1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Transforms/Utils/Local.h"
17 #include "llvm/IR/ConstantRange.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
26 /// a four bit mask.
27 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
28   assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
29          "Unexpected FCmp predicate!");
30   // Take advantage of the bit pattern of FCmpInst::Predicate here.
31   //                                                 U L G E
32   static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
33   static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
34   static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
35   static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
36   static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
37   static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
38   static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
39   static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
40   static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
41   static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
42   static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
43   static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
44   static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
45   static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
46   static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
47   static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
48   return CC;
49 }
50 
51 /// This is the complement of getICmpCode, which turns an opcode and two
52 /// operands into either a constant true or false, or a brand new ICmp
53 /// instruction. The sign is passed in to determine which kind of predicate to
54 /// use in the new icmp instruction.
55 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
56                               InstCombiner::BuilderTy &Builder) {
57   ICmpInst::Predicate NewPred;
58   if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
59     return TorF;
60   return Builder.CreateICmp(NewPred, LHS, RHS);
61 }
62 
63 /// This is the complement of getFCmpCode, which turns an opcode and two
64 /// operands into either a FCmp instruction, or a true/false constant.
65 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
66                            InstCombiner::BuilderTy &Builder) {
67   const auto Pred = static_cast<FCmpInst::Predicate>(Code);
68   assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
69          "Unexpected FCmp predicate!");
70   if (Pred == FCmpInst::FCMP_FALSE)
71     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
72   if (Pred == FCmpInst::FCMP_TRUE)
73     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
74   return Builder.CreateFCmp(Pred, LHS, RHS);
75 }
76 
77 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
78 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
79 /// \param I Binary operator to transform.
80 /// \return Pointer to node that must replace the original binary operator, or
81 ///         null pointer if no transformation was made.
82 static Value *SimplifyBSwap(BinaryOperator &I,
83                             InstCombiner::BuilderTy &Builder) {
84   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
85 
86   Value *OldLHS = I.getOperand(0);
87   Value *OldRHS = I.getOperand(1);
88 
89   Value *NewLHS;
90   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
91     return nullptr;
92 
93   Value *NewRHS;
94   const APInt *C;
95 
96   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
97     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
98     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
99       return nullptr;
100     // NewRHS initialized by the matcher.
101   } else if (match(OldRHS, m_APInt(C))) {
102     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
103     if (!OldLHS->hasOneUse())
104       return nullptr;
105     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
106   } else
107     return nullptr;
108 
109   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
110   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
111                                           I.getType());
112   return Builder.CreateCall(F, BinOp);
113 }
114 
115 /// This handles expressions of the form ((val OP C1) & C2).  Where
116 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
117 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
118                                     ConstantInt *OpRHS,
119                                     ConstantInt *AndRHS,
120                                     BinaryOperator &TheAnd) {
121   Value *X = Op->getOperand(0);
122 
123   switch (Op->getOpcode()) {
124   default: break;
125   case Instruction::Add:
126     if (Op->hasOneUse()) {
127       // Adding a one to a single bit bit-field should be turned into an XOR
128       // of the bit.  First thing to check is to see if this AND is with a
129       // single bit constant.
130       const APInt &AndRHSV = AndRHS->getValue();
131 
132       // If there is only one bit set.
133       if (AndRHSV.isPowerOf2()) {
134         // Ok, at this point, we know that we are masking the result of the
135         // ADD down to exactly one bit.  If the constant we are adding has
136         // no bits set below this bit, then we can eliminate the ADD.
137         const APInt& AddRHS = OpRHS->getValue();
138 
139         // Check to see if any bits below the one bit set in AndRHSV are set.
140         if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
141           // If not, the only thing that can effect the output of the AND is
142           // the bit specified by AndRHSV.  If that bit is set, the effect of
143           // the XOR is to toggle the bit.  If it is clear, then the ADD has
144           // no effect.
145           if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
146             TheAnd.setOperand(0, X);
147             return &TheAnd;
148           } else {
149             // Pull the XOR out of the AND.
150             Value *NewAnd = Builder.CreateAnd(X, AndRHS);
151             NewAnd->takeName(Op);
152             return BinaryOperator::CreateXor(NewAnd, AndRHS);
153           }
154         }
155       }
156     }
157     break;
158   }
159   return nullptr;
160 }
161 
162 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
163 /// (V < Lo || V >= Hi). This method expects that Lo <= Hi. IsSigned indicates
164 /// whether to treat V, Lo, and Hi as signed or not.
165 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
166                                      bool isSigned, bool Inside) {
167   assert((isSigned ? Lo.sle(Hi) : Lo.ule(Hi)) &&
168          "Lo is not <= Hi in range emission code!");
169 
170   Type *Ty = V->getType();
171   if (Lo == Hi)
172     return Inside ? ConstantInt::getFalse(Ty) : ConstantInt::getTrue(Ty);
173 
174   // V >= Min && V <  Hi --> V <  Hi
175   // V <  Min || V >= Hi --> V >= Hi
176   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
177   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
178     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
179     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
180   }
181 
182   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
183   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
184   Value *VMinusLo =
185       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
186   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
187   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
188 }
189 
190 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
191 /// that can be simplified.
192 /// One of A and B is considered the mask. The other is the value. This is
193 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
194 /// only "Mask", then both A and B can be considered masks. If A is the mask,
195 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
196 /// If both A and C are constants, this proof is also easy.
197 /// For the following explanations, we assume that A is the mask.
198 ///
199 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
200 /// bits of A are set in B.
201 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
202 ///
203 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
204 /// bits of A are cleared in B.
205 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
206 ///
207 /// "Mixed" declares that (A & B) == C and C might or might not contain any
208 /// number of one bits and zero bits.
209 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
210 ///
211 /// "Not" means that in above descriptions "==" should be replaced by "!=".
212 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
213 ///
214 /// If the mask A contains a single bit, then the following is equivalent:
215 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
216 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
217 enum MaskedICmpType {
218   AMask_AllOnes           =     1,
219   AMask_NotAllOnes        =     2,
220   BMask_AllOnes           =     4,
221   BMask_NotAllOnes        =     8,
222   Mask_AllZeros           =    16,
223   Mask_NotAllZeros        =    32,
224   AMask_Mixed             =    64,
225   AMask_NotMixed          =   128,
226   BMask_Mixed             =   256,
227   BMask_NotMixed          =   512
228 };
229 
230 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
231 /// satisfies.
232 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
233                                   ICmpInst::Predicate Pred) {
234   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
235   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
236   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
237   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
238   bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
239   bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
240   unsigned MaskVal = 0;
241   if (CCst && CCst->isZero()) {
242     // if C is zero, then both A and B qualify as mask
243     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
244                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
245     if (IsAPow2)
246       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
247                        : (AMask_AllOnes | AMask_Mixed));
248     if (IsBPow2)
249       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
250                        : (BMask_AllOnes | BMask_Mixed));
251     return MaskVal;
252   }
253 
254   if (A == C) {
255     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
256                      : (AMask_NotAllOnes | AMask_NotMixed));
257     if (IsAPow2)
258       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
259                        : (Mask_AllZeros | AMask_Mixed));
260   } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
261     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
262   }
263 
264   if (B == C) {
265     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
266                      : (BMask_NotAllOnes | BMask_NotMixed));
267     if (IsBPow2)
268       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
269                        : (Mask_AllZeros | BMask_Mixed));
270   } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
271     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
272   }
273 
274   return MaskVal;
275 }
276 
277 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
278 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
279 /// is adjacent to the corresponding normal flag (recording ==), this just
280 /// involves swapping those bits over.
281 static unsigned conjugateICmpMask(unsigned Mask) {
282   unsigned NewMask;
283   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
284                      AMask_Mixed | BMask_Mixed))
285             << 1;
286 
287   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
288                       AMask_NotMixed | BMask_NotMixed))
289              >> 1;
290 
291   return NewMask;
292 }
293 
294 // Adapts the external decomposeBitTestICmp for local use.
295 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
296                                  Value *&X, Value *&Y, Value *&Z) {
297   APInt Mask;
298   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
299     return false;
300 
301   Y = ConstantInt::get(X->getType(), Mask);
302   Z = ConstantInt::get(X->getType(), 0);
303   return true;
304 }
305 
306 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
307 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
308 /// the right hand side as a pair.
309 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
310 /// and PredR are their predicates, respectively.
311 static
312 Optional<std::pair<unsigned, unsigned>>
313 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
314                          Value *&D, Value *&E, ICmpInst *LHS,
315                          ICmpInst *RHS,
316                          ICmpInst::Predicate &PredL,
317                          ICmpInst::Predicate &PredR) {
318   // vectors are not (yet?) supported. Don't support pointers either.
319   if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
320       !RHS->getOperand(0)->getType()->isIntegerTy())
321     return None;
322 
323   // Here comes the tricky part:
324   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
325   // and L11 & L12 == L21 & L22. The same goes for RHS.
326   // Now we must find those components L** and R**, that are equal, so
327   // that we can extract the parameters A, B, C, D, and E for the canonical
328   // above.
329   Value *L1 = LHS->getOperand(0);
330   Value *L2 = LHS->getOperand(1);
331   Value *L11, *L12, *L21, *L22;
332   // Check whether the icmp can be decomposed into a bit test.
333   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
334     L21 = L22 = L1 = nullptr;
335   } else {
336     // Look for ANDs in the LHS icmp.
337     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
338       // Any icmp can be viewed as being trivially masked; if it allows us to
339       // remove one, it's worth it.
340       L11 = L1;
341       L12 = Constant::getAllOnesValue(L1->getType());
342     }
343 
344     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
345       L21 = L2;
346       L22 = Constant::getAllOnesValue(L2->getType());
347     }
348   }
349 
350   // Bail if LHS was a icmp that can't be decomposed into an equality.
351   if (!ICmpInst::isEquality(PredL))
352     return None;
353 
354   Value *R1 = RHS->getOperand(0);
355   Value *R2 = RHS->getOperand(1);
356   Value *R11, *R12;
357   bool Ok = false;
358   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
359     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
360       A = R11;
361       D = R12;
362     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
363       A = R12;
364       D = R11;
365     } else {
366       return None;
367     }
368     E = R2;
369     R1 = nullptr;
370     Ok = true;
371   } else {
372     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
373       // As before, model no mask as a trivial mask if it'll let us do an
374       // optimization.
375       R11 = R1;
376       R12 = Constant::getAllOnesValue(R1->getType());
377     }
378 
379     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
380       A = R11;
381       D = R12;
382       E = R2;
383       Ok = true;
384     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
385       A = R12;
386       D = R11;
387       E = R2;
388       Ok = true;
389     }
390   }
391 
392   // Bail if RHS was a icmp that can't be decomposed into an equality.
393   if (!ICmpInst::isEquality(PredR))
394     return None;
395 
396   // Look for ANDs on the right side of the RHS icmp.
397   if (!Ok) {
398     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
399       R11 = R2;
400       R12 = Constant::getAllOnesValue(R2->getType());
401     }
402 
403     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
404       A = R11;
405       D = R12;
406       E = R1;
407       Ok = true;
408     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
409       A = R12;
410       D = R11;
411       E = R1;
412       Ok = true;
413     } else {
414       return None;
415     }
416   }
417   if (!Ok)
418     return None;
419 
420   if (L11 == A) {
421     B = L12;
422     C = L2;
423   } else if (L12 == A) {
424     B = L11;
425     C = L2;
426   } else if (L21 == A) {
427     B = L22;
428     C = L1;
429   } else if (L22 == A) {
430     B = L21;
431     C = L1;
432   }
433 
434   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
435   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
436   return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
437 }
438 
439 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
440 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
441 /// and the right hand side is of type BMask_Mixed. For example,
442 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
443 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
444     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
445     Value *A, Value *B, Value *C, Value *D, Value *E,
446     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
447     llvm::InstCombiner::BuilderTy &Builder) {
448   // We are given the canonical form:
449   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
450   // where D & E == E.
451   //
452   // If IsAnd is false, we get it in negated form:
453   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
454   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
455   //
456   // We currently handle the case of B, C, D, E are constant.
457   //
458   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
459   if (!BCst)
460     return nullptr;
461   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
462   if (!CCst)
463     return nullptr;
464   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
465   if (!DCst)
466     return nullptr;
467   ConstantInt *ECst = dyn_cast<ConstantInt>(E);
468   if (!ECst)
469     return nullptr;
470 
471   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
472 
473   // Update E to the canonical form when D is a power of two and RHS is
474   // canonicalized as,
475   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
476   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
477   if (PredR != NewCC)
478     ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
479 
480   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
481   // other folding rules and this pattern won't apply any more.
482   if (BCst->getValue() == 0 || DCst->getValue() == 0)
483     return nullptr;
484 
485   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
486   // deduce anything from it.
487   // For example,
488   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
489   if ((BCst->getValue() & DCst->getValue()) == 0)
490     return nullptr;
491 
492   // If the following two conditions are met:
493   //
494   // 1. mask B covers only a single bit that's not covered by mask D, that is,
495   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
496   // B and D has only one bit set) and,
497   //
498   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
499   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
500   //
501   // then that single bit in B must be one and thus the whole expression can be
502   // folded to
503   //   (A & (B | D)) == (B & (B ^ D)) | E.
504   //
505   // For example,
506   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
507   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
508   if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
509       (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
510     APInt BorD = BCst->getValue() | DCst->getValue();
511     APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
512         ECst->getValue();
513     Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
514     Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
515     Value *NewAnd = Builder.CreateAnd(A, NewMask);
516     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
517   }
518 
519   auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
520     return (C1->getValue() & C2->getValue()) == C1->getValue();
521   };
522   auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
523     return (C1->getValue() & C2->getValue()) == C2->getValue();
524   };
525 
526   // In the following, we consider only the cases where B is a superset of D, B
527   // is a subset of D, or B == D because otherwise there's at least one bit
528   // covered by B but not D, in which case we can't deduce much from it, so
529   // no folding (aside from the single must-be-one bit case right above.)
530   // For example,
531   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
532   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
533     return nullptr;
534 
535   // At this point, either B is a superset of D, B is a subset of D or B == D.
536 
537   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
538   // and the whole expression becomes false (or true if negated), otherwise, no
539   // folding.
540   // For example,
541   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
542   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
543   if (ECst->isZero()) {
544     if (IsSubSetOrEqual(BCst, DCst))
545       return ConstantInt::get(LHS->getType(), !IsAnd);
546     return nullptr;
547   }
548 
549   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
550   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
551   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
552   // RHS. For example,
553   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
554   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
555   if (IsSuperSetOrEqual(BCst, DCst))
556     return RHS;
557   // Otherwise, B is a subset of D. If B and E have a common bit set,
558   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
559   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
560   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
561   if ((BCst->getValue() & ECst->getValue()) != 0)
562     return RHS;
563   // Otherwise, LHS and RHS contradict and the whole expression becomes false
564   // (or true if negated.) For example,
565   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
566   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
567   return ConstantInt::get(LHS->getType(), !IsAnd);
568 }
569 
570 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
571 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
572 /// aren't of the common mask pattern type.
573 static Value *foldLogOpOfMaskedICmpsAsymmetric(
574     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
575     Value *A, Value *B, Value *C, Value *D, Value *E,
576     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
577     unsigned LHSMask, unsigned RHSMask,
578     llvm::InstCombiner::BuilderTy &Builder) {
579   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
580          "Expected equality predicates for masked type of icmps.");
581   // Handle Mask_NotAllZeros-BMask_Mixed cases.
582   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
583   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
584   //    which gets swapped to
585   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
586   if (!IsAnd) {
587     LHSMask = conjugateICmpMask(LHSMask);
588     RHSMask = conjugateICmpMask(RHSMask);
589   }
590   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
591     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
592             LHS, RHS, IsAnd, A, B, C, D, E,
593             PredL, PredR, Builder)) {
594       return V;
595     }
596   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
597     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
598             RHS, LHS, IsAnd, A, D, E, B, C,
599             PredR, PredL, Builder)) {
600       return V;
601     }
602   }
603   return nullptr;
604 }
605 
606 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
607 /// into a single (icmp(A & X) ==/!= Y).
608 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
609                                      llvm::InstCombiner::BuilderTy &Builder) {
610   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
611   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
612   Optional<std::pair<unsigned, unsigned>> MaskPair =
613       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
614   if (!MaskPair)
615     return nullptr;
616   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
617          "Expected equality predicates for masked type of icmps.");
618   unsigned LHSMask = MaskPair->first;
619   unsigned RHSMask = MaskPair->second;
620   unsigned Mask = LHSMask & RHSMask;
621   if (Mask == 0) {
622     // Even if the two sides don't share a common pattern, check if folding can
623     // still happen.
624     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
625             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
626             Builder))
627       return V;
628     return nullptr;
629   }
630 
631   // In full generality:
632   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
633   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
634   //
635   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
636   // equivalent to (icmp (A & X) !Op Y).
637   //
638   // Therefore, we can pretend for the rest of this function that we're dealing
639   // with the conjunction, provided we flip the sense of any comparisons (both
640   // input and output).
641 
642   // In most cases we're going to produce an EQ for the "&&" case.
643   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
644   if (!IsAnd) {
645     // Convert the masking analysis into its equivalent with negated
646     // comparisons.
647     Mask = conjugateICmpMask(Mask);
648   }
649 
650   if (Mask & Mask_AllZeros) {
651     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
652     // -> (icmp eq (A & (B|D)), 0)
653     Value *NewOr = Builder.CreateOr(B, D);
654     Value *NewAnd = Builder.CreateAnd(A, NewOr);
655     // We can't use C as zero because we might actually handle
656     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
657     // with B and D, having a single bit set.
658     Value *Zero = Constant::getNullValue(A->getType());
659     return Builder.CreateICmp(NewCC, NewAnd, Zero);
660   }
661   if (Mask & BMask_AllOnes) {
662     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
663     // -> (icmp eq (A & (B|D)), (B|D))
664     Value *NewOr = Builder.CreateOr(B, D);
665     Value *NewAnd = Builder.CreateAnd(A, NewOr);
666     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
667   }
668   if (Mask & AMask_AllOnes) {
669     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
670     // -> (icmp eq (A & (B&D)), A)
671     Value *NewAnd1 = Builder.CreateAnd(B, D);
672     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
673     return Builder.CreateICmp(NewCC, NewAnd2, A);
674   }
675 
676   // Remaining cases assume at least that B and D are constant, and depend on
677   // their actual values. This isn't strictly necessary, just a "handle the
678   // easy cases for now" decision.
679   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
680   if (!BCst)
681     return nullptr;
682   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
683   if (!DCst)
684     return nullptr;
685 
686   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
687     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
688     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
689     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
690     // Only valid if one of the masks is a superset of the other (check "B&D" is
691     // the same as either B or D).
692     APInt NewMask = BCst->getValue() & DCst->getValue();
693 
694     if (NewMask == BCst->getValue())
695       return LHS;
696     else if (NewMask == DCst->getValue())
697       return RHS;
698   }
699 
700   if (Mask & AMask_NotAllOnes) {
701     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
702     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
703     // Only valid if one of the masks is a superset of the other (check "B|D" is
704     // the same as either B or D).
705     APInt NewMask = BCst->getValue() | DCst->getValue();
706 
707     if (NewMask == BCst->getValue())
708       return LHS;
709     else if (NewMask == DCst->getValue())
710       return RHS;
711   }
712 
713   if (Mask & BMask_Mixed) {
714     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
715     // We already know that B & C == C && D & E == E.
716     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
717     // C and E, which are shared by both the mask B and the mask D, don't
718     // contradict, then we can transform to
719     // -> (icmp eq (A & (B|D)), (C|E))
720     // Currently, we only handle the case of B, C, D, and E being constant.
721     // We can't simply use C and E because we might actually handle
722     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
723     // with B and D, having a single bit set.
724     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
725     if (!CCst)
726       return nullptr;
727     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
728     if (!ECst)
729       return nullptr;
730     if (PredL != NewCC)
731       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
732     if (PredR != NewCC)
733       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
734 
735     // If there is a conflict, we should actually return a false for the
736     // whole construct.
737     if (((BCst->getValue() & DCst->getValue()) &
738          (CCst->getValue() ^ ECst->getValue())).getBoolValue())
739       return ConstantInt::get(LHS->getType(), !IsAnd);
740 
741     Value *NewOr1 = Builder.CreateOr(B, D);
742     Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
743     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
744     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
745   }
746 
747   return nullptr;
748 }
749 
750 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
751 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
752 /// If \p Inverted is true then the check is for the inverted range, e.g.
753 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
754 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
755                                         bool Inverted) {
756   // Check the lower range comparison, e.g. x >= 0
757   // InstCombine already ensured that if there is a constant it's on the RHS.
758   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
759   if (!RangeStart)
760     return nullptr;
761 
762   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
763                                Cmp0->getPredicate());
764 
765   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
766   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
767         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
768     return nullptr;
769 
770   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
771                                Cmp1->getPredicate());
772 
773   Value *Input = Cmp0->getOperand(0);
774   Value *RangeEnd;
775   if (Cmp1->getOperand(0) == Input) {
776     // For the upper range compare we have: icmp x, n
777     RangeEnd = Cmp1->getOperand(1);
778   } else if (Cmp1->getOperand(1) == Input) {
779     // For the upper range compare we have: icmp n, x
780     RangeEnd = Cmp1->getOperand(0);
781     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
782   } else {
783     return nullptr;
784   }
785 
786   // Check the upper range comparison, e.g. x < n
787   ICmpInst::Predicate NewPred;
788   switch (Pred1) {
789     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
790     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
791     default: return nullptr;
792   }
793 
794   // This simplification is only valid if the upper range is not negative.
795   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
796   if (!Known.isNonNegative())
797     return nullptr;
798 
799   if (Inverted)
800     NewPred = ICmpInst::getInversePredicate(NewPred);
801 
802   return Builder.CreateICmp(NewPred, Input, RangeEnd);
803 }
804 
805 static Value *
806 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
807                                      bool JoinedByAnd,
808                                      InstCombiner::BuilderTy &Builder) {
809   Value *X = LHS->getOperand(0);
810   if (X != RHS->getOperand(0))
811     return nullptr;
812 
813   const APInt *C1, *C2;
814   if (!match(LHS->getOperand(1), m_APInt(C1)) ||
815       !match(RHS->getOperand(1), m_APInt(C2)))
816     return nullptr;
817 
818   // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
819   ICmpInst::Predicate Pred = LHS->getPredicate();
820   if (Pred !=  RHS->getPredicate())
821     return nullptr;
822   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
823     return nullptr;
824   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
825     return nullptr;
826 
827   // The larger unsigned constant goes on the right.
828   if (C1->ugt(*C2))
829     std::swap(C1, C2);
830 
831   APInt Xor = *C1 ^ *C2;
832   if (Xor.isPowerOf2()) {
833     // If LHSC and RHSC differ by only one bit, then set that bit in X and
834     // compare against the larger constant:
835     // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
836     // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
837     // We choose an 'or' with a Pow2 constant rather than the inverse mask with
838     // 'and' because that may lead to smaller codegen from a smaller constant.
839     Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
840     return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
841   }
842 
843   // Special case: get the ordering right when the values wrap around zero.
844   // Ie, we assumed the constants were unsigned when swapping earlier.
845   if (C1->isNullValue() && C2->isAllOnesValue())
846     std::swap(C1, C2);
847 
848   if (*C1 == *C2 - 1) {
849     // (X == 13 || X == 14) --> X - 13 <=u 1
850     // (X != 13 && X != 14) --> X - 13  >u 1
851     // An 'add' is the canonical IR form, so favor that over a 'sub'.
852     Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
853     auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
854     return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
855   }
856 
857   return nullptr;
858 }
859 
860 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
861 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
862 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
863                                                    bool JoinedByAnd,
864                                                    Instruction &CxtI) {
865   ICmpInst::Predicate Pred = LHS->getPredicate();
866   if (Pred != RHS->getPredicate())
867     return nullptr;
868   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
869     return nullptr;
870   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
871     return nullptr;
872 
873   // TODO support vector splats
874   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
875   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
876   if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
877     return nullptr;
878 
879   Value *A, *B, *C, *D;
880   if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
881       match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
882     if (A == D || B == D)
883       std::swap(C, D);
884     if (B == C)
885       std::swap(A, B);
886 
887     if (A == C &&
888         isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
889         isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
890       Value *Mask = Builder.CreateOr(B, D);
891       Value *Masked = Builder.CreateAnd(A, Mask);
892       auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
893       return Builder.CreateICmp(NewPred, Masked, Mask);
894     }
895   }
896 
897   return nullptr;
898 }
899 
900 /// General pattern:
901 ///   X & Y
902 ///
903 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
904 /// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
905 /// Pattern can be one of:
906 ///   %t = add        i32 %arg,    128
907 ///   %r = icmp   ult i32 %t,      256
908 /// Or
909 ///   %t0 = shl       i32 %arg,    24
910 ///   %t1 = ashr      i32 %t0,     24
911 ///   %r  = icmp  eq  i32 %t1,     %arg
912 /// Or
913 ///   %t0 = trunc     i32 %arg  to i8
914 ///   %t1 = sext      i8  %t0   to i32
915 ///   %r  = icmp  eq  i32 %t1,     %arg
916 /// This pattern is a signed truncation check.
917 ///
918 /// And X is checking that some bit in that same mask is zero.
919 /// I.e. can be one of:
920 ///   %r = icmp sgt i32   %arg,    -1
921 /// Or
922 ///   %t = and      i32   %arg,    2147483648
923 ///   %r = icmp eq  i32   %t,      0
924 ///
925 /// Since we are checking that all the bits in that mask are the same,
926 /// and a particular bit is zero, what we are really checking is that all the
927 /// masked bits are zero.
928 /// So this should be transformed to:
929 ///   %r = icmp ult i32 %arg, 128
930 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
931                                         Instruction &CxtI,
932                                         InstCombiner::BuilderTy &Builder) {
933   assert(CxtI.getOpcode() == Instruction::And);
934 
935   // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
936   auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
937                                             APInt &SignBitMask) -> bool {
938     CmpInst::Predicate Pred;
939     const APInt *I01, *I1; // powers of two; I1 == I01 << 1
940     if (!(match(ICmp,
941                 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
942           Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
943       return false;
944     // Which bit is the new sign bit as per the 'signed truncation' pattern?
945     SignBitMask = *I01;
946     return true;
947   };
948 
949   // One icmp needs to be 'signed truncation check'.
950   // We need to match this first, else we will mismatch commutative cases.
951   Value *X1;
952   APInt HighestBit;
953   ICmpInst *OtherICmp;
954   if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
955     OtherICmp = ICmp0;
956   else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
957     OtherICmp = ICmp1;
958   else
959     return nullptr;
960 
961   assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
962 
963   // Try to match/decompose into:  icmp eq (X & Mask), 0
964   auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
965                            APInt &UnsetBitsMask) -> bool {
966     CmpInst::Predicate Pred = ICmp->getPredicate();
967     // Can it be decomposed into  icmp eq (X & Mask), 0  ?
968     if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
969                                    Pred, X, UnsetBitsMask,
970                                    /*LookThroughTrunc=*/false) &&
971         Pred == ICmpInst::ICMP_EQ)
972       return true;
973     // Is it  icmp eq (X & Mask), 0  already?
974     const APInt *Mask;
975     if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
976         Pred == ICmpInst::ICMP_EQ) {
977       UnsetBitsMask = *Mask;
978       return true;
979     }
980     return false;
981   };
982 
983   // And the other icmp needs to be decomposable into a bit test.
984   Value *X0;
985   APInt UnsetBitsMask;
986   if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
987     return nullptr;
988 
989   assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");
990 
991   // Are they working on the same value?
992   Value *X;
993   if (X1 == X0) {
994     // Ok as is.
995     X = X1;
996   } else if (match(X0, m_Trunc(m_Specific(X1)))) {
997     UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
998     X = X1;
999   } else
1000     return nullptr;
1001 
1002   // So which bits should be uniform as per the 'signed truncation check'?
1003   // (all the bits starting with (i.e. including) HighestBit)
1004   APInt SignBitsMask = ~(HighestBit - 1U);
1005 
1006   // UnsetBitsMask must have some common bits with SignBitsMask,
1007   if (!UnsetBitsMask.intersects(SignBitsMask))
1008     return nullptr;
1009 
1010   // Does UnsetBitsMask contain any bits outside of SignBitsMask?
1011   if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
1012     APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
1013     if (!OtherHighestBit.isPowerOf2())
1014       return nullptr;
1015     HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
1016   }
1017   // Else, if it does not, then all is ok as-is.
1018 
1019   // %r = icmp ult %X, SignBit
1020   return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
1021                                CxtI.getName() + ".simplified");
1022 }
1023 
1024 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
1025 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
1026                              InstCombiner::BuilderTy &Builder) {
1027   // Handle 'and' / 'or' commutation: make the equality check the first operand.
1028   if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
1029     std::swap(Cmp0, Cmp1);
1030   else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
1031     std::swap(Cmp0, Cmp1);
1032 
1033   // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
1034   CmpInst::Predicate Pred0, Pred1;
1035   Value *X;
1036   if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
1037       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
1038                          m_SpecificInt(2))) &&
1039       Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
1040     Value *CtPop = Cmp1->getOperand(0);
1041     return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
1042   }
1043   // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
1044   if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
1045       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
1046                          m_SpecificInt(1))) &&
1047       Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
1048     Value *CtPop = Cmp1->getOperand(0);
1049     return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1050   }
1051   return nullptr;
1052 }
1053 
1054 /// Fold (icmp)&(icmp) if possible.
1055 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1056                                     Instruction &CxtI) {
1057   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
1058   // if K1 and K2 are a one-bit mask.
1059   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
1060     return V;
1061 
1062   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1063 
1064   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1065   if (predicatesFoldable(PredL, PredR)) {
1066     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1067         LHS->getOperand(1) == RHS->getOperand(0))
1068       LHS->swapOperands();
1069     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1070         LHS->getOperand(1) == RHS->getOperand(1)) {
1071       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1072       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
1073       bool IsSigned = LHS->isSigned() || RHS->isSigned();
1074       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
1075     }
1076   }
1077 
1078   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
1079   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
1080     return V;
1081 
1082   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1083   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
1084     return V;
1085 
1086   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1087   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
1088     return V;
1089 
1090   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
1091     return V;
1092 
1093   if (Value *V = foldSignedTruncationCheck(LHS, RHS, CxtI, Builder))
1094     return V;
1095 
1096   if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
1097     return V;
1098 
1099   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1100   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1101   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
1102   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
1103   if (!LHSC || !RHSC)
1104     return nullptr;
1105 
1106   if (LHSC == RHSC && PredL == PredR) {
1107     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1108     // where C is a power of 2 or
1109     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1110     if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
1111         (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
1112       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1113       return Builder.CreateICmp(PredL, NewOr, LHSC);
1114     }
1115   }
1116 
1117   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1118   // where CMAX is the all ones value for the truncated type,
1119   // iff the lower bits of C2 and CA are zero.
1120   if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
1121       RHS->hasOneUse()) {
1122     Value *V;
1123     ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
1124 
1125     // (trunc x) == C1 & (and x, CA) == C2
1126     // (and x, CA) == C2 & (trunc x) == C1
1127     if (match(RHS0, m_Trunc(m_Value(V))) &&
1128         match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1129       SmallC = RHSC;
1130       BigC = LHSC;
1131     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
1132                match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1133       SmallC = LHSC;
1134       BigC = RHSC;
1135     }
1136 
1137     if (SmallC && BigC) {
1138       unsigned BigBitSize = BigC->getType()->getBitWidth();
1139       unsigned SmallBitSize = SmallC->getType()->getBitWidth();
1140 
1141       // Check that the low bits are zero.
1142       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
1143       if ((Low & AndC->getValue()).isNullValue() &&
1144           (Low & BigC->getValue()).isNullValue()) {
1145         Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
1146         APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
1147         Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
1148         return Builder.CreateICmp(PredL, NewAnd, NewVal);
1149       }
1150     }
1151   }
1152 
1153   // From here on, we only handle:
1154   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1155   if (LHS0 != RHS0)
1156     return nullptr;
1157 
1158   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1159   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1160       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1161       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1162       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1163     return nullptr;
1164 
1165   // We can't fold (ugt x, C) & (sgt x, C2).
1166   if (!predicatesFoldable(PredL, PredR))
1167     return nullptr;
1168 
1169   // Ensure that the larger constant is on the RHS.
1170   bool ShouldSwap;
1171   if (CmpInst::isSigned(PredL) ||
1172       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1173     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1174   else
1175     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1176 
1177   if (ShouldSwap) {
1178     std::swap(LHS, RHS);
1179     std::swap(LHSC, RHSC);
1180     std::swap(PredL, PredR);
1181   }
1182 
1183   // At this point, we know we have two icmp instructions
1184   // comparing a value against two constants and and'ing the result
1185   // together.  Because of the above check, we know that we only have
1186   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1187   // (from the icmp folding check above), that the two constants
1188   // are not equal and that the larger constant is on the RHS
1189   assert(LHSC != RHSC && "Compares not folded above?");
1190 
1191   switch (PredL) {
1192   default:
1193     llvm_unreachable("Unknown integer condition code!");
1194   case ICmpInst::ICMP_NE:
1195     switch (PredR) {
1196     default:
1197       llvm_unreachable("Unknown integer condition code!");
1198     case ICmpInst::ICMP_ULT:
1199       if (LHSC == SubOne(RHSC)) // (X != 13 & X u< 14) -> X < 13
1200         return Builder.CreateICmpULT(LHS0, LHSC);
1201       if (LHSC->isZero()) // (X !=  0 & X u< 14) -> X-1 u< 13
1202         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1203                                false, true);
1204       break; // (X != 13 & X u< 15) -> no change
1205     case ICmpInst::ICMP_SLT:
1206       if (LHSC == SubOne(RHSC)) // (X != 13 & X s< 14) -> X < 13
1207         return Builder.CreateICmpSLT(LHS0, LHSC);
1208       break;                 // (X != 13 & X s< 15) -> no change
1209     case ICmpInst::ICMP_NE:
1210       // Potential folds for this case should already be handled.
1211       break;
1212     }
1213     break;
1214   case ICmpInst::ICMP_UGT:
1215     switch (PredR) {
1216     default:
1217       llvm_unreachable("Unknown integer condition code!");
1218     case ICmpInst::ICMP_NE:
1219       if (RHSC == AddOne(LHSC)) // (X u> 13 & X != 14) -> X u> 14
1220         return Builder.CreateICmp(PredL, LHS0, RHSC);
1221       break;                 // (X u> 13 & X != 15) -> no change
1222     case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
1223       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1224                              false, true);
1225     }
1226     break;
1227   case ICmpInst::ICMP_SGT:
1228     switch (PredR) {
1229     default:
1230       llvm_unreachable("Unknown integer condition code!");
1231     case ICmpInst::ICMP_NE:
1232       if (RHSC == AddOne(LHSC)) // (X s> 13 & X != 14) -> X s> 14
1233         return Builder.CreateICmp(PredL, LHS0, RHSC);
1234       break;                 // (X s> 13 & X != 15) -> no change
1235     case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
1236       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1237                              true);
1238     }
1239     break;
1240   }
1241 
1242   return nullptr;
1243 }
1244 
1245 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1246   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1247   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1248   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1249 
1250   if (LHS0 == RHS1 && RHS0 == LHS1) {
1251     // Swap RHS operands to match LHS.
1252     PredR = FCmpInst::getSwappedPredicate(PredR);
1253     std::swap(RHS0, RHS1);
1254   }
1255 
1256   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1257   // Suppose the relation between x and y is R, where R is one of
1258   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1259   // testing the desired relations.
1260   //
1261   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1262   //    bool(R & CC0) && bool(R & CC1)
1263   //  = bool((R & CC0) & (R & CC1))
1264   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1265   //
1266   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1267   //    bool(R & CC0) || bool(R & CC1)
1268   //  = bool((R & CC0) | (R & CC1))
1269   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1270   if (LHS0 == RHS0 && LHS1 == RHS1) {
1271     unsigned FCmpCodeL = getFCmpCode(PredL);
1272     unsigned FCmpCodeR = getFCmpCode(PredR);
1273     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1274     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1275   }
1276 
1277   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1278       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1279     if (LHS0->getType() != RHS0->getType())
1280       return nullptr;
1281 
1282     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1283     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1284     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1285       // Ignore the constants because they are obviously not NANs:
1286       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1287       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1288       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1289   }
1290 
1291   return nullptr;
1292 }
1293 
1294 /// This a limited reassociation for a special case (see above) where we are
1295 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1296 /// This could be handled more generally in '-reassociation', but it seems like
1297 /// an unlikely pattern for a large number of logic ops and fcmps.
1298 static Instruction *reassociateFCmps(BinaryOperator &BO,
1299                                      InstCombiner::BuilderTy &Builder) {
1300   Instruction::BinaryOps Opcode = BO.getOpcode();
1301   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1302          "Expecting and/or op for fcmp transform");
1303 
1304   // There are 4 commuted variants of the pattern. Canonicalize operands of this
1305   // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1306   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1307   FCmpInst::Predicate Pred;
1308   if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1309     std::swap(Op0, Op1);
1310 
1311   // Match inner binop and the predicate for combining 2 NAN checks into 1.
1312   BinaryOperator *BO1;
1313   FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1314                                                            : FCmpInst::FCMP_UNO;
1315   if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1316       !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
1317     return nullptr;
1318 
1319   // The inner logic op must have a matching fcmp operand.
1320   Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
1321   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1322       Pred != NanPred || X->getType() != Y->getType())
1323     std::swap(BO10, BO11);
1324 
1325   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1326       Pred != NanPred || X->getType() != Y->getType())
1327     return nullptr;
1328 
1329   // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1330   // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1331   Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1332   if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1333     // Intersect FMF from the 2 source fcmps.
1334     NewFCmpInst->copyIRFlags(Op0);
1335     NewFCmpInst->andIRFlags(BO10);
1336   }
1337   return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1338 }
1339 
1340 /// Match De Morgan's Laws:
1341 /// (~A & ~B) == (~(A | B))
1342 /// (~A | ~B) == (~(A & B))
1343 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1344                                        InstCombiner::BuilderTy &Builder) {
1345   auto Opcode = I.getOpcode();
1346   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1347          "Trying to match De Morgan's Laws with something other than and/or");
1348 
1349   // Flip the logic operation.
1350   Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1351 
1352   Value *A, *B;
1353   if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1354       match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1355       !IsFreeToInvert(A, A->hasOneUse()) &&
1356       !IsFreeToInvert(B, B->hasOneUse())) {
1357     Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1358     return BinaryOperator::CreateNot(AndOr);
1359   }
1360 
1361   return nullptr;
1362 }
1363 
1364 bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
1365   Value *CastSrc = CI->getOperand(0);
1366 
1367   // Noop casts and casts of constants should be eliminated trivially.
1368   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1369     return false;
1370 
1371   // If this cast is paired with another cast that can be eliminated, we prefer
1372   // to have it eliminated.
1373   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1374     if (isEliminableCastPair(PrecedingCI, CI))
1375       return false;
1376 
1377   return true;
1378 }
1379 
1380 /// Fold {and,or,xor} (cast X), C.
1381 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1382                                           InstCombiner::BuilderTy &Builder) {
1383   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1384   if (!C)
1385     return nullptr;
1386 
1387   auto LogicOpc = Logic.getOpcode();
1388   Type *DestTy = Logic.getType();
1389   Type *SrcTy = Cast->getSrcTy();
1390 
1391   // Move the logic operation ahead of a zext or sext if the constant is
1392   // unchanged in the smaller source type. Performing the logic in a smaller
1393   // type may provide more information to later folds, and the smaller logic
1394   // instruction may be cheaper (particularly in the case of vectors).
1395   Value *X;
1396   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1397     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1398     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1399     if (ZextTruncC == C) {
1400       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1401       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1402       return new ZExtInst(NewOp, DestTy);
1403     }
1404   }
1405 
1406   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1407     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1408     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1409     if (SextTruncC == C) {
1410       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1411       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1412       return new SExtInst(NewOp, DestTy);
1413     }
1414   }
1415 
1416   return nullptr;
1417 }
1418 
1419 /// Fold {and,or,xor} (cast X), Y.
1420 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
1421   auto LogicOpc = I.getOpcode();
1422   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1423 
1424   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1425   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1426   if (!Cast0)
1427     return nullptr;
1428 
1429   // This must be a cast from an integer or integer vector source type to allow
1430   // transformation of the logic operation to the source type.
1431   Type *DestTy = I.getType();
1432   Type *SrcTy = Cast0->getSrcTy();
1433   if (!SrcTy->isIntOrIntVectorTy())
1434     return nullptr;
1435 
1436   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1437     return Ret;
1438 
1439   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1440   if (!Cast1)
1441     return nullptr;
1442 
1443   // Both operands of the logic operation are casts. The casts must be of the
1444   // same type for reduction.
1445   auto CastOpcode = Cast0->getOpcode();
1446   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1447     return nullptr;
1448 
1449   Value *Cast0Src = Cast0->getOperand(0);
1450   Value *Cast1Src = Cast1->getOperand(0);
1451 
1452   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1453   if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1454     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1455                                         I.getName());
1456     return CastInst::Create(CastOpcode, NewOp, DestTy);
1457   }
1458 
1459   // For now, only 'and'/'or' have optimizations after this.
1460   if (LogicOpc == Instruction::Xor)
1461     return nullptr;
1462 
1463   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1464   // cast is otherwise not optimizable.  This happens for vector sexts.
1465   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1466   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1467   if (ICmp0 && ICmp1) {
1468     Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1469                                               : foldOrOfICmps(ICmp0, ICmp1, I);
1470     if (Res)
1471       return CastInst::Create(CastOpcode, Res, DestTy);
1472     return nullptr;
1473   }
1474 
1475   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1476   // cast is otherwise not optimizable.  This happens for vector sexts.
1477   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1478   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1479   if (FCmp0 && FCmp1)
1480     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1481       return CastInst::Create(CastOpcode, R, DestTy);
1482 
1483   return nullptr;
1484 }
1485 
1486 static Instruction *foldAndToXor(BinaryOperator &I,
1487                                  InstCombiner::BuilderTy &Builder) {
1488   assert(I.getOpcode() == Instruction::And);
1489   Value *Op0 = I.getOperand(0);
1490   Value *Op1 = I.getOperand(1);
1491   Value *A, *B;
1492 
1493   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1494   // (A | B) & ~(A & B) --> A ^ B
1495   // (A | B) & ~(B & A) --> A ^ B
1496   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1497                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1498     return BinaryOperator::CreateXor(A, B);
1499 
1500   // (A | ~B) & (~A | B) --> ~(A ^ B)
1501   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1502   // (~B | A) & (~A | B) --> ~(A ^ B)
1503   // (~B | A) & (B | ~A) --> ~(A ^ B)
1504   if (Op0->hasOneUse() || Op1->hasOneUse())
1505     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1506                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1507       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1508 
1509   return nullptr;
1510 }
1511 
1512 static Instruction *foldOrToXor(BinaryOperator &I,
1513                                 InstCombiner::BuilderTy &Builder) {
1514   assert(I.getOpcode() == Instruction::Or);
1515   Value *Op0 = I.getOperand(0);
1516   Value *Op1 = I.getOperand(1);
1517   Value *A, *B;
1518 
1519   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1520   // (A & B) | ~(A | B) --> ~(A ^ B)
1521   // (A & B) | ~(B | A) --> ~(A ^ B)
1522   if (Op0->hasOneUse() || Op1->hasOneUse())
1523     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1524         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1525       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1526 
1527   // (A & ~B) | (~A & B) --> A ^ B
1528   // (A & ~B) | (B & ~A) --> A ^ B
1529   // (~B & A) | (~A & B) --> A ^ B
1530   // (~B & A) | (B & ~A) --> A ^ B
1531   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1532       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1533     return BinaryOperator::CreateXor(A, B);
1534 
1535   return nullptr;
1536 }
1537 
1538 /// Return true if a constant shift amount is always less than the specified
1539 /// bit-width. If not, the shift could create poison in the narrower type.
1540 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1541   if (auto *ScalarC = dyn_cast<ConstantInt>(C))
1542     return ScalarC->getZExtValue() < BitWidth;
1543 
1544   if (C->getType()->isVectorTy()) {
1545     // Check each element of a constant vector.
1546     unsigned NumElts = C->getType()->getVectorNumElements();
1547     for (unsigned i = 0; i != NumElts; ++i) {
1548       Constant *Elt = C->getAggregateElement(i);
1549       if (!Elt)
1550         return false;
1551       if (isa<UndefValue>(Elt))
1552         continue;
1553       auto *CI = dyn_cast<ConstantInt>(Elt);
1554       if (!CI || CI->getZExtValue() >= BitWidth)
1555         return false;
1556     }
1557     return true;
1558   }
1559 
1560   // The constant is a constant expression or unknown.
1561   return false;
1562 }
1563 
1564 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1565 /// a common zext operand: and (binop (zext X), C), (zext X).
1566 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
1567   // This transform could also apply to {or, and, xor}, but there are better
1568   // folds for those cases, so we don't expect those patterns here. AShr is not
1569   // handled because it should always be transformed to LShr in this sequence.
1570   // The subtract transform is different because it has a constant on the left.
1571   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1572   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1573   Constant *C;
1574   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1575       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1576       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1577       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1578       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1579     return nullptr;
1580 
1581   Value *X;
1582   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1583     return nullptr;
1584 
1585   Type *Ty = And.getType();
1586   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1587     return nullptr;
1588 
1589   // If we're narrowing a shift, the shift amount must be safe (less than the
1590   // width) in the narrower type. If the shift amount is greater, instsimplify
1591   // usually handles that case, but we can't guarantee/assert it.
1592   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1593   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1594     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1595       return nullptr;
1596 
1597   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1598   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1599   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1600   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1601                                          : Builder.CreateBinOp(Opc, X, NewC);
1602   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1603 }
1604 
1605 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1606 // here. We should standardize that construct where it is needed or choose some
1607 // other way to ensure that commutated variants of patterns are not missed.
1608 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1609   if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1610                                  SQ.getWithInstruction(&I)))
1611     return replaceInstUsesWith(I, V);
1612 
1613   if (SimplifyAssociativeOrCommutative(I))
1614     return &I;
1615 
1616   if (Instruction *X = foldVectorBinop(I))
1617     return X;
1618 
1619   // See if we can simplify any instructions used by the instruction whose sole
1620   // purpose is to compute bits we don't care about.
1621   if (SimplifyDemandedInstructionBits(I))
1622     return &I;
1623 
1624   // Do this before using distributive laws to catch simple and/or/not patterns.
1625   if (Instruction *Xor = foldAndToXor(I, Builder))
1626     return Xor;
1627 
1628   // (A|B)&(A|C) -> A|(B&C) etc
1629   if (Value *V = SimplifyUsingDistributiveLaws(I))
1630     return replaceInstUsesWith(I, V);
1631 
1632   if (Value *V = SimplifyBSwap(I, Builder))
1633     return replaceInstUsesWith(I, V);
1634 
1635   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1636   const APInt *C;
1637   if (match(Op1, m_APInt(C))) {
1638     Value *X, *Y;
1639     if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1640         C->isOneValue()) {
1641       // (1 << X) & 1 --> zext(X == 0)
1642       // (1 >> X) & 1 --> zext(X == 0)
1643       Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
1644       return new ZExtInst(IsZero, I.getType());
1645     }
1646 
1647     const APInt *XorC;
1648     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1649       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1650       Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
1651       Value *And = Builder.CreateAnd(X, Op1);
1652       And->takeName(Op0);
1653       return BinaryOperator::CreateXor(And, NewC);
1654     }
1655 
1656     const APInt *OrC;
1657     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1658       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1659       // NOTE: This reduces the number of bits set in the & mask, which
1660       // can expose opportunities for store narrowing for scalars.
1661       // NOTE: SimplifyDemandedBits should have already removed bits from C1
1662       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1663       // above, but this feels safer.
1664       APInt Together = *C & *OrC;
1665       Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
1666                                                          Together ^ *C));
1667       And->takeName(Op0);
1668       return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
1669                                                             Together));
1670     }
1671 
1672     // If the mask is only needed on one incoming arm, push the 'and' op up.
1673     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1674         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1675       APInt NotAndMask(~(*C));
1676       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1677       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1678         // Not masking anything out for the LHS, move mask to RHS.
1679         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1680         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1681         return BinaryOperator::Create(BinOp, X, NewRHS);
1682       }
1683       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1684         // Not masking anything out for the RHS, move mask to LHS.
1685         // and ({x}or X, Y), C --> {x}or (and X, C), Y
1686         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1687         return BinaryOperator::Create(BinOp, NewLHS, Y);
1688       }
1689     }
1690 
1691   }
1692 
1693   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1694     const APInt &AndRHSMask = AndRHS->getValue();
1695 
1696     // Optimize a variety of ((val OP C1) & C2) combinations...
1697     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1698       // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1699       // of X and OP behaves well when given trunc(C1) and X.
1700       // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt.
1701       switch (Op0I->getOpcode()) {
1702       default:
1703         break;
1704       case Instruction::Xor:
1705       case Instruction::Or:
1706       case Instruction::Mul:
1707       case Instruction::Add:
1708       case Instruction::Sub:
1709         Value *X;
1710         ConstantInt *C1;
1711         // TODO: The one use restrictions could be relaxed a little if the AND
1712         // is going to be removed.
1713         if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
1714                                            m_ConstantInt(C1))))) {
1715           if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1716             auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1717             Value *BinOp;
1718             Value *Op0LHS = Op0I->getOperand(0);
1719             if (isa<ZExtInst>(Op0LHS))
1720               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1721             else
1722               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1723             auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1724             auto *And = Builder.CreateAnd(BinOp, TruncC2);
1725             return new ZExtInst(And, I.getType());
1726           }
1727         }
1728       }
1729 
1730       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1731         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1732           return Res;
1733     }
1734 
1735     // If this is an integer truncation, and if the source is an 'and' with
1736     // immediate, transform it.  This frequently occurs for bitfield accesses.
1737     {
1738       Value *X = nullptr; ConstantInt *YC = nullptr;
1739       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1740         // Change: and (trunc (and X, YC) to T), C2
1741         // into  : and (trunc X to T), trunc(YC) & C2
1742         // This will fold the two constants together, which may allow
1743         // other simplifications.
1744         Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
1745         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1746         C3 = ConstantExpr::getAnd(C3, AndRHS);
1747         return BinaryOperator::CreateAnd(NewCast, C3);
1748       }
1749     }
1750   }
1751 
1752   if (Instruction *Z = narrowMaskedBinOp(I))
1753     return Z;
1754 
1755   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1756     return FoldedLogic;
1757 
1758   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1759     return DeMorgan;
1760 
1761   {
1762     Value *A, *B, *C;
1763     // A & (A ^ B) --> A & ~B
1764     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1765       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1766     // (A ^ B) & A --> A & ~B
1767     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1768       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1769 
1770     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1771     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1772       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1773         if (Op1->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
1774           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1775 
1776     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1777     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1778       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1779         if (Op0->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
1780           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1781 
1782     // (A | B) & ((~A) ^ B) -> (A & B)
1783     // (A | B) & (B ^ (~A)) -> (A & B)
1784     // (B | A) & ((~A) ^ B) -> (A & B)
1785     // (B | A) & (B ^ (~A)) -> (A & B)
1786     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1787         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1788       return BinaryOperator::CreateAnd(A, B);
1789 
1790     // ((~A) ^ B) & (A | B) -> (A & B)
1791     // ((~A) ^ B) & (B | A) -> (A & B)
1792     // (B ^ (~A)) & (A | B) -> (A & B)
1793     // (B ^ (~A)) & (B | A) -> (A & B)
1794     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1795         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1796       return BinaryOperator::CreateAnd(A, B);
1797   }
1798 
1799   {
1800     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1801     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1802     if (LHS && RHS)
1803       if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1804         return replaceInstUsesWith(I, Res);
1805 
1806     // TODO: Make this recursive; it's a little tricky because an arbitrary
1807     // number of 'and' instructions might have to be created.
1808     Value *X, *Y;
1809     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1810       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1811         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1812           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1813       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1814         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1815           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1816     }
1817     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1818       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1819         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1820           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1821       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1822         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1823           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1824     }
1825   }
1826 
1827   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1828     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1829       if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
1830         return replaceInstUsesWith(I, Res);
1831 
1832   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
1833     return FoldedFCmps;
1834 
1835   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1836     return CastedAnd;
1837 
1838   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1839   Value *A;
1840   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
1841       A->getType()->isIntOrIntVectorTy(1))
1842     return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
1843   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
1844       A->getType()->isIntOrIntVectorTy(1))
1845     return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
1846 
1847   return nullptr;
1848 }
1849 
1850 Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) {
1851   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
1852   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
1853 
1854   // Look through zero extends.
1855   if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
1856     Op0 = Ext->getOperand(0);
1857 
1858   if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
1859     Op1 = Ext->getOperand(0);
1860 
1861   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1862   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
1863                  match(Op1, m_Or(m_Value(), m_Value()));
1864 
1865   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1866   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1867                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
1868 
1869   // (A & B) | (C & D)                              -> bswap if possible.
1870   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
1871                   match(Op1, m_And(m_Value(), m_Value()));
1872 
1873   // (A << B) | (C & D)                              -> bswap if possible.
1874   // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
1875   // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
1876   // C2 = 8 for i32).
1877   // This pattern can occur when the operands of the 'or' are not canonicalized
1878   // for some reason (not having only one use, for example).
1879   bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1880                        match(Op1, m_And(m_Value(), m_Value()))) ||
1881                       (match(Op0, m_And(m_Value(), m_Value())) &&
1882                        match(Op1, m_LogicalShift(m_Value(), m_Value())));
1883 
1884   if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
1885     return nullptr;
1886 
1887   SmallVector<Instruction*, 4> Insts;
1888   if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts))
1889     return nullptr;
1890   Instruction *LastInst = Insts.pop_back_val();
1891   LastInst->removeFromParent();
1892 
1893   for (auto *Inst : Insts)
1894     Worklist.Add(Inst);
1895   return LastInst;
1896 }
1897 
1898 /// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
1899 static Instruction *matchRotate(Instruction &Or) {
1900   // TODO: Can we reduce the code duplication between this and the related
1901   // rotate matching code under visitSelect and visitTrunc?
1902   unsigned Width = Or.getType()->getScalarSizeInBits();
1903   if (!isPowerOf2_32(Width))
1904     return nullptr;
1905 
1906   // First, find an or'd pair of opposite shifts with the same shifted operand:
1907   // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
1908   BinaryOperator *Or0, *Or1;
1909   if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
1910       !match(Or.getOperand(1), m_BinOp(Or1)))
1911     return nullptr;
1912 
1913   Value *ShVal, *ShAmt0, *ShAmt1;
1914   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
1915       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
1916     return nullptr;
1917 
1918   BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode();
1919   BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode();
1920   if (ShiftOpcode0 == ShiftOpcode1)
1921     return nullptr;
1922 
1923   // Match the shift amount operands for a rotate pattern. This always matches
1924   // a subtraction on the R operand.
1925   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
1926     // The shift amount may be masked with negation:
1927     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
1928     Value *X;
1929     unsigned Mask = Width - 1;
1930     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
1931         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
1932       return X;
1933 
1934     // Similar to above, but the shift amount may be extended after masking,
1935     // so return the extended value as the parameter for the intrinsic.
1936     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
1937         match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
1938                        m_SpecificInt(Mask))))
1939       return L;
1940 
1941     return nullptr;
1942   };
1943 
1944   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
1945   bool SubIsOnLHS = false;
1946   if (!ShAmt) {
1947     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
1948     SubIsOnLHS = true;
1949   }
1950   if (!ShAmt)
1951     return nullptr;
1952 
1953   bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
1954                 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
1955   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
1956   Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
1957   return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt });
1958 }
1959 
1960 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
1961 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
1962   unsigned NumElts = C1->getType()->getVectorNumElements();
1963   for (unsigned i = 0; i != NumElts; ++i) {
1964     Constant *EltC1 = C1->getAggregateElement(i);
1965     Constant *EltC2 = C2->getAggregateElement(i);
1966     if (!EltC1 || !EltC2)
1967       return false;
1968 
1969     // One element must be all ones, and the other must be all zeros.
1970     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
1971           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
1972       return false;
1973   }
1974   return true;
1975 }
1976 
1977 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
1978 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
1979 /// B, it can be used as the condition operand of a select instruction.
1980 Value *InstCombiner::getSelectCondition(Value *A, Value *B) {
1981   // Step 1: We may have peeked through bitcasts in the caller.
1982   // Exit immediately if we don't have (vector) integer types.
1983   Type *Ty = A->getType();
1984   if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
1985     return nullptr;
1986 
1987   // Step 2: We need 0 or all-1's bitmasks.
1988   if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
1989     return nullptr;
1990 
1991   // Step 3: If B is the 'not' value of A, we have our answer.
1992   if (match(A, m_Not(m_Specific(B)))) {
1993     // If these are scalars or vectors of i1, A can be used directly.
1994     if (Ty->isIntOrIntVectorTy(1))
1995       return A;
1996     return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
1997   }
1998 
1999   // If both operands are constants, see if the constants are inverse bitmasks.
2000   Constant *AConst, *BConst;
2001   if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2002     if (AConst == ConstantExpr::getNot(BConst))
2003       return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2004 
2005   // Look for more complex patterns. The 'not' op may be hidden behind various
2006   // casts. Look through sexts and bitcasts to find the booleans.
2007   Value *Cond;
2008   Value *NotB;
2009   if (match(A, m_SExt(m_Value(Cond))) &&
2010       Cond->getType()->isIntOrIntVectorTy(1) &&
2011       match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2012     NotB = peekThroughBitcast(NotB, true);
2013     if (match(NotB, m_SExt(m_Specific(Cond))))
2014       return Cond;
2015   }
2016 
2017   // All scalar (and most vector) possibilities should be handled now.
2018   // Try more matches that only apply to non-splat constant vectors.
2019   if (!Ty->isVectorTy())
2020     return nullptr;
2021 
2022   // If both operands are xor'd with constants using the same sexted boolean
2023   // operand, see if the constants are inverse bitmasks.
2024   // TODO: Use ConstantExpr::getNot()?
2025   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2026       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2027       Cond->getType()->isIntOrIntVectorTy(1) &&
2028       areInverseVectorBitmasks(AConst, BConst)) {
2029     AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2030     return Builder.CreateXor(Cond, AConst);
2031   }
2032   return nullptr;
2033 }
2034 
2035 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2036 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2037 Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2038                                           Value *D) {
2039   // The potential condition of the select may be bitcasted. In that case, look
2040   // through its bitcast and the corresponding bitcast of the 'not' condition.
2041   Type *OrigType = A->getType();
2042   A = peekThroughBitcast(A, true);
2043   B = peekThroughBitcast(B, true);
2044   if (Value *Cond = getSelectCondition(A, B)) {
2045     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2046     // The bitcasts will either all exist or all not exist. The builder will
2047     // not create unnecessary casts if the types already match.
2048     Value *BitcastC = Builder.CreateBitCast(C, A->getType());
2049     Value *BitcastD = Builder.CreateBitCast(D, A->getType());
2050     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2051     return Builder.CreateBitCast(Select, OrigType);
2052   }
2053 
2054   return nullptr;
2055 }
2056 
2057 /// Fold (icmp)|(icmp) if possible.
2058 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2059                                    Instruction &CxtI) {
2060   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
2061   // if K1 and K2 are a one-bit mask.
2062   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
2063     return V;
2064 
2065   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2066 
2067   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
2068   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
2069 
2070   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2071   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2072   // The original condition actually refers to the following two ranges:
2073   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2074   // We can fold these two ranges if:
2075   // 1) C1 and C2 is unsigned greater than C3.
2076   // 2) The two ranges are separated.
2077   // 3) C1 ^ C2 is one-bit mask.
2078   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2079   // This implies all values in the two ranges differ by exactly one bit.
2080 
2081   if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
2082       PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
2083       LHSC->getType() == RHSC->getType() &&
2084       LHSC->getValue() == (RHSC->getValue())) {
2085 
2086     Value *LAdd = LHS->getOperand(0);
2087     Value *RAdd = RHS->getOperand(0);
2088 
2089     Value *LAddOpnd, *RAddOpnd;
2090     ConstantInt *LAddC, *RAddC;
2091     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
2092         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
2093         LAddC->getValue().ugt(LHSC->getValue()) &&
2094         RAddC->getValue().ugt(LHSC->getValue())) {
2095 
2096       APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
2097       if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
2098         ConstantInt *MaxAddC = nullptr;
2099         if (LAddC->getValue().ult(RAddC->getValue()))
2100           MaxAddC = RAddC;
2101         else
2102           MaxAddC = LAddC;
2103 
2104         APInt RRangeLow = -RAddC->getValue();
2105         APInt RRangeHigh = RRangeLow + LHSC->getValue();
2106         APInt LRangeLow = -LAddC->getValue();
2107         APInt LRangeHigh = LRangeLow + LHSC->getValue();
2108         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
2109         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
2110         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
2111                                                    : RRangeLow - LRangeLow;
2112 
2113         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
2114             RangeDiff.ugt(LHSC->getValue())) {
2115           Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
2116 
2117           Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
2118           Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
2119           return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
2120         }
2121       }
2122     }
2123   }
2124 
2125   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2126   if (predicatesFoldable(PredL, PredR)) {
2127     if (LHS->getOperand(0) == RHS->getOperand(1) &&
2128         LHS->getOperand(1) == RHS->getOperand(0))
2129       LHS->swapOperands();
2130     if (LHS->getOperand(0) == RHS->getOperand(0) &&
2131         LHS->getOperand(1) == RHS->getOperand(1)) {
2132       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2133       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
2134       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2135       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2136     }
2137   }
2138 
2139   // handle (roughly):
2140   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2141   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
2142     return V;
2143 
2144   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2145   if (LHS->hasOneUse() || RHS->hasOneUse()) {
2146     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2147     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2148     Value *A = nullptr, *B = nullptr;
2149     if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
2150       B = LHS0;
2151       if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
2152         A = RHS0;
2153       else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2154         A = RHS->getOperand(1);
2155     }
2156     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2157     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2158     else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
2159       B = RHS0;
2160       if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
2161         A = LHS0;
2162       else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2163         A = LHS->getOperand(1);
2164     }
2165     if (A && B)
2166       return Builder.CreateICmp(
2167           ICmpInst::ICMP_UGE,
2168           Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
2169   }
2170 
2171   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2172   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
2173     return V;
2174 
2175   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2176   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
2177     return V;
2178 
2179   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
2180     return V;
2181 
2182   if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
2183     return V;
2184 
2185   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2186   if (!LHSC || !RHSC)
2187     return nullptr;
2188 
2189   if (LHSC == RHSC && PredL == PredR) {
2190     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2191     if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
2192       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2193       return Builder.CreateICmp(PredL, NewOr, LHSC);
2194     }
2195   }
2196 
2197   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2198   //   iff C2 + CA == C1.
2199   if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
2200     ConstantInt *AddC;
2201     if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
2202       if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
2203         return Builder.CreateICmpULE(LHS0, LHSC);
2204   }
2205 
2206   // From here on, we only handle:
2207   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2208   if (LHS0 != RHS0)
2209     return nullptr;
2210 
2211   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2212   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
2213       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
2214       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
2215       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
2216     return nullptr;
2217 
2218   // We can't fold (ugt x, C) | (sgt x, C2).
2219   if (!predicatesFoldable(PredL, PredR))
2220     return nullptr;
2221 
2222   // Ensure that the larger constant is on the RHS.
2223   bool ShouldSwap;
2224   if (CmpInst::isSigned(PredL) ||
2225       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
2226     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
2227   else
2228     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
2229 
2230   if (ShouldSwap) {
2231     std::swap(LHS, RHS);
2232     std::swap(LHSC, RHSC);
2233     std::swap(PredL, PredR);
2234   }
2235 
2236   // At this point, we know we have two icmp instructions
2237   // comparing a value against two constants and or'ing the result
2238   // together.  Because of the above check, we know that we only have
2239   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2240   // icmp folding check above), that the two constants are not
2241   // equal.
2242   assert(LHSC != RHSC && "Compares not folded above?");
2243 
2244   switch (PredL) {
2245   default:
2246     llvm_unreachable("Unknown integer condition code!");
2247   case ICmpInst::ICMP_EQ:
2248     switch (PredR) {
2249     default:
2250       llvm_unreachable("Unknown integer condition code!");
2251     case ICmpInst::ICMP_EQ:
2252       // Potential folds for this case should already be handled.
2253       break;
2254     case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
2255     case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
2256       break;
2257     }
2258     break;
2259   case ICmpInst::ICMP_ULT:
2260     switch (PredR) {
2261     default:
2262       llvm_unreachable("Unknown integer condition code!");
2263     case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
2264       break;
2265     case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
2266       assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
2267       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
2268                              false, false);
2269     }
2270     break;
2271   case ICmpInst::ICMP_SLT:
2272     switch (PredR) {
2273     default:
2274       llvm_unreachable("Unknown integer condition code!");
2275     case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
2276       break;
2277     case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
2278       assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
2279       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
2280                              false);
2281     }
2282     break;
2283   }
2284   return nullptr;
2285 }
2286 
2287 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2288 // here. We should standardize that construct where it is needed or choose some
2289 // other way to ensure that commutated variants of patterns are not missed.
2290 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2291   if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2292                                 SQ.getWithInstruction(&I)))
2293     return replaceInstUsesWith(I, V);
2294 
2295   if (SimplifyAssociativeOrCommutative(I))
2296     return &I;
2297 
2298   if (Instruction *X = foldVectorBinop(I))
2299     return X;
2300 
2301   // See if we can simplify any instructions used by the instruction whose sole
2302   // purpose is to compute bits we don't care about.
2303   if (SimplifyDemandedInstructionBits(I))
2304     return &I;
2305 
2306   // Do this before using distributive laws to catch simple and/or/not patterns.
2307   if (Instruction *Xor = foldOrToXor(I, Builder))
2308     return Xor;
2309 
2310   // (A&B)|(A&C) -> A&(B|C) etc
2311   if (Value *V = SimplifyUsingDistributiveLaws(I))
2312     return replaceInstUsesWith(I, V);
2313 
2314   if (Value *V = SimplifyBSwap(I, Builder))
2315     return replaceInstUsesWith(I, V);
2316 
2317   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2318     return FoldedLogic;
2319 
2320   if (Instruction *BSwap = matchBSwap(I))
2321     return BSwap;
2322 
2323   if (Instruction *Rotate = matchRotate(I))
2324     return Rotate;
2325 
2326   Value *X, *Y;
2327   const APInt *CV;
2328   if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2329       !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2330     // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2331     // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2332     Value *Or = Builder.CreateOr(X, Y);
2333     return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
2334   }
2335 
2336   // (A & C)|(B & D)
2337   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2338   Value *A, *B, *C, *D;
2339   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2340       match(Op1, m_And(m_Value(B), m_Value(D)))) {
2341     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
2342     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
2343     if (C1 && C2) {  // (A & C1)|(B & C2)
2344       Value *V1 = nullptr, *V2 = nullptr;
2345       if ((C1->getValue() & C2->getValue()).isNullValue()) {
2346         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2347         // iff (C1&C2) == 0 and (N&~C1) == 0
2348         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2349             ((V1 == B &&
2350               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2351              (V2 == B &&
2352               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2353           return BinaryOperator::CreateAnd(A,
2354                                 Builder.getInt(C1->getValue()|C2->getValue()));
2355         // Or commutes, try both ways.
2356         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2357             ((V1 == A &&
2358               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2359              (V2 == A &&
2360               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2361           return BinaryOperator::CreateAnd(B,
2362                                  Builder.getInt(C1->getValue()|C2->getValue()));
2363 
2364         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2365         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2366         ConstantInt *C3 = nullptr, *C4 = nullptr;
2367         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2368             (C3->getValue() & ~C1->getValue()).isNullValue() &&
2369             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2370             (C4->getValue() & ~C2->getValue()).isNullValue()) {
2371           V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2372           return BinaryOperator::CreateAnd(V2,
2373                                  Builder.getInt(C1->getValue()|C2->getValue()));
2374         }
2375       }
2376 
2377       if (C1->getValue() == ~C2->getValue()) {
2378         Value *X;
2379 
2380         // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2381         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2382           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2383         // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2384         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2385           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2386 
2387         // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2388         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2389           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2390         // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2391         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2392           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2393       }
2394     }
2395 
2396     // Don't try to form a select if it's unlikely that we'll get rid of at
2397     // least one of the operands. A select is generally more expensive than the
2398     // 'or' that it is replacing.
2399     if (Op0->hasOneUse() || Op1->hasOneUse()) {
2400       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2401       if (Value *V = matchSelectFromAndOr(A, C, B, D))
2402         return replaceInstUsesWith(I, V);
2403       if (Value *V = matchSelectFromAndOr(A, C, D, B))
2404         return replaceInstUsesWith(I, V);
2405       if (Value *V = matchSelectFromAndOr(C, A, B, D))
2406         return replaceInstUsesWith(I, V);
2407       if (Value *V = matchSelectFromAndOr(C, A, D, B))
2408         return replaceInstUsesWith(I, V);
2409       if (Value *V = matchSelectFromAndOr(B, D, A, C))
2410         return replaceInstUsesWith(I, V);
2411       if (Value *V = matchSelectFromAndOr(B, D, C, A))
2412         return replaceInstUsesWith(I, V);
2413       if (Value *V = matchSelectFromAndOr(D, B, A, C))
2414         return replaceInstUsesWith(I, V);
2415       if (Value *V = matchSelectFromAndOr(D, B, C, A))
2416         return replaceInstUsesWith(I, V);
2417     }
2418   }
2419 
2420   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2421   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2422     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2423       return BinaryOperator::CreateOr(Op0, C);
2424 
2425   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2426   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2427     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2428       return BinaryOperator::CreateOr(Op1, C);
2429 
2430   // ((B | C) & A) | B -> B | (A & C)
2431   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2432     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2433 
2434   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2435     return DeMorgan;
2436 
2437   // Canonicalize xor to the RHS.
2438   bool SwappedForXor = false;
2439   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2440     std::swap(Op0, Op1);
2441     SwappedForXor = true;
2442   }
2443 
2444   // A | ( A ^ B) -> A |  B
2445   // A | (~A ^ B) -> A | ~B
2446   // (A & B) | (A ^ B)
2447   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2448     if (Op0 == A || Op0 == B)
2449       return BinaryOperator::CreateOr(A, B);
2450 
2451     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2452         match(Op0, m_And(m_Specific(B), m_Specific(A))))
2453       return BinaryOperator::CreateOr(A, B);
2454 
2455     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2456       Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2457       return BinaryOperator::CreateOr(Not, Op0);
2458     }
2459     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2460       Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2461       return BinaryOperator::CreateOr(Not, Op0);
2462     }
2463   }
2464 
2465   // A | ~(A | B) -> A | ~B
2466   // A | ~(A ^ B) -> A | ~B
2467   if (match(Op1, m_Not(m_Value(A))))
2468     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2469       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2470           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2471                                B->getOpcode() == Instruction::Xor)) {
2472         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2473                                                  B->getOperand(0);
2474         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2475         return BinaryOperator::CreateOr(Not, Op0);
2476       }
2477 
2478   if (SwappedForXor)
2479     std::swap(Op0, Op1);
2480 
2481   {
2482     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2483     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2484     if (LHS && RHS)
2485       if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2486         return replaceInstUsesWith(I, Res);
2487 
2488     // TODO: Make this recursive; it's a little tricky because an arbitrary
2489     // number of 'or' instructions might have to be created.
2490     Value *X, *Y;
2491     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2492       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2493         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2494           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2495       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2496         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2497           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2498     }
2499     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2500       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2501         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2502           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2503       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2504         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2505           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2506     }
2507   }
2508 
2509   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2510     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2511       if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2512         return replaceInstUsesWith(I, Res);
2513 
2514   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2515     return FoldedFCmps;
2516 
2517   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2518     return CastedOr;
2519 
2520   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2521   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2522       A->getType()->isIntOrIntVectorTy(1))
2523     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2524   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2525       A->getType()->isIntOrIntVectorTy(1))
2526     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2527 
2528   // Note: If we've gotten to the point of visiting the outer OR, then the
2529   // inner one couldn't be simplified.  If it was a constant, then it won't
2530   // be simplified by a later pass either, so we try swapping the inner/outer
2531   // ORs in the hopes that we'll be able to simplify it this way.
2532   // (X|C) | V --> (X|V) | C
2533   ConstantInt *CI;
2534   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2535       match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
2536     Value *Inner = Builder.CreateOr(A, Op1);
2537     Inner->takeName(Op0);
2538     return BinaryOperator::CreateOr(Inner, CI);
2539   }
2540 
2541   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2542   // Since this OR statement hasn't been optimized further yet, we hope
2543   // that this transformation will allow the new ORs to be optimized.
2544   {
2545     Value *X = nullptr, *Y = nullptr;
2546     if (Op0->hasOneUse() && Op1->hasOneUse() &&
2547         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2548         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2549       Value *orTrue = Builder.CreateOr(A, C);
2550       Value *orFalse = Builder.CreateOr(B, D);
2551       return SelectInst::Create(X, orTrue, orFalse);
2552     }
2553   }
2554 
2555   return nullptr;
2556 }
2557 
2558 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2559 /// can fold these early and efficiently by morphing an existing instruction.
2560 static Instruction *foldXorToXor(BinaryOperator &I,
2561                                  InstCombiner::BuilderTy &Builder) {
2562   assert(I.getOpcode() == Instruction::Xor);
2563   Value *Op0 = I.getOperand(0);
2564   Value *Op1 = I.getOperand(1);
2565   Value *A, *B;
2566 
2567   // There are 4 commuted variants for each of the basic patterns.
2568 
2569   // (A & B) ^ (A | B) -> A ^ B
2570   // (A & B) ^ (B | A) -> A ^ B
2571   // (A | B) ^ (A & B) -> A ^ B
2572   // (A | B) ^ (B & A) -> A ^ B
2573   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2574                         m_c_Or(m_Deferred(A), m_Deferred(B))))) {
2575     I.setOperand(0, A);
2576     I.setOperand(1, B);
2577     return &I;
2578   }
2579 
2580   // (A | ~B) ^ (~A | B) -> A ^ B
2581   // (~B | A) ^ (~A | B) -> A ^ B
2582   // (~A | B) ^ (A | ~B) -> A ^ B
2583   // (B | ~A) ^ (A | ~B) -> A ^ B
2584   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2585                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2586     I.setOperand(0, A);
2587     I.setOperand(1, B);
2588     return &I;
2589   }
2590 
2591   // (A & ~B) ^ (~A & B) -> A ^ B
2592   // (~B & A) ^ (~A & B) -> A ^ B
2593   // (~A & B) ^ (A & ~B) -> A ^ B
2594   // (B & ~A) ^ (A & ~B) -> A ^ B
2595   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2596                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2597     I.setOperand(0, A);
2598     I.setOperand(1, B);
2599     return &I;
2600   }
2601 
2602   // For the remaining cases we need to get rid of one of the operands.
2603   if (!Op0->hasOneUse() && !Op1->hasOneUse())
2604     return nullptr;
2605 
2606   // (A | B) ^ ~(A & B) -> ~(A ^ B)
2607   // (A | B) ^ ~(B & A) -> ~(A ^ B)
2608   // (A & B) ^ ~(A | B) -> ~(A ^ B)
2609   // (A & B) ^ ~(B | A) -> ~(A ^ B)
2610   // Complexity sorting ensures the not will be on the right side.
2611   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2612        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2613       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2614        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2615     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2616 
2617   return nullptr;
2618 }
2619 
2620 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
2621   if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2622     if (LHS->getOperand(0) == RHS->getOperand(1) &&
2623         LHS->getOperand(1) == RHS->getOperand(0))
2624       LHS->swapOperands();
2625     if (LHS->getOperand(0) == RHS->getOperand(0) &&
2626         LHS->getOperand(1) == RHS->getOperand(1)) {
2627       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2628       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2629       unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2630       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2631       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2632     }
2633   }
2634 
2635   // TODO: This can be generalized to compares of non-signbits using
2636   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2637   // foldLogOpOfMaskedICmps().
2638   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2639   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2640   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2641   if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2642       LHS0->getType() == RHS0->getType() &&
2643       LHS0->getType()->isIntOrIntVectorTy()) {
2644     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2645     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
2646     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2647          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2648         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2649          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2650       Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2651       return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2652     }
2653     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
2654     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
2655     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2656          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2657         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2658          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2659       Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2660       return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2661     }
2662   }
2663 
2664   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2665   // into those logic ops. That is, try to turn this into an and-of-icmps
2666   // because we have many folds for that pattern.
2667   //
2668   // This is based on a truth table definition of xor:
2669   // X ^ Y --> (X | Y) & !(X & Y)
2670   if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2671     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2672     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2673     if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2674       // TODO: Independently handle cases where the 'and' side is a constant.
2675       if (OrICmp == LHS && AndICmp == RHS && RHS->hasOneUse()) {
2676         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS
2677         RHS->setPredicate(RHS->getInversePredicate());
2678         return Builder.CreateAnd(LHS, RHS);
2679       }
2680       if (OrICmp == RHS && AndICmp == LHS && LHS->hasOneUse()) {
2681         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS
2682         LHS->setPredicate(LHS->getInversePredicate());
2683         return Builder.CreateAnd(LHS, RHS);
2684       }
2685     }
2686   }
2687 
2688   return nullptr;
2689 }
2690 
2691 /// If we have a masked merge, in the canonical form of:
2692 /// (assuming that A only has one use.)
2693 ///   |        A  |  |B|
2694 ///   ((x ^ y) & M) ^ y
2695 ///    |  D  |
2696 /// * If M is inverted:
2697 ///      |  D  |
2698 ///     ((x ^ y) & ~M) ^ y
2699 ///   We can canonicalize by swapping the final xor operand
2700 ///   to eliminate the 'not' of the mask.
2701 ///     ((x ^ y) & M) ^ x
2702 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
2703 ///   because that shortens the dependency chain and improves analysis:
2704 ///     (x & M) | (y & ~M)
2705 static Instruction *visitMaskedMerge(BinaryOperator &I,
2706                                      InstCombiner::BuilderTy &Builder) {
2707   Value *B, *X, *D;
2708   Value *M;
2709   if (!match(&I, m_c_Xor(m_Value(B),
2710                          m_OneUse(m_c_And(
2711                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
2712                                           m_Value(D)),
2713                              m_Value(M))))))
2714     return nullptr;
2715 
2716   Value *NotM;
2717   if (match(M, m_Not(m_Value(NotM)))) {
2718     // De-invert the mask and swap the value in B part.
2719     Value *NewA = Builder.CreateAnd(D, NotM);
2720     return BinaryOperator::CreateXor(NewA, X);
2721   }
2722 
2723   Constant *C;
2724   if (D->hasOneUse() && match(M, m_Constant(C))) {
2725     // Unfold.
2726     Value *LHS = Builder.CreateAnd(X, C);
2727     Value *NotC = Builder.CreateNot(C);
2728     Value *RHS = Builder.CreateAnd(B, NotC);
2729     return BinaryOperator::CreateOr(LHS, RHS);
2730   }
2731 
2732   return nullptr;
2733 }
2734 
2735 // Transform
2736 //   ~(x ^ y)
2737 // into:
2738 //   (~x) ^ y
2739 // or into
2740 //   x ^ (~y)
2741 static Instruction *sinkNotIntoXor(BinaryOperator &I,
2742                                    InstCombiner::BuilderTy &Builder) {
2743   Value *X, *Y;
2744   // FIXME: one-use check is not needed in general, but currently we are unable
2745   // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
2746   if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
2747     return nullptr;
2748 
2749   // We only want to do the transform if it is free to do.
2750   if (IsFreeToInvert(X, X->hasOneUse())) {
2751     // Ok, good.
2752   } else if (IsFreeToInvert(Y, Y->hasOneUse())) {
2753     std::swap(X, Y);
2754   } else
2755     return nullptr;
2756 
2757   Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
2758   return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
2759 }
2760 
2761 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2762 // here. We should standardize that construct where it is needed or choose some
2763 // other way to ensure that commutated variants of patterns are not missed.
2764 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2765   if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
2766                                  SQ.getWithInstruction(&I)))
2767     return replaceInstUsesWith(I, V);
2768 
2769   if (SimplifyAssociativeOrCommutative(I))
2770     return &I;
2771 
2772   if (Instruction *X = foldVectorBinop(I))
2773     return X;
2774 
2775   if (Instruction *NewXor = foldXorToXor(I, Builder))
2776     return NewXor;
2777 
2778   // (A&B)^(A&C) -> A&(B^C) etc
2779   if (Value *V = SimplifyUsingDistributiveLaws(I))
2780     return replaceInstUsesWith(I, V);
2781 
2782   // See if we can simplify any instructions used by the instruction whose sole
2783   // purpose is to compute bits we don't care about.
2784   if (SimplifyDemandedInstructionBits(I))
2785     return &I;
2786 
2787   if (Value *V = SimplifyBSwap(I, Builder))
2788     return replaceInstUsesWith(I, V);
2789 
2790   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2791 
2792   // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
2793   // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
2794   // calls in there are unnecessary as SimplifyDemandedInstructionBits should
2795   // have already taken care of those cases.
2796   Value *M;
2797   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
2798                         m_c_And(m_Deferred(M), m_Value()))))
2799     return BinaryOperator::CreateOr(Op0, Op1);
2800 
2801   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
2802   Value *X, *Y;
2803 
2804   // We must eliminate the and/or (one-use) for these transforms to not increase
2805   // the instruction count.
2806   // ~(~X & Y) --> (X | ~Y)
2807   // ~(Y & ~X) --> (X | ~Y)
2808   if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
2809     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2810     return BinaryOperator::CreateOr(X, NotY);
2811   }
2812   // ~(~X | Y) --> (X & ~Y)
2813   // ~(Y | ~X) --> (X & ~Y)
2814   if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
2815     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2816     return BinaryOperator::CreateAnd(X, NotY);
2817   }
2818 
2819   if (Instruction *Xor = visitMaskedMerge(I, Builder))
2820     return Xor;
2821 
2822   // Is this a 'not' (~) fed by a binary operator?
2823   BinaryOperator *NotVal;
2824   if (match(&I, m_Not(m_BinOp(NotVal)))) {
2825     if (NotVal->getOpcode() == Instruction::And ||
2826         NotVal->getOpcode() == Instruction::Or) {
2827       // Apply DeMorgan's Law when inverts are free:
2828       // ~(X & Y) --> (~X | ~Y)
2829       // ~(X | Y) --> (~X & ~Y)
2830       if (IsFreeToInvert(NotVal->getOperand(0),
2831                          NotVal->getOperand(0)->hasOneUse()) &&
2832           IsFreeToInvert(NotVal->getOperand(1),
2833                          NotVal->getOperand(1)->hasOneUse())) {
2834         Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
2835         Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
2836         if (NotVal->getOpcode() == Instruction::And)
2837           return BinaryOperator::CreateOr(NotX, NotY);
2838         return BinaryOperator::CreateAnd(NotX, NotY);
2839       }
2840     }
2841 
2842     // ~(X - Y) --> ~X + Y
2843     if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
2844       if (isa<Constant>(X) || NotVal->hasOneUse())
2845         return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
2846 
2847     // ~(~X >>s Y) --> (X >>s Y)
2848     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
2849       return BinaryOperator::CreateAShr(X, Y);
2850 
2851     // If we are inverting a right-shifted constant, we may be able to eliminate
2852     // the 'not' by inverting the constant and using the opposite shift type.
2853     // Canonicalization rules ensure that only a negative constant uses 'ashr',
2854     // but we must check that in case that transform has not fired yet.
2855 
2856     // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
2857     Constant *C;
2858     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
2859         match(C, m_Negative()))
2860       return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
2861 
2862     // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
2863     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
2864         match(C, m_NonNegative()))
2865       return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
2866 
2867     // ~(X + C) --> -(C + 1) - X
2868     if (match(Op0, m_Add(m_Value(X), m_Constant(C))))
2869       return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X);
2870   }
2871 
2872   // Use DeMorgan and reassociation to eliminate a 'not' op.
2873   Constant *C1;
2874   if (match(Op1, m_Constant(C1))) {
2875     Constant *C2;
2876     if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
2877       // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
2878       Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
2879       return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
2880     }
2881     if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
2882       // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
2883       Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
2884       return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
2885     }
2886   }
2887 
2888   // not (cmp A, B) = !cmp A, B
2889   CmpInst::Predicate Pred;
2890   if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
2891     cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
2892     return replaceInstUsesWith(I, Op0);
2893   }
2894 
2895   {
2896     const APInt *RHSC;
2897     if (match(Op1, m_APInt(RHSC))) {
2898       Value *X;
2899       const APInt *C;
2900       if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
2901         // (C - X) ^ signmask -> (C + signmask - X)
2902         Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
2903         return BinaryOperator::CreateSub(NewC, X);
2904       }
2905       if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
2906         // (X + C) ^ signmask -> (X + C + signmask)
2907         Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
2908         return BinaryOperator::CreateAdd(X, NewC);
2909       }
2910 
2911       // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
2912       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
2913           MaskedValueIsZero(X, *C, 0, &I)) {
2914         Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
2915         Worklist.Add(cast<Instruction>(Op0));
2916         I.setOperand(0, X);
2917         I.setOperand(1, NewC);
2918         return &I;
2919       }
2920     }
2921   }
2922 
2923   if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
2924     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2925       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2926         if (Op0I->getOpcode() == Instruction::LShr) {
2927           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2928           // E1 = "X ^ C1"
2929           BinaryOperator *E1;
2930           ConstantInt *C1;
2931           if (Op0I->hasOneUse() &&
2932               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2933               E1->getOpcode() == Instruction::Xor &&
2934               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2935             // fold (C1 >> C2) ^ C3
2936             ConstantInt *C2 = Op0CI, *C3 = RHSC;
2937             APInt FoldConst = C1->getValue().lshr(C2->getValue());
2938             FoldConst ^= C3->getValue();
2939             // Prepare the two operands.
2940             Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
2941             Opnd0->takeName(Op0I);
2942             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2943             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2944 
2945             return BinaryOperator::CreateXor(Opnd0, FoldVal);
2946           }
2947         }
2948       }
2949     }
2950   }
2951 
2952   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2953     return FoldedLogic;
2954 
2955   // Y ^ (X | Y) --> X & ~Y
2956   // Y ^ (Y | X) --> X & ~Y
2957   if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
2958     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
2959   // (X | Y) ^ Y --> X & ~Y
2960   // (Y | X) ^ Y --> X & ~Y
2961   if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
2962     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
2963 
2964   // Y ^ (X & Y) --> ~X & Y
2965   // Y ^ (Y & X) --> ~X & Y
2966   if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
2967     return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
2968   // (X & Y) ^ Y --> ~X & Y
2969   // (Y & X) ^ Y --> ~X & Y
2970   // Canonical form is (X & C) ^ C; don't touch that.
2971   // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
2972   //       be fixed to prefer that (otherwise we get infinite looping).
2973   if (!match(Op1, m_Constant()) &&
2974       match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
2975     return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
2976 
2977   Value *A, *B, *C;
2978   // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
2979   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
2980                         m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
2981       return BinaryOperator::CreateXor(
2982           Builder.CreateAnd(Builder.CreateNot(A), C), B);
2983 
2984   // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
2985   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
2986                         m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
2987       return BinaryOperator::CreateXor(
2988           Builder.CreateAnd(Builder.CreateNot(B), C), A);
2989 
2990   // (A & B) ^ (A ^ B) -> (A | B)
2991   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2992       match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2993     return BinaryOperator::CreateOr(A, B);
2994   // (A ^ B) ^ (A & B) -> (A | B)
2995   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2996       match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2997     return BinaryOperator::CreateOr(A, B);
2998 
2999   // (A & ~B) ^ ~A -> ~(A & B)
3000   // (~B & A) ^ ~A -> ~(A & B)
3001   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3002       match(Op1, m_Not(m_Specific(A))))
3003     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3004 
3005   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3006     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3007       if (Value *V = foldXorOfICmps(LHS, RHS))
3008         return replaceInstUsesWith(I, V);
3009 
3010   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3011     return CastedXor;
3012 
3013   // Canonicalize a shifty way to code absolute value to the common pattern.
3014   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3015   // We're relying on the fact that we only do this transform when the shift has
3016   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3017   // instructions).
3018   if (Op0->hasNUses(2))
3019     std::swap(Op0, Op1);
3020 
3021   const APInt *ShAmt;
3022   Type *Ty = I.getType();
3023   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3024       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3025       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3026     // B = ashr i32 A, 31 ; smear the sign bit
3027     // xor (add A, B), B  ; add -1 and flip bits if negative
3028     // --> (A < 0) ? -A : A
3029     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
3030     // Copy the nuw/nsw flags from the add to the negate.
3031     auto *Add = cast<BinaryOperator>(Op0);
3032     Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3033                                    Add->hasNoSignedWrap());
3034     return SelectInst::Create(Cmp, Neg, A);
3035   }
3036 
3037   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3038   //
3039   //   %notx = xor i32 %x, -1
3040   //   %cmp1 = icmp sgt i32 %notx, %y
3041   //   %smax = select i1 %cmp1, i32 %notx, i32 %y
3042   //   %res = xor i32 %smax, -1
3043   // =>
3044   //   %noty = xor i32 %y, -1
3045   //   %cmp2 = icmp slt %x, %noty
3046   //   %res = select i1 %cmp2, i32 %x, i32 %noty
3047   //
3048   // Same is applicable for smin/umax/umin.
3049   if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
3050     Value *LHS, *RHS;
3051     SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
3052     if (SelectPatternResult::isMinOrMax(SPF)) {
3053       // It's possible we get here before the not has been simplified, so make
3054       // sure the input to the not isn't freely invertible.
3055       if (match(LHS, m_Not(m_Value(X))) && !IsFreeToInvert(X, X->hasOneUse())) {
3056         Value *NotY = Builder.CreateNot(RHS);
3057         return SelectInst::Create(
3058             Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
3059       }
3060 
3061       // It's possible we get here before the not has been simplified, so make
3062       // sure the input to the not isn't freely invertible.
3063       if (match(RHS, m_Not(m_Value(Y))) && !IsFreeToInvert(Y, Y->hasOneUse())) {
3064         Value *NotX = Builder.CreateNot(LHS);
3065         return SelectInst::Create(
3066             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
3067       }
3068 
3069       // If both sides are freely invertible, then we can get rid of the xor
3070       // completely.
3071       if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
3072           IsFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
3073         Value *NotLHS = Builder.CreateNot(LHS);
3074         Value *NotRHS = Builder.CreateNot(RHS);
3075         return SelectInst::Create(
3076             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
3077             NotLHS, NotRHS);
3078       }
3079     }
3080   }
3081 
3082   if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3083     return NewXor;
3084 
3085   return nullptr;
3086 }
3087