1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Errc.h"
91 #include "llvm/Support/Error.h"
92 #include "llvm/Support/FileSystem.h"
93 #include "llvm/Support/GlobPattern.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Transforms/IPO.h"
96 #include "llvm/Transforms/IPO/FunctionAttrs.h"
97 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
99 #include <algorithm>
100 #include <cstddef>
101 #include <map>
102 #include <set>
103 #include <string>
104 
105 using namespace llvm;
106 using namespace wholeprogramdevirt;
107 
108 #define DEBUG_TYPE "wholeprogramdevirt"
109 
110 static cl::opt<PassSummaryAction> ClSummaryAction(
111     "wholeprogramdevirt-summary-action",
112     cl::desc("What to do with the summary when running this pass"),
113     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
114                clEnumValN(PassSummaryAction::Import, "import",
115                           "Import typeid resolutions from summary and globals"),
116                clEnumValN(PassSummaryAction::Export, "export",
117                           "Export typeid resolutions to summary and globals")),
118     cl::Hidden);
119 
120 static cl::opt<std::string> ClReadSummary(
121     "wholeprogramdevirt-read-summary",
122     cl::desc(
123         "Read summary from given bitcode or YAML file before running pass"),
124     cl::Hidden);
125 
126 static cl::opt<std::string> ClWriteSummary(
127     "wholeprogramdevirt-write-summary",
128     cl::desc("Write summary to given bitcode or YAML file after running pass. "
129              "Output file format is deduced from extension: *.bc means writing "
130              "bitcode, otherwise YAML"),
131     cl::Hidden);
132 
133 static cl::opt<unsigned>
134     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
135                 cl::init(10), cl::ZeroOrMore,
136                 cl::desc("Maximum number of call targets per "
137                          "call site to enable branch funnels"));
138 
139 static cl::opt<bool>
140     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
141                        cl::init(false), cl::ZeroOrMore,
142                        cl::desc("Print index-based devirtualization messages"));
143 
144 /// Provide a way to force enable whole program visibility in tests.
145 /// This is needed to support legacy tests that don't contain
146 /// !vcall_visibility metadata (the mere presense of type tests
147 /// previously implied hidden visibility).
148 static cl::opt<bool>
149     WholeProgramVisibility("whole-program-visibility", cl::init(false),
150                            cl::Hidden, cl::ZeroOrMore,
151                            cl::desc("Enable whole program visibility"));
152 
153 /// Provide a way to force disable whole program for debugging or workarounds,
154 /// when enabled via the linker.
155 static cl::opt<bool> DisableWholeProgramVisibility(
156     "disable-whole-program-visibility", cl::init(false), cl::Hidden,
157     cl::ZeroOrMore,
158     cl::desc("Disable whole program visibility (overrides enabling options)"));
159 
160 /// Provide way to prevent certain function from being devirtualized
161 static cl::list<std::string>
162     SkipFunctionNames("wholeprogramdevirt-skip",
163                       cl::desc("Prevent function(s) from being devirtualized"),
164                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
165 
166 /// Mechanism to add runtime checking of devirtualization decisions, trapping on
167 /// any that are not correct. Useful for debugging undefined behavior leading to
168 /// failures with WPD.
169 static cl::opt<bool>
170     CheckDevirt("wholeprogramdevirt-check", cl::init(false), cl::Hidden,
171                 cl::ZeroOrMore,
172                 cl::desc("Add code to trap on incorrect devirtualizations"));
173 
174 namespace {
175 struct PatternList {
176   std::vector<GlobPattern> Patterns;
177   template <class T> void init(const T &StringList) {
178     for (const auto &S : StringList)
179       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
180         Patterns.push_back(std::move(*Pat));
181   }
182   bool match(StringRef S) {
183     for (const GlobPattern &P : Patterns)
184       if (P.match(S))
185         return true;
186     return false;
187   }
188 };
189 } // namespace
190 
191 // Find the minimum offset that we may store a value of size Size bits at. If
192 // IsAfter is set, look for an offset before the object, otherwise look for an
193 // offset after the object.
194 uint64_t
195 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
196                                      bool IsAfter, uint64_t Size) {
197   // Find a minimum offset taking into account only vtable sizes.
198   uint64_t MinByte = 0;
199   for (const VirtualCallTarget &Target : Targets) {
200     if (IsAfter)
201       MinByte = std::max(MinByte, Target.minAfterBytes());
202     else
203       MinByte = std::max(MinByte, Target.minBeforeBytes());
204   }
205 
206   // Build a vector of arrays of bytes covering, for each target, a slice of the
207   // used region (see AccumBitVector::BytesUsed in
208   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
209   // this aligns the used regions to start at MinByte.
210   //
211   // In this example, A, B and C are vtables, # is a byte already allocated for
212   // a virtual function pointer, AAAA... (etc.) are the used regions for the
213   // vtables and Offset(X) is the value computed for the Offset variable below
214   // for X.
215   //
216   //                    Offset(A)
217   //                    |       |
218   //                            |MinByte
219   // A: ################AAAAAAAA|AAAAAAAA
220   // B: ########BBBBBBBBBBBBBBBB|BBBB
221   // C: ########################|CCCCCCCCCCCCCCCC
222   //            |   Offset(B)   |
223   //
224   // This code produces the slices of A, B and C that appear after the divider
225   // at MinByte.
226   std::vector<ArrayRef<uint8_t>> Used;
227   for (const VirtualCallTarget &Target : Targets) {
228     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
229                                        : Target.TM->Bits->Before.BytesUsed;
230     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
231                               : MinByte - Target.minBeforeBytes();
232 
233     // Disregard used regions that are smaller than Offset. These are
234     // effectively all-free regions that do not need to be checked.
235     if (VTUsed.size() > Offset)
236       Used.push_back(VTUsed.slice(Offset));
237   }
238 
239   if (Size == 1) {
240     // Find a free bit in each member of Used.
241     for (unsigned I = 0;; ++I) {
242       uint8_t BitsUsed = 0;
243       for (auto &&B : Used)
244         if (I < B.size())
245           BitsUsed |= B[I];
246       if (BitsUsed != 0xff)
247         return (MinByte + I) * 8 +
248                countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
249     }
250   } else {
251     // Find a free (Size/8) byte region in each member of Used.
252     // FIXME: see if alignment helps.
253     for (unsigned I = 0;; ++I) {
254       for (auto &&B : Used) {
255         unsigned Byte = 0;
256         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
257           if (B[I + Byte])
258             goto NextI;
259           ++Byte;
260         }
261       }
262       return (MinByte + I) * 8;
263     NextI:;
264     }
265   }
266 }
267 
268 void wholeprogramdevirt::setBeforeReturnValues(
269     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
270     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
271   if (BitWidth == 1)
272     OffsetByte = -(AllocBefore / 8 + 1);
273   else
274     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
275   OffsetBit = AllocBefore % 8;
276 
277   for (VirtualCallTarget &Target : Targets) {
278     if (BitWidth == 1)
279       Target.setBeforeBit(AllocBefore);
280     else
281       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
282   }
283 }
284 
285 void wholeprogramdevirt::setAfterReturnValues(
286     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
287     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
288   if (BitWidth == 1)
289     OffsetByte = AllocAfter / 8;
290   else
291     OffsetByte = (AllocAfter + 7) / 8;
292   OffsetBit = AllocAfter % 8;
293 
294   for (VirtualCallTarget &Target : Targets) {
295     if (BitWidth == 1)
296       Target.setAfterBit(AllocAfter);
297     else
298       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
299   }
300 }
301 
302 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
303     : Fn(Fn), TM(TM),
304       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
305 
306 namespace {
307 
308 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
309 // tables, and the ByteOffset is the offset in bytes from the address point to
310 // the virtual function pointer.
311 struct VTableSlot {
312   Metadata *TypeID;
313   uint64_t ByteOffset;
314 };
315 
316 } // end anonymous namespace
317 
318 namespace llvm {
319 
320 template <> struct DenseMapInfo<VTableSlot> {
321   static VTableSlot getEmptyKey() {
322     return {DenseMapInfo<Metadata *>::getEmptyKey(),
323             DenseMapInfo<uint64_t>::getEmptyKey()};
324   }
325   static VTableSlot getTombstoneKey() {
326     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
327             DenseMapInfo<uint64_t>::getTombstoneKey()};
328   }
329   static unsigned getHashValue(const VTableSlot &I) {
330     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
331            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
332   }
333   static bool isEqual(const VTableSlot &LHS,
334                       const VTableSlot &RHS) {
335     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
336   }
337 };
338 
339 template <> struct DenseMapInfo<VTableSlotSummary> {
340   static VTableSlotSummary getEmptyKey() {
341     return {DenseMapInfo<StringRef>::getEmptyKey(),
342             DenseMapInfo<uint64_t>::getEmptyKey()};
343   }
344   static VTableSlotSummary getTombstoneKey() {
345     return {DenseMapInfo<StringRef>::getTombstoneKey(),
346             DenseMapInfo<uint64_t>::getTombstoneKey()};
347   }
348   static unsigned getHashValue(const VTableSlotSummary &I) {
349     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
350            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
351   }
352   static bool isEqual(const VTableSlotSummary &LHS,
353                       const VTableSlotSummary &RHS) {
354     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
355   }
356 };
357 
358 } // end namespace llvm
359 
360 namespace {
361 
362 // Returns true if the function must be unreachable based on ValueInfo.
363 //
364 // In particular, identifies a function as unreachable in the following
365 // conditions
366 //   1) All summaries are live.
367 //   2) All function summaries indicate it's unreachable
368 bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
369   if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
370     // Returns false if ValueInfo is absent, or the summary list is empty
371     // (e.g., function declarations).
372     return false;
373   }
374 
375   for (auto &Summary : TheFnVI.getSummaryList()) {
376     // Conservatively returns false if any non-live functions are seen.
377     // In general either all summaries should be live or all should be dead.
378     if (!Summary->isLive())
379       return false;
380     if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) {
381       if (!FS->fflags().MustBeUnreachable)
382         return false;
383     }
384     // Do nothing if a non-function has the same GUID (which is rare).
385     // This is correct since non-function summaries are not relevant.
386   }
387   // All function summaries are live and all of them agree that the function is
388   // unreachble.
389   return true;
390 }
391 
392 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
393 // the indirect virtual call.
394 struct VirtualCallSite {
395   Value *VTable = nullptr;
396   CallBase &CB;
397 
398   // If non-null, this field points to the associated unsafe use count stored in
399   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
400   // of that field for details.
401   unsigned *NumUnsafeUses = nullptr;
402 
403   void
404   emitRemark(const StringRef OptName, const StringRef TargetName,
405              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
406     Function *F = CB.getCaller();
407     DebugLoc DLoc = CB.getDebugLoc();
408     BasicBlock *Block = CB.getParent();
409 
410     using namespace ore;
411     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
412                       << NV("Optimization", OptName)
413                       << ": devirtualized a call to "
414                       << NV("FunctionName", TargetName));
415   }
416 
417   void replaceAndErase(
418       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
419       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
420       Value *New) {
421     if (RemarksEnabled)
422       emitRemark(OptName, TargetName, OREGetter);
423     CB.replaceAllUsesWith(New);
424     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
425       BranchInst::Create(II->getNormalDest(), &CB);
426       II->getUnwindDest()->removePredecessor(II->getParent());
427     }
428     CB.eraseFromParent();
429     // This use is no longer unsafe.
430     if (NumUnsafeUses)
431       --*NumUnsafeUses;
432   }
433 };
434 
435 // Call site information collected for a specific VTableSlot and possibly a list
436 // of constant integer arguments. The grouping by arguments is handled by the
437 // VTableSlotInfo class.
438 struct CallSiteInfo {
439   /// The set of call sites for this slot. Used during regular LTO and the
440   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
441   /// call sites that appear in the merged module itself); in each of these
442   /// cases we are directly operating on the call sites at the IR level.
443   std::vector<VirtualCallSite> CallSites;
444 
445   /// Whether all call sites represented by this CallSiteInfo, including those
446   /// in summaries, have been devirtualized. This starts off as true because a
447   /// default constructed CallSiteInfo represents no call sites.
448   bool AllCallSitesDevirted = true;
449 
450   // These fields are used during the export phase of ThinLTO and reflect
451   // information collected from function summaries.
452 
453   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
454   /// this slot.
455   bool SummaryHasTypeTestAssumeUsers = false;
456 
457   /// CFI-specific: a vector containing the list of function summaries that use
458   /// the llvm.type.checked.load intrinsic and therefore will require
459   /// resolutions for llvm.type.test in order to implement CFI checks if
460   /// devirtualization was unsuccessful. If devirtualization was successful, the
461   /// pass will clear this vector by calling markDevirt(). If at the end of the
462   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
463   /// to each of the function summaries in the vector.
464   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
465   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
466 
467   bool isExported() const {
468     return SummaryHasTypeTestAssumeUsers ||
469            !SummaryTypeCheckedLoadUsers.empty();
470   }
471 
472   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
473     SummaryTypeCheckedLoadUsers.push_back(FS);
474     AllCallSitesDevirted = false;
475   }
476 
477   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
478     SummaryTypeTestAssumeUsers.push_back(FS);
479     SummaryHasTypeTestAssumeUsers = true;
480     AllCallSitesDevirted = false;
481   }
482 
483   void markDevirt() {
484     AllCallSitesDevirted = true;
485 
486     // As explained in the comment for SummaryTypeCheckedLoadUsers.
487     SummaryTypeCheckedLoadUsers.clear();
488   }
489 };
490 
491 // Call site information collected for a specific VTableSlot.
492 struct VTableSlotInfo {
493   // The set of call sites which do not have all constant integer arguments
494   // (excluding "this").
495   CallSiteInfo CSInfo;
496 
497   // The set of call sites with all constant integer arguments (excluding
498   // "this"), grouped by argument list.
499   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
500 
501   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
502 
503 private:
504   CallSiteInfo &findCallSiteInfo(CallBase &CB);
505 };
506 
507 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
508   std::vector<uint64_t> Args;
509   auto *CBType = dyn_cast<IntegerType>(CB.getType());
510   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
511     return CSInfo;
512   for (auto &&Arg : drop_begin(CB.args())) {
513     auto *CI = dyn_cast<ConstantInt>(Arg);
514     if (!CI || CI->getBitWidth() > 64)
515       return CSInfo;
516     Args.push_back(CI->getZExtValue());
517   }
518   return ConstCSInfo[Args];
519 }
520 
521 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
522                                  unsigned *NumUnsafeUses) {
523   auto &CSI = findCallSiteInfo(CB);
524   CSI.AllCallSitesDevirted = false;
525   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
526 }
527 
528 struct DevirtModule {
529   Module &M;
530   function_ref<AAResults &(Function &)> AARGetter;
531   function_ref<DominatorTree &(Function &)> LookupDomTree;
532 
533   ModuleSummaryIndex *ExportSummary;
534   const ModuleSummaryIndex *ImportSummary;
535 
536   IntegerType *Int8Ty;
537   PointerType *Int8PtrTy;
538   IntegerType *Int32Ty;
539   IntegerType *Int64Ty;
540   IntegerType *IntPtrTy;
541   /// Sizeless array type, used for imported vtables. This provides a signal
542   /// to analyzers that these imports may alias, as they do for example
543   /// when multiple unique return values occur in the same vtable.
544   ArrayType *Int8Arr0Ty;
545 
546   bool RemarksEnabled;
547   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
548 
549   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
550 
551   // Calls that have already been optimized. We may add a call to multiple
552   // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
553   // optimize a call more than once.
554   SmallPtrSet<CallBase *, 8> OptimizedCalls;
555 
556   // This map keeps track of the number of "unsafe" uses of a loaded function
557   // pointer. The key is the associated llvm.type.test intrinsic call generated
558   // by this pass. An unsafe use is one that calls the loaded function pointer
559   // directly. Every time we eliminate an unsafe use (for example, by
560   // devirtualizing it or by applying virtual constant propagation), we
561   // decrement the value stored in this map. If a value reaches zero, we can
562   // eliminate the type check by RAUWing the associated llvm.type.test call with
563   // true.
564   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
565   PatternList FunctionsToSkip;
566 
567   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
568                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
569                function_ref<DominatorTree &(Function &)> LookupDomTree,
570                ModuleSummaryIndex *ExportSummary,
571                const ModuleSummaryIndex *ImportSummary)
572       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
573         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
574         Int8Ty(Type::getInt8Ty(M.getContext())),
575         Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
576         Int32Ty(Type::getInt32Ty(M.getContext())),
577         Int64Ty(Type::getInt64Ty(M.getContext())),
578         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
579         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
580         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
581     assert(!(ExportSummary && ImportSummary));
582     FunctionsToSkip.init(SkipFunctionNames);
583   }
584 
585   bool areRemarksEnabled();
586 
587   void
588   scanTypeTestUsers(Function *TypeTestFunc,
589                     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
590   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
591 
592   void buildTypeIdentifierMap(
593       std::vector<VTableBits> &Bits,
594       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
595 
596   bool
597   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
598                             const std::set<TypeMemberInfo> &TypeMemberInfos,
599                             uint64_t ByteOffset,
600                             ModuleSummaryIndex *ExportSummary);
601 
602   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
603                              bool &IsExported);
604   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
605                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
606                            VTableSlotInfo &SlotInfo,
607                            WholeProgramDevirtResolution *Res);
608 
609   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
610                               bool &IsExported);
611   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
612                             VTableSlotInfo &SlotInfo,
613                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
614 
615   bool tryEvaluateFunctionsWithArgs(
616       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
617       ArrayRef<uint64_t> Args);
618 
619   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
620                              uint64_t TheRetVal);
621   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622                            CallSiteInfo &CSInfo,
623                            WholeProgramDevirtResolution::ByArg *Res);
624 
625   // Returns the global symbol name that is used to export information about the
626   // given vtable slot and list of arguments.
627   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
628                             StringRef Name);
629 
630   bool shouldExportConstantsAsAbsoluteSymbols();
631 
632   // This function is called during the export phase to create a symbol
633   // definition containing information about the given vtable slot and list of
634   // arguments.
635   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
636                     Constant *C);
637   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
638                       uint32_t Const, uint32_t &Storage);
639 
640   // This function is called during the import phase to create a reference to
641   // the symbol definition created during the export phase.
642   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
643                          StringRef Name);
644   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
645                            StringRef Name, IntegerType *IntTy,
646                            uint32_t Storage);
647 
648   Constant *getMemberAddr(const TypeMemberInfo *M);
649 
650   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
651                             Constant *UniqueMemberAddr);
652   bool tryUniqueRetValOpt(unsigned BitWidth,
653                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
654                           CallSiteInfo &CSInfo,
655                           WholeProgramDevirtResolution::ByArg *Res,
656                           VTableSlot Slot, ArrayRef<uint64_t> Args);
657 
658   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
659                              Constant *Byte, Constant *Bit);
660   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
661                            VTableSlotInfo &SlotInfo,
662                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
663 
664   void rebuildGlobal(VTableBits &B);
665 
666   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
667   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
668 
669   // If we were able to eliminate all unsafe uses for a type checked load,
670   // eliminate the associated type tests by replacing them with true.
671   void removeRedundantTypeTests();
672 
673   bool run();
674 
675   // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
676   //
677   // Caller guarantees that `ExportSummary` is not nullptr.
678   static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
679                                            ModuleSummaryIndex *ExportSummary);
680 
681   // Returns true if the function definition must be unreachable.
682   //
683   // Note if this helper function returns true, `F` is guaranteed
684   // to be unreachable; if it returns false, `F` might still
685   // be unreachable but not covered by this helper function.
686   //
687   // Implementation-wise, if function definition is present, IR is analyzed; if
688   // not, look up function flags from ExportSummary as a fallback.
689   static bool mustBeUnreachableFunction(Function *const F,
690                                         ModuleSummaryIndex *ExportSummary);
691 
692   // Lower the module using the action and summary passed as command line
693   // arguments. For testing purposes only.
694   static bool
695   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
696                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
697                 function_ref<DominatorTree &(Function &)> LookupDomTree);
698 };
699 
700 struct DevirtIndex {
701   ModuleSummaryIndex &ExportSummary;
702   // The set in which to record GUIDs exported from their module by
703   // devirtualization, used by client to ensure they are not internalized.
704   std::set<GlobalValue::GUID> &ExportedGUIDs;
705   // A map in which to record the information necessary to locate the WPD
706   // resolution for local targets in case they are exported by cross module
707   // importing.
708   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
709 
710   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
711 
712   PatternList FunctionsToSkip;
713 
714   DevirtIndex(
715       ModuleSummaryIndex &ExportSummary,
716       std::set<GlobalValue::GUID> &ExportedGUIDs,
717       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
718       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
719         LocalWPDTargetsMap(LocalWPDTargetsMap) {
720     FunctionsToSkip.init(SkipFunctionNames);
721   }
722 
723   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
724                                  const TypeIdCompatibleVtableInfo TIdInfo,
725                                  uint64_t ByteOffset);
726 
727   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
728                            VTableSlotSummary &SlotSummary,
729                            VTableSlotInfo &SlotInfo,
730                            WholeProgramDevirtResolution *Res,
731                            std::set<ValueInfo> &DevirtTargets);
732 
733   void run();
734 };
735 
736 struct WholeProgramDevirt : public ModulePass {
737   static char ID;
738 
739   bool UseCommandLine = false;
740 
741   ModuleSummaryIndex *ExportSummary = nullptr;
742   const ModuleSummaryIndex *ImportSummary = nullptr;
743 
744   WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
745     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
746   }
747 
748   WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
749                      const ModuleSummaryIndex *ImportSummary)
750       : ModulePass(ID), ExportSummary(ExportSummary),
751         ImportSummary(ImportSummary) {
752     initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
753   }
754 
755   bool runOnModule(Module &M) override {
756     if (skipModule(M))
757       return false;
758 
759     // In the new pass manager, we can request the optimization
760     // remark emitter pass on a per-function-basis, which the
761     // OREGetter will do for us.
762     // In the old pass manager, this is harder, so we just build
763     // an optimization remark emitter on the fly, when we need it.
764     std::unique_ptr<OptimizationRemarkEmitter> ORE;
765     auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
766       ORE = std::make_unique<OptimizationRemarkEmitter>(F);
767       return *ORE;
768     };
769 
770     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
771       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
772     };
773 
774     if (UseCommandLine)
775       return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
776                                          LookupDomTree);
777 
778     return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
779                         ExportSummary, ImportSummary)
780         .run();
781   }
782 
783   void getAnalysisUsage(AnalysisUsage &AU) const override {
784     AU.addRequired<AssumptionCacheTracker>();
785     AU.addRequired<TargetLibraryInfoWrapperPass>();
786     AU.addRequired<DominatorTreeWrapperPass>();
787   }
788 };
789 
790 } // end anonymous namespace
791 
792 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
793                       "Whole program devirtualization", false, false)
794 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
795 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
796 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
797 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
798                     "Whole program devirtualization", false, false)
799 char WholeProgramDevirt::ID = 0;
800 
801 ModulePass *
802 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
803                                    const ModuleSummaryIndex *ImportSummary) {
804   return new WholeProgramDevirt(ExportSummary, ImportSummary);
805 }
806 
807 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
808                                               ModuleAnalysisManager &AM) {
809   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
810   auto AARGetter = [&](Function &F) -> AAResults & {
811     return FAM.getResult<AAManager>(F);
812   };
813   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
814     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
815   };
816   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
817     return FAM.getResult<DominatorTreeAnalysis>(F);
818   };
819   if (UseCommandLine) {
820     if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
821       return PreservedAnalyses::all();
822     return PreservedAnalyses::none();
823   }
824   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
825                     ImportSummary)
826            .run())
827     return PreservedAnalyses::all();
828   return PreservedAnalyses::none();
829 }
830 
831 // Enable whole program visibility if enabled by client (e.g. linker) or
832 // internal option, and not force disabled.
833 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
834   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
835          !DisableWholeProgramVisibility;
836 }
837 
838 namespace llvm {
839 
840 /// If whole program visibility asserted, then upgrade all public vcall
841 /// visibility metadata on vtable definitions to linkage unit visibility in
842 /// Module IR (for regular or hybrid LTO).
843 void updateVCallVisibilityInModule(
844     Module &M, bool WholeProgramVisibilityEnabledInLTO,
845     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
846   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
847     return;
848   for (GlobalVariable &GV : M.globals())
849     // Add linkage unit visibility to any variable with type metadata, which are
850     // the vtable definitions. We won't have an existing vcall_visibility
851     // metadata on vtable definitions with public visibility.
852     if (GV.hasMetadata(LLVMContext::MD_type) &&
853         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
854         // Don't upgrade the visibility for symbols exported to the dynamic
855         // linker, as we have no information on their eventual use.
856         !DynamicExportSymbols.count(GV.getGUID()))
857       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
858 }
859 
860 /// If whole program visibility asserted, then upgrade all public vcall
861 /// visibility metadata on vtable definition summaries to linkage unit
862 /// visibility in Module summary index (for ThinLTO).
863 void updateVCallVisibilityInIndex(
864     ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
865     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
866   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
867     return;
868   for (auto &P : Index) {
869     for (auto &S : P.second.SummaryList) {
870       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
871       if (!GVar ||
872           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic ||
873           // Don't upgrade the visibility for symbols exported to the dynamic
874           // linker, as we have no information on their eventual use.
875           DynamicExportSymbols.count(P.first))
876         continue;
877       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
878     }
879   }
880 }
881 
882 void runWholeProgramDevirtOnIndex(
883     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
884     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
885   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
886 }
887 
888 void updateIndexWPDForExports(
889     ModuleSummaryIndex &Summary,
890     function_ref<bool(StringRef, ValueInfo)> isExported,
891     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
892   for (auto &T : LocalWPDTargetsMap) {
893     auto &VI = T.first;
894     // This was enforced earlier during trySingleImplDevirt.
895     assert(VI.getSummaryList().size() == 1 &&
896            "Devirt of local target has more than one copy");
897     auto &S = VI.getSummaryList()[0];
898     if (!isExported(S->modulePath(), VI))
899       continue;
900 
901     // It's been exported by a cross module import.
902     for (auto &SlotSummary : T.second) {
903       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
904       assert(TIdSum);
905       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
906       assert(WPDRes != TIdSum->WPDRes.end());
907       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
908           WPDRes->second.SingleImplName,
909           Summary.getModuleHash(S->modulePath()));
910     }
911   }
912 }
913 
914 } // end namespace llvm
915 
916 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
917   // Check that summary index contains regular LTO module when performing
918   // export to prevent occasional use of index from pure ThinLTO compilation
919   // (-fno-split-lto-module). This kind of summary index is passed to
920   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
921   const auto &ModPaths = Summary->modulePaths();
922   if (ClSummaryAction != PassSummaryAction::Import &&
923       ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
924           ModPaths.end())
925     return createStringError(
926         errc::invalid_argument,
927         "combined summary should contain Regular LTO module");
928   return ErrorSuccess();
929 }
930 
931 bool DevirtModule::runForTesting(
932     Module &M, function_ref<AAResults &(Function &)> AARGetter,
933     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
934     function_ref<DominatorTree &(Function &)> LookupDomTree) {
935   std::unique_ptr<ModuleSummaryIndex> Summary =
936       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
937 
938   // Handle the command-line summary arguments. This code is for testing
939   // purposes only, so we handle errors directly.
940   if (!ClReadSummary.empty()) {
941     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
942                           ": ");
943     auto ReadSummaryFile =
944         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
945     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
946             getModuleSummaryIndex(*ReadSummaryFile)) {
947       Summary = std::move(*SummaryOrErr);
948       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
949     } else {
950       // Try YAML if we've failed with bitcode.
951       consumeError(SummaryOrErr.takeError());
952       yaml::Input In(ReadSummaryFile->getBuffer());
953       In >> *Summary;
954       ExitOnErr(errorCodeToError(In.error()));
955     }
956   }
957 
958   bool Changed =
959       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
960                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
961                                                                 : nullptr,
962                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
963                                                                 : nullptr)
964           .run();
965 
966   if (!ClWriteSummary.empty()) {
967     ExitOnError ExitOnErr(
968         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
969     std::error_code EC;
970     if (StringRef(ClWriteSummary).endswith(".bc")) {
971       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
972       ExitOnErr(errorCodeToError(EC));
973       writeIndexToFile(*Summary, OS);
974     } else {
975       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
976       ExitOnErr(errorCodeToError(EC));
977       yaml::Output Out(OS);
978       Out << *Summary;
979     }
980   }
981 
982   return Changed;
983 }
984 
985 void DevirtModule::buildTypeIdentifierMap(
986     std::vector<VTableBits> &Bits,
987     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
988   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
989   Bits.reserve(M.getGlobalList().size());
990   SmallVector<MDNode *, 2> Types;
991   for (GlobalVariable &GV : M.globals()) {
992     Types.clear();
993     GV.getMetadata(LLVMContext::MD_type, Types);
994     if (GV.isDeclaration() || Types.empty())
995       continue;
996 
997     VTableBits *&BitsPtr = GVToBits[&GV];
998     if (!BitsPtr) {
999       Bits.emplace_back();
1000       Bits.back().GV = &GV;
1001       Bits.back().ObjectSize =
1002           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
1003       BitsPtr = &Bits.back();
1004     }
1005 
1006     for (MDNode *Type : Types) {
1007       auto TypeID = Type->getOperand(1).get();
1008 
1009       uint64_t Offset =
1010           cast<ConstantInt>(
1011               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1012               ->getZExtValue();
1013 
1014       TypeIdMap[TypeID].insert({BitsPtr, Offset});
1015     }
1016   }
1017 }
1018 
1019 bool DevirtModule::tryFindVirtualCallTargets(
1020     std::vector<VirtualCallTarget> &TargetsForSlot,
1021     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
1022     ModuleSummaryIndex *ExportSummary) {
1023   for (const TypeMemberInfo &TM : TypeMemberInfos) {
1024     if (!TM.Bits->GV->isConstant())
1025       return false;
1026 
1027     // We cannot perform whole program devirtualization analysis on a vtable
1028     // with public LTO visibility.
1029     if (TM.Bits->GV->getVCallVisibility() ==
1030         GlobalObject::VCallVisibilityPublic)
1031       return false;
1032 
1033     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
1034                                        TM.Offset + ByteOffset, M);
1035     if (!Ptr)
1036       return false;
1037 
1038     auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
1039     if (!Fn)
1040       return false;
1041 
1042     if (FunctionsToSkip.match(Fn->getName()))
1043       return false;
1044 
1045     // We can disregard __cxa_pure_virtual as a possible call target, as
1046     // calls to pure virtuals are UB.
1047     if (Fn->getName() == "__cxa_pure_virtual")
1048       continue;
1049 
1050     // We can disregard unreachable functions as possible call targets, as
1051     // unreachable functions shouldn't be called.
1052     if (mustBeUnreachableFunction(Fn, ExportSummary))
1053       continue;
1054 
1055     TargetsForSlot.push_back({Fn, &TM});
1056   }
1057 
1058   // Give up if we couldn't find any targets.
1059   return !TargetsForSlot.empty();
1060 }
1061 
1062 bool DevirtIndex::tryFindVirtualCallTargets(
1063     std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
1064     uint64_t ByteOffset) {
1065   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1066     // Find a representative copy of the vtable initializer.
1067     // We can have multiple available_externally, linkonce_odr and weak_odr
1068     // vtable initializers. We can also have multiple external vtable
1069     // initializers in the case of comdats, which we cannot check here.
1070     // The linker should give an error in this case.
1071     //
1072     // Also, handle the case of same-named local Vtables with the same path
1073     // and therefore the same GUID. This can happen if there isn't enough
1074     // distinguishing path when compiling the source file. In that case we
1075     // conservatively return false early.
1076     const GlobalVarSummary *VS = nullptr;
1077     bool LocalFound = false;
1078     for (auto &S : P.VTableVI.getSummaryList()) {
1079       if (GlobalValue::isLocalLinkage(S->linkage())) {
1080         if (LocalFound)
1081           return false;
1082         LocalFound = true;
1083       }
1084       auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1085       if (!CurVS->vTableFuncs().empty() ||
1086           // Previously clang did not attach the necessary type metadata to
1087           // available_externally vtables, in which case there would not
1088           // be any vtable functions listed in the summary and we need
1089           // to treat this case conservatively (in case the bitcode is old).
1090           // However, we will also not have any vtable functions in the
1091           // case of a pure virtual base class. In that case we do want
1092           // to set VS to avoid treating it conservatively.
1093           !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1094         VS = CurVS;
1095         // We cannot perform whole program devirtualization analysis on a vtable
1096         // with public LTO visibility.
1097         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1098           return false;
1099       }
1100     }
1101     // There will be no VS if all copies are available_externally having no
1102     // type metadata. In that case we can't safely perform WPD.
1103     if (!VS)
1104       return false;
1105     if (!VS->isLive())
1106       continue;
1107     for (auto VTP : VS->vTableFuncs()) {
1108       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1109         continue;
1110 
1111       if (mustBeUnreachableFunction(VTP.FuncVI))
1112         continue;
1113 
1114       TargetsForSlot.push_back(VTP.FuncVI);
1115     }
1116   }
1117 
1118   // Give up if we couldn't find any targets.
1119   return !TargetsForSlot.empty();
1120 }
1121 
1122 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1123                                          Constant *TheFn, bool &IsExported) {
1124   // Don't devirtualize function if we're told to skip it
1125   // in -wholeprogramdevirt-skip.
1126   if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1127     return;
1128   auto Apply = [&](CallSiteInfo &CSInfo) {
1129     for (auto &&VCallSite : CSInfo.CallSites) {
1130       if (!OptimizedCalls.insert(&VCallSite.CB).second)
1131         continue;
1132 
1133       if (RemarksEnabled)
1134         VCallSite.emitRemark("single-impl",
1135                              TheFn->stripPointerCasts()->getName(), OREGetter);
1136       auto &CB = VCallSite.CB;
1137       assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1138       IRBuilder<> Builder(&CB);
1139       Value *Callee =
1140           Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1141 
1142       // If checking is enabled, add support to compare the virtual function
1143       // pointer to the devirtualized target. In case of a mismatch, perform a
1144       // debug trap.
1145       if (CheckDevirt) {
1146         auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1147         Instruction *ThenTerm =
1148             SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1149         Builder.SetInsertPoint(ThenTerm);
1150         Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1151         auto *CallTrap = Builder.CreateCall(TrapFn);
1152         CallTrap->setDebugLoc(CB.getDebugLoc());
1153       }
1154 
1155       // Devirtualize.
1156       CB.setCalledOperand(Callee);
1157 
1158       // This use is no longer unsafe.
1159       if (VCallSite.NumUnsafeUses)
1160         --*VCallSite.NumUnsafeUses;
1161     }
1162     if (CSInfo.isExported())
1163       IsExported = true;
1164     CSInfo.markDevirt();
1165   };
1166   Apply(SlotInfo.CSInfo);
1167   for (auto &P : SlotInfo.ConstCSInfo)
1168     Apply(P.second);
1169 }
1170 
1171 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1172   // We can't add calls if we haven't seen a definition
1173   if (Callee.getSummaryList().empty())
1174     return false;
1175 
1176   // Insert calls into the summary index so that the devirtualized targets
1177   // are eligible for import.
1178   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1179   // to better ensure we have the opportunity to inline them.
1180   bool IsExported = false;
1181   auto &S = Callee.getSummaryList()[0];
1182   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1183   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1184     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1185       FS->addCall({Callee, CI});
1186       IsExported |= S->modulePath() != FS->modulePath();
1187     }
1188     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1189       FS->addCall({Callee, CI});
1190       IsExported |= S->modulePath() != FS->modulePath();
1191     }
1192   };
1193   AddCalls(SlotInfo.CSInfo);
1194   for (auto &P : SlotInfo.ConstCSInfo)
1195     AddCalls(P.second);
1196   return IsExported;
1197 }
1198 
1199 bool DevirtModule::trySingleImplDevirt(
1200     ModuleSummaryIndex *ExportSummary,
1201     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1202     WholeProgramDevirtResolution *Res) {
1203   // See if the program contains a single implementation of this virtual
1204   // function.
1205   Function *TheFn = TargetsForSlot[0].Fn;
1206   for (auto &&Target : TargetsForSlot)
1207     if (TheFn != Target.Fn)
1208       return false;
1209 
1210   // If so, update each call site to call that implementation directly.
1211   if (RemarksEnabled)
1212     TargetsForSlot[0].WasDevirt = true;
1213 
1214   bool IsExported = false;
1215   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1216   if (!IsExported)
1217     return false;
1218 
1219   // If the only implementation has local linkage, we must promote to external
1220   // to make it visible to thin LTO objects. We can only get here during the
1221   // ThinLTO export phase.
1222   if (TheFn->hasLocalLinkage()) {
1223     std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1224 
1225     // Since we are renaming the function, any comdats with the same name must
1226     // also be renamed. This is required when targeting COFF, as the comdat name
1227     // must match one of the names of the symbols in the comdat.
1228     if (Comdat *C = TheFn->getComdat()) {
1229       if (C->getName() == TheFn->getName()) {
1230         Comdat *NewC = M.getOrInsertComdat(NewName);
1231         NewC->setSelectionKind(C->getSelectionKind());
1232         for (GlobalObject &GO : M.global_objects())
1233           if (GO.getComdat() == C)
1234             GO.setComdat(NewC);
1235       }
1236     }
1237 
1238     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1239     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1240     TheFn->setName(NewName);
1241   }
1242   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1243     // Any needed promotion of 'TheFn' has already been done during
1244     // LTO unit split, so we can ignore return value of AddCalls.
1245     AddCalls(SlotInfo, TheFnVI);
1246 
1247   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1248   Res->SingleImplName = std::string(TheFn->getName());
1249 
1250   return true;
1251 }
1252 
1253 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1254                                       VTableSlotSummary &SlotSummary,
1255                                       VTableSlotInfo &SlotInfo,
1256                                       WholeProgramDevirtResolution *Res,
1257                                       std::set<ValueInfo> &DevirtTargets) {
1258   // See if the program contains a single implementation of this virtual
1259   // function.
1260   auto TheFn = TargetsForSlot[0];
1261   for (auto &&Target : TargetsForSlot)
1262     if (TheFn != Target)
1263       return false;
1264 
1265   // Don't devirtualize if we don't have target definition.
1266   auto Size = TheFn.getSummaryList().size();
1267   if (!Size)
1268     return false;
1269 
1270   // Don't devirtualize function if we're told to skip it
1271   // in -wholeprogramdevirt-skip.
1272   if (FunctionsToSkip.match(TheFn.name()))
1273     return false;
1274 
1275   // If the summary list contains multiple summaries where at least one is
1276   // a local, give up, as we won't know which (possibly promoted) name to use.
1277   for (auto &S : TheFn.getSummaryList())
1278     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1279       return false;
1280 
1281   // Collect functions devirtualized at least for one call site for stats.
1282   if (PrintSummaryDevirt)
1283     DevirtTargets.insert(TheFn);
1284 
1285   auto &S = TheFn.getSummaryList()[0];
1286   bool IsExported = AddCalls(SlotInfo, TheFn);
1287   if (IsExported)
1288     ExportedGUIDs.insert(TheFn.getGUID());
1289 
1290   // Record in summary for use in devirtualization during the ThinLTO import
1291   // step.
1292   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1293   if (GlobalValue::isLocalLinkage(S->linkage())) {
1294     if (IsExported)
1295       // If target is a local function and we are exporting it by
1296       // devirtualizing a call in another module, we need to record the
1297       // promoted name.
1298       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1299           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1300     else {
1301       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1302       Res->SingleImplName = std::string(TheFn.name());
1303     }
1304   } else
1305     Res->SingleImplName = std::string(TheFn.name());
1306 
1307   // Name will be empty if this thin link driven off of serialized combined
1308   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1309   // legacy LTO API anyway.
1310   assert(!Res->SingleImplName.empty());
1311 
1312   return true;
1313 }
1314 
1315 void DevirtModule::tryICallBranchFunnel(
1316     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1317     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1318   Triple T(M.getTargetTriple());
1319   if (T.getArch() != Triple::x86_64)
1320     return;
1321 
1322   if (TargetsForSlot.size() > ClThreshold)
1323     return;
1324 
1325   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1326   if (!HasNonDevirt)
1327     for (auto &P : SlotInfo.ConstCSInfo)
1328       if (!P.second.AllCallSitesDevirted) {
1329         HasNonDevirt = true;
1330         break;
1331       }
1332 
1333   if (!HasNonDevirt)
1334     return;
1335 
1336   FunctionType *FT =
1337       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1338   Function *JT;
1339   if (isa<MDString>(Slot.TypeID)) {
1340     JT = Function::Create(FT, Function::ExternalLinkage,
1341                           M.getDataLayout().getProgramAddressSpace(),
1342                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1343     JT->setVisibility(GlobalValue::HiddenVisibility);
1344   } else {
1345     JT = Function::Create(FT, Function::InternalLinkage,
1346                           M.getDataLayout().getProgramAddressSpace(),
1347                           "branch_funnel", &M);
1348   }
1349   JT->addParamAttr(0, Attribute::Nest);
1350 
1351   std::vector<Value *> JTArgs;
1352   JTArgs.push_back(JT->arg_begin());
1353   for (auto &T : TargetsForSlot) {
1354     JTArgs.push_back(getMemberAddr(T.TM));
1355     JTArgs.push_back(T.Fn);
1356   }
1357 
1358   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1359   Function *Intr =
1360       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1361 
1362   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1363   CI->setTailCallKind(CallInst::TCK_MustTail);
1364   ReturnInst::Create(M.getContext(), nullptr, BB);
1365 
1366   bool IsExported = false;
1367   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1368   if (IsExported)
1369     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1370 }
1371 
1372 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1373                                           Constant *JT, bool &IsExported) {
1374   auto Apply = [&](CallSiteInfo &CSInfo) {
1375     if (CSInfo.isExported())
1376       IsExported = true;
1377     if (CSInfo.AllCallSitesDevirted)
1378       return;
1379     for (auto &&VCallSite : CSInfo.CallSites) {
1380       CallBase &CB = VCallSite.CB;
1381 
1382       // Jump tables are only profitable if the retpoline mitigation is enabled.
1383       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1384       if (!FSAttr.isValid() ||
1385           !FSAttr.getValueAsString().contains("+retpoline"))
1386         continue;
1387 
1388       if (RemarksEnabled)
1389         VCallSite.emitRemark("branch-funnel",
1390                              JT->stripPointerCasts()->getName(), OREGetter);
1391 
1392       // Pass the address of the vtable in the nest register, which is r10 on
1393       // x86_64.
1394       std::vector<Type *> NewArgs;
1395       NewArgs.push_back(Int8PtrTy);
1396       append_range(NewArgs, CB.getFunctionType()->params());
1397       FunctionType *NewFT =
1398           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1399                             CB.getFunctionType()->isVarArg());
1400       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1401 
1402       IRBuilder<> IRB(&CB);
1403       std::vector<Value *> Args;
1404       Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1405       llvm::append_range(Args, CB.args());
1406 
1407       CallBase *NewCS = nullptr;
1408       if (isa<CallInst>(CB))
1409         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1410       else
1411         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1412                                  cast<InvokeInst>(CB).getNormalDest(),
1413                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1414       NewCS->setCallingConv(CB.getCallingConv());
1415 
1416       AttributeList Attrs = CB.getAttributes();
1417       std::vector<AttributeSet> NewArgAttrs;
1418       NewArgAttrs.push_back(AttributeSet::get(
1419           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1420                               M.getContext(), Attribute::Nest)}));
1421       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1422         NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1423       NewCS->setAttributes(
1424           AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1425                              Attrs.getRetAttrs(), NewArgAttrs));
1426 
1427       CB.replaceAllUsesWith(NewCS);
1428       CB.eraseFromParent();
1429 
1430       // This use is no longer unsafe.
1431       if (VCallSite.NumUnsafeUses)
1432         --*VCallSite.NumUnsafeUses;
1433     }
1434     // Don't mark as devirtualized because there may be callers compiled without
1435     // retpoline mitigation, which would mean that they are lowered to
1436     // llvm.type.test and therefore require an llvm.type.test resolution for the
1437     // type identifier.
1438   };
1439   Apply(SlotInfo.CSInfo);
1440   for (auto &P : SlotInfo.ConstCSInfo)
1441     Apply(P.second);
1442 }
1443 
1444 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1445     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1446     ArrayRef<uint64_t> Args) {
1447   // Evaluate each function and store the result in each target's RetVal
1448   // field.
1449   for (VirtualCallTarget &Target : TargetsForSlot) {
1450     if (Target.Fn->arg_size() != Args.size() + 1)
1451       return false;
1452 
1453     Evaluator Eval(M.getDataLayout(), nullptr);
1454     SmallVector<Constant *, 2> EvalArgs;
1455     EvalArgs.push_back(
1456         Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1457     for (unsigned I = 0; I != Args.size(); ++I) {
1458       auto *ArgTy = dyn_cast<IntegerType>(
1459           Target.Fn->getFunctionType()->getParamType(I + 1));
1460       if (!ArgTy)
1461         return false;
1462       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1463     }
1464 
1465     Constant *RetVal;
1466     if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1467         !isa<ConstantInt>(RetVal))
1468       return false;
1469     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1470   }
1471   return true;
1472 }
1473 
1474 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1475                                          uint64_t TheRetVal) {
1476   for (auto Call : CSInfo.CallSites) {
1477     if (!OptimizedCalls.insert(&Call.CB).second)
1478       continue;
1479     Call.replaceAndErase(
1480         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1481         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1482   }
1483   CSInfo.markDevirt();
1484 }
1485 
1486 bool DevirtModule::tryUniformRetValOpt(
1487     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1488     WholeProgramDevirtResolution::ByArg *Res) {
1489   // Uniform return value optimization. If all functions return the same
1490   // constant, replace all calls with that constant.
1491   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1492   for (const VirtualCallTarget &Target : TargetsForSlot)
1493     if (Target.RetVal != TheRetVal)
1494       return false;
1495 
1496   if (CSInfo.isExported()) {
1497     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1498     Res->Info = TheRetVal;
1499   }
1500 
1501   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1502   if (RemarksEnabled)
1503     for (auto &&Target : TargetsForSlot)
1504       Target.WasDevirt = true;
1505   return true;
1506 }
1507 
1508 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1509                                         ArrayRef<uint64_t> Args,
1510                                         StringRef Name) {
1511   std::string FullName = "__typeid_";
1512   raw_string_ostream OS(FullName);
1513   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1514   for (uint64_t Arg : Args)
1515     OS << '_' << Arg;
1516   OS << '_' << Name;
1517   return OS.str();
1518 }
1519 
1520 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1521   Triple T(M.getTargetTriple());
1522   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1523 }
1524 
1525 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1526                                 StringRef Name, Constant *C) {
1527   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1528                                         getGlobalName(Slot, Args, Name), C, &M);
1529   GA->setVisibility(GlobalValue::HiddenVisibility);
1530 }
1531 
1532 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1533                                   StringRef Name, uint32_t Const,
1534                                   uint32_t &Storage) {
1535   if (shouldExportConstantsAsAbsoluteSymbols()) {
1536     exportGlobal(
1537         Slot, Args, Name,
1538         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1539     return;
1540   }
1541 
1542   Storage = Const;
1543 }
1544 
1545 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1546                                      StringRef Name) {
1547   Constant *C =
1548       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1549   auto *GV = dyn_cast<GlobalVariable>(C);
1550   if (GV)
1551     GV->setVisibility(GlobalValue::HiddenVisibility);
1552   return C;
1553 }
1554 
1555 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1556                                        StringRef Name, IntegerType *IntTy,
1557                                        uint32_t Storage) {
1558   if (!shouldExportConstantsAsAbsoluteSymbols())
1559     return ConstantInt::get(IntTy, Storage);
1560 
1561   Constant *C = importGlobal(Slot, Args, Name);
1562   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1563   C = ConstantExpr::getPtrToInt(C, IntTy);
1564 
1565   // We only need to set metadata if the global is newly created, in which
1566   // case it would not have hidden visibility.
1567   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1568     return C;
1569 
1570   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1571     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1572     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1573     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1574                     MDNode::get(M.getContext(), {MinC, MaxC}));
1575   };
1576   unsigned AbsWidth = IntTy->getBitWidth();
1577   if (AbsWidth == IntPtrTy->getBitWidth())
1578     SetAbsRange(~0ull, ~0ull); // Full set.
1579   else
1580     SetAbsRange(0, 1ull << AbsWidth);
1581   return C;
1582 }
1583 
1584 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1585                                         bool IsOne,
1586                                         Constant *UniqueMemberAddr) {
1587   for (auto &&Call : CSInfo.CallSites) {
1588     if (!OptimizedCalls.insert(&Call.CB).second)
1589       continue;
1590     IRBuilder<> B(&Call.CB);
1591     Value *Cmp =
1592         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1593                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1594     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1595     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1596                          Cmp);
1597   }
1598   CSInfo.markDevirt();
1599 }
1600 
1601 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1602   Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1603   return ConstantExpr::getGetElementPtr(Int8Ty, C,
1604                                         ConstantInt::get(Int64Ty, M->Offset));
1605 }
1606 
1607 bool DevirtModule::tryUniqueRetValOpt(
1608     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1609     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1610     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1611   // IsOne controls whether we look for a 0 or a 1.
1612   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1613     const TypeMemberInfo *UniqueMember = nullptr;
1614     for (const VirtualCallTarget &Target : TargetsForSlot) {
1615       if (Target.RetVal == (IsOne ? 1 : 0)) {
1616         if (UniqueMember)
1617           return false;
1618         UniqueMember = Target.TM;
1619       }
1620     }
1621 
1622     // We should have found a unique member or bailed out by now. We already
1623     // checked for a uniform return value in tryUniformRetValOpt.
1624     assert(UniqueMember);
1625 
1626     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1627     if (CSInfo.isExported()) {
1628       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1629       Res->Info = IsOne;
1630 
1631       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1632     }
1633 
1634     // Replace each call with the comparison.
1635     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1636                          UniqueMemberAddr);
1637 
1638     // Update devirtualization statistics for targets.
1639     if (RemarksEnabled)
1640       for (auto &&Target : TargetsForSlot)
1641         Target.WasDevirt = true;
1642 
1643     return true;
1644   };
1645 
1646   if (BitWidth == 1) {
1647     if (tryUniqueRetValOptFor(true))
1648       return true;
1649     if (tryUniqueRetValOptFor(false))
1650       return true;
1651   }
1652   return false;
1653 }
1654 
1655 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1656                                          Constant *Byte, Constant *Bit) {
1657   for (auto Call : CSInfo.CallSites) {
1658     if (!OptimizedCalls.insert(&Call.CB).second)
1659       continue;
1660     auto *RetType = cast<IntegerType>(Call.CB.getType());
1661     IRBuilder<> B(&Call.CB);
1662     Value *Addr =
1663         B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1664     if (RetType->getBitWidth() == 1) {
1665       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1666       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1667       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1668       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1669                            OREGetter, IsBitSet);
1670     } else {
1671       Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1672       Value *Val = B.CreateLoad(RetType, ValAddr);
1673       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1674                            OREGetter, Val);
1675     }
1676   }
1677   CSInfo.markDevirt();
1678 }
1679 
1680 bool DevirtModule::tryVirtualConstProp(
1681     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1682     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1683   // This only works if the function returns an integer.
1684   auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1685   if (!RetType)
1686     return false;
1687   unsigned BitWidth = RetType->getBitWidth();
1688   if (BitWidth > 64)
1689     return false;
1690 
1691   // Make sure that each function is defined, does not access memory, takes at
1692   // least one argument, does not use its first argument (which we assume is
1693   // 'this'), and has the same return type.
1694   //
1695   // Note that we test whether this copy of the function is readnone, rather
1696   // than testing function attributes, which must hold for any copy of the
1697   // function, even a less optimized version substituted at link time. This is
1698   // sound because the virtual constant propagation optimizations effectively
1699   // inline all implementations of the virtual function into each call site,
1700   // rather than using function attributes to perform local optimization.
1701   for (VirtualCallTarget &Target : TargetsForSlot) {
1702     if (Target.Fn->isDeclaration() ||
1703         computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1704             MAK_ReadNone ||
1705         Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1706         Target.Fn->getReturnType() != RetType)
1707       return false;
1708   }
1709 
1710   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1711     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1712       continue;
1713 
1714     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1715     if (Res)
1716       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1717 
1718     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1719       continue;
1720 
1721     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1722                            ResByArg, Slot, CSByConstantArg.first))
1723       continue;
1724 
1725     // Find an allocation offset in bits in all vtables associated with the
1726     // type.
1727     uint64_t AllocBefore =
1728         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1729     uint64_t AllocAfter =
1730         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1731 
1732     // Calculate the total amount of padding needed to store a value at both
1733     // ends of the object.
1734     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1735     for (auto &&Target : TargetsForSlot) {
1736       TotalPaddingBefore += std::max<int64_t>(
1737           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1738       TotalPaddingAfter += std::max<int64_t>(
1739           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1740     }
1741 
1742     // If the amount of padding is too large, give up.
1743     // FIXME: do something smarter here.
1744     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1745       continue;
1746 
1747     // Calculate the offset to the value as a (possibly negative) byte offset
1748     // and (if applicable) a bit offset, and store the values in the targets.
1749     int64_t OffsetByte;
1750     uint64_t OffsetBit;
1751     if (TotalPaddingBefore <= TotalPaddingAfter)
1752       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1753                             OffsetBit);
1754     else
1755       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1756                            OffsetBit);
1757 
1758     if (RemarksEnabled)
1759       for (auto &&Target : TargetsForSlot)
1760         Target.WasDevirt = true;
1761 
1762 
1763     if (CSByConstantArg.second.isExported()) {
1764       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1765       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1766                      ResByArg->Byte);
1767       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1768                      ResByArg->Bit);
1769     }
1770 
1771     // Rewrite each call to a load from OffsetByte/OffsetBit.
1772     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1773     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1774     applyVirtualConstProp(CSByConstantArg.second,
1775                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1776   }
1777   return true;
1778 }
1779 
1780 void DevirtModule::rebuildGlobal(VTableBits &B) {
1781   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1782     return;
1783 
1784   // Align the before byte array to the global's minimum alignment so that we
1785   // don't break any alignment requirements on the global.
1786   Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1787       B.GV->getAlign(), B.GV->getValueType());
1788   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1789 
1790   // Before was stored in reverse order; flip it now.
1791   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1792     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1793 
1794   // Build an anonymous global containing the before bytes, followed by the
1795   // original initializer, followed by the after bytes.
1796   auto NewInit = ConstantStruct::getAnon(
1797       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1798        B.GV->getInitializer(),
1799        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1800   auto NewGV =
1801       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1802                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1803   NewGV->setSection(B.GV->getSection());
1804   NewGV->setComdat(B.GV->getComdat());
1805   NewGV->setAlignment(B.GV->getAlign());
1806 
1807   // Copy the original vtable's metadata to the anonymous global, adjusting
1808   // offsets as required.
1809   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1810 
1811   // Build an alias named after the original global, pointing at the second
1812   // element (the original initializer).
1813   auto Alias = GlobalAlias::create(
1814       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1815       ConstantExpr::getGetElementPtr(
1816           NewInit->getType(), NewGV,
1817           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1818                                ConstantInt::get(Int32Ty, 1)}),
1819       &M);
1820   Alias->setVisibility(B.GV->getVisibility());
1821   Alias->takeName(B.GV);
1822 
1823   B.GV->replaceAllUsesWith(Alias);
1824   B.GV->eraseFromParent();
1825 }
1826 
1827 bool DevirtModule::areRemarksEnabled() {
1828   const auto &FL = M.getFunctionList();
1829   for (const Function &Fn : FL) {
1830     const auto &BBL = Fn.getBasicBlockList();
1831     if (BBL.empty())
1832       continue;
1833     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1834     return DI.isEnabled();
1835   }
1836   return false;
1837 }
1838 
1839 void DevirtModule::scanTypeTestUsers(
1840     Function *TypeTestFunc,
1841     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1842   // Find all virtual calls via a virtual table pointer %p under an assumption
1843   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1844   // points to a member of the type identifier %md. Group calls by (type ID,
1845   // offset) pair (effectively the identity of the virtual function) and store
1846   // to CallSlots.
1847   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1848     auto *CI = dyn_cast<CallInst>(U.getUser());
1849     if (!CI)
1850       continue;
1851 
1852     // Search for virtual calls based on %p and add them to DevirtCalls.
1853     SmallVector<DevirtCallSite, 1> DevirtCalls;
1854     SmallVector<CallInst *, 1> Assumes;
1855     auto &DT = LookupDomTree(*CI->getFunction());
1856     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1857 
1858     Metadata *TypeId =
1859         cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1860     // If we found any, add them to CallSlots.
1861     if (!Assumes.empty()) {
1862       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1863       for (DevirtCallSite Call : DevirtCalls)
1864         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1865     }
1866 
1867     auto RemoveTypeTestAssumes = [&]() {
1868       // We no longer need the assumes or the type test.
1869       for (auto Assume : Assumes)
1870         Assume->eraseFromParent();
1871       // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1872       // may use the vtable argument later.
1873       if (CI->use_empty())
1874         CI->eraseFromParent();
1875     };
1876 
1877     // At this point we could remove all type test assume sequences, as they
1878     // were originally inserted for WPD. However, we can keep these in the
1879     // code stream for later analysis (e.g. to help drive more efficient ICP
1880     // sequences). They will eventually be removed by a second LowerTypeTests
1881     // invocation that cleans them up. In order to do this correctly, the first
1882     // LowerTypeTests invocation needs to know that they have "Unknown" type
1883     // test resolution, so that they aren't treated as Unsat and lowered to
1884     // False, which will break any uses on assumes. Below we remove any type
1885     // test assumes that will not be treated as Unknown by LTT.
1886 
1887     // The type test assumes will be treated by LTT as Unsat if the type id is
1888     // not used on a global (in which case it has no entry in the TypeIdMap).
1889     if (!TypeIdMap.count(TypeId))
1890       RemoveTypeTestAssumes();
1891 
1892     // For ThinLTO importing, we need to remove the type test assumes if this is
1893     // an MDString type id without a corresponding TypeIdSummary. Any
1894     // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1895     // type test assumes can be kept. If the MDString type id is missing a
1896     // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1897     // exporting phase of WPD from analyzing it), then it would be treated as
1898     // Unsat by LTT and we need to remove its type test assumes here. If not
1899     // used on a vcall we don't need them for later optimization use in any
1900     // case.
1901     else if (ImportSummary && isa<MDString>(TypeId)) {
1902       const TypeIdSummary *TidSummary =
1903           ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
1904       if (!TidSummary)
1905         RemoveTypeTestAssumes();
1906       else
1907         // If one was created it should not be Unsat, because if we reached here
1908         // the type id was used on a global.
1909         assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
1910     }
1911   }
1912 }
1913 
1914 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1915   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1916 
1917   for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
1918     auto *CI = dyn_cast<CallInst>(U.getUser());
1919     if (!CI)
1920       continue;
1921 
1922     Value *Ptr = CI->getArgOperand(0);
1923     Value *Offset = CI->getArgOperand(1);
1924     Value *TypeIdValue = CI->getArgOperand(2);
1925     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1926 
1927     SmallVector<DevirtCallSite, 1> DevirtCalls;
1928     SmallVector<Instruction *, 1> LoadedPtrs;
1929     SmallVector<Instruction *, 1> Preds;
1930     bool HasNonCallUses = false;
1931     auto &DT = LookupDomTree(*CI->getFunction());
1932     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1933                                                HasNonCallUses, CI, DT);
1934 
1935     // Start by generating "pessimistic" code that explicitly loads the function
1936     // pointer from the vtable and performs the type check. If possible, we will
1937     // eliminate the load and the type check later.
1938 
1939     // If possible, only generate the load at the point where it is used.
1940     // This helps avoid unnecessary spills.
1941     IRBuilder<> LoadB(
1942         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1943     Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1944     Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1945     Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1946 
1947     for (Instruction *LoadedPtr : LoadedPtrs) {
1948       LoadedPtr->replaceAllUsesWith(LoadedValue);
1949       LoadedPtr->eraseFromParent();
1950     }
1951 
1952     // Likewise for the type test.
1953     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1954     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1955 
1956     for (Instruction *Pred : Preds) {
1957       Pred->replaceAllUsesWith(TypeTestCall);
1958       Pred->eraseFromParent();
1959     }
1960 
1961     // We have already erased any extractvalue instructions that refer to the
1962     // intrinsic call, but the intrinsic may have other non-extractvalue uses
1963     // (although this is unlikely). In that case, explicitly build a pair and
1964     // RAUW it.
1965     if (!CI->use_empty()) {
1966       Value *Pair = UndefValue::get(CI->getType());
1967       IRBuilder<> B(CI);
1968       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1969       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1970       CI->replaceAllUsesWith(Pair);
1971     }
1972 
1973     // The number of unsafe uses is initially the number of uses.
1974     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1975     NumUnsafeUses = DevirtCalls.size();
1976 
1977     // If the function pointer has a non-call user, we cannot eliminate the type
1978     // check, as one of those users may eventually call the pointer. Increment
1979     // the unsafe use count to make sure it cannot reach zero.
1980     if (HasNonCallUses)
1981       ++NumUnsafeUses;
1982     for (DevirtCallSite Call : DevirtCalls) {
1983       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
1984                                                    &NumUnsafeUses);
1985     }
1986 
1987     CI->eraseFromParent();
1988   }
1989 }
1990 
1991 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1992   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1993   if (!TypeId)
1994     return;
1995   const TypeIdSummary *TidSummary =
1996       ImportSummary->getTypeIdSummary(TypeId->getString());
1997   if (!TidSummary)
1998     return;
1999   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2000   if (ResI == TidSummary->WPDRes.end())
2001     return;
2002   const WholeProgramDevirtResolution &Res = ResI->second;
2003 
2004   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2005     assert(!Res.SingleImplName.empty());
2006     // The type of the function in the declaration is irrelevant because every
2007     // call site will cast it to the correct type.
2008     Constant *SingleImpl =
2009         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2010                                              Type::getVoidTy(M.getContext()))
2011                            .getCallee());
2012 
2013     // This is the import phase so we should not be exporting anything.
2014     bool IsExported = false;
2015     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2016     assert(!IsExported);
2017   }
2018 
2019   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2020     auto I = Res.ResByArg.find(CSByConstantArg.first);
2021     if (I == Res.ResByArg.end())
2022       continue;
2023     auto &ResByArg = I->second;
2024     // FIXME: We should figure out what to do about the "function name" argument
2025     // to the apply* functions, as the function names are unavailable during the
2026     // importing phase. For now we just pass the empty string. This does not
2027     // impact correctness because the function names are just used for remarks.
2028     switch (ResByArg.TheKind) {
2029     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2030       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2031       break;
2032     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2033       Constant *UniqueMemberAddr =
2034           importGlobal(Slot, CSByConstantArg.first, "unique_member");
2035       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2036                            UniqueMemberAddr);
2037       break;
2038     }
2039     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2040       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2041                                       Int32Ty, ResByArg.Byte);
2042       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2043                                      ResByArg.Bit);
2044       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2045       break;
2046     }
2047     default:
2048       break;
2049     }
2050   }
2051 
2052   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2053     // The type of the function is irrelevant, because it's bitcast at calls
2054     // anyhow.
2055     Constant *JT = cast<Constant>(
2056         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2057                               Type::getVoidTy(M.getContext()))
2058             .getCallee());
2059     bool IsExported = false;
2060     applyICallBranchFunnel(SlotInfo, JT, IsExported);
2061     assert(!IsExported);
2062   }
2063 }
2064 
2065 void DevirtModule::removeRedundantTypeTests() {
2066   auto True = ConstantInt::getTrue(M.getContext());
2067   for (auto &&U : NumUnsafeUsesForTypeTest) {
2068     if (U.second == 0) {
2069       U.first->replaceAllUsesWith(True);
2070       U.first->eraseFromParent();
2071     }
2072   }
2073 }
2074 
2075 ValueInfo
2076 DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2077                                       ModuleSummaryIndex *ExportSummary) {
2078   assert((ExportSummary != nullptr) &&
2079          "Caller guarantees ExportSummary is not nullptr");
2080 
2081   const auto TheFnGUID = TheFn->getGUID();
2082   const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2083   // Look up ValueInfo with the GUID in the current linkage.
2084   ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2085   // If no entry is found and GUID is different from GUID computed using
2086   // exported name, look up ValueInfo with the exported name unconditionally.
2087   // This is a fallback.
2088   //
2089   // The reason to have a fallback:
2090   // 1. LTO could enable global value internalization via
2091   // `enable-lto-internalization`.
2092   // 2. The GUID in ExportedSummary is computed using exported name.
2093   if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2094     TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2095   }
2096   return TheFnVI;
2097 }
2098 
2099 bool DevirtModule::mustBeUnreachableFunction(
2100     Function *const F, ModuleSummaryIndex *ExportSummary) {
2101   // First, learn unreachability by analyzing function IR.
2102   if (!F->isDeclaration()) {
2103     // A function must be unreachable if its entry block ends with an
2104     // 'unreachable'.
2105     return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2106   }
2107   // Learn unreachability from ExportSummary if ExportSummary is present.
2108   return ExportSummary &&
2109          ::mustBeUnreachableFunction(
2110              DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2111 }
2112 
2113 bool DevirtModule::run() {
2114   // If only some of the modules were split, we cannot correctly perform
2115   // this transformation. We already checked for the presense of type tests
2116   // with partially split modules during the thin link, and would have emitted
2117   // an error if any were found, so here we can simply return.
2118   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2119       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2120     return false;
2121 
2122   Function *TypeTestFunc =
2123       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2124   Function *TypeCheckedLoadFunc =
2125       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2126   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2127 
2128   // Normally if there are no users of the devirtualization intrinsics in the
2129   // module, this pass has nothing to do. But if we are exporting, we also need
2130   // to handle any users that appear only in the function summaries.
2131   if (!ExportSummary &&
2132       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2133        AssumeFunc->use_empty()) &&
2134       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
2135     return false;
2136 
2137   // Rebuild type metadata into a map for easy lookup.
2138   std::vector<VTableBits> Bits;
2139   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2140   buildTypeIdentifierMap(Bits, TypeIdMap);
2141 
2142   if (TypeTestFunc && AssumeFunc)
2143     scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2144 
2145   if (TypeCheckedLoadFunc)
2146     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2147 
2148   if (ImportSummary) {
2149     for (auto &S : CallSlots)
2150       importResolution(S.first, S.second);
2151 
2152     removeRedundantTypeTests();
2153 
2154     // We have lowered or deleted the type instrinsics, so we will no
2155     // longer have enough information to reason about the liveness of virtual
2156     // function pointers in GlobalDCE.
2157     for (GlobalVariable &GV : M.globals())
2158       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2159 
2160     // The rest of the code is only necessary when exporting or during regular
2161     // LTO, so we are done.
2162     return true;
2163   }
2164 
2165   if (TypeIdMap.empty())
2166     return true;
2167 
2168   // Collect information from summary about which calls to try to devirtualize.
2169   if (ExportSummary) {
2170     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2171     for (auto &P : TypeIdMap) {
2172       if (auto *TypeId = dyn_cast<MDString>(P.first))
2173         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2174             TypeId);
2175     }
2176 
2177     for (auto &P : *ExportSummary) {
2178       for (auto &S : P.second.SummaryList) {
2179         auto *FS = dyn_cast<FunctionSummary>(S.get());
2180         if (!FS)
2181           continue;
2182         // FIXME: Only add live functions.
2183         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2184           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2185             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2186           }
2187         }
2188         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2189           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2190             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2191           }
2192         }
2193         for (const FunctionSummary::ConstVCall &VC :
2194              FS->type_test_assume_const_vcalls()) {
2195           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2196             CallSlots[{MD, VC.VFunc.Offset}]
2197                 .ConstCSInfo[VC.Args]
2198                 .addSummaryTypeTestAssumeUser(FS);
2199           }
2200         }
2201         for (const FunctionSummary::ConstVCall &VC :
2202              FS->type_checked_load_const_vcalls()) {
2203           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2204             CallSlots[{MD, VC.VFunc.Offset}]
2205                 .ConstCSInfo[VC.Args]
2206                 .addSummaryTypeCheckedLoadUser(FS);
2207           }
2208         }
2209       }
2210     }
2211   }
2212 
2213   // For each (type, offset) pair:
2214   bool DidVirtualConstProp = false;
2215   std::map<std::string, Function*> DevirtTargets;
2216   for (auto &S : CallSlots) {
2217     // Search each of the members of the type identifier for the virtual
2218     // function implementation at offset S.first.ByteOffset, and add to
2219     // TargetsForSlot.
2220     std::vector<VirtualCallTarget> TargetsForSlot;
2221     WholeProgramDevirtResolution *Res = nullptr;
2222     const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2223     if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2224         TypeMemberInfos.size())
2225       // For any type id used on a global's type metadata, create the type id
2226       // summary resolution regardless of whether we can devirtualize, so that
2227       // lower type tests knows the type id is not Unsat. If it was not used on
2228       // a global's type metadata, the TypeIdMap entry set will be empty, and
2229       // we don't want to create an entry (with the default Unknown type
2230       // resolution), which can prevent detection of the Unsat.
2231       Res = &ExportSummary
2232                  ->getOrInsertTypeIdSummary(
2233                      cast<MDString>(S.first.TypeID)->getString())
2234                  .WPDRes[S.first.ByteOffset];
2235     if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2236                                   S.first.ByteOffset, ExportSummary)) {
2237 
2238       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2239         DidVirtualConstProp |=
2240             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2241 
2242         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2243       }
2244 
2245       // Collect functions devirtualized at least for one call site for stats.
2246       if (RemarksEnabled)
2247         for (const auto &T : TargetsForSlot)
2248           if (T.WasDevirt)
2249             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2250     }
2251 
2252     // CFI-specific: if we are exporting and any llvm.type.checked.load
2253     // intrinsics were *not* devirtualized, we need to add the resulting
2254     // llvm.type.test intrinsics to the function summaries so that the
2255     // LowerTypeTests pass will export them.
2256     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2257       auto GUID =
2258           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2259       for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2260         FS->addTypeTest(GUID);
2261       for (auto &CCS : S.second.ConstCSInfo)
2262         for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
2263           FS->addTypeTest(GUID);
2264     }
2265   }
2266 
2267   if (RemarksEnabled) {
2268     // Generate remarks for each devirtualized function.
2269     for (const auto &DT : DevirtTargets) {
2270       Function *F = DT.second;
2271 
2272       using namespace ore;
2273       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2274                         << "devirtualized "
2275                         << NV("FunctionName", DT.first));
2276     }
2277   }
2278 
2279   removeRedundantTypeTests();
2280 
2281   // Rebuild each global we touched as part of virtual constant propagation to
2282   // include the before and after bytes.
2283   if (DidVirtualConstProp)
2284     for (VTableBits &B : Bits)
2285       rebuildGlobal(B);
2286 
2287   // We have lowered or deleted the type instrinsics, so we will no
2288   // longer have enough information to reason about the liveness of virtual
2289   // function pointers in GlobalDCE.
2290   for (GlobalVariable &GV : M.globals())
2291     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2292 
2293   return true;
2294 }
2295 
2296 void DevirtIndex::run() {
2297   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2298     return;
2299 
2300   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2301   for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2302     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2303   }
2304 
2305   // Collect information from summary about which calls to try to devirtualize.
2306   for (auto &P : ExportSummary) {
2307     for (auto &S : P.second.SummaryList) {
2308       auto *FS = dyn_cast<FunctionSummary>(S.get());
2309       if (!FS)
2310         continue;
2311       // FIXME: Only add live functions.
2312       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2313         for (StringRef Name : NameByGUID[VF.GUID]) {
2314           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2315         }
2316       }
2317       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2318         for (StringRef Name : NameByGUID[VF.GUID]) {
2319           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2320         }
2321       }
2322       for (const FunctionSummary::ConstVCall &VC :
2323            FS->type_test_assume_const_vcalls()) {
2324         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2325           CallSlots[{Name, VC.VFunc.Offset}]
2326               .ConstCSInfo[VC.Args]
2327               .addSummaryTypeTestAssumeUser(FS);
2328         }
2329       }
2330       for (const FunctionSummary::ConstVCall &VC :
2331            FS->type_checked_load_const_vcalls()) {
2332         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2333           CallSlots[{Name, VC.VFunc.Offset}]
2334               .ConstCSInfo[VC.Args]
2335               .addSummaryTypeCheckedLoadUser(FS);
2336         }
2337       }
2338     }
2339   }
2340 
2341   std::set<ValueInfo> DevirtTargets;
2342   // For each (type, offset) pair:
2343   for (auto &S : CallSlots) {
2344     // Search each of the members of the type identifier for the virtual
2345     // function implementation at offset S.first.ByteOffset, and add to
2346     // TargetsForSlot.
2347     std::vector<ValueInfo> TargetsForSlot;
2348     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2349     assert(TidSummary);
2350     // Create the type id summary resolution regardlness of whether we can
2351     // devirtualize, so that lower type tests knows the type id is used on
2352     // a global and not Unsat.
2353     WholeProgramDevirtResolution *Res =
2354         &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2355              .WPDRes[S.first.ByteOffset];
2356     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2357                                   S.first.ByteOffset)) {
2358 
2359       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2360                                DevirtTargets))
2361         continue;
2362     }
2363   }
2364 
2365   // Optionally have the thin link print message for each devirtualized
2366   // function.
2367   if (PrintSummaryDevirt)
2368     for (const auto &DT : DevirtTargets)
2369       errs() << "Devirtualized call to " << DT << "\n";
2370 }
2371