlockData(SuspendBlock);
225     B.Suspend = true;
226     B.Kills |= B.Consumes;
227   };
228   for (auto *CSI : Shape.CoroSuspends) {
229     markSuspendBlock(CSI);
230     if (auto *Save = CSI->getCoroSave())
231       markSuspendBlock(Save);
232   }
233 
234   // Iterate propagating consumes and kills until they stop changing.
235   int Iteration = 0;
236   (void)Iteration;
237 
238   bool Changed;
239   do {
240     LLVM_DEBUG(dbgs() << "iteration " << ++Iteration);
241     LLVM_DEBUG(dbgs() << "==============\n");
242 
243     Changed = false;
244     for (size_t I = 0; I < N; ++I) {
245       auto &B = Block[I];
246       for (BasicBlock *SI : successors(B)) {
247 
248         auto SuccNo = Mapping.blockToIndex(SI);
249 
250         // Saved Consumes and Kills bitsets so that it is easy to see
251         // if anything changed after propagation.
252         auto &S = Block[SuccNo];
253         auto SavedConsumes = S.Consumes;
254         auto SavedKills = S.Kills;
255 
256         // Propagate Kills and Consumes from block B into its successor S.
257         S.Consumes |= B.Consumes;
258         S.Kills |= B.Kills;
259 
260         // If block B is a suspend block, it should propagate kills into the
261         // its successor for every block B consumes.
262         if (B.Suspend) {
263           S.Kills |= B.Consumes;
264         }
265         if (S.Suspend) {
266           // If block S is a suspend block, it should kill all of the blocks it
267           // consumes.
268           S.Kills |= S.Consumes;
269         } else if (S.End) {
270           // If block S is an end block, it should not propagate kills as the
271           // blocks following coro.end() are reached during initial invocation
272           // of the coroutine while all the data are still available on the
273           // stack or in the registers.
274           S.Kills.reset();
275         } else {
276           // This is reached when S block it not Suspend nor coro.end and it
277           // need to make sure that it is not in the kill set.
278           S.Kills.reset(SuccNo);
279         }
280 
281         // See if anything changed.
282         Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
283 
284         if (S.Kills != SavedKills) {
285           LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
286                             << "\n");
287           LLVM_DEBUG(dump("S.Kills", S.Kills));
288           LLVM_DEBUG(dump("SavedKills", SavedKills));
289         }
290         if (S.Consumes != SavedConsumes) {
291           LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
292           LLVM_DEBUG(dump("S.Consume", S.Consumes));
293           LLVM_DEBUG(dump("SavedCons", SavedConsumes));
294         }
295       }
296     }
297   } while (Changed);
298   LLVM_DEBUG(dump());
299 }
300 
301 #undef DEBUG_TYPE // "coro-suspend-crossing"
302 #define DEBUG_TYPE "coro-frame"
303 
304 namespace {
305 class FrameTypeBuilder;
306 // Mapping from the to-be-spilled value to all the users that need reload.
307 using SpillInfo = SmallMapVector<Value *, SmallVector<Instruction *, 2>, 8>;
308 struct AllocaInfo {
309   AllocaInst *Alloca;
310   DenseMap<Instruction *, llvm::Optional<APInt>> Aliases;
311   bool MayWriteBeforeCoroBegin;
312   AllocaInfo(AllocaInst *Alloca,
313              DenseMap<Instruction *, llvm::Optional<APInt>> Aliases,
314              bool MayWriteBeforeCoroBegin)
315       : Alloca(Alloca), Aliases(std::move(Aliases)),
316         MayWriteBeforeCoroBegin(MayWriteBeforeCoroBegin) {}
317 };
318 struct FrameDataInfo {
319   // All the values (that are not allocas) that needs to be spilled to the
320   // frame.
321   SpillInfo Spills;
322   // Allocas contains all values defined as allocas that need to live in the
323   // frame.
324   SmallVector<AllocaInfo, 8> Allocas;
325 
326   SmallVector<Value *, 8> getAllDefs() const {
327     SmallVector<Value *, 8> Defs;
328     for (const auto &P : Spills)
329       Defs.push_back(P.first);
330     for (const auto &A : Allocas)
331       Defs.push_back(A.Alloca);
332     return Defs;
333   }
334 
335   uint32_t getFieldIndex(Value *V) const {
336     auto Itr = FieldIndexMap.find(V);
337     assert(Itr != FieldIndexMap.end() &&
338            "Value does not have a frame field index");
339     return Itr->second;
340   }
341 
342   void setFieldIndex(Value *V, uint32_t Index) {
343     assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) &&
344            "Cannot set the index for the same field twice.");
345     FieldIndexMap[V] = Index;
346   }
347 
348   uint64_t getAlign(Value *V) const {
349     auto Iter = FieldAlignMap.find(V);
350     assert(Iter != FieldAlignMap.end());
351     return Iter->second;
352   }
353 
354   void setAlign(Value *V, uint64_t Align) {
355     assert(FieldAlignMap.count(V) == 0);
356     FieldAlignMap.insert({V, Align});
357   }
358 
359   uint64_t getOffset(Value *V) const {
360     auto Iter = FieldOffsetMap.find(V);
361     assert(Iter != FieldOffsetMap.end());
362     return Iter->second;
363   }
364 
365   void setOffset(Value *V, uint64_t Offset) {
366     assert(FieldOffsetMap.count(V) == 0);
367     FieldOffsetMap.insert({V, Offset});
368   }
369 
370   // Remap the index of every field in the frame, using the final layout index.
371   void updateLayoutIndex(FrameTypeBuilder &B);
372 
373 private:
374   // LayoutIndexUpdateStarted is used to avoid updating the index of any field
375   // twice by mistake.
376   bool LayoutIndexUpdateStarted = false;
377   // Map from values to their slot indexes on the frame. They will be first set
378   // with their original insertion field index. After the frame is built, their
379   // indexes will be updated into the final layout index.
380   DenseMap<Value *, uint32_t> FieldIndexMap;
381   // Map from values to their alignment on the frame. They would be set after
382   // the frame is built.
383   DenseMap<Value *, uint64_t> FieldAlignMap;
384   // Map from values to their offset on the frame. They would be set after
385   // the frame is built.
386   DenseMap<Value *, uint64_t> FieldOffsetMap;
387 };
388 } // namespace
389 
390 #ifndef NDEBUG
391 static void dumpSpills(StringRef Title, const SpillInfo &Spills) {
392   dbgs() << "------------- " << Title << "--------------\n";
393   for (const auto &E : Spills) {
394     E.first->dump();
395     dbgs() << "   user: ";
396     for (auto *I : E.second)
397       I->dump();
398   }
399 }
400 
401 static void dumpAllocas(const SmallVectorImpl<AllocaInfo> &Allocas) {
402   dbgs() << "------------- Allocas --------------\n";
403   for (const auto &A : Allocas) {
404     A.Alloca->dump();
405   }
406 }
407 #endif
408 
409 namespace {
410 using FieldIDType = size_t;
411 // We cannot rely solely on natural alignment of a type when building a
412 // coroutine frame and if the alignment specified on the Alloca instruction
413 // differs from the natural alignment of the alloca type we will need to insert
414 // padding.
415 class FrameTypeBuilder {
416 private:
417   struct Field {
418     uint64_t Size;
419     uint64_t Offset;
420     Type *Ty;
421     FieldIDType LayoutFieldIndex;
422     Align Alignment;
423     Align TyAlignment;
424   };
425 
426   const DataLayout &DL;
427   LLVMContext &Context;
428   uint64_t StructSize = 0;
429   Align StructAlign;
430   bool IsFinished = false;
431 
432   Optional<Align> MaxFrameAlignment;
433 
434   SmallVector<Field, 8> Fields;
435   DenseMap<Value*, unsigned> FieldIndexByKey;
436 
437 public:
438   FrameTypeBuilder(LLVMContext &Context, DataLayout const &DL,
439                    Optional<Align> MaxFrameAlignment)
440       : DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {}
441 
442   /// Add a field to this structure for the storage of an `alloca`
443   /// instruction.
444   LLVM_NODISCARD FieldIDType addFieldForAlloca(AllocaInst *AI,
445                                                bool IsHeader = false) {
446     Type *Ty = AI->getAllocatedType();
447 
448     // Make an array type if this is a static array allocation.
449     if (AI->isArrayAllocation()) {
450       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
451         Ty = ArrayType::get(Ty, CI->getValue().getZExtValue());
452       else
453         report_fatal_error("Coroutines cannot handle non static allocas yet");
454     }
455 
456     return addField(Ty, AI->getAlign(), IsHeader);
457   }
458 
459   /// We want to put the allocas whose lifetime-ranges are not overlapped
460   /// into one slot of coroutine frame.
461   /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566
462   ///
463   ///     cppcoro::task<void> alternative_paths(bool cond) {
464   ///         if (cond) {
465   ///             big_structure a;
466   ///             process(a);
467   ///             co_await something();
468   ///         } else {
469   ///             big_structure b;
470   ///             process2(b);
471   ///             co_await something();
472   ///         }
473   ///     }
474   ///
475   /// We want to put variable a and variable b in the same slot to
476   /// reduce the size of coroutine frame.
477   ///
478   /// This function use StackLifetime algorithm to partition the AllocaInsts in
479   /// Spills to non-overlapped sets in order to put Alloca in the same
480   /// non-overlapped set into the same slot in the Coroutine Frame. Then add
481   /// field for the allocas in the same non-overlapped set by using the largest
482   /// type as the field type.
483   ///
484   /// Side Effects: Because We sort the allocas, the order of allocas in the
485   /// frame may be different with the order in the source code.
486   void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData,
487                           coro::Shape &Shape);
488 
489   /// Add a field to this structure.
490   LLVM_NODISCARD FieldIDType addField(Type *Ty, MaybeAlign FieldAlignment,
491                                       bool IsHeader = false,
492                                       bool IsSpillOfValue = false) {
493     assert(!IsFinished && "adding fields to a finished builder");
494     assert(Ty && "must provide a type for a field");
495 
496     // The field size is always the alloc size of the type.
497     uint64_t FieldSize = DL.getTypeAllocSize(Ty);
498 
499     // For an alloca with size=0, we don't need to add a field and they
500     // can just point to any index in the frame. Use index 0.
501     if (FieldSize == 0) {
502       return 0;
503     }
504 
505     // The field alignment might not be the type alignment, but we need
506     // to remember the type alignment anyway to build the type.
507     // If we are spilling values we don't need to worry about ABI alignment
508     // concerns.
509     auto ABIAlign = DL.getABITypeAlign(Ty);
510     Align TyAlignment =
511         (IsSpillOfValue && MaxFrameAlignment)
512             ? (*MaxFrameAlignment < ABIAlign ? *MaxFrameAlignment : ABIAlign)
513             : ABIAlign;
514     if (!FieldAlignment) {
515       FieldAlignment = TyAlignment;
516     }
517 
518     // Lay out header fields immediately.
519     uint64_t Offset;
520     if (IsHeader) {
521       Offset = alignTo(StructSize, FieldAlignment);
522       StructSize = Offset + FieldSize;
523 
524     // Everything else has a flexible offset.
525     } else {
526       Offset = OptimizedStructLayoutField::FlexibleOffset;
527     }
528 
529     Fields.push_back({FieldSize, Offset, Ty, 0, *FieldAlignment, TyAlignment});
530     return Fields.size() - 1;
531   }
532 
533   /// Finish the layout and set the body on the given type.
534   void finish(StructType *Ty);
535 
536   uint64_t getStructSize() const {
537     assert(IsFinished && "not yet finished!");
538     return StructSize;
539   }
540 
541   Align getStructAlign() const {
542     assert(IsFinished && "not yet finished!");
543     return StructAlign;
544   }
545 
546   FieldIDType getLayoutFieldIndex(FieldIDType Id) const {
547     assert(IsFinished && "not yet finished!");
548     return Fields[Id].LayoutFieldIndex;
549   }
550 
551   Field getLayoutField(FieldIDType Id) const {
552     assert(IsFinished && "not yet finished!");
553     return Fields[Id];
554   }
555 };
556 } // namespace
557 
558 void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) {
559   auto Updater = [&](Value *I) {
560     auto Field = B.getLayoutField(getFieldIndex(I));
561     setFieldIndex(I, Field.LayoutFieldIndex);
562     setAlign(I, Field.Alignment.value());
563     setOffset(I, Field.Offset);
564   };
565   LayoutIndexUpdateStarted = true;
566   for (auto &S : Spills)
567     Updater(S.first);
568   for (const auto &A : Allocas)
569     Updater(A.Alloca);
570   LayoutIndexUpdateStarted = false;
571 }
572 
573 void FrameTypeBuilder::addFieldForAllocas(const Function &F,
574                                           FrameDataInfo &FrameData,
575                                           coro::Shape &Shape) {
576   using AllocaSetType = SmallVector<AllocaInst *, 4>;
577   SmallVector<AllocaSetType, 4> NonOverlapedAllocas;
578 
579   // We need to add field for allocas at the end of this function. However, this
580   // function has multiple exits, so we use this helper to avoid redundant code.
581   struct RTTIHelper {
582     std::function<void()> func;
583     RTTIHelper(std::function<void()> &&func) : func(func) {}
584     ~RTTIHelper() { func(); }
585   } Helper([&]() {
586     for (auto AllocaList : NonOverlapedAllocas) {
587       auto *LargestAI = *AllocaList.begin();
588       FieldIDType Id = addFieldForAlloca(LargestAI);
589       for (auto *Alloca : AllocaList)
590         FrameData.setFieldIndex(Alloca, Id);
591     }
592   });
593 
594   if (!Shape.ReuseFrameSlot && !EnableReuseStorageInFrame) {
595     for (const auto &A : FrameData.Allocas) {
596       AllocaInst *Alloca = A.Alloca;
597       NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
598     }
599     return;
600   }
601 
602   // Because there are pathes from the lifetime.start to coro.end
603   // for each alloca, the liferanges for every alloca is overlaped
604   // in the blocks who contain coro.end and the successor blocks.
605   // So we choose to skip there blocks when we calculates the liferange
606   // for each alloca. It should be reasonable since there shouldn't be uses
607   // in these blocks and the coroutine frame shouldn't be used outside the
608   // coroutine body.
609   //
610   // Note that the user of coro.suspend may not be SwitchInst. However, this
611   // case seems too complex to handle. And it is harmless to skip these
612   // patterns since it just prevend putting the allocas to live in the same
613   // slot.
614   DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest;
615   for (auto CoroSuspendInst : Shape.CoroSuspends) {
616     for (auto U : CoroSuspendInst->users()) {
617       if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) {
618         auto *SWI = const_cast<SwitchInst *>(ConstSWI);
619         DefaultSuspendDest[SWI] = SWI->getDefaultDest();
620         SWI->setDefaultDest(SWI->getSuccessor(1));
621       }
622     }
623   }
624 
625   auto ExtractAllocas = [&]() {
626     AllocaSetType Allocas;
627     Allocas.reserve(FrameData.Allocas.size());
628     for (const auto &A : FrameData.Allocas)
629       Allocas.push_back(A.Alloca);
630     return Allocas;
631   };
632   StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(),
633                                       StackLifetime::LivenessType::May);
634   StackLifetimeAnalyzer.run();
635   auto IsAllocaInferenre = [&](const AllocaInst *AI1, const AllocaInst *AI2) {
636     return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps(
637         StackLifetimeAnalyzer.getLiveRange(AI2));
638   };
639   auto GetAllocaSize = [&](const AllocaInfo &A) {
640     Optional<TypeSize> RetSize = A.Alloca->getAllocationSizeInBits(DL);
641     assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n");
642     assert(!RetSize->isScalable() && "Scalable vectors are not yet supported");
643     return RetSize->getFixedSize();
644   };
645   // Put larger allocas in the front. So the larger allocas have higher
646   // priority to merge, which can save more space potentially. Also each
647   // AllocaSet would be ordered. So we can get the largest Alloca in one
648   // AllocaSet easily.
649   sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) {
650     return GetAllocaSize(Iter1) > GetAllocaSize(Iter2);
651   });
652   for (const auto &A : FrameData.Allocas) {
653     AllocaInst *Alloca = A.Alloca;
654     bool Merged = false;
655     // Try to find if the Alloca is not inferenced with any existing
656     // NonOverlappedAllocaSet. If it is true, insert the alloca to that
657     // NonOverlappedAllocaSet.
658     for (auto &AllocaSet : NonOverlapedAllocas) {
659       assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n");
660       bool NoInference = none_of(AllocaSet, [&](auto Iter) {
661         return IsAllocaInferenre(Alloca, Iter);
662       });
663       // If the alignment of A is multiple of the alignment of B, the address
664       // of A should satisfy the requirement for aligning for B.
665       //
666       // There may be other more fine-grained strategies to handle the alignment
667       // infomation during the merging process. But it seems hard to handle
668       // these strategies and benefit little.
669       bool Alignable = [&]() -> bool {
670         auto *LargestAlloca = *AllocaSet.begin();
671         return LargestAlloca->getAlign().value() % Alloca->getAlign().value() ==
672                0;
673       }();
674       bool CouldMerge = NoInference && Alignable;
675       if (!CouldMerge)
676         continue;
677       AllocaSet.push_back(Alloca);
678       Merged = true;
679       break;
680     }
681     if (!Merged) {
682       NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
683     }
684   }
685   // Recover the default target destination for each Switch statement
686   // reserved.
687   for (auto SwitchAndDefaultDest : DefaultSuspendDest) {
688     SwitchInst *SWI = SwitchAndDefaultDest.first;
689     BasicBlock *DestBB = SwitchAndDefaultDest.second;
690     SWI->setDefaultDest(DestBB);
691   }
692   // This Debug Info could tell us which allocas are merged into one slot.
693   LLVM_DEBUG(for (auto &AllocaSet
694                   : NonOverlapedAllocas) {
695     if (AllocaSet.size() > 1) {
696       dbgs() << "In Function:" << F.getName() << "\n";
697       dbgs() << "Find Union Set "
698              << "\n";
699       dbgs() << "\tAllocas are \n";
700       for (auto Alloca : AllocaSet)
701         dbgs() << "\t\t" << *Alloca << "\n";
702     }
703   });
704 }
705 
706 void FrameTypeBuilder::finish(StructType *Ty) {
707   assert(!IsFinished && "already finished!");
708 
709   // Prepare the optimal-layout field array.
710   // The Id in the layout field is a pointer to our Field for it.
711   SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
712   LayoutFields.reserve(Fields.size());
713   for (auto &Field : Fields) {
714     LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment,
715                               Field.Offset);
716   }
717 
718   // Perform layout.
719   auto SizeAndAlign = performOptimizedStructLayout(LayoutFields);
720   StructSize = SizeAndAlign.first;
721   StructAlign = SizeAndAlign.second;
722 
723   auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & {
724     return *static_cast<Field *>(const_cast<void*>(LayoutField.Id));
725   };
726 
727   // We need to produce a packed struct type if there's a field whose
728   // assigned offset isn't a multiple of its natural type alignment.
729   bool Packed = [&] {
730     for (auto &LayoutField : LayoutFields) {
731       auto &F = getField(LayoutField);
732       if (!isAligned(F.TyAlignment, LayoutField.Offset))
733         return true;
734     }
735     return false;
736   }();
737 
738   // Build the struct body.
739   SmallVector<Type*, 16> FieldTypes;
740   FieldTypes.reserve(LayoutFields.size() * 3 / 2);
741   uint64_t LastOffset = 0;
742   for (auto &LayoutField : LayoutFields) {
743     auto &F = getField(LayoutField);
744 
745     auto Offset = LayoutField.Offset;
746 
747     // Add a padding field if there's a padding gap and we're either
748     // building a packed struct or the padding gap is more than we'd
749     // get from aligning to the field type's natural alignment.
750     assert(Offset >= LastOffset);
751     if (Offset != LastOffset) {
752       if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset)
753         FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context),
754                                             Offset - LastOffset));
755     }
756 
757     F.Offset = Offset;
758     F.LayoutFieldIndex = FieldTypes.size();
759 
760     FieldTypes.push_back(F.Ty);
761     LastOffset = Offset + F.Size;
762   }
763 
764   Ty->setBody(FieldTypes, Packed);
765 
766 #ifndef NDEBUG
767   // Check that the IR layout matches the offsets we expect.
768   auto Layout = DL.getStructLayout(Ty);
769   for (auto &F : Fields) {
770     assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty);
771     assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset);
772   }
773 #endif
774 
775   IsFinished = true;
776 }
777 
778 static void cacheDIVar(FrameDataInfo &FrameData,
779                        DenseMap<Value *, DILocalVariable *> &DIVarCache) {
780   for (auto *V : FrameData.getAllDefs()) {
781     if (DIVarCache.find(V) != DIVarCache.end())
782       continue;
783 
784     auto DDIs = FindDbgDeclareUses(V);
785     auto *I = llvm::find_if(DDIs, [](DbgDeclareInst *DDI) {
786       return DDI->getExpression()->getNumElements() == 0;
787     });
788     if (I != DDIs.end())
789       DIVarCache.insert({V, (*I)->getVariable()});
790   }
791 }
792 
793 /// Create name for Type. It uses MDString to store new created string to
794 /// avoid memory leak.
795 static StringRef solveTypeName(Type *Ty) {
796   if (Ty->isIntegerTy()) {
797     // The longest name in common may be '__int_128', which has 9 bits.
798     SmallString<16> Buffer;
799     raw_svector_ostream OS(Buffer);
800     OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth();
801     auto *MDName = MDString::get(Ty->getContext(), OS.str());
802     return MDName->getString();
803   }
804 
805   if (Ty->isFloatingPointTy()) {
806     if (Ty->isFloatTy())
807       return "__float_";
808     if (Ty->isDoubleTy())
809       return "__double_";
810     return "__floating_type_";
811   }
812 
813   if (Ty->isPointerTy()) {
814     auto *PtrTy = cast<PointerType>(Ty);
815     Type *PointeeTy = PtrTy->getElementType();
816     auto Name = solveTypeName(PointeeTy);
817     if (Name == "UnknownType")
818       return "PointerType";
819     SmallString<16> Buffer;
820     Twine(Name + "_Ptr").toStringRef(Buffer);
821     auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
822     return MDName->getString();
823   }
824 
825   if (Ty->isStructTy()) {
826     if (!cast<StructType>(Ty)->hasName())
827       return "__LiteralStructType_";
828 
829     auto Name = Ty->getStructName();
830 
831     SmallString<16> Buffer(Name);
832     for_each(Buffer, [](auto &Iter) {
833       if (Iter == '.' || Iter == ':')
834         Iter = '_';
835     });
836     auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
837     return MDName->getString();
838   }
839 
840   return "UnknownType";
841 }
842 
843 static DIType *solveDIType(DIBuilder &Builder, Type *Ty, DataLayout &Layout,
844                            DIScope *Scope, unsigned LineNum,
845                            DenseMap<Type *, DIType *> &DITypeCache) {
846   if (DIType *DT = DITypeCache.lookup(Ty))
847     return DT;
848 
849   StringRef Name = solveTypeName(Ty);
850 
851   DIType *RetType = nullptr;
852 
853   if (Ty->isIntegerTy()) {
854     auto BitWidth = cast<IntegerType>(Ty)->getBitWidth();
855     RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed,
856                                       llvm::DINode::FlagArtificial);
857   } else if (Ty->isFloatingPointTy()) {
858     RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
859                                       dwarf::DW_ATE_float,
860                                       llvm::DINode::FlagArtificial);
861   } else if (Ty->isPointerTy()) {
862     // Construct BasicType instead of PointerType to avoid infinite
863     // search problem.
864     // For example, we would be in trouble if we traverse recursively:
865     //
866     //  struct Node {
867     //      Node* ptr;
868     //  };
869     RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
870                                       dwarf::DW_ATE_address,
871                                       llvm::DINode::FlagArtificial);
872   } else if (Ty->isStructTy()) {
873     auto *DIStruct = Builder.createStructType(
874         Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty),
875         Layout.getPrefTypeAlignment(Ty), llvm::DINode::FlagArtificial, nullptr,
876         llvm::DINodeArray());
877 
878     auto *StructTy = cast<StructType>(Ty);
879     SmallVector<Metadata *, 16> Elements;
880     for (unsigned I = 0; I < StructTy->getNumElements(); I++) {
881       DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout,
882                                  Scope, LineNum, DITypeCache);
883       assert(DITy);
884       Elements.push_back(Builder.createMemberType(
885           Scope, DITy->getName(), Scope->getFile(), LineNum,
886           DITy->getSizeInBits(), DITy->getAlignInBits(),
887           Layout.getStructLayout(StructTy)->getElementOffsetInBits(I),
888           llvm::DINode::FlagArtificial, DITy));
889     }
890 
891     Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements));
892 
893     RetType = DIStruct;
894   } else {
895     LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n";);
896     SmallString<32> Buffer;
897     raw_svector_ostream OS(Buffer);
898     OS << Name.str() << "_" << Layout.getTypeSizeInBits(Ty);
899     RetType = Builder.createBasicType(OS.str(), Layout.getTypeSizeInBits(Ty),
900                                       dwarf::DW_ATE_address,
901                                       llvm::DINode::FlagArtificial);
902   }
903 
904   DITypeCache.insert({Ty, RetType});
905   return RetType;
906 }
907 
908 /// Build artificial debug info for C++ coroutine frames to allow users to
909 /// inspect the contents of the frame directly
910 ///
911 /// Create Debug information for coroutine frame with debug name "__coro_frame".
912 /// The debug information for the fields of coroutine frame is constructed from
913 /// the following way:
914 /// 1. For all the value in the Frame, we search the use of dbg.declare to find
915 ///    the corresponding debug variables for the value. If we can find the
916 ///    debug variable, we can get full and accurate debug information.
917 /// 2. If we can't get debug information in step 1 and 2, we could only try to
918 ///    build the DIType by Type. We did this in solveDIType. We only handle
919 ///    integer, float, double, integer type and struct type for now.
920 static void buildFrameDebugInfo(Function &F, coro::Shape &Shape,
921                                 FrameDataInfo &FrameData) {
922   DISubprogram *DIS = F.getSubprogram();
923   // If there is no DISubprogram for F, it implies the Function are not compiled
924   // with debug info. So we also don't need to generate debug info for the frame
925   // neither.
926   if (!DIS || !DIS->getUnit() ||
927       !dwarf::isCPlusPlus(
928           (dwarf::SourceLanguage)DIS->getUnit()->getSourceLanguage()))
929     return;
930 
931   assert(Shape.ABI == coro::ABI::Switch &&
932          "We could only build debug infomation for C++ coroutine now.\n");
933 
934   DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false);
935 
936   AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
937   assert(PromiseAlloca &&
938          "Coroutine with switch ABI should own Promise alloca");
939 
940   TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(PromiseAlloca);
941   if (DIs.empty())
942     return;
943 
944   DbgDeclareInst *PromiseDDI = DIs.front();
945   DILocalVariable *PromiseDIVariable = PromiseDDI->getVariable();
946   DILocalScope *PromiseDIScope = PromiseDIVariable->getScope();
947   DIFile *DFile = PromiseDIScope->getFile();
948   DILocation *DILoc = PromiseDDI->getDebugLoc().get();
949   unsigned LineNum = PromiseDIVariable->getLine();
950 
951   DICompositeType *FrameDITy = DBuilder.createStructType(
952       DIS, "__coro_frame_ty", DFile, LineNum, Shape.FrameSize * 8,
953       Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr,
954       llvm::DINodeArray());
955   StructType *FrameTy = Shape.FrameTy;
956   SmallVector<Metadata *, 16> Elements;
957   DataLayout Layout = F.getParent()->getDataLayout();
958 
959   DenseMap<Value *, DILocalVariable *> DIVarCache;
960   cacheDIVar(FrameData, DIVarCache);
961 
962   unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume;
963   unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy;
964   unsigned IndexIndex = Shape.SwitchLowering.IndexField;
965 
966   DenseMap<unsigned, StringRef> NameCache;
967   NameCache.insert({ResumeIndex, "__resume_fn"});
968   NameCache.insert({DestroyIndex, "__destroy_fn"});
969   NameCache.insert({IndexIndex, "__coro_index"});
970 
971   Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex),
972        *DestroyFnTy = FrameTy->getElementType(DestroyIndex),
973        *IndexTy = FrameTy->getElementType(IndexIndex);
974 
975   DenseMap<unsigned, DIType *> TyCache;
976   TyCache.insert({ResumeIndex,
977                   DBuilder.createBasicType("__resume_fn",
978                                            Layout.getTypeSizeInBits(ResumeFnTy),
979                                            dwarf::DW_ATE_address)});
980   TyCache.insert(
981       {DestroyIndex, DBuilder.createBasicType(
982                          "__destroy_fn", Layout.getTypeSizeInBits(DestroyFnTy),
983                          dwarf::DW_ATE_address)});
984 
985   /// FIXME: If we fill the field `SizeInBits` with the actual size of
986   /// __coro_index in bits, then __coro_index wouldn't show in the debugger.
987   TyCache.insert({IndexIndex, DBuilder.createBasicType(
988                                   "__coro_index",
989                                   (Layout.getTypeSizeInBits(IndexTy) < 8)
990                                       ? 8
991                                       : Layout.getTypeSizeInBits(IndexTy),
992                                   dwarf::DW_ATE_unsigned_char)});
993 
994   for (auto *V : FrameData.getAllDefs()) {
995     if (DIVarCache.find(V) == DIVarCache.end())
996       continue;
997 
998     auto Index = FrameData.getFieldIndex(V);
999 
1000     NameCache.insert({Index, DIVarCache[V]->getName()});
1001     TyCache.insert({Index, DIVarCache[V]->getType()});
1002   }
1003 
1004   // Cache from index to (Align, Offset Pair)
1005   DenseMap<unsigned, std::pair<unsigned, unsigned>> OffsetCache;
1006   // The Align and Offset of Resume function and Destroy function are fixed.
1007   OffsetCache.insert({ResumeIndex, {8, 0}});
1008   OffsetCache.insert({DestroyIndex, {8, 8}});
1009   OffsetCache.insert(
1010       {IndexIndex,
1011        {Shape.SwitchLowering.IndexAlign, Shape.SwitchLowering.IndexOffset}});
1012 
1013   for (auto *V : FrameData.getAllDefs()) {
1014     auto Index = FrameData.getFieldIndex(V);
1015 
1016     OffsetCache.insert(
1017         {Index, {FrameData.getAlign(V), FrameData.getOffset(V)}});
1018   }
1019 
1020   DenseMap<Type *, DIType *> DITypeCache;
1021   // This counter is used to avoid same type names. e.g., there would be
1022   // many i32 and i64 types in one coroutine. And we would use i32_0 and
1023   // i32_1 to avoid the same type. Since it makes no sense the name of the
1024   // fields confilicts with each other.
1025   unsigned UnknownTypeNum = 0;
1026   for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) {
1027     if (OffsetCache.find(Index) == OffsetCache.end())
1028       continue;
1029 
1030     std::string Name;
1031     uint64_t SizeInBits;
1032     uint32_t AlignInBits;
1033     uint64_t OffsetInBits;
1034     DIType *DITy = nullptr;
1035 
1036     Type *Ty = FrameTy->getElementType(Index);
1037     assert(Ty->isSized() && "We can't handle type which is not sized.\n");
1038     SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedSize();
1039     AlignInBits = OffsetCache[Index].first * 8;
1040     OffsetInBits = OffsetCache[Index].second * 8;
1041 
1042     if (NameCache.find(Index) != NameCache.end()) {
1043       Name = NameCache[Index].str();
1044       DITy = TyCache[Index];
1045     } else {
1046       DITy = solveDIType(DBuilder, Ty, Layout, FrameDITy, LineNum, DITypeCache);
1047       assert(DITy && "SolveDIType shouldn't return nullptr.\n");
1048       Name = DITy->getName().str();
1049       Name += "_" + std::to_string(UnknownTypeNum);
1050       UnknownTypeNum++;
1051     }
1052 
1053     Elements.push_back(DBuilder.createMemberType(
1054         FrameDITy, Name, DFile, LineNum, SizeInBits, AlignInBits, OffsetInBits,
1055         llvm::DINode::FlagArtificial, DITy));
1056   }
1057 
1058   DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements));
1059 
1060   auto *FrameDIVar = DBuilder.createAutoVariable(PromiseDIScope, "__coro_frame",
1061                                                  DFile, LineNum, FrameDITy,
1062                                                  true, DINode::FlagArtificial);
1063   assert(FrameDIVar->isValidLocationForIntrinsic(PromiseDDI->getDebugLoc()));
1064 
1065   // Subprogram would have ContainedNodes field which records the debug
1066   // variables it contained. So we need to add __coro_frame to the
1067   // ContainedNodes of it.
1068   //
1069   // If we don't add __coro_frame to the RetainedNodes, user may get
1070   // `no symbol __coro_frame in context` rather than `__coro_frame`
1071   // is optimized out, which is more precise.
1072   if (auto *SubProgram = dyn_cast<DISubprogram>(PromiseDIScope)) {
1073     auto RetainedNodes = SubProgram->getRetainedNodes();
1074     SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(),
1075                                                  RetainedNodes.end());
1076     RetainedNodesVec.push_back(FrameDIVar);
1077     SubProgram->replaceOperandWith(
1078         7, (MDTuple::get(F.getContext(), RetainedNodesVec)));
1079   }
1080 
1081   DBuilder.insertDeclare(Shape.FramePtr, FrameDIVar,
1082                          DBuilder.createExpression(), DILoc,
1083                          Shape.FramePtr->getNextNode());
1084 }
1085 
1086 // Build a struct that will keep state for an active coroutine.
1087 //   struct f.frame {
1088 //     ResumeFnTy ResumeFnAddr;
1089 //     ResumeFnTy DestroyFnAddr;
1090 //     int ResumeIndex;
1091 //     ... promise (if present) ...
1092 //     ... spills ...
1093 //   };
1094 static StructType *buildFrameType(Function &F, coro::Shape &Shape,
1095                                   FrameDataInfo &FrameData) {
1096   LLVMContext &C = F.getContext();
1097   const DataLayout &DL = F.getParent()->getDataLayout();
1098   StructType *FrameTy = [&] {
1099     SmallString<32> Name(F.getName());
1100     Name.append(".Frame");
1101     return StructType::create(C, Name);
1102   }();
1103 
1104   // We will use this value to cap the alignment of spilled values.
1105   Optional<Align> MaxFrameAlignment;
1106   if (Shape.ABI == coro::ABI::Async)
1107     MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment();
1108   FrameTypeBuilder B(C, DL, MaxFrameAlignment);
1109 
1110   AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
1111   Optional<FieldIDType> SwitchIndexFieldId;
1112 
1113   if (Shape.ABI == coro::ABI::Switch) {
1114     auto *FramePtrTy = FrameTy->getPointerTo();
1115     auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
1116                                    /*IsVarArg=*/false);
1117     auto *FnPtrTy = FnTy->getPointerTo();
1118 
1119     // Add header fields for the resume and destroy functions.
1120     // We can rely on these being perfectly packed.
1121     (void)B.addField(FnPtrTy, None, /*header*/ true);
1122     (void)B.addField(FnPtrTy, None, /*header*/ true);
1123 
1124     // PromiseAlloca field needs to be explicitly added here because it's
1125     // a header field with a fixed offset based on its alignment. Hence it
1126     // needs special handling and cannot be added to FrameData.Allocas.
1127     if (PromiseAlloca)
1128       FrameData.setFieldIndex(
1129           PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true));
1130 
1131     // Add a field to store the suspend index.  This doesn't need to
1132     // be in the header.
1133     unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
1134     Type *IndexType = Type::getIntNTy(C, IndexBits);
1135 
1136     SwitchIndexFieldId = B.addField(IndexType, None);
1137   } else {
1138     assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
1139   }
1140 
1141   // Because multiple allocas may own the same field slot,
1142   // we add allocas to field here.
1143   B.addFieldForAllocas(F, FrameData, Shape);
1144   // Add PromiseAlloca to Allocas list so that
1145   // 1. updateLayoutIndex could update its index after
1146   // `performOptimizedStructLayout`
1147   // 2. it is processed in insertSpills.
1148   if (Shape.ABI == coro::ABI::Switch && PromiseAlloca)
1149     // We assume that the promise alloca won't be modified before
1150     // CoroBegin and no alias will be create before CoroBegin.
1151     FrameData.Allocas.emplace_back(
1152         PromiseAlloca, DenseMap<Instruction *, llvm::Optional<APInt>>{}, false);
1153   // Create an entry for every spilled value.
1154   for (auto &S : FrameData.Spills) {
1155     Type *FieldType = S.first->getType();
1156     // For byval arguments, we need to store the pointed value in the frame,
1157     // instead of the pointer itself.
1158     if (const Argument *A = dyn_cast<Argument>(S.first))
1159       if (A->hasByValAttr())
1160         FieldType = A->getParamByValType();
1161     FieldIDType Id =
1162         B.addField(FieldType, None, false /*header*/, true /*IsSpillOfValue*/);
1163     FrameData.setFieldIndex(S.first, Id);
1164   }
1165 
1166   B.finish(FrameTy);
1167   FrameData.updateLayoutIndex(B);
1168   Shape.FrameAlign = B.getStructAlign();
1169   Shape.FrameSize = B.getStructSize();
1170 
1171   switch (Shape.ABI) {
1172   case coro::ABI::Switch: {
1173     // In the switch ABI, remember the switch-index field.
1174     auto IndexField = B.getLayoutField(*SwitchIndexFieldId);
1175     Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex;
1176     Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value();
1177     Shape.SwitchLowering.IndexOffset = IndexField.Offset;
1178 
1179     // Also round the frame size up to a multiple of its alignment, as is
1180     // generally expected in C/C++.
1181     Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign);
1182     break;
1183   }
1184 
1185   // In the retcon ABI, remember whether the frame is inline in the storage.
1186   case coro::ABI::Retcon:
1187   case coro::ABI::RetconOnce: {
1188     auto Id = Shape.getRetconCoroId();
1189     Shape.RetconLowering.IsFrameInlineInStorage
1190       = (B.getStructSize() <= Id->getStorageSize() &&
1191          B.getStructAlign() <= Id->getStorageAlignment());
1192     break;
1193   }
1194   case coro::ABI::Async: {
1195     Shape.AsyncLowering.FrameOffset =
1196         alignTo(Shape.AsyncLowering.ContextHeaderSize, Shape.FrameAlign);
1197     // Also make the final context size a multiple of the context alignment to
1198     // make allocation easier for allocators.
1199     Shape.AsyncLowering.ContextSize =
1200         alignTo(Shape.AsyncLowering.FrameOffset + Shape.FrameSize,
1201                 Shape.AsyncLowering.getContextAlignment());
1202     if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) {
1203       report_fatal_error(
1204           "The alignment requirment of frame variables cannot be higher than "
1205           "the alignment of the async function context");
1206     }
1207     break;
1208   }
1209   }
1210 
1211   return FrameTy;
1212 }
1213 
1214 // We use a pointer use visitor to track how an alloca is being used.
1215 // The goal is to be able to answer the following three questions:
1216 // 1. Should this alloca be allocated on the frame instead.
1217 // 2. Could the content of the alloca be modified prior to CoroBegn, which would
1218 // require copying the data from alloca to the frame after CoroBegin.
1219 // 3. Is there any alias created for this alloca prior to CoroBegin, but used
1220 // after CoroBegin. In that case, we will need to recreate the alias after
1221 // CoroBegin based off the frame. To answer question 1, we track two things:
1222 //   a. List of all BasicBlocks that use this alloca or any of the aliases of
1223 //   the alloca. In the end, we check if there exists any two basic blocks that
1224 //   cross suspension points. If so, this alloca must be put on the frame. b.
1225 //   Whether the alloca or any alias of the alloca is escaped at some point,
1226 //   either by storing the address somewhere, or the address is used in a
1227 //   function call that might capture. If it's ever escaped, this alloca must be
1228 //   put on the frame conservatively.
1229 // To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin.
1230 // Whenever a potential write happens, either through a store instruction, a
1231 // function call or any of the memory intrinsics, we check whether this
1232 // instruction is prior to CoroBegin. To answer question 3, we track the offsets
1233 // of all aliases created for the alloca prior to CoroBegin but used after
1234 // CoroBegin. llvm::Optional is used to be able to represent the case when the
1235 // offset is unknown (e.g. when you have a PHINode that takes in different
1236 // offset values). We cannot handle unknown offsets and will assert. This is the
1237 // potential issue left out. An ideal solution would likely require a
1238 // significant redesign.
1239 namespace {
1240 struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> {
1241   using Base = PtrUseVisitor<AllocaUseVisitor>;
1242   AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT,
1243                    const CoroBeginInst &CB, const SuspendCrossingInfo &Checker)
1244       : PtrUseVisitor(DL), DT(DT), CoroBegin(CB), Checker(Checker) {}
1245 
1246   void visit(Instruction &I) {
1247     Users.insert(&I);
1248     Base::visit(I);
1249     // If the pointer is escaped prior to CoroBegin, we have to assume it would
1250     // be written into before CoroBegin as well.
1251     if (PI.isEscaped() && !DT.dominates(&CoroBegin, PI.getEscapingInst())) {
1252       MayWriteBeforeCoroBegin = true;
1253     }
1254   }
1255   // We need to provide this overload as PtrUseVisitor uses a pointer based
1256   // visiting function.
1257   void visit(Instruction *I) { return visit(*I); }
1258 
1259   void visitPHINode(PHINode &I) {
1260     enqueueUsers(I);
1261     handleAlias(I);
1262   }
1263 
1264   void visitSelectInst(SelectInst &I) {
1265     enqueueUsers(I);
1266     handleAlias(I);
1267   }
1268 
1269   void visitStoreInst(StoreInst &SI) {
1270     // Regardless whether the alias of the alloca is the value operand or the
1271     // pointer operand, we need to assume the alloca is been written.
1272     handleMayWrite(SI);
1273 
1274     if (SI.getValueOperand() != U->get())
1275       return;
1276 
1277     // We are storing the pointer into a memory location, potentially escaping.
1278     // As an optimization, we try to detect simple cases where it doesn't
1279     // actually escape, for example:
1280     //   %ptr = alloca ..
1281     //   %addr = alloca ..
1282     //   store %ptr, %addr
1283     //   %x = load %addr
1284     //   ..
1285     // If %addr is only used by loading from it, we could simply treat %x as
1286     // another alias of %ptr, and not considering %ptr being escaped.
1287     auto IsSimpleStoreThenLoad = [&]() {
1288       auto *AI = dyn_cast<AllocaInst>(SI.getPointerOperand());
1289       // If the memory location we are storing to is not an alloca, it
1290       // could be an alias of some other memory locations, which is difficult
1291       // to analyze.
1292       if (!AI)
1293         return false;
1294       // StoreAliases contains aliases of the memory location stored into.
1295       SmallVector<Instruction *, 4> StoreAliases = {AI};
1296       while (!StoreAliases.empty()) {
1297         Instruction *I = StoreAliases.pop_back_val();
1298         for (User *U : I->users()) {
1299           // If we are loading from the memory location, we are creating an
1300           // alias of the original pointer.
1301           if (auto *LI = dyn_cast<LoadInst>(U)) {
1302             enqueueUsers(*LI);
1303             handleAlias(*LI);
1304             continue;
1305           }
1306           // If we are overriding the memory location, the pointer certainly
1307           // won't escape.
1308           if (auto *S = dyn_cast<StoreInst>(U))
1309             if (S->getPointerOperand() == I)
1310               continue;
1311           if (auto *II = dyn_cast<IntrinsicInst>(U))
1312             if (II->isLifetimeStartOrEnd())
1313               continue;
1314           // BitCastInst creats aliases of the memory location being stored
1315           // into.
1316           if (auto *BI = dyn_cast<BitCastInst>(U)) {
1317             StoreAliases.push_back(BI);
1318             continue;
1319           }
1320           return false;
1321         }
1322       }
1323 
1324       return true;
1325     };
1326 
1327     if (!IsSimpleStoreThenLoad())
1328       PI.setEscaped(&SI);
1329   }
1330 
1331   // All mem intrinsics modify the data.
1332   void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); }
1333 
1334   void visitBitCastInst(BitCastInst &BC) {
1335     Base::visitBitCastInst(BC);
1336     handleAlias(BC);
1337   }
1338 
1339   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
1340     Base::visitAddrSpaceCastInst(ASC);
1341     handleAlias(ASC);
1342   }
1343 
1344   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1345     // The base visitor will adjust Offset accordingly.
1346     Base::visitGetElementPtrInst(GEPI);
1347     handleAlias(GEPI);
1348   }
1349 
1350   void visitIntrinsicInst(IntrinsicInst &II) {
1351     if (II.getIntrinsicID() != Intrinsic::lifetime_start)
1352       return Base::visitIntrinsicInst(II);
1353     LifetimeStarts.insert(&II);
1354   }
1355 
1356   void visitCallBase(CallBase &CB) {
1357     for (unsigned Op = 0, OpCount = CB.getNumArgOperands(); Op < OpCount; ++Op)
1358       if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op))
1359         PI.setEscaped(&CB);
1360     handleMayWrite(CB);
1361   }
1362 
1363   bool getShouldLiveOnFrame() const {
1364     if (!ShouldLiveOnFrame)
1365       ShouldLiveOnFrame = computeShouldLiveOnFrame();
1366     return ShouldLiveOnFrame.getValue();
1367   }
1368 
1369   bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; }
1370 
1371   DenseMap<Instruction *, llvm::Optional<APInt>> getAliasesCopy() const {
1372     assert(getShouldLiveOnFrame() && "This method should only be called if the "
1373                                      "alloca needs to live on the frame.");
1374     for (const auto &P : AliasOffetMap)
1375       if (!P.second)
1376         report_fatal_error("Unable to handle an alias with unknown offset "
1377                            "created before CoroBegin.");
1378     return AliasOffetMap;
1379   }
1380 
1381 private:
1382   const DominatorTree &DT;
1383   const CoroBeginInst &CoroBegin;
1384   const SuspendCrossingInfo &Checker;
1385   // All alias to the original AllocaInst, created before CoroBegin and used
1386   // after CoroBegin. Each entry contains the instruction and the offset in the
1387   // original Alloca. They need to be recreated after CoroBegin off the frame.
1388   DenseMap<Instruction *, llvm::Optional<APInt>> AliasOffetMap{};
1389   SmallPtrSet<Instruction *, 4> Users{};
1390   SmallPtrSet<IntrinsicInst *, 2> LifetimeStarts{};
1391   bool MayWriteBeforeCoroBegin{false};
1392 
1393   mutable llvm::Optional<bool> ShouldLiveOnFrame{};
1394 
1395   bool computeShouldLiveOnFrame() const {
1396     // If lifetime information is available, we check it first since it's
1397     // more precise. We look at every pair of lifetime.start intrinsic and
1398     // every basic block that uses the pointer to see if they cross suspension
1399     // points. The uses cover both direct uses as well as indirect uses.
1400     if (!LifetimeStarts.empty()) {
1401       for (auto *I : Users)
1402         for (auto *S : LifetimeStarts)
1403           if (Checker.isDefinitionAcrossSuspend(*S, I))
1404             return true;
1405       return false;
1406     }
1407     // FIXME: Ideally the isEscaped check should come at the beginning.
1408     // However there are a few loose ends that need to be fixed first before
1409     // we can do that. We need to make sure we are not over-conservative, so
1410     // that the data accessed in-between await_suspend and symmetric transfer
1411     // is always put on the stack, and also data accessed after coro.end is
1412     // always put on the stack (esp the return object). To fix that, we need
1413     // to:
1414     //  1) Potentially treat sret as nocapture in calls
1415     //  2) Special handle the return object and put it on the stack
1416     //  3) Utilize lifetime.end intrinsic
1417     if (PI.isEscaped())
1418       return true;
1419 
1420     for (auto *U1 : Users)
1421       for (auto *U2 : Users)
1422         if (Checker.isDefinitionAcrossSuspend(*U1, U2))
1423           return true;
1424 
1425     return false;
1426   }
1427 
1428   void handleMayWrite(const Instruction &I) {
1429     if (!DT.dominates(&CoroBegin, &I))
1430       MayWriteBeforeCoroBegin = true;
1431   }
1432 
1433   bool usedAfterCoroBegin(Instruction &I) {
1434     for (auto &U : I.uses())
1435       if (DT.dominates(&CoroBegin, U))
1436         return true;
1437     return false;
1438   }
1439 
1440   void handleAlias(Instruction &I) {
1441     // We track all aliases created prior to CoroBegin but used after.
1442     // These aliases may need to be recreated after CoroBegin if the alloca
1443     // need to live on the frame.
1444     if (DT.dominates(&CoroBegin, &I) || !usedAfterCoroBegin(I))
1445       return;
1446 
1447     if (!IsOffsetKnown) {
1448       AliasOffetMap[&I].reset();
1449     } else {
1450       auto Itr = AliasOffetMap.find(&I);
1451       if (Itr == AliasOffetMap.end()) {
1452         AliasOffetMap[&I] = Offset;
1453       } else if (Itr->second.hasValue() && Itr->second.getValue() != Offset) {
1454         // If we have seen two different possible values for this alias, we set
1455         // it to empty.
1456         AliasOffetMap[&I].reset();
1457       }
1458     }
1459   }
1460 };
1461 } // namespace
1462 
1463 // We need to make room to insert a spill after initial PHIs, but before
1464 // catchswitch instruction. Placing it before violates the requirement that
1465 // catchswitch, like all other EHPads must be the first nonPHI in a block.
1466 //
1467 // Split away catchswitch into a separate block and insert in its place:
1468 //
1469 //   cleanuppad <InsertPt> cleanupret.
1470 //
1471 // cleanupret instruction will act as an insert point for the spill.
1472 static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
1473   BasicBlock *CurrentBlock = CatchSwitch->getParent();
1474   BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
1475   CurrentBlock->getTerminator()->eraseFromParent();
1476 
1477   auto *CleanupPad =
1478       CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
1479   auto *CleanupRet =
1480       CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
1481   return CleanupRet;
1482 }
1483 
1484 static void createFramePtr(coro::Shape &Shape) {
1485   auto *CB = Shape.CoroBegin;
1486   IRBuilder<> Builder(CB->getNextNode());
1487   StructType *FrameTy = Shape.FrameTy;
1488   PointerType *FramePtrTy = FrameTy->getPointerTo();
1489   Shape.FramePtr =
1490       cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
1491 }
1492 
1493 // Replace all alloca and SSA values that are accessed across suspend points
1494 // with GetElementPointer from coroutine frame + loads and stores. Create an
1495 // AllocaSpillBB that will become the new entry block for the resume parts of
1496 // the coroutine:
1497 //
1498 //    %hdl = coro.begin(...)
1499 //    whatever
1500 //
1501 // becomes:
1502 //
1503 //    %hdl = coro.begin(...)
1504 //    %FramePtr = bitcast i8* hdl to %f.frame*
1505 //    br label %AllocaSpillBB
1506 //
1507 //  AllocaSpillBB:
1508 //    ; geps corresponding to allocas that were moved to coroutine frame
1509 //    br label PostSpill
1510 //
1511 //  PostSpill:
1512 //    whatever
1513 //
1514 //
1515 static Instruction *insertSpills(const FrameDataInfo &FrameData,
1516                                  coro::Shape &Shape) {
1517   auto *CB = Shape.CoroBegin;
1518   LLVMContext &C = CB->getContext();
1519   IRBuilder<> Builder(C);
1520   StructType *FrameTy = Shape.FrameTy;
1521   Instruction *FramePtr = Shape.FramePtr;
1522   DominatorTree DT(*CB->getFunction());
1523   SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> DbgPtrAllocaCache;
1524 
1525   // Create a GEP with the given index into the coroutine frame for the original
1526   // value Orig. Appends an extra 0 index for array-allocas, preserving the
1527   // original type.
1528   auto GetFramePointer = [&](Value *Orig) -> Value * {
1529     FieldIDType Index = FrameData.getFieldIndex(Orig);
1530     SmallVector<Value *, 3> Indices = {
1531         ConstantInt::get(Type::getInt32Ty(C), 0),
1532         ConstantInt::get(Type::getInt32Ty(C), Index),
1533     };
1534 
1535     if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1536       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
1537         auto Count = CI->getValue().getZExtValue();
1538         if (Count > 1) {
1539           Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
1540         }
1541       } else {
1542         report_fatal_error("Coroutines cannot handle non static allocas yet");
1543       }
1544     }
1545 
1546     auto GEP = cast<GetElementPtrInst>(
1547         Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices));
1548     if (isa<AllocaInst>(Orig)) {
1549       // If the type of GEP is not equal to the type of AllocaInst, it implies
1550       // that the AllocaInst may be reused in the Frame slot of other
1551       // AllocaInst. So We cast GEP to the AllocaInst here to re-use
1552       // the Frame storage.
1553       //
1554       // Note: If we change the strategy dealing with alignment, we need to refine
1555       // this casting.
1556       if (GEP->getResultElementType() != Orig->getType())
1557         return Builder.CreateBitCast(GEP, Orig->getType(),
1558                                      Orig->getName() + Twine(".cast"));
1559     }
1560     return GEP;
1561   };
1562 
1563   for (auto const &E : FrameData.Spills) {
1564     Value *Def = E.first;
1565     auto SpillAlignment = Align(FrameData.getAlign(Def));
1566     // Create a store instruction storing the value into the
1567     // coroutine frame.
1568     Instruction *InsertPt = nullptr;
1569     bool NeedToCopyArgPtrValue = false;
1570     if (auto *Arg = dyn_cast<Argument>(Def)) {
1571       // For arguments, we will place the store instruction right after
1572       // the coroutine frame pointer instruction, i.e. bitcast of
1573       // coro.begin from i8* to %f.frame*.
1574       InsertPt = FramePtr->getNextNode();
1575 
1576       // If we're spilling an Argument, make sure we clear 'nocapture'
1577       // from the coroutine function.
1578       Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::NoCapture);
1579 
1580       if (Arg->hasByValAttr())
1581         NeedToCopyArgPtrValue = true;
1582 
1583     } else if (auto *CSI = dyn_cast<AnyCoroSuspendInst>(Def)) {
1584       // Don't spill immediately after a suspend; splitting assumes
1585       // that the suspend will be followed by a branch.
1586       InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI();
1587     } else {
1588       auto *I = cast<Instruction>(Def);
1589       if (!DT.dominates(CB, I)) {
1590         // If it is not dominated by CoroBegin, then spill should be
1591         // inserted immediately after CoroFrame is computed.
1592         InsertPt = FramePtr->getNextNode();
1593       } else if (auto *II = dyn_cast<InvokeInst>(I)) {
1594         // If we are spilling the result of the invoke instruction, split
1595         // the normal edge and insert the spill in the new block.
1596         auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest());
1597         InsertPt = NewBB->getTerminator();
1598       } else if (isa<PHINode>(I)) {
1599         // Skip the PHINodes and EH pads instructions.
1600         BasicBlock *DefBlock = I->getParent();
1601         if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
1602           InsertPt = splitBeforeCatchSwitch(CSI);
1603         else
1604           InsertPt = &*DefBlock->getFirstInsertionPt();
1605       } else {
1606         assert(!I->isTerminator() && "unexpected terminator");
1607         // For all other values, the spill is placed immediately after
1608         // the definition.
1609         InsertPt = I->getNextNode();
1610       }
1611     }
1612 
1613     auto Index = FrameData.getFieldIndex(Def);
1614     Builder.SetInsertPoint(InsertPt);
1615     auto *G = Builder.CreateConstInBoundsGEP2_32(
1616         FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr"));
1617     if (NeedToCopyArgPtrValue) {
1618       // For byval arguments, we need to store the pointed value in the frame,
1619       // instead of the pointer itself.
1620       auto *Value =
1621           Builder.CreateLoad(Def->getType()->getPointerElementType(), Def);
1622       Builder.CreateAlignedStore(Value, G, SpillAlignment);
1623     } else {
1624       Builder.CreateAlignedStore(Def, G, SpillAlignment);
1625     }
1626 
1627     BasicBlock *CurrentBlock = nullptr;
1628     Value *CurrentReload = nullptr;
1629     for (auto *U : E.second) {
1630       // If we have not seen the use block, create a load instruction to reload
1631       // the spilled value from the coroutine frame. Populates the Value pointer
1632       // reference provided with the frame GEP.
1633       if (CurrentBlock != U->getParent()) {
1634         CurrentBlock = U->getParent();
1635         Builder.SetInsertPoint(&*CurrentBlock->getFirstInsertionPt());
1636 
1637         auto *GEP = GetFramePointer(E.first);
1638         GEP->setName(E.first->getName() + Twine(".reload.addr"));
1639         if (NeedToCopyArgPtrValue)
1640           CurrentReload = GEP;
1641         else
1642           CurrentReload = Builder.CreateAlignedLoad(
1643               FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP,
1644               SpillAlignment, E.first->getName() + Twine(".reload"));
1645 
1646         TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(Def);
1647         for (DbgDeclareInst *DDI : DIs) {
1648           bool AllowUnresolved = false;
1649           // This dbg.declare is preserved for all coro-split function
1650           // fragments. It will be unreachable in the main function, and
1651           // processed by coro::salvageDebugInfo() by CoroCloner.
1652           DIBuilder(*CurrentBlock->getParent()->getParent(), AllowUnresolved)
1653               .insertDeclare(CurrentReload, DDI->getVariable(),
1654                              DDI->getExpression(), DDI->getDebugLoc(),
1655                              &*Builder.GetInsertPoint());
1656           // This dbg.declare is for the main function entry point.  It
1657           // will be deleted in all coro-split functions.
1658           coro::salvageDebugInfo(DbgPtrAllocaCache, DDI, Shape.ReuseFrameSlot);
1659         }
1660       }
1661 
1662       // If we have a single edge PHINode, remove it and replace it with a
1663       // reload from the coroutine frame. (We already took care of multi edge
1664       // PHINodes by rewriting them in the rewritePHIs function).
1665       if (auto *PN = dyn_cast<PHINode>(U)) {
1666         assert(PN->getNumIncomingValues() == 1 &&
1667                "unexpected number of incoming "
1668                "values in the PHINode");
1669         PN->replaceAllUsesWith(CurrentReload);
1670         PN->eraseFromParent();
1671         continue;
1672       }
1673 
1674       // Replace all uses of CurrentValue in the current instruction with
1675       // reload.
1676       U->replaceUsesOfWith(Def, CurrentReload);
1677     }
1678   }
1679 
1680   BasicBlock *FramePtrBB = FramePtr->getParent();
1681 
1682   auto SpillBlock =
1683       FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
1684   SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
1685   Shape.AllocaSpillBlock = SpillBlock;
1686 
1687   // retcon and retcon.once lowering assumes all uses have been sunk.
1688   if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
1689       Shape.ABI == coro::ABI::Async) {
1690     // If we found any allocas, replace all of their remaining uses with Geps.
1691     Builder.SetInsertPoint(&SpillBlock->front());
1692     for (const auto &P : FrameData.Allocas) {
1693       AllocaInst *Alloca = P.Alloca;
1694       auto *G = GetFramePointer(Alloca);
1695 
1696       // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G))
1697       // here, as we are changing location of the instruction.
1698       G->takeName(Alloca);
1699       Alloca->replaceAllUsesWith(G);
1700       Alloca->eraseFromParent();
1701     }
1702     return FramePtr;
1703   }
1704 
1705   // If we found any alloca, replace all of their remaining uses with GEP
1706   // instructions. To remain debugbility, we replace the uses of allocas for
1707   // dbg.declares and dbg.values with the reload from the frame.
1708   // Note: We cannot replace the alloca with GEP instructions indiscriminately,
1709   // as some of the uses may not be dominated by CoroBegin.
1710   Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
1711   SmallVector<Instruction *, 4> UsersToUpdate;
1712   for (const auto &A : FrameData.Allocas) {
1713     AllocaInst *Alloca = A.Alloca;
1714     UsersToUpdate.clear();
1715     for (User *U : Alloca->users()) {
1716       auto *I = cast<Instruction>(U);
1717       if (DT.dominates(CB, I))
1718         UsersToUpdate.push_back(I);
1719     }
1720     if (UsersToUpdate.empty())
1721       continue;
1722     auto *G = GetFramePointer(Alloca);
1723     G->setName(Alloca->getName() + Twine(".reload.addr"));
1724 
1725     SmallVector<DbgVariableIntrinsic *, 4> DIs;
1726     findDbgUsers(DIs, Alloca);
1727     for (auto *DVI : DIs)
1728       DVI->replaceUsesOfWith(Alloca, G);
1729 
1730     for (Instruction *I : UsersToUpdate)
1731       I->replaceUsesOfWith(Alloca, G);
1732   }
1733   Builder.SetInsertPoint(FramePtr->getNextNode());
1734   for (const auto &A : FrameData.Allocas) {
1735     AllocaInst *Alloca = A.Alloca;
1736     if (A.MayWriteBeforeCoroBegin) {
1737       // isEscaped really means potentially modified before CoroBegin.
1738       if (Alloca->isArrayAllocation())
1739         report_fatal_error(
1740             "Coroutines cannot handle copying of array allocas yet");
1741 
1742       auto *G = GetFramePointer(Alloca);
1743       auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca);
1744       Builder.CreateStore(Value, G);
1745     }
1746     // For each alias to Alloca created before CoroBegin but used after
1747     // CoroBegin, we recreate them after CoroBegin by appplying the offset
1748     // to the pointer in the frame.
1749     for (const auto &Alias : A.Aliases) {
1750       auto *FramePtr = GetFramePointer(Alloca);
1751       auto *FramePtrRaw =
1752           Builder.CreateBitCast(FramePtr, Type::getInt8PtrTy(C));
1753       auto *AliasPtr = Builder.CreateGEP(
1754           Type::getInt8Ty(C), FramePtrRaw,
1755           ConstantInt::get(Type::getInt64Ty(C), Alias.second.getValue()));
1756       auto *AliasPtrTyped =
1757           Builder.CreateBitCast(AliasPtr, Alias.first->getType());
1758       Alias.first->replaceUsesWithIf(
1759           AliasPtrTyped, [&](Use &U) { return DT.dominates(CB, U); });
1760     }
1761   }
1762   return FramePtr;
1763 }
1764 
1765 // Moves the values in the PHIs in SuccBB that correspong to PredBB into a new
1766 // PHI in InsertedBB.
1767 static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB,
1768                                          BasicBlock *InsertedBB,
1769                                          BasicBlock *PredBB,
1770                                          PHINode *UntilPHI = nullptr) {
1771   auto *PN = cast<PHINode>(&SuccBB->front());
1772   do {
1773     int Index = PN->getBasicBlockIndex(InsertedBB);
1774     Value *V = PN->getIncomingValue(Index);
1775     PHINode *InputV = PHINode::Create(
1776         V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName(),
1777         &InsertedBB->front());
1778     InputV->addIncoming(V, PredBB);
1779     PN->setIncomingValue(Index, InputV);
1780     PN = dyn_cast<PHINode>(PN->getNextNode());
1781   } while (PN != UntilPHI);
1782 }
1783 
1784 // Rewrites the PHI Nodes in a cleanuppad.
1785 static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB,
1786                                      CleanupPadInst *CleanupPad) {
1787   // For every incoming edge to a CleanupPad we will create a new block holding
1788   // all incoming values in single-value PHI nodes. We will then create another
1789   // block to act as a dispather (as all unwind edges for related EH blocks
1790   // must be the same).
1791   //
1792   // cleanuppad:
1793   //    %2 = phi i32[%0, %catchswitch], [%1, %catch.1]
1794   //    %3 = cleanuppad within none []
1795   //
1796   // It will create:
1797   //
1798   // cleanuppad.corodispatch
1799   //    %2 = phi i8[0, %catchswitch], [1, %catch.1]
1800   //    %3 = cleanuppad within none []
1801   //    switch i8 % 2, label %unreachable
1802   //            [i8 0, label %cleanuppad.from.catchswitch
1803   //             i8 1, label %cleanuppad.from.catch.1]
1804   // cleanuppad.from.catchswitch:
1805   //    %4 = phi i32 [%0, %catchswitch]
1806   //    br %label cleanuppad
1807   // cleanuppad.from.catch.1:
1808   //    %6 = phi i32 [%1, %catch.1]
1809   //    br %label cleanuppad
1810   // cleanuppad:
1811   //    %8 = phi i32 [%4, %cleanuppad.from.catchswitch],
1812   //                 [%6, %cleanuppad.from.catch.1]
1813 
1814   // Unreachable BB, in case switching on an invalid value in the dispatcher.
1815   auto *UnreachBB = BasicBlock::Create(
1816       CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent());
1817   IRBuilder<> Builder(UnreachBB);
1818   Builder.CreateUnreachable();
1819 
1820   // Create a new cleanuppad which will be the dispatcher.
1821   auto *NewCleanupPadBB =
1822       BasicBlock::Create(CleanupPadBB->getContext(),
1823                          CleanupPadBB->getName() + Twine(".corodispatch"),
1824                          CleanupPadBB->getParent(), CleanupPadBB);
1825   Builder.SetInsertPoint(NewCleanupPadBB);
1826   auto *SwitchType = Builder.getInt8Ty();
1827   auto *SetDispatchValuePN =
1828       Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB));
1829   CleanupPad->removeFromParent();
1830   CleanupPad->insertAfter(SetDispatchValuePN);
1831   auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB,
1832                                                 pred_size(CleanupPadBB));
1833 
1834   int SwitchIndex = 0;
1835   SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB));
1836   for (BasicBlock *Pred : Preds) {
1837     // Create a new cleanuppad and move the PHI values to there.
1838     auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(),
1839                                       CleanupPadBB->getName() +
1840                                           Twine(".from.") + Pred->getName(),
1841                                       CleanupPadBB->getParent(), CleanupPadBB);
1842     updatePhiNodes(CleanupPadBB, Pred, CaseBB);
1843     CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") +
1844                     Pred->getName());
1845     Builder.SetInsertPoint(CaseBB);
1846     Builder.CreateBr(CleanupPadBB);
1847     movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB);
1848 
1849     // Update this Pred to the new unwind point.
1850     setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB);
1851 
1852     // Setup the switch in the dispatcher.
1853     auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex);
1854     SetDispatchValuePN->addIncoming(SwitchConstant, Pred);
1855     SwitchOnDispatch->addCase(SwitchConstant, CaseBB);
1856     SwitchIndex++;
1857   }
1858 }
1859 
1860 static void cleanupSinglePredPHIs(Function &F) {
1861   SmallVector<PHINode *, 32> Worklist;
1862   for (auto &BB : F) {
1863     for (auto &Phi : BB.phis()) {
1864       if (Phi.getNumIncomingValues() == 1) {
1865         Worklist.push_back(&Phi);
1866       } else
1867         break;
1868     }
1869   }
1870   while (!Worklist.empty()) {
1871     auto *Phi = Worklist.back();
1872     Worklist.pop_back();
1873     auto *OriginalValue = Phi->getIncomingValue(0);
1874     Phi->replaceAllUsesWith(OriginalValue);
1875   }
1876 }
1877 
1878 static void rewritePHIs(BasicBlock &BB) {
1879   // For every incoming edge we will create a block holding all
1880   // incoming values in a single PHI nodes.
1881   //
1882   // loop:
1883   //    %n.val = phi i32[%n, %entry], [%inc, %loop]
1884   //
1885   // It will create:
1886   //
1887   // loop.from.entry:
1888   //    %n.loop.pre = phi i32 [%n, %entry]
1889   //    br %label loop
1890   // loop.from.loop:
1891   //    %inc.loop.pre = phi i32 [%inc, %loop]
1892   //    br %label loop
1893   //
1894   // After this rewrite, further analysis will ignore any phi nodes with more
1895   // than one incoming edge.
1896 
1897   // TODO: Simplify PHINodes in the basic block to remove duplicate
1898   // predecessors.
1899 
1900   // Special case for CleanupPad: all EH blocks must have the same unwind edge
1901   // so we need to create an additional "dispatcher" block.
1902   if (auto *CleanupPad =
1903           dyn_cast_or_null<CleanupPadInst>(BB.getFirstNonPHI())) {
1904     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
1905     for (BasicBlock *Pred : Preds) {
1906       if (CatchSwitchInst *CS =
1907               dyn_cast<CatchSwitchInst>(Pred->getTerminator())) {
1908         // CleanupPad with a CatchSwitch predecessor: therefore this is an
1909         // unwind destination that needs to be handle specially.
1910         assert(CS->getUnwindDest() == &BB);
1911         (void)CS;
1912         rewritePHIsForCleanupPad(&BB, CleanupPad);
1913         return;
1914       }
1915     }
1916   }
1917 
1918   LandingPadInst *LandingPad = nullptr;
1919   PHINode *ReplPHI = nullptr;
1920   if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
1921     // ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
1922     // We replace the original landing pad with a PHINode that will collect the
1923     // results from all of them.
1924     ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
1925     ReplPHI->takeName(LandingPad);
1926     LandingPad->replaceAllUsesWith(ReplPHI);
1927     // We will erase the original landing pad at the end of this function after
1928     // ehAwareSplitEdge cloned it in the transition blocks.
1929   }
1930 
1931   SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
1932   for (BasicBlock *Pred : Preds) {
1933     auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
1934     IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
1935 
1936     // Stop the moving of values at ReplPHI, as this is either null or the PHI
1937     // that replaced the landing pad.
1938     movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI);
1939   }
1940 
1941   if (LandingPad) {
1942     // Calls to ehAwareSplitEdge function cloned the original lading pad.
1943     // No longer need it.
1944     LandingPad->eraseFromParent();
1945   }
1946 }
1947 
1948 static void rewritePHIs(Function &F) {
1949   SmallVector<BasicBlock *, 8> WorkList;
1950 
1951   for (BasicBlock &BB : F)
1952     if (auto *PN = dyn_cast<PHINode>(&BB.front()))
1953       if (PN->getNumIncomingValues() > 1)
1954         WorkList.push_back(&BB);
1955 
1956   for (BasicBlock *BB : WorkList)
1957     rewritePHIs(*BB);
1958 }
1959 
1960 // Check for instructions that we can recreate on resume as opposed to spill
1961 // the result into a coroutine frame.
1962 static bool materializable(Instruction &V) {
1963   return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
1964          isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
1965 }
1966 
1967 // Check for structural coroutine intrinsics that should not be spilled into
1968 // the coroutine frame.
1969 static bool isCoroutineStructureIntrinsic(Instruction &I) {
1970   return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
1971          isa<CoroSuspendInst>(&I);
1972 }
1973 
1974 // For every use of the value that is across suspend point, recreate that value
1975 // after a suspend point.
1976 static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
1977                                               const SpillInfo &Spills) {
1978   for (const auto &E : Spills) {
1979     Value *Def = E.first;
1980     BasicBlock *CurrentBlock = nullptr;
1981     Instruction *CurrentMaterialization = nullptr;
1982     for (Instruction *U : E.second) {
1983       // If we have not seen this block, materialize the value.
1984       if (CurrentBlock != U->getParent()) {
1985 
1986         bool IsInCoroSuspendBlock = isa<AnyCoroSuspendInst>(U);
1987         CurrentBlock = IsInCoroSuspendBlock
1988                            ? U->getParent()->getSinglePredecessor()
1989                            : U->getParent();
1990         CurrentMaterialization = cast<Instruction>(Def)->clone();
1991         CurrentMaterialization->setName(Def->getName());
1992         CurrentMaterialization->insertBefore(
1993             IsInCoroSuspendBlock ? CurrentBlock->getTerminator()
1994                                  : &*CurrentBlock->getFirstInsertionPt());
1995       }
1996       if (auto *PN = dyn_cast<PHINode>(U)) {
1997         assert(PN->getNumIncomingValues() == 1 &&
1998                "unexpected number of incoming "
1999                "values in the PHINode");
2000         PN->replaceAllUsesWith(CurrentMaterialization);
2001         PN->eraseFromParent();
2002         continue;
2003       }
2004       // Replace all uses of Def in the current instruction with the
2005       // CurrentMaterialization for the block.
2006       U->replaceUsesOfWith(Def, CurrentMaterialization);
2007     }
2008   }
2009 }
2010 
2011 // Splits the block at a particular instruction unless it is the first
2012 // instruction in the block with a single predecessor.
2013 static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
2014   auto *BB = I->getParent();
2015   if (&BB->front() == I) {
2016     if (BB->getSinglePredecessor()) {
2017       BB->setName(Name);
2018       return BB;
2019     }
2020   }
2021   return BB->splitBasicBlock(I, Name);
2022 }
2023 
2024 // Split above and below a particular instruction so that it
2025 // will be all alone by itself in a block.
2026 static void splitAround(Instruction *I, const Twine &Name) {
2027   splitBlockIfNotFirst(I, Name);
2028   splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
2029 }
2030 
2031 static bool isSuspendBlock(BasicBlock *BB) {
2032   return isa<AnyCoroSuspendInst>(BB->front());
2033 }
2034 
2035 typedef SmallPtrSet<BasicBlock*, 8> VisitedBlocksSet;
2036 
2037 /// Does control flow starting at the given block ever reach a suspend
2038 /// instruction before reaching a block in VisitedOrFreeBBs?
2039 static bool isSuspendReachableFrom(BasicBlock *From,
2040                                    VisitedBlocksSet &VisitedOrFreeBBs) {
2041   // Eagerly try to add this block to the visited set.  If it's already
2042   // there, stop recursing; this path doesn't reach a suspend before
2043   // either looping or reaching a freeing block.
2044   if (!VisitedOrFreeBBs.insert(From).second)
2045     return false;
2046 
2047   // We assume that we'll already have split suspends into their own blocks.
2048   if (isSuspendBlock(From))
2049     return true;
2050 
2051   // Recurse on the successors.
2052   for (auto Succ : successors(From)) {
2053     if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs))
2054       return true;
2055   }
2056 
2057   return false;
2058 }
2059 
2060 /// Is the given alloca "local", i.e. bounded in lifetime to not cross a
2061 /// suspend point?
2062 static bool isLocalAlloca(CoroAllocaAllocInst *AI) {
2063   // Seed the visited set with all the basic blocks containing a free
2064   // so that we won't pass them up.
2065   VisitedBlocksSet VisitedOrFreeBBs;
2066   for (auto User : AI->users()) {
2067     if (auto FI = dyn_cast<CoroAllocaFreeInst>(User))
2068       VisitedOrFreeBBs.insert(FI->getParent());
2069   }
2070 
2071   return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs);
2072 }
2073 
2074 /// After we split the coroutine, will the given basic block be along
2075 /// an obvious exit path for the resumption function?
2076 static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB,
2077                                               unsigned depth = 3) {
2078   // If we've bottomed out our depth count, stop searching and assume
2079   // that the path might loop back.
2080   if (depth == 0) return false;
2081 
2082   // If this is a suspend block, we're about to exit the resumption function.
2083   if (isSuspendBlock(BB)) return true;
2084 
2085   // Recurse into the successors.
2086   for (auto Succ : successors(BB)) {
2087     if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
2088       return false;
2089   }
2090 
2091   // If none of the successors leads back in a loop, we're on an exit/abort.
2092   return true;
2093 }
2094 
2095 static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) {
2096   // Look for a free that isn't sufficiently obviously followed by
2097   // either a suspend or a termination, i.e. something that will leave
2098   // the coro resumption frame.
2099   for (auto U : AI->users()) {
2100     auto FI = dyn_cast<CoroAllocaFreeInst>(U);
2101     if (!FI) continue;
2102 
2103     if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
2104       return true;
2105   }
2106 
2107   // If we never found one, we don't need a stack save.
2108   return false;
2109 }
2110 
2111 /// Turn each of the given local allocas into a normal (dynamic) alloca
2112 /// instruction.
2113 static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas,
2114                               SmallVectorImpl<Instruction*> &DeadInsts) {
2115   for (auto AI : LocalAllocas) {
2116     auto M = AI->getModule();
2117     IRBuilder<> Builder(AI);
2118 
2119     // Save the stack depth.  Try to avoid doing this if the stackrestore
2120     // is going to immediately precede a return or something.
2121     Value *StackSave = nullptr;
2122     if (localAllocaNeedsStackSave(AI))
2123       StackSave = Builder.CreateCall(
2124                             Intrinsic::getDeclaration(M, Intrinsic::stacksave));
2125 
2126     // Allocate memory.
2127     auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
2128     Alloca->setAlignment(Align(AI->getAlignment()));
2129 
2130     for (auto U : AI->users()) {
2131       // Replace gets with the allocation.
2132       if (isa<CoroAllocaGetInst>(U)) {
2133         U->replaceAllUsesWith(Alloca);
2134 
2135       // Replace frees with stackrestores.  This is safe because
2136       // alloca.alloc is required to obey a stack discipline, although we
2137       // don't enforce that structurally.
2138       } else {
2139         auto FI = cast<CoroAllocaFreeInst>(U);
2140         if (StackSave) {
2141           Builder.SetInsertPoint(FI);
2142           Builder.CreateCall(
2143                     Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
2144                              StackSave);
2145         }
2146       }
2147       DeadInsts.push_back(cast<Instruction>(U));
2148     }
2149 
2150     DeadInsts.push_back(AI);
2151   }
2152 }
2153 
2154 /// Turn the given coro.alloca.alloc call into a dynamic allocation.
2155 /// This happens during the all-instructions iteration, so it must not
2156 /// delete the call.
2157 static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI,
2158                                         coro::Shape &Shape,
2159                                    SmallVectorImpl<Instruction*> &DeadInsts) {
2160   IRBuilder<> Builder(AI);
2161   auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr);
2162 
2163   for (User *U : AI->users()) {
2164     if (isa<CoroAllocaGetInst>(U)) {
2165       U->replaceAllUsesWith(Alloc);
2166     } else {
2167       auto FI = cast<CoroAllocaFreeInst>(U);
2168       Builder.SetInsertPoint(FI);
2169       Shape.emitDealloc(Builder, Alloc, nullptr);
2170     }
2171     DeadInsts.push_back(cast<Instruction>(U));
2172   }
2173 
2174   // Push this on last so that it gets deleted after all the others.
2175   DeadInsts.push_back(AI);
2176 
2177   // Return the new allocation value so that we can check for needed spills.
2178   return cast<Instruction>(Alloc);
2179 }
2180 
2181 /// Get the current swifterror value.
2182 static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy,
2183                                      coro::Shape &Shape) {
2184   // Make a fake function pointer as a sort of intrinsic.
2185   auto FnTy = FunctionType::get(ValueTy, {}, false);
2186   auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());
2187 
2188   auto Call = Builder.CreateCall(FnTy, Fn, {});
2189   Shape.SwiftErrorOps.push_back(Call);
2190 
2191   return Call;
2192 }
2193 
2194 /// Set the given value as the current swifterror value.
2195 ///
2196 /// Returns a slot that can be used as a swifterror slot.
2197 static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V,
2198                                      coro::Shape &Shape) {
2199   // Make a fake function pointer as a sort of intrinsic.
2200   auto FnTy = FunctionType::get(V->getType()->getPointerTo(),
2201                                 {V->getType()}, false);
2202   auto Fn = ConstantPointerNull::get(FnTy->getPointerTo());
2203 
2204   auto Call = Builder.CreateCall(FnTy, Fn, { V });
2205   Shape.SwiftErrorOps.push_back(Call);
2206 
2207   return Call;
2208 }
2209 
2210 /// Set the swifterror value from the given alloca before a call,
2211 /// then put in back in the alloca afterwards.
2212 ///
2213 /// Returns an address that will stand in for the swifterror slot
2214 /// until splitting.
2215 static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call,
2216                                                  AllocaInst *Alloca,
2217                                                  coro::Shape &Shape) {
2218   auto ValueTy = Alloca->getAllocatedType();
2219   IRBuilder<> Builder(Call);
2220 
2221   // Load the current value from the alloca and set it as the
2222   // swifterror value.
2223   auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
2224   auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);
2225 
2226   // Move to after the call.  Since swifterror only has a guaranteed
2227   // value on normal exits, we can ignore implicit and explicit unwind
2228   // edges.
2229   if (isa<CallInst>(Call)) {
2230     Builder.SetInsertPoint(Call->getNextNode());
2231   } else {
2232     auto Invoke = cast<InvokeInst>(Call);
2233     Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
2234   }
2235 
2236   // Get the current swifterror value and store it to the alloca.
2237   auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
2238   Builder.CreateStore(ValueAfterCall, Alloca);
2239 
2240   return Addr;
2241 }
2242 
2243 /// Eliminate a formerly-swifterror alloca by inserting the get/set
2244 /// intrinsics and attempting to MemToReg the alloca away.
2245 static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca,
2246                                       coro::Shape &Shape) {
2247   for (auto UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ) {
2248     // We're likely changing the use list, so use a mutation-safe
2249     // iteration pattern.
2250     auto &Use = *UI;
2251     ++UI;
2252 
2253     // swifterror values can only be used in very specific ways.
2254     // We take advantage of that here.
2255     auto User = Use.getUser();
2256     if (isa<LoadInst>(User) || isa<StoreInst>(User))
2257       continue;
2258 
2259     assert(isa<CallInst>(User) || isa<InvokeInst>(User));
2260     auto Call = cast<Instruction>(User);
2261 
2262     auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);
2263 
2264     // Use the returned slot address as the call argument.
2265     Use.set(Addr);
2266   }
2267 
2268   // All the uses should be loads and stores now.
2269   assert(isAllocaPromotable(Alloca));
2270 }
2271 
2272 /// "Eliminate" a swifterror argument by reducing it to the alloca case
2273 /// and then loading and storing in the prologue and epilog.
2274 ///
2275 /// The argument keeps the swifterror flag.
2276 static void eliminateSwiftErrorArgument(Function &F, Argument &Arg,
2277                                         coro::Shape &Shape,
2278                              SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
2279   IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
2280 
2281   auto ArgTy = cast<PointerType>(Arg.getType());
2282   auto ValueTy = ArgTy->getElementType();
2283 
2284   // Reduce to the alloca case:
2285 
2286   // Create an alloca and replace all uses of the arg with it.
2287   auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
2288   Arg.replaceAllUsesWith(Alloca);
2289 
2290   // Set an initial value in the alloca.  swifterror is always null on entry.
2291   auto InitialValue = Constant::getNullValue(ValueTy);
2292   Builder.CreateStore(InitialValue, Alloca);
2293 
2294   // Find all the suspends in the function and save and restore around them.
2295   for (auto Suspend : Shape.CoroSuspends) {
2296     (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
2297   }
2298 
2299   // Find all the coro.ends in the function and restore the error value.
2300   for (auto End : Shape.CoroEnds) {
2301     Builder.SetInsertPoint(End);
2302     auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
2303     (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
2304   }
2305 
2306   // Now we can use the alloca logic.
2307   AllocasToPromote.push_back(Alloca);
2308   eliminateSwiftErrorAlloca(F, Alloca, Shape);
2309 }
2310 
2311 /// Eliminate all problematic uses of swifterror arguments and allocas
2312 /// from the function.  We'll fix them up later when splitting the function.
2313 static void eliminateSwiftError(Function &F, coro::Shape &Shape) {
2314   SmallVector<AllocaInst*, 4> AllocasToPromote;
2315 
2316   // Look for a swifterror argument.
2317   for (auto &Arg : F.args()) {
2318     if (!Arg.hasSwiftErrorAttr()) continue;
2319 
2320     eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
2321     break;
2322   }
2323 
2324   // Look for swifterror allocas.
2325   for (auto &Inst : F.getEntryBlock()) {
2326     auto Alloca = dyn_cast<AllocaInst>(&Inst);
2327     if (!Alloca || !Alloca->isSwiftError()) continue;
2328 
2329     // Clear the swifterror flag.
2330     Alloca->setSwiftError(false);
2331 
2332     AllocasToPromote.push_back(Alloca);
2333     eliminateSwiftErrorAlloca(F, Alloca, Shape);
2334   }
2335 
2336   // If we have any allocas to promote, compute a dominator tree and
2337   // promote them en masse.
2338   if (!AllocasToPromote.empty()) {
2339     DominatorTree DT(F);
2340     PromoteMemToReg(AllocasToPromote, DT);
2341   }
2342 }
2343 
2344 /// retcon and retcon.once conventions assume that all spill uses can be sunk
2345 /// after the coro.begin intrinsic.
2346 static void sinkSpillUsesAfterCoroBegin(Function &F,
2347                                         const FrameDataInfo &FrameData,
2348                                         CoroBeginInst *CoroBegin) {
2349   DominatorTree Dom(F);
2350 
2351   SmallSetVector<Instruction *, 32> ToMove;
2352   SmallVector<Instruction *, 32> Worklist;
2353 
2354   // Collect all users that precede coro.begin.
2355   for (auto *Def : FrameData.getAllDefs()) {
2356     for (User *U : Def->users()) {
2357       auto Inst = cast<Instruction>(U);
2358       if (Inst->getParent() != CoroBegin->getParent() ||
2359           Dom.dominates(CoroBegin, Inst))
2360         continue;
2361       if (ToMove.insert(Inst))
2362         Worklist.push_back(Inst);
2363     }
2364   }
2365   // Recursively collect users before coro.begin.
2366   while (!Worklist.empty()) {
2367     auto *Def = Worklist.pop_back_val();
2368     for (User *U : Def->users()) {
2369       auto Inst = cast<Instruction>(U);
2370       if (Dom.dominates(CoroBegin, Inst))
2371         continue;
2372       if (ToMove.insert(Inst))
2373         Worklist.push_back(Inst);
2374     }
2375   }
2376 
2377   // Sort by dominance.
2378   SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end());
2379   llvm::sort(InsertionList, [&Dom](Instruction *A, Instruction *B) -> bool {
2380     // If a dominates b it should preceed (<) b.
2381     return Dom.dominates(A, B);
2382   });
2383 
2384   Instruction *InsertPt = CoroBegin->getNextNode();
2385   for (Instruction *Inst : InsertionList)
2386     Inst->moveBefore(InsertPt);
2387 }
2388 
2389 /// For each local variable that all of its user are only used inside one of
2390 /// suspended region, we sink their lifetime.start markers to the place where
2391 /// after the suspend block. Doing so minimizes the lifetime of each variable,
2392 /// hence minimizing the amount of data we end up putting on the frame.
2393 static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape,
2394                                      SuspendCrossingInfo &Checker) {
2395   DominatorTree DT(F);
2396 
2397   // Collect all possible basic blocks which may dominate all uses of allocas.
2398   SmallPtrSet<BasicBlock *, 4> DomSet;
2399   DomSet.insert(&F.getEntryBlock());
2400   for (auto *CSI : Shape.CoroSuspends) {
2401     BasicBlock *SuspendBlock = CSI->getParent();
2402     assert(isSuspendBlock(SuspendBlock) && SuspendBlock->getSingleSuccessor() &&
2403            "should have split coro.suspend into its own block");
2404     DomSet.insert(SuspendBlock->getSingleSuccessor());
2405   }
2406 
2407   for (Instruction &I : instructions(F)) {
2408     AllocaInst* AI = dyn_cast<AllocaInst>(&I);
2409     if (!AI)
2410       continue;
2411 
2412     for (BasicBlock *DomBB : DomSet) {
2413       bool Valid = true;
2414       SmallVector<Instruction *, 1> Lifetimes;
2415 
2416       auto isLifetimeStart = [](Instruction* I) {
2417         if (auto* II = dyn_cast<IntrinsicInst>(I))
2418           return II->getIntrinsicID() == Intrinsic::lifetime_start;
2419         return false;
2420       };
2421 
2422       auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) {
2423         if (isLifetimeStart(U)) {
2424           Lifetimes.push_back(U);
2425           return true;
2426         }
2427         if (!U->hasOneUse() || U->stripPointerCasts() != AI)
2428           return false;
2429         if (isLifetimeStart(U->user_back())) {
2430           Lifetimes.push_back(U->user_back());
2431           return true;
2432         }
2433         return false;
2434       };
2435 
2436       for (User *U : AI->users()) {
2437         Instruction *UI = cast<Instruction>(U);
2438         // For all users except lifetime.start markers, if they are all
2439         // dominated by one of the basic blocks and do not cross
2440         // suspend points as well, then there is no need to spill the
2441         // instruction.
2442         if (!DT.dominates(DomBB, UI->getParent()) ||
2443             Checker.isDefinitionAcrossSuspend(DomBB, UI)) {
2444           // Skip lifetime.start, GEP and bitcast used by lifetime.start
2445           // markers.
2446           if (collectLifetimeStart(UI, AI))
2447             continue;
2448           Valid = false;
2449           break;
2450         }
2451       }
2452       // Sink lifetime.start markers to dominate block when they are
2453       // only used outside the region.
2454       if (Valid && Lifetimes.size() != 0) {
2455         // May be AI itself, when the type of AI is i8*
2456         auto *NewBitCast = [&](AllocaInst *AI) -> Value* {
2457           if (isa<AllocaInst>(Lifetimes[0]->getOperand(1)))
2458             return AI;
2459           auto *Int8PtrTy = Type::getInt8PtrTy(F.getContext());
2460           return CastInst::Create(Instruction::BitCast, AI, Int8PtrTy, "",
2461                                   DomBB->getTerminator());
2462         }(AI);
2463 
2464         auto *NewLifetime = Lifetimes[0]->clone();
2465         NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(1), NewBitCast);
2466         NewLifetime->insertBefore(DomBB->getTerminator());
2467 
2468         // All the outsided lifetime.start markers are no longer necessary.
2469         for (Instruction *S : Lifetimes)
2470           S->eraseFromParent();
2471 
2472         break;
2473       }
2474     }
2475   }
2476 }
2477 
2478 static void collectFrameAllocas(Function &F, coro::Shape &Shape,
2479                                 const SuspendCrossingInfo &Checker,
2480                                 SmallVectorImpl<AllocaInfo> &Allocas) {
2481   for (Instruction &I : instructions(F)) {
2482     auto *AI = dyn_cast<AllocaInst>(&I);
2483     if (!AI)
2484       continue;
2485     // The PromiseAlloca will be specially handled since it needs to be in a
2486     // fixed position in the frame.
2487     if (AI == Shape.SwitchLowering.PromiseAlloca) {
2488       continue;
2489     }
2490     DominatorTree DT(F);
2491     AllocaUseVisitor Visitor{F.getParent()->getDataLayout(), DT,
2492                              *Shape.CoroBegin, Checker};
2493     Visitor.visitPtr(*AI);
2494     if (!Visitor.getShouldLiveOnFrame())
2495       continue;
2496     Allocas.emplace_back(AI, Visitor.getAliasesCopy(),
2497                          Visitor.getMayWriteBeforeCoroBegin());
2498   }
2499 }
2500 
2501 void coro::salvageDebugInfo(
2502     SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> &DbgPtrAllocaCache,
2503     DbgVariableIntrinsic *DVI, bool ReuseFrameSlot) {
2504   Function *F = DVI->getFunction();
2505   IRBuilder<> Builder(F->getContext());
2506   auto InsertPt = F->getEntryBlock().getFirstInsertionPt();
2507   while (isa<IntrinsicInst>(InsertPt))
2508     ++InsertPt;
2509   Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt);
2510   DIExpression *Expr = DVI->getExpression();
2511   // Follow the pointer arithmetic all the way to the incoming
2512   // function argument and convert into a DIExpression.
2513   bool OutermostLoad = true;
2514   Value *Storage = DVI->getVariableLocationOp(0);
2515   Value *OriginalStorage = Storage;
2516   while (Storage) {
2517     if (auto *LdInst = dyn_cast<LoadInst>(Storage)) {
2518       Storage = LdInst->getOperand(0);
2519       // FIXME: This is a heuristic that works around the fact that
2520       // LLVM IR debug intrinsics cannot yet distinguish between
2521       // memory and value locations: Because a dbg.declare(alloca) is
2522       // implicitly a memory location no DW_OP_deref operation for the
2523       // last direct load from an alloca is necessary.  This condition
2524       // effectively drops the *last* DW_OP_deref in the expression.
2525       if (!OutermostLoad)
2526         Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2527       OutermostLoad = false;
2528     } else if (auto *StInst = dyn_cast<StoreInst>(Storage)) {
2529       Storage = StInst->getOperand(0);
2530     } else if (auto *GEPInst = dyn_cast<GetElementPtrInst>(Storage)) {
2531       SmallVector<Value *> AdditionalValues;
2532       DIExpression *SalvagedExpr = llvm::salvageDebugInfoImpl(
2533           *GEPInst, Expr,
2534           /*WithStackValue=*/false, 0, AdditionalValues);
2535       // Debug declares cannot currently handle additional location
2536       // operands.
2537       if (!SalvagedExpr || !AdditionalValues.empty())
2538         break;
2539       Expr = SalvagedExpr;
2540       Storage = GEPInst->getOperand(0);
2541     } else if (auto *BCInst = dyn_cast<llvm::BitCastInst>(Storage))
2542       Storage = BCInst->getOperand(0);
2543     else
2544       break;
2545   }
2546   if (!Storage)
2547     return;
2548 
2549   // Store a pointer to the coroutine frame object in an alloca so it
2550   // is available throughout the function when producing unoptimized
2551   // code. Extending the lifetime this way is correct because the
2552   // variable has been declared by a dbg.declare intrinsic.
2553   //
2554   // Avoid to create the alloca would be eliminated by optimization
2555   // passes and the corresponding dbg.declares would be invalid.
2556   if (!ReuseFrameSlot && !EnableReuseStorageInFrame)
2557     if (auto *Arg = dyn_cast<llvm::Argument>(Storage)) {
2558       auto &Cached = DbgPtrAllocaCache[Storage];
2559       if (!Cached) {
2560         Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr,
2561                                       Arg->getName() + ".debug");
2562         Builder.CreateStore(Storage, Cached);
2563       }
2564       Storage = Cached;
2565       // FIXME: LLVM lacks nuanced semantics to differentiate between
2566       // memory and direct locations at the IR level. The backend will
2567       // turn a dbg.declare(alloca, ..., DIExpression()) into a memory
2568       // location. Thus, if there are deref and offset operations in the
2569       // expression, we need to add a DW_OP_deref at the *start* of the
2570       // expression to first load the contents of the alloca before
2571       // adjusting it with the expression.
2572       if (Expr && Expr->isComplex())
2573         Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2574     }
2575 
2576   DVI->replaceVariableLocationOp(OriginalStorage, Storage);
2577   DVI->setExpression(Expr);
2578   /// It makes no sense to move the dbg.value intrinsic.
2579   if (!isa<DbgValueInst>(DVI)) {
2580     if (auto *InsertPt = dyn_cast<Instruction>(Storage))
2581       DVI->moveAfter(InsertPt);
2582     else if (isa<Argument>(Storage))
2583       DVI->moveAfter(F->getEntryBlock().getFirstNonPHI());
2584   }
2585 }
2586 
2587 void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
2588   // Don't eliminate swifterror in async functions that won't be split.
2589   if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
2590     eliminateSwiftError(F, Shape);
2591 
2592   if (Shape.ABI == coro::ABI::Switch &&
2593       Shape.SwitchLowering.PromiseAlloca) {
2594     Shape.getSwitchCoroId()->clearPromise();
2595   }
2596 
2597   // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
2598   // intrinsics are in their own blocks to simplify the logic of building up
2599   // SuspendCrossing data.
2600   for (auto *CSI : Shape.CoroSuspends) {
2601     if (auto *Save = CSI->getCoroSave())
2602       splitAround(Save, "CoroSave");
2603     splitAround(CSI, "CoroSuspend");
2604   }
2605 
2606   // Put CoroEnds into their own blocks.
2607   for (AnyCoroEndInst *CE : Shape.CoroEnds) {
2608     splitAround(CE, "CoroEnd");
2609 
2610     // Emit the musttail call function in a new block before the CoroEnd.
2611     // We do this here so that the right suspend crossing info is computed for
2612     // the uses of the musttail call function call. (Arguments to the coro.end
2613     // instructions would be ignored)
2614     if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) {
2615       auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction();
2616       if (!MustTailCallFn)
2617         continue;
2618       IRBuilder<> Builder(AsyncEnd);
2619       SmallVector<Value *, 8> Args(AsyncEnd->args());
2620       auto Arguments = ArrayRef<Value *>(Args).drop_front(3);
2621       auto *Call = createMustTailCall(AsyncEnd->getDebugLoc(), MustTailCallFn,
2622                                       Arguments, Builder);
2623       splitAround(Call, "MustTailCall.Before.CoroEnd");
2624     }
2625   }
2626 
2627   // Later code makes structural assumptions about single predecessors phis e.g
2628   // that they are not live accross a suspend point.
2629   cleanupSinglePredPHIs(F);
2630 
2631   // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
2632   // never has its definition separated from the PHI by the suspend point.
2633   rewritePHIs(F);
2634 
2635   // Build suspend crossing info.
2636   SuspendCrossingInfo Checker(F, Shape);
2637 
2638   IRBuilder<> Builder(F.getContext());
2639   FrameDataInfo FrameData;
2640   SmallVector<CoroAllocaAllocInst*, 4> LocalAllocas;
2641   SmallVector<Instruction*, 4> DeadInstructions;
2642 
2643   {
2644     SpillInfo Spills;
2645     for (int Repeat = 0; Repeat < 4; ++Repeat) {
2646       // See if there are materializable instructions across suspend points.
2647       for (Instruction &I : instructions(F))
2648         if (materializable(I)) {
2649           for (User *U : I.users())
2650             if (Checker.isDefinitionAcrossSuspend(I, U))
2651               Spills[&I].push_back(cast<Instruction>(U));
2652 
2653           // Manually add dbg.value metadata uses of I.
2654           SmallVector<DbgValueInst *, 16> DVIs;
2655           findDbgValues(DVIs, &I);
2656           for (auto *DVI : DVIs)
2657             if (Checker.isDefinitionAcrossSuspend(I, DVI))
2658               Spills[&I].push_back(DVI);
2659         }
2660 
2661       if (Spills.empty())
2662         break;
2663 
2664       // Rewrite materializable instructions to be materialized at the use
2665       // point.
2666       LLVM_DEBUG(dumpSpills("Materializations", Spills));
2667       rewriteMaterializableInstructions(Builder, Spills);
2668       Spills.clear();
2669     }
2670   }
2671 
2672   sinkLifetimeStartMarkers(F, Shape, Checker);
2673   if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
2674     collectFrameAllocas(F, Shape, Checker, FrameData.Allocas);
2675   LLVM_DEBUG(dumpAllocas(FrameData.Allocas));
2676 
2677   // Collect the spills for arguments and other not-materializable values.
2678   for (Argument &A : F.args())
2679     for (User *U : A.users())
2680       if (Checker.isDefinitionAcrossSuspend(A, U))
2681         FrameData.Spills[&A].push_back(cast<Instruction>(U));
2682 
2683   for (Instruction &I : instructions(F)) {
2684     // Values returned from coroutine structure intrinsics should not be part
2685     // of the Coroutine Frame.
2686     if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
2687       continue;
2688 
2689     // The Coroutine Promise always included into coroutine frame, no need to
2690     // check for suspend crossing.
2691     if (Shape.ABI == coro::ABI::Switch &&
2692         Shape.SwitchLowering.PromiseAlloca == &I)
2693       continue;
2694 
2695     // Handle alloca.alloc specially here.
2696     if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) {
2697       // Check whether the alloca's lifetime is bounded by suspend points.
2698       if (isLocalAlloca(AI)) {
2699         LocalAllocas.push_back(AI);
2700         continue;
2701       }
2702 
2703       // If not, do a quick rewrite of the alloca and then add spills of
2704       // the rewritten value.  The rewrite doesn't invalidate anything in
2705       // Spills because the other alloca intrinsics have no other operands
2706       // besides AI, and it doesn't invalidate the iteration because we delay
2707       // erasing AI.
2708       auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions);
2709 
2710       for (User *U : Alloc->users()) {
2711         if (Checker.isDefinitionAcrossSuspend(*Alloc, U))
2712           FrameData.Spills[Alloc].push_back(cast<Instruction>(U));
2713       }
2714       continue;
2715     }
2716 
2717     // Ignore alloca.get; we process this as part of coro.alloca.alloc.
2718     if (isa<CoroAllocaGetInst>(I))
2719       continue;
2720 
2721     if (isa<AllocaInst>(I))
2722       continue;
2723 
2724     for (User *U : I.users())
2725       if (Checker.isDefinitionAcrossSuspend(I, U)) {
2726         // We cannot spill a token.
2727         if (I.getType()->isTokenTy())
2728           report_fatal_error(
2729               "token definition is separated from the use by a suspend point");
2730         FrameData.Spills[&I].push_back(cast<Instruction>(U));
2731       }
2732   }
2733 
2734   // We don't want the layout of coroutine frame to be affected
2735   // by debug information. So we only choose to salvage DbgValueInst for
2736   // whose value is already in the frame.
2737   // We would handle the dbg.values for allocas specially
2738   for (auto &Iter : FrameData.Spills) {
2739     auto *V = Iter.first;
2740     SmallVector<DbgValueInst *, 16> DVIs;
2741     findDbgValues(DVIs, V);
2742     llvm::for_each(DVIs, [&](DbgValueInst *DVI) {
2743       if (Checker.isDefinitionAcrossSuspend(*V, DVI))
2744         FrameData.Spills[V].push_back(DVI);
2745     });
2746   }
2747 
2748   LLVM_DEBUG(dumpSpills("Spills", FrameData.Spills));
2749   if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
2750       Shape.ABI == coro::ABI::Async)
2751     sinkSpillUsesAfterCoroBegin(F, FrameData, Shape.CoroBegin);
2752   Shape.FrameTy = buildFrameType(F, Shape, FrameData);
2753   createFramePtr(Shape);
2754   // For now, this works for C++ programs only.
2755   buildFrameDebugInfo(F, Shape, FrameData);
2756   insertSpills(FrameData, Shape);
2757   lowerLocalAllocas(LocalAllocas, DeadInstructions);
2758 
2759   for (auto I : DeadInstructions)
2760     I->eraseFromParent();
2761 }
2762