1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/IPO.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "called-value-propagation"
32 
33 /// The maximum number of functions to track per lattice value. Once the number
34 /// of functions a call site can possibly target exceeds this threshold, it's
35 /// lattice value becomes overdefined. The number of possible lattice values is
36 /// bounded by Ch(F, M), where F is the number of functions in the module and M
37 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
38 /// likely can't do anything useful for call sites with a large number of
39 /// possible targets, anyway.
40 static cl::opt<unsigned> MaxFunctionsPerValue(
41     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
42     cl::desc("The maximum number of functions to track per lattice value"));
43 
44 namespace {
45 /// To enable interprocedural analysis, we assign LLVM values to the following
46 /// groups. The register group represents SSA registers, the return group
47 /// represents the return values of functions, and the memory group represents
48 /// in-memory values. An LLVM Value can technically be in more than one group.
49 /// It's necessary to distinguish these groups so we can, for example, track a
50 /// global variable separately from the value stored at its location.
51 enum class IPOGrouping { Register, Return, Memory };
52 
53 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
54 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
55 
56 /// The lattice value type used by our custom lattice function. It holds the
57 /// lattice state, and a set of functions.
58 class CVPLatticeVal {
59 public:
60   /// The states of the lattice values. Only the FunctionSet state is
61   /// interesting. It indicates the set of functions to which an LLVM value may
62   /// refer.
63   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
64 
65   /// Comparator for sorting the functions set. We want to keep the order
66   /// deterministic for testing, etc.
67   struct Compare {
68     bool operator()(const Function *LHS, const Function *RHS) const {
69       return LHS->getName() < RHS->getName();
70     }
71   };
72 
73   CVPLatticeVal() = default;
74   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
75   CVPLatticeVal(std::vector<Function *> &&Functions)
76       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
77     assert(llvm::is_sorted(this->Functions, Compare()));
78   }
79 
80   /// Get a reference to the functions held by this lattice value. The number
81   /// of functions will be zero for states other than FunctionSet.
82   const std::vector<Function *> &getFunctions() const {
83     return Functions;
84   }
85 
86   /// Returns true if the lattice value is in the FunctionSet state.
87   bool isFunctionSet() const { return LatticeState == FunctionSet; }
88 
89   bool operator==(const CVPLatticeVal &RHS) const {
90     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
91   }
92 
93   bool operator!=(const CVPLatticeVal &RHS) const {
94     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
95   }
96 
97 private:
98   /// Holds the state this lattice value is in.
99   CVPLatticeStateTy LatticeState = Undefined;
100 
101   /// Holds functions indicating the possible targets of call sites. This set
102   /// is empty for lattice values in the undefined, overdefined, and untracked
103   /// states. The maximum size of the set is controlled by
104   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
105   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
106   /// small and efficiently copyable.
107   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
108   std::vector<Function *> Functions;
109 };
110 
111 /// The custom lattice function used by the generic sparse propagation solver.
112 /// It handles merging lattice values and computing new lattice values for
113 /// constants, arguments, values returned from trackable functions, and values
114 /// located in trackable global variables. It also computes the lattice values
115 /// that change as a result of executing instructions.
116 class CVPLatticeFunc
117     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
118 public:
119   CVPLatticeFunc()
120       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
121                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
122                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
123 
124   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
125   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
126     switch (Key.getInt()) {
127     case IPOGrouping::Register:
128       if (isa<Instruction>(Key.getPointer())) {
129         return getUndefVal();
130       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
131         if (canTrackArgumentsInterprocedurally(A->getParent()))
132           return getUndefVal();
133       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
134         return computeConstant(C);
135       }
136       return getOverdefinedVal();
137     case IPOGrouping::Memory:
138     case IPOGrouping::Return:
139       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
140         if (canTrackGlobalVariableInterprocedurally(GV))
141           return computeConstant(GV->getInitializer());
142       } else if (auto *F = cast<Function>(Key.getPointer()))
143         if (canTrackReturnsInterprocedurally(F))
144           return getUndefVal();
145     }
146     return getOverdefinedVal();
147   }
148 
149   /// Merge the two given lattice values. The interesting cases are merging two
150   /// FunctionSet values and a FunctionSet value with an Undefined value. For
151   /// these cases, we simply union the function sets. If the size of the union
152   /// is greater than the maximum functions we track, the merged value is
153   /// overdefined.
154   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
155     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
156       return getOverdefinedVal();
157     if (X == getUndefVal() && Y == getUndefVal())
158       return getUndefVal();
159     std::vector<Function *> Union;
160     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
161                    Y.getFunctions().begin(), Y.getFunctions().end(),
162                    std::back_inserter(Union), CVPLatticeVal::Compare{});
163     if (Union.size() > MaxFunctionsPerValue)
164       return getOverdefinedVal();
165     return CVPLatticeVal(std::move(Union));
166   }
167 
168   /// Compute the lattice values that change as a result of executing the given
169   /// instruction. The changed values are stored in \p ChangedValues. We handle
170   /// just a few kinds of instructions since we're only propagating values that
171   /// can be called.
172   void ComputeInstructionState(
173       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
174       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
175     switch (I.getOpcode()) {
176     case Instruction::Call:
177     case Instruction::Invoke:
178       return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
179     case Instruction::Load:
180       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
181     case Instruction::Ret:
182       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
183     case Instruction::Select:
184       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
185     case Instruction::Store:
186       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
187     default:
188       return visitInst(I, ChangedValues, SS);
189     }
190   }
191 
192   /// Print the given CVPLatticeVal to the specified stream.
193   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
194     if (LV == getUndefVal())
195       OS << "Undefined  ";
196     else if (LV == getOverdefinedVal())
197       OS << "Overdefined";
198     else if (LV == getUntrackedVal())
199       OS << "Untracked  ";
200     else
201       OS << "FunctionSet";
202   }
203 
204   /// Print the given CVPLatticeKey to the specified stream.
205   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
206     if (Key.getInt() == IPOGrouping::Register)
207       OS << "<reg> ";
208     else if (Key.getInt() == IPOGrouping::Memory)
209       OS << "<mem> ";
210     else if (Key.getInt() == IPOGrouping::Return)
211       OS << "<ret> ";
212     if (isa<Function>(Key.getPointer()))
213       OS << Key.getPointer()->getName();
214     else
215       OS << *Key.getPointer();
216   }
217 
218   /// We collect a set of indirect calls when visiting call sites. This method
219   /// returns a reference to that set.
220   SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
221 
222 private:
223   /// Holds the indirect calls we encounter during the analysis. We will attach
224   /// metadata to these calls after the analysis indicating the functions the
225   /// calls can possibly target.
226   SmallPtrSet<CallBase *, 32> IndirectCalls;
227 
228   /// Compute a new lattice value for the given constant. The constant, after
229   /// stripping any pointer casts, should be a Function. We ignore null
230   /// pointers as an optimization, since calling these values is undefined
231   /// behavior.
232   CVPLatticeVal computeConstant(Constant *C) {
233     if (isa<ConstantPointerNull>(C))
234       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
235     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
236       return CVPLatticeVal({F});
237     return getOverdefinedVal();
238   }
239 
240   /// Handle return instructions. The function's return state is the merge of
241   /// the returned value state and the function's return state.
242   void visitReturn(ReturnInst &I,
243                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
244                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
245     Function *F = I.getParent()->getParent();
246     if (F->getReturnType()->isVoidTy())
247       return;
248     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
249     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
250     ChangedValues[RetF] =
251         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252   }
253 
254   /// Handle call sites. The state of a called function's formal arguments is
255   /// the merge of the argument state with the call sites corresponding actual
256   /// argument state. The call site state is the merge of the call site state
257   /// with the returned value state of the called function.
258   void visitCallBase(CallBase &CB,
259                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
260                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
261     Function *F = CB.getCalledFunction();
262     auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
263 
264     // If this is an indirect call, save it so we can quickly revisit it when
265     // attaching metadata.
266     if (!F)
267       IndirectCalls.insert(&CB);
268 
269     // If we can't track the function's return values, there's nothing to do.
270     if (!F || !canTrackReturnsInterprocedurally(F)) {
271       // Void return, No need to create and update CVPLattice state as no one
272       // can use it.
273       if (CB.getType()->isVoidTy())
274         return;
275       ChangedValues[RegI] = getOverdefinedVal();
276       return;
277     }
278 
279     // Inform the solver that the called function is executable, and perform
280     // the merges for the arguments and return value.
281     SS.MarkBlockExecutable(&F->front());
282     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
283     for (Argument &A : F->args()) {
284       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
285       auto RegActual =
286           CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
287       ChangedValues[RegFormal] =
288           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
289     }
290 
291     // Void return, No need to create and update CVPLattice state as no one can
292     // use it.
293     if (CB.getType()->isVoidTy())
294       return;
295 
296     ChangedValues[RegI] =
297         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
298   }
299 
300   /// Handle select instructions. The select instruction state is the merge the
301   /// true and false value states.
302   void visitSelect(SelectInst &I,
303                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
304                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
305     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
306     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
307     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
308     ChangedValues[RegI] =
309         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
310   }
311 
312   /// Handle load instructions. If the pointer operand of the load is a global
313   /// variable, we attempt to track the value. The loaded value state is the
314   /// merge of the loaded value state with the global variable state.
315   void visitLoad(LoadInst &I,
316                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
317                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
318     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
319     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
320       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
321       ChangedValues[RegI] =
322           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
323     } else {
324       ChangedValues[RegI] = getOverdefinedVal();
325     }
326   }
327 
328   /// Handle store instructions. If the pointer operand of the store is a
329   /// global variable, we attempt to track the value. The global variable state
330   /// is the merge of the stored value state with the global variable state.
331   void visitStore(StoreInst &I,
332                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
333                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
334     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
335     if (!GV)
336       return;
337     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
338     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
339     ChangedValues[MemGV] =
340         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
341   }
342 
343   /// Handle all other instructions. All other instructions are marked
344   /// overdefined.
345   void visitInst(Instruction &I,
346                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
347                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
348     // Simply bail if this instruction has no user.
349     if (I.use_empty())
350       return;
351     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
352     ChangedValues[RegI] = getOverdefinedVal();
353   }
354 };
355 } // namespace
356 
357 namespace llvm {
358 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
359 /// must translate between LatticeKeys and LLVM Values when adding Values to
360 /// its work list and inspecting the state of control-flow related values.
361 template <> struct LatticeKeyInfo<CVPLatticeKey> {
362   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
363     return Key.getPointer();
364   }
365   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
366     return CVPLatticeKey(V, IPOGrouping::Register);
367   }
368 };
369 } // namespace llvm
370 
371 static bool runCVP(Module &M) {
372   // Our custom lattice function and generic sparse propagation solver.
373   CVPLatticeFunc Lattice;
374   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
375 
376   // For each function in the module, if we can't track its arguments, let the
377   // generic solver assume it is executable.
378   for (Function &F : M)
379     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
380       Solver.MarkBlockExecutable(&F.front());
381 
382   // Solver our custom lattice. In doing so, we will also build a set of
383   // indirect call sites.
384   Solver.Solve();
385 
386   // Attach metadata to the indirect call sites that were collected indicating
387   // the set of functions they can possibly target.
388   bool Changed = false;
389   MDBuilder MDB(M.getContext());
390   for (CallBase *C : Lattice.getIndirectCalls()) {
391     auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
392     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
393     if (!LV.isFunctionSet() || LV.getFunctions().empty())
394       continue;
395     MDNode *Callees = MDB.createCallees(LV.getFunctions());
396     C->setMetadata(LLVMContext::MD_callees, Callees);
397     Changed = true;
398   }
399 
400   return Changed;
401 }
402 
403 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
404                                                   ModuleAnalysisManager &) {
405   runCVP(M);
406   return PreservedAnalyses::all();
407 }
408 
409 namespace {
410 class CalledValuePropagationLegacyPass : public ModulePass {
411 public:
412   static char ID;
413 
414   void getAnalysisUsage(AnalysisUsage &AU) const override {
415     AU.setPreservesAll();
416   }
417 
418   CalledValuePropagationLegacyPass() : ModulePass(ID) {
419     initializeCalledValuePropagationLegacyPassPass(
420         *PassRegistry::getPassRegistry());
421   }
422 
423   bool runOnModule(Module &M) override {
424     if (skipModule(M))
425       return false;
426     return runCVP(M);
427   }
428 };
429 } // namespace
430 
431 char CalledValuePropagationLegacyPass::ID = 0;
432 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
433                 "Called Value Propagation", false, false)
434 
435 ModulePass *llvm::createCalledValuePropagationPass() {
436   return new CalledValuePropagationLegacyPass();
437 }
438