10b57cec5SDimitry Andric //===- InstCombinePHI.cpp -------------------------------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements the visitPHINode function.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "InstCombineInternal.h"
140b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
150b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
16e8d8bef9SDimitry Andric #include "llvm/ADT/Statistic.h"
170b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
180b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
190b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h"
20480093f4SDimitry Andric #include "llvm/Support/CommandLine.h"
21e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h"
22480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
23bdd1243dSDimitry Andric #include <optional>
24e8d8bef9SDimitry Andric 
250b57cec5SDimitry Andric using namespace llvm;
260b57cec5SDimitry Andric using namespace llvm::PatternMatch;
270b57cec5SDimitry Andric 
280b57cec5SDimitry Andric #define DEBUG_TYPE "instcombine"
290b57cec5SDimitry Andric 
300b57cec5SDimitry Andric static cl::opt<unsigned>
310b57cec5SDimitry Andric MaxNumPhis("instcombine-max-num-phis", cl::init(512),
320b57cec5SDimitry Andric            cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
330b57cec5SDimitry Andric 
34e8d8bef9SDimitry Andric STATISTIC(NumPHIsOfInsertValues,
35e8d8bef9SDimitry Andric           "Number of phi-of-insertvalue turned into insertvalue-of-phis");
36e8d8bef9SDimitry Andric STATISTIC(NumPHIsOfExtractValues,
37e8d8bef9SDimitry Andric           "Number of phi-of-extractvalue turned into extractvalue-of-phi");
38e8d8bef9SDimitry Andric STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
39e8d8bef9SDimitry Andric 
400b57cec5SDimitry Andric /// The PHI arguments will be folded into a single operation with a PHI node
410b57cec5SDimitry Andric /// as input. The debug location of the single operation will be the merged
420b57cec5SDimitry Andric /// locations of the original PHI node arguments.
PHIArgMergedDebugLoc(Instruction * Inst,PHINode & PN)43e8d8bef9SDimitry Andric void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
440b57cec5SDimitry Andric   auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
450b57cec5SDimitry Andric   Inst->setDebugLoc(FirstInst->getDebugLoc());
460b57cec5SDimitry Andric   // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
470b57cec5SDimitry Andric   // will be inefficient.
480b57cec5SDimitry Andric   assert(!isa<CallInst>(Inst));
490b57cec5SDimitry Andric 
501fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values())) {
511fd87a68SDimitry Andric     auto *I = cast<Instruction>(V);
520b57cec5SDimitry Andric     Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
530b57cec5SDimitry Andric   }
540b57cec5SDimitry Andric }
550b57cec5SDimitry Andric 
560b57cec5SDimitry Andric // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
570b57cec5SDimitry Andric // If there is an existing pointer typed PHI that produces the same value as PN,
580b57cec5SDimitry Andric // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
590b57cec5SDimitry Andric // PHI node:
600b57cec5SDimitry Andric //
610b57cec5SDimitry Andric // Case-1:
620b57cec5SDimitry Andric // bb1:
630b57cec5SDimitry Andric //     int_init = PtrToInt(ptr_init)
640b57cec5SDimitry Andric //     br label %bb2
650b57cec5SDimitry Andric // bb2:
660b57cec5SDimitry Andric //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
670b57cec5SDimitry Andric //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
680b57cec5SDimitry Andric //    ptr_val2 = IntToPtr(int_val)
690b57cec5SDimitry Andric //    ...
700b57cec5SDimitry Andric //    use(ptr_val2)
710b57cec5SDimitry Andric //    ptr_val_inc = ...
720b57cec5SDimitry Andric //    inc_val_inc = PtrToInt(ptr_val_inc)
730b57cec5SDimitry Andric //
740b57cec5SDimitry Andric // ==>
750b57cec5SDimitry Andric // bb1:
760b57cec5SDimitry Andric //     br label %bb2
770b57cec5SDimitry Andric // bb2:
780b57cec5SDimitry Andric //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
790b57cec5SDimitry Andric //    ...
800b57cec5SDimitry Andric //    use(ptr_val)
810b57cec5SDimitry Andric //    ptr_val_inc = ...
820b57cec5SDimitry Andric //
830b57cec5SDimitry Andric // Case-2:
840b57cec5SDimitry Andric // bb1:
850b57cec5SDimitry Andric //    int_ptr = BitCast(ptr_ptr)
860b57cec5SDimitry Andric //    int_init = Load(int_ptr)
870b57cec5SDimitry Andric //    br label %bb2
880b57cec5SDimitry Andric // bb2:
890b57cec5SDimitry Andric //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
900b57cec5SDimitry Andric //    ptr_val2 = IntToPtr(int_val)
910b57cec5SDimitry Andric //    ...
920b57cec5SDimitry Andric //    use(ptr_val2)
930b57cec5SDimitry Andric //    ptr_val_inc = ...
940b57cec5SDimitry Andric //    inc_val_inc = PtrToInt(ptr_val_inc)
950b57cec5SDimitry Andric // ==>
960b57cec5SDimitry Andric // bb1:
970b57cec5SDimitry Andric //    ptr_init = Load(ptr_ptr)
980b57cec5SDimitry Andric //    br label %bb2
990b57cec5SDimitry Andric // bb2:
1000b57cec5SDimitry Andric //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
1010b57cec5SDimitry Andric //    ...
1020b57cec5SDimitry Andric //    use(ptr_val)
1030b57cec5SDimitry Andric //    ptr_val_inc = ...
1040b57cec5SDimitry Andric //    ...
1050b57cec5SDimitry Andric //
foldIntegerTypedPHI(PHINode & PN)106bdd1243dSDimitry Andric bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
1070b57cec5SDimitry Andric   if (!PN.getType()->isIntegerTy())
108bdd1243dSDimitry Andric     return false;
1090b57cec5SDimitry Andric   if (!PN.hasOneUse())
110bdd1243dSDimitry Andric     return false;
1110b57cec5SDimitry Andric 
1120b57cec5SDimitry Andric   auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
1130b57cec5SDimitry Andric   if (!IntToPtr)
114bdd1243dSDimitry Andric     return false;
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric   // Check if the pointer is actually used as pointer:
1170b57cec5SDimitry Andric   auto HasPointerUse = [](Instruction *IIP) {
1180b57cec5SDimitry Andric     for (User *U : IIP->users()) {
1190b57cec5SDimitry Andric       Value *Ptr = nullptr;
1200b57cec5SDimitry Andric       if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
1210b57cec5SDimitry Andric         Ptr = LoadI->getPointerOperand();
1220b57cec5SDimitry Andric       } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1230b57cec5SDimitry Andric         Ptr = SI->getPointerOperand();
1240b57cec5SDimitry Andric       } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
1250b57cec5SDimitry Andric         Ptr = GI->getPointerOperand();
1260b57cec5SDimitry Andric       }
1270b57cec5SDimitry Andric 
1280b57cec5SDimitry Andric       if (Ptr && Ptr == IIP)
1290b57cec5SDimitry Andric         return true;
1300b57cec5SDimitry Andric     }
1310b57cec5SDimitry Andric     return false;
1320b57cec5SDimitry Andric   };
1330b57cec5SDimitry Andric 
1340b57cec5SDimitry Andric   if (!HasPointerUse(IntToPtr))
135bdd1243dSDimitry Andric     return false;
1360b57cec5SDimitry Andric 
1370b57cec5SDimitry Andric   if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
1380b57cec5SDimitry Andric       DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
139bdd1243dSDimitry Andric     return false;
1400b57cec5SDimitry Andric 
1410b57cec5SDimitry Andric   SmallVector<Value *, 4> AvailablePtrVals;
1421fd87a68SDimitry Andric   for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
1431fd87a68SDimitry Andric     BasicBlock *BB = std::get<0>(Incoming);
1441fd87a68SDimitry Andric     Value *Arg = std::get<1>(Incoming);
1450b57cec5SDimitry Andric 
1460b57cec5SDimitry Andric     // First look backward:
1470b57cec5SDimitry Andric     if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
1480b57cec5SDimitry Andric       AvailablePtrVals.emplace_back(PI->getOperand(0));
1490b57cec5SDimitry Andric       continue;
1500b57cec5SDimitry Andric     }
1510b57cec5SDimitry Andric 
1520b57cec5SDimitry Andric     // Next look forward:
1530b57cec5SDimitry Andric     Value *ArgIntToPtr = nullptr;
1540b57cec5SDimitry Andric     for (User *U : Arg->users()) {
1550b57cec5SDimitry Andric       if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
1561fd87a68SDimitry Andric           (DT.dominates(cast<Instruction>(U), BB) ||
1571fd87a68SDimitry Andric            cast<Instruction>(U)->getParent() == BB)) {
1580b57cec5SDimitry Andric         ArgIntToPtr = U;
1590b57cec5SDimitry Andric         break;
1600b57cec5SDimitry Andric       }
1610b57cec5SDimitry Andric     }
1620b57cec5SDimitry Andric 
1630b57cec5SDimitry Andric     if (ArgIntToPtr) {
1640b57cec5SDimitry Andric       AvailablePtrVals.emplace_back(ArgIntToPtr);
1650b57cec5SDimitry Andric       continue;
1660b57cec5SDimitry Andric     }
1670b57cec5SDimitry Andric 
1680b57cec5SDimitry Andric     // If Arg is defined by a PHI, allow it. This will also create
1690b57cec5SDimitry Andric     // more opportunities iteratively.
1700b57cec5SDimitry Andric     if (isa<PHINode>(Arg)) {
1710b57cec5SDimitry Andric       AvailablePtrVals.emplace_back(Arg);
1720b57cec5SDimitry Andric       continue;
1730b57cec5SDimitry Andric     }
1740b57cec5SDimitry Andric 
1750b57cec5SDimitry Andric     // For a single use integer load:
1760b57cec5SDimitry Andric     auto *LoadI = dyn_cast<LoadInst>(Arg);
1770b57cec5SDimitry Andric     if (!LoadI)
178bdd1243dSDimitry Andric       return false;
1790b57cec5SDimitry Andric 
1800b57cec5SDimitry Andric     if (!LoadI->hasOneUse())
181bdd1243dSDimitry Andric       return false;
1820b57cec5SDimitry Andric 
1830b57cec5SDimitry Andric     // Push the integer typed Load instruction into the available
1840b57cec5SDimitry Andric     // value set, and fix it up later when the pointer typed PHI
1850b57cec5SDimitry Andric     // is synthesized.
1860b57cec5SDimitry Andric     AvailablePtrVals.emplace_back(LoadI);
1870b57cec5SDimitry Andric   }
1880b57cec5SDimitry Andric 
1890b57cec5SDimitry Andric   // Now search for a matching PHI
1900b57cec5SDimitry Andric   auto *BB = PN.getParent();
1910b57cec5SDimitry Andric   assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
1920b57cec5SDimitry Andric          "Not enough available ptr typed incoming values");
1930b57cec5SDimitry Andric   PHINode *MatchingPtrPHI = nullptr;
1940b57cec5SDimitry Andric   unsigned NumPhis = 0;
1951fd87a68SDimitry Andric   for (PHINode &PtrPHI : BB->phis()) {
1960b57cec5SDimitry Andric     // FIXME: consider handling this in AggressiveInstCombine
1971fd87a68SDimitry Andric     if (NumPhis++ > MaxNumPhis)
198bdd1243dSDimitry Andric       return false;
1991fd87a68SDimitry Andric     if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
2000b57cec5SDimitry Andric       continue;
2011fd87a68SDimitry Andric     if (any_of(zip(PN.blocks(), AvailablePtrVals),
2021fd87a68SDimitry Andric                [&](const auto &BlockAndValue) {
2031fd87a68SDimitry Andric                  BasicBlock *BB = std::get<0>(BlockAndValue);
2041fd87a68SDimitry Andric                  Value *V = std::get<1>(BlockAndValue);
2051fd87a68SDimitry Andric                  return PtrPHI.getIncomingValueForBlock(BB) != V;
2061fd87a68SDimitry Andric                }))
2071fd87a68SDimitry Andric       continue;
2081fd87a68SDimitry Andric     MatchingPtrPHI = &PtrPHI;
2090b57cec5SDimitry Andric     break;
2100b57cec5SDimitry Andric   }
2110b57cec5SDimitry Andric 
2120b57cec5SDimitry Andric   if (MatchingPtrPHI) {
2130b57cec5SDimitry Andric     assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
2140b57cec5SDimitry Andric            "Phi's Type does not match with IntToPtr");
215bdd1243dSDimitry Andric     // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
216bdd1243dSDimitry Andric     // to make sure another transform can't undo it in the meantime.
217bdd1243dSDimitry Andric     replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
218bdd1243dSDimitry Andric     eraseInstFromFunction(*IntToPtr);
219bdd1243dSDimitry Andric     eraseInstFromFunction(PN);
220bdd1243dSDimitry Andric     return true;
2210b57cec5SDimitry Andric   }
2220b57cec5SDimitry Andric 
2230b57cec5SDimitry Andric   // If it requires a conversion for every PHI operand, do not do it.
2240b57cec5SDimitry Andric   if (all_of(AvailablePtrVals, [&](Value *V) {
2250b57cec5SDimitry Andric         return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
2260b57cec5SDimitry Andric       }))
227bdd1243dSDimitry Andric     return false;
2280b57cec5SDimitry Andric 
2290b57cec5SDimitry Andric   // If any of the operand that requires casting is a terminator
2308c27c554SDimitry Andric   // instruction, do not do it. Similarly, do not do the transform if the value
2318c27c554SDimitry Andric   // is PHI in a block with no insertion point, for example, a catchswitch
2328c27c554SDimitry Andric   // block, since we will not be able to insert a cast after the PHI.
2330b57cec5SDimitry Andric   if (any_of(AvailablePtrVals, [&](Value *V) {
2340b57cec5SDimitry Andric         if (V->getType() == IntToPtr->getType())
2350b57cec5SDimitry Andric           return false;
2360b57cec5SDimitry Andric         auto *Inst = dyn_cast<Instruction>(V);
2378c27c554SDimitry Andric         if (!Inst)
2388c27c554SDimitry Andric           return false;
2398c27c554SDimitry Andric         if (Inst->isTerminator())
2408c27c554SDimitry Andric           return true;
2418c27c554SDimitry Andric         auto *BB = Inst->getParent();
2428c27c554SDimitry Andric         if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
2438c27c554SDimitry Andric           return true;
2448c27c554SDimitry Andric         return false;
2450b57cec5SDimitry Andric       }))
246bdd1243dSDimitry Andric     return false;
2470b57cec5SDimitry Andric 
2480b57cec5SDimitry Andric   PHINode *NewPtrPHI = PHINode::Create(
2490b57cec5SDimitry Andric       IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
2500b57cec5SDimitry Andric 
2515f757f3fSDimitry Andric   InsertNewInstBefore(NewPtrPHI, PN.getIterator());
2520b57cec5SDimitry Andric   SmallDenseMap<Value *, Instruction *> Casts;
2531fd87a68SDimitry Andric   for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
2541fd87a68SDimitry Andric     auto *IncomingBB = std::get<0>(Incoming);
2551fd87a68SDimitry Andric     auto *IncomingVal = std::get<1>(Incoming);
2560b57cec5SDimitry Andric 
2570b57cec5SDimitry Andric     if (IncomingVal->getType() == IntToPtr->getType()) {
2580b57cec5SDimitry Andric       NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
2590b57cec5SDimitry Andric       continue;
2600b57cec5SDimitry Andric     }
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric #ifndef NDEBUG
2630b57cec5SDimitry Andric     LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
2640b57cec5SDimitry Andric     assert((isa<PHINode>(IncomingVal) ||
2650b57cec5SDimitry Andric             IncomingVal->getType()->isPointerTy() ||
2660b57cec5SDimitry Andric             (LoadI && LoadI->hasOneUse())) &&
2670b57cec5SDimitry Andric            "Can not replace LoadInst with multiple uses");
2680b57cec5SDimitry Andric #endif
2690b57cec5SDimitry Andric     // Need to insert a BitCast.
2700b57cec5SDimitry Andric     // For an integer Load instruction with a single use, the load + IntToPtr
2710b57cec5SDimitry Andric     // cast will be simplified into a pointer load:
2720b57cec5SDimitry Andric     // %v = load i64, i64* %a.ip, align 8
2730b57cec5SDimitry Andric     // %v.cast = inttoptr i64 %v to float **
2740b57cec5SDimitry Andric     // ==>
2750b57cec5SDimitry Andric     // %v.ptrp = bitcast i64 * %a.ip to float **
2760b57cec5SDimitry Andric     // %v.cast = load float *, float ** %v.ptrp, align 8
2770b57cec5SDimitry Andric     Instruction *&CI = Casts[IncomingVal];
2780b57cec5SDimitry Andric     if (!CI) {
2790b57cec5SDimitry Andric       CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
2800b57cec5SDimitry Andric                                             IncomingVal->getName() + ".ptr");
2810b57cec5SDimitry Andric       if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
2820b57cec5SDimitry Andric         BasicBlock::iterator InsertPos(IncomingI);
2830b57cec5SDimitry Andric         InsertPos++;
2848c27c554SDimitry Andric         BasicBlock *BB = IncomingI->getParent();
2850b57cec5SDimitry Andric         if (isa<PHINode>(IncomingI))
2868c27c554SDimitry Andric           InsertPos = BB->getFirstInsertionPt();
2878c27c554SDimitry Andric         assert(InsertPos != BB->end() && "should have checked above");
2885f757f3fSDimitry Andric         InsertNewInstBefore(CI, InsertPos);
2890b57cec5SDimitry Andric       } else {
2900b57cec5SDimitry Andric         auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
2915f757f3fSDimitry Andric         InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
2920b57cec5SDimitry Andric       }
2930b57cec5SDimitry Andric     }
2940b57cec5SDimitry Andric     NewPtrPHI->addIncoming(CI, IncomingBB);
2950b57cec5SDimitry Andric   }
2960b57cec5SDimitry Andric 
297bdd1243dSDimitry Andric   // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
298bdd1243dSDimitry Andric   // to make sure another transform can't undo it in the meantime.
299bdd1243dSDimitry Andric   replaceInstUsesWith(*IntToPtr, NewPtrPHI);
300bdd1243dSDimitry Andric   eraseInstFromFunction(*IntToPtr);
301bdd1243dSDimitry Andric   eraseInstFromFunction(PN);
302bdd1243dSDimitry Andric   return true;
3030b57cec5SDimitry Andric }
3040b57cec5SDimitry Andric 
305349cc55cSDimitry Andric // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
306349cc55cSDimitry Andric // fold Phi-operand to bitcast.
foldPHIArgIntToPtrToPHI(PHINode & PN)307349cc55cSDimitry Andric Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
308349cc55cSDimitry Andric   // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
309349cc55cSDimitry Andric   // Make sure all uses of phi are ptr2int.
310349cc55cSDimitry Andric   if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
311349cc55cSDimitry Andric     return nullptr;
312349cc55cSDimitry Andric 
313349cc55cSDimitry Andric   // Iterating over all operands to check presence of target pointers for
314349cc55cSDimitry Andric   // optimization.
315349cc55cSDimitry Andric   bool OperandWithRoundTripCast = false;
316349cc55cSDimitry Andric   for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
317349cc55cSDimitry Andric     if (auto *NewOp =
318349cc55cSDimitry Andric             simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
31906c3fb27SDimitry Andric       replaceOperand(PN, OpNum, NewOp);
320349cc55cSDimitry Andric       OperandWithRoundTripCast = true;
321349cc55cSDimitry Andric     }
322349cc55cSDimitry Andric   }
323349cc55cSDimitry Andric   if (!OperandWithRoundTripCast)
324349cc55cSDimitry Andric     return nullptr;
325349cc55cSDimitry Andric   return &PN;
326349cc55cSDimitry Andric }
327349cc55cSDimitry Andric 
328e8d8bef9SDimitry Andric /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
329e8d8bef9SDimitry Andric /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
330e8d8bef9SDimitry Andric Instruction *
foldPHIArgInsertValueInstructionIntoPHI(PHINode & PN)331e8d8bef9SDimitry Andric InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
332e8d8bef9SDimitry Andric   auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
333e8d8bef9SDimitry Andric 
334e8d8bef9SDimitry Andric   // Scan to see if all operands are `insertvalue`'s with the same indicies,
335e8d8bef9SDimitry Andric   // and all have a single use.
3361fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values())) {
3371fd87a68SDimitry Andric     auto *I = dyn_cast<InsertValueInst>(V);
338e8d8bef9SDimitry Andric     if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
339e8d8bef9SDimitry Andric       return nullptr;
340e8d8bef9SDimitry Andric   }
341e8d8bef9SDimitry Andric 
342e8d8bef9SDimitry Andric   // For each operand of an `insertvalue`
343e8d8bef9SDimitry Andric   std::array<PHINode *, 2> NewOperands;
344e8d8bef9SDimitry Andric   for (int OpIdx : {0, 1}) {
345e8d8bef9SDimitry Andric     auto *&NewOperand = NewOperands[OpIdx];
346e8d8bef9SDimitry Andric     // Create a new PHI node to receive the values the operand has in each
347e8d8bef9SDimitry Andric     // incoming basic block.
348e8d8bef9SDimitry Andric     NewOperand = PHINode::Create(
349e8d8bef9SDimitry Andric         FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
350e8d8bef9SDimitry Andric         FirstIVI->getOperand(OpIdx)->getName() + ".pn");
351e8d8bef9SDimitry Andric     // And populate each operand's PHI with said values.
352e8d8bef9SDimitry Andric     for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
353e8d8bef9SDimitry Andric       NewOperand->addIncoming(
354e8d8bef9SDimitry Andric           cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
355e8d8bef9SDimitry Andric           std::get<0>(Incoming));
3565f757f3fSDimitry Andric     InsertNewInstBefore(NewOperand, PN.getIterator());
357e8d8bef9SDimitry Andric   }
358e8d8bef9SDimitry Andric 
359e8d8bef9SDimitry Andric   // And finally, create `insertvalue` over the newly-formed PHI nodes.
360e8d8bef9SDimitry Andric   auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
361e8d8bef9SDimitry Andric                                          FirstIVI->getIndices(), PN.getName());
362e8d8bef9SDimitry Andric 
363e8d8bef9SDimitry Andric   PHIArgMergedDebugLoc(NewIVI, PN);
364e8d8bef9SDimitry Andric   ++NumPHIsOfInsertValues;
365e8d8bef9SDimitry Andric   return NewIVI;
366e8d8bef9SDimitry Andric }
367e8d8bef9SDimitry Andric 
368e8d8bef9SDimitry Andric /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
369e8d8bef9SDimitry Andric /// turn this into a phi[a,b] and a single extractvalue.
370e8d8bef9SDimitry Andric Instruction *
foldPHIArgExtractValueInstructionIntoPHI(PHINode & PN)371e8d8bef9SDimitry Andric InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
372e8d8bef9SDimitry Andric   auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
373e8d8bef9SDimitry Andric 
374e8d8bef9SDimitry Andric   // Scan to see if all operands are `extractvalue`'s with the same indicies,
375e8d8bef9SDimitry Andric   // and all have a single use.
3761fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values())) {
3771fd87a68SDimitry Andric     auto *I = dyn_cast<ExtractValueInst>(V);
378e8d8bef9SDimitry Andric     if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
379e8d8bef9SDimitry Andric         I->getAggregateOperand()->getType() !=
380e8d8bef9SDimitry Andric             FirstEVI->getAggregateOperand()->getType())
381e8d8bef9SDimitry Andric       return nullptr;
382e8d8bef9SDimitry Andric   }
383e8d8bef9SDimitry Andric 
384e8d8bef9SDimitry Andric   // Create a new PHI node to receive the values the aggregate operand has
385e8d8bef9SDimitry Andric   // in each incoming basic block.
386e8d8bef9SDimitry Andric   auto *NewAggregateOperand = PHINode::Create(
387e8d8bef9SDimitry Andric       FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
388e8d8bef9SDimitry Andric       FirstEVI->getAggregateOperand()->getName() + ".pn");
389e8d8bef9SDimitry Andric   // And populate the PHI with said values.
390e8d8bef9SDimitry Andric   for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
391e8d8bef9SDimitry Andric     NewAggregateOperand->addIncoming(
392e8d8bef9SDimitry Andric         cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
393e8d8bef9SDimitry Andric         std::get<0>(Incoming));
3945f757f3fSDimitry Andric   InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
395e8d8bef9SDimitry Andric 
396e8d8bef9SDimitry Andric   // And finally, create `extractvalue` over the newly-formed PHI nodes.
397e8d8bef9SDimitry Andric   auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
398e8d8bef9SDimitry Andric                                           FirstEVI->getIndices(), PN.getName());
399e8d8bef9SDimitry Andric 
400e8d8bef9SDimitry Andric   PHIArgMergedDebugLoc(NewEVI, PN);
401e8d8bef9SDimitry Andric   ++NumPHIsOfExtractValues;
402e8d8bef9SDimitry Andric   return NewEVI;
403e8d8bef9SDimitry Andric }
404e8d8bef9SDimitry Andric 
4050b57cec5SDimitry Andric /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
406e8d8bef9SDimitry Andric /// adds all have a single user, turn this into a phi and a single binop.
foldPHIArgBinOpIntoPHI(PHINode & PN)407e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
4080b57cec5SDimitry Andric   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
4090b57cec5SDimitry Andric   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
4100b57cec5SDimitry Andric   unsigned Opc = FirstInst->getOpcode();
4110b57cec5SDimitry Andric   Value *LHSVal = FirstInst->getOperand(0);
4120b57cec5SDimitry Andric   Value *RHSVal = FirstInst->getOperand(1);
4130b57cec5SDimitry Andric 
4140b57cec5SDimitry Andric   Type *LHSType = LHSVal->getType();
4150b57cec5SDimitry Andric   Type *RHSType = RHSVal->getType();
4160b57cec5SDimitry Andric 
417e8d8bef9SDimitry Andric   // Scan to see if all operands are the same opcode, and all have one user.
4181fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values())) {
4191fd87a68SDimitry Andric     Instruction *I = dyn_cast<Instruction>(V);
420e8d8bef9SDimitry Andric     if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
4210b57cec5SDimitry Andric         // Verify type of the LHS matches so we don't fold cmp's of different
4220b57cec5SDimitry Andric         // types.
4230b57cec5SDimitry Andric         I->getOperand(0)->getType() != LHSType ||
4240b57cec5SDimitry Andric         I->getOperand(1)->getType() != RHSType)
4250b57cec5SDimitry Andric       return nullptr;
4260b57cec5SDimitry Andric 
4270b57cec5SDimitry Andric     // If they are CmpInst instructions, check their predicates
4280b57cec5SDimitry Andric     if (CmpInst *CI = dyn_cast<CmpInst>(I))
4290b57cec5SDimitry Andric       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
4300b57cec5SDimitry Andric         return nullptr;
4310b57cec5SDimitry Andric 
4320b57cec5SDimitry Andric     // Keep track of which operand needs a phi node.
4330b57cec5SDimitry Andric     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
4340b57cec5SDimitry Andric     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
4350b57cec5SDimitry Andric   }
4360b57cec5SDimitry Andric 
4370b57cec5SDimitry Andric   // If both LHS and RHS would need a PHI, don't do this transformation,
4380b57cec5SDimitry Andric   // because it would increase the number of PHIs entering the block,
4390b57cec5SDimitry Andric   // which leads to higher register pressure. This is especially
4400b57cec5SDimitry Andric   // bad when the PHIs are in the header of a loop.
4410b57cec5SDimitry Andric   if (!LHSVal && !RHSVal)
4420b57cec5SDimitry Andric     return nullptr;
4430b57cec5SDimitry Andric 
4440b57cec5SDimitry Andric   // Otherwise, this is safe to transform!
4450b57cec5SDimitry Andric 
4460b57cec5SDimitry Andric   Value *InLHS = FirstInst->getOperand(0);
4470b57cec5SDimitry Andric   Value *InRHS = FirstInst->getOperand(1);
4480b57cec5SDimitry Andric   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
4490b57cec5SDimitry Andric   if (!LHSVal) {
4500b57cec5SDimitry Andric     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
4510b57cec5SDimitry Andric                              FirstInst->getOperand(0)->getName() + ".pn");
4520b57cec5SDimitry Andric     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
4535f757f3fSDimitry Andric     InsertNewInstBefore(NewLHS, PN.getIterator());
4540b57cec5SDimitry Andric     LHSVal = NewLHS;
4550b57cec5SDimitry Andric   }
4560b57cec5SDimitry Andric 
4570b57cec5SDimitry Andric   if (!RHSVal) {
4580b57cec5SDimitry Andric     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
4590b57cec5SDimitry Andric                              FirstInst->getOperand(1)->getName() + ".pn");
4600b57cec5SDimitry Andric     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
4615f757f3fSDimitry Andric     InsertNewInstBefore(NewRHS, PN.getIterator());
4620b57cec5SDimitry Andric     RHSVal = NewRHS;
4630b57cec5SDimitry Andric   }
4640b57cec5SDimitry Andric 
4650b57cec5SDimitry Andric   // Add all operands to the new PHIs.
4660b57cec5SDimitry Andric   if (NewLHS || NewRHS) {
4671fd87a68SDimitry Andric     for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
4681fd87a68SDimitry Andric       BasicBlock *InBB = std::get<0>(Incoming);
4691fd87a68SDimitry Andric       Value *InVal = std::get<1>(Incoming);
4701fd87a68SDimitry Andric       Instruction *InInst = cast<Instruction>(InVal);
4710b57cec5SDimitry Andric       if (NewLHS) {
4720b57cec5SDimitry Andric         Value *NewInLHS = InInst->getOperand(0);
4731fd87a68SDimitry Andric         NewLHS->addIncoming(NewInLHS, InBB);
4740b57cec5SDimitry Andric       }
4750b57cec5SDimitry Andric       if (NewRHS) {
4760b57cec5SDimitry Andric         Value *NewInRHS = InInst->getOperand(1);
4771fd87a68SDimitry Andric         NewRHS->addIncoming(NewInRHS, InBB);
4780b57cec5SDimitry Andric       }
4790b57cec5SDimitry Andric     }
4800b57cec5SDimitry Andric   }
4810b57cec5SDimitry Andric 
4820b57cec5SDimitry Andric   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
4830b57cec5SDimitry Andric     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
4840b57cec5SDimitry Andric                                      LHSVal, RHSVal);
4850b57cec5SDimitry Andric     PHIArgMergedDebugLoc(NewCI, PN);
4860b57cec5SDimitry Andric     return NewCI;
4870b57cec5SDimitry Andric   }
4880b57cec5SDimitry Andric 
4890b57cec5SDimitry Andric   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
4900b57cec5SDimitry Andric   BinaryOperator *NewBinOp =
4910b57cec5SDimitry Andric     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
4920b57cec5SDimitry Andric 
4930b57cec5SDimitry Andric   NewBinOp->copyIRFlags(PN.getIncomingValue(0));
4940b57cec5SDimitry Andric 
4951fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values()))
4961fd87a68SDimitry Andric     NewBinOp->andIRFlags(V);
4970b57cec5SDimitry Andric 
4980b57cec5SDimitry Andric   PHIArgMergedDebugLoc(NewBinOp, PN);
4990b57cec5SDimitry Andric   return NewBinOp;
5000b57cec5SDimitry Andric }
5010b57cec5SDimitry Andric 
foldPHIArgGEPIntoPHI(PHINode & PN)502e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
5030b57cec5SDimitry Andric   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
5040b57cec5SDimitry Andric 
5050b57cec5SDimitry Andric   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
5060b57cec5SDimitry Andric                                         FirstInst->op_end());
5070b57cec5SDimitry Andric   // This is true if all GEP bases are allocas and if all indices into them are
5080b57cec5SDimitry Andric   // constants.
5090b57cec5SDimitry Andric   bool AllBasePointersAreAllocas = true;
5100b57cec5SDimitry Andric 
5110b57cec5SDimitry Andric   // We don't want to replace this phi if the replacement would require
5120b57cec5SDimitry Andric   // more than one phi, which leads to higher register pressure. This is
5130b57cec5SDimitry Andric   // especially bad when the PHIs are in the header of a loop.
5140b57cec5SDimitry Andric   bool NeededPhi = false;
5150b57cec5SDimitry Andric 
5160b57cec5SDimitry Andric   bool AllInBounds = true;
5170b57cec5SDimitry Andric 
518e8d8bef9SDimitry Andric   // Scan to see if all operands are the same opcode, and all have one user.
5191fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values())) {
5201fd87a68SDimitry Andric     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
52181ad6265SDimitry Andric     if (!GEP || !GEP->hasOneUser() ||
52281ad6265SDimitry Andric         GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
5230b57cec5SDimitry Andric         GEP->getNumOperands() != FirstInst->getNumOperands())
5240b57cec5SDimitry Andric       return nullptr;
5250b57cec5SDimitry Andric 
5260b57cec5SDimitry Andric     AllInBounds &= GEP->isInBounds();
5270b57cec5SDimitry Andric 
5280b57cec5SDimitry Andric     // Keep track of whether or not all GEPs are of alloca pointers.
5290b57cec5SDimitry Andric     if (AllBasePointersAreAllocas &&
5300b57cec5SDimitry Andric         (!isa<AllocaInst>(GEP->getOperand(0)) ||
5310b57cec5SDimitry Andric          !GEP->hasAllConstantIndices()))
5320b57cec5SDimitry Andric       AllBasePointersAreAllocas = false;
5330b57cec5SDimitry Andric 
5340b57cec5SDimitry Andric     // Compare the operand lists.
5351fd87a68SDimitry Andric     for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
5361fd87a68SDimitry Andric       if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
5370b57cec5SDimitry Andric         continue;
5380b57cec5SDimitry Andric 
5390b57cec5SDimitry Andric       // Don't merge two GEPs when two operands differ (introducing phi nodes)
5400b57cec5SDimitry Andric       // if one of the PHIs has a constant for the index.  The index may be
5410b57cec5SDimitry Andric       // substantially cheaper to compute for the constants, so making it a
5420b57cec5SDimitry Andric       // variable index could pessimize the path.  This also handles the case
5430b57cec5SDimitry Andric       // for struct indices, which must always be constant.
5441fd87a68SDimitry Andric       if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
5451fd87a68SDimitry Andric           isa<ConstantInt>(GEP->getOperand(Op)))
5460b57cec5SDimitry Andric         return nullptr;
5470b57cec5SDimitry Andric 
5481fd87a68SDimitry Andric       if (FirstInst->getOperand(Op)->getType() !=
5491fd87a68SDimitry Andric           GEP->getOperand(Op)->getType())
5500b57cec5SDimitry Andric         return nullptr;
5510b57cec5SDimitry Andric 
5520b57cec5SDimitry Andric       // If we already needed a PHI for an earlier operand, and another operand
5530b57cec5SDimitry Andric       // also requires a PHI, we'd be introducing more PHIs than we're
5540b57cec5SDimitry Andric       // eliminating, which increases register pressure on entry to the PHI's
5550b57cec5SDimitry Andric       // block.
5560b57cec5SDimitry Andric       if (NeededPhi)
5570b57cec5SDimitry Andric         return nullptr;
5580b57cec5SDimitry Andric 
5591fd87a68SDimitry Andric       FixedOperands[Op] = nullptr; // Needs a PHI.
5600b57cec5SDimitry Andric       NeededPhi = true;
5610b57cec5SDimitry Andric     }
5620b57cec5SDimitry Andric   }
5630b57cec5SDimitry Andric 
5640b57cec5SDimitry Andric   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
5650b57cec5SDimitry Andric   // bother doing this transformation.  At best, this will just save a bit of
5660b57cec5SDimitry Andric   // offset calculation, but all the predecessors will have to materialize the
5670b57cec5SDimitry Andric   // stack address into a register anyway.  We'd actually rather *clone* the
5680b57cec5SDimitry Andric   // load up into the predecessors so that we have a load of a gep of an alloca,
5690b57cec5SDimitry Andric   // which can usually all be folded into the load.
5700b57cec5SDimitry Andric   if (AllBasePointersAreAllocas)
5710b57cec5SDimitry Andric     return nullptr;
5720b57cec5SDimitry Andric 
5730b57cec5SDimitry Andric   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
5740b57cec5SDimitry Andric   // that is variable.
5750b57cec5SDimitry Andric   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
5760b57cec5SDimitry Andric 
5770b57cec5SDimitry Andric   bool HasAnyPHIs = false;
5781fd87a68SDimitry Andric   for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
5791fd87a68SDimitry Andric     if (FixedOperands[I])
5801fd87a68SDimitry Andric       continue; // operand doesn't need a phi.
5811fd87a68SDimitry Andric     Value *FirstOp = FirstInst->getOperand(I);
5821fd87a68SDimitry Andric     PHINode *NewPN =
5831fd87a68SDimitry Andric         PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
5845f757f3fSDimitry Andric     InsertNewInstBefore(NewPN, PN.getIterator());
5850b57cec5SDimitry Andric 
5860b57cec5SDimitry Andric     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
5871fd87a68SDimitry Andric     OperandPhis[I] = NewPN;
5881fd87a68SDimitry Andric     FixedOperands[I] = NewPN;
5890b57cec5SDimitry Andric     HasAnyPHIs = true;
5900b57cec5SDimitry Andric   }
5910b57cec5SDimitry Andric 
5920b57cec5SDimitry Andric   // Add all operands to the new PHIs.
5930b57cec5SDimitry Andric   if (HasAnyPHIs) {
5941fd87a68SDimitry Andric     for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
5951fd87a68SDimitry Andric       BasicBlock *InBB = std::get<0>(Incoming);
5961fd87a68SDimitry Andric       Value *InVal = std::get<1>(Incoming);
5971fd87a68SDimitry Andric       GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
5980b57cec5SDimitry Andric 
5991fd87a68SDimitry Andric       for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
6001fd87a68SDimitry Andric         if (PHINode *OpPhi = OperandPhis[Op])
6011fd87a68SDimitry Andric           OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
6020b57cec5SDimitry Andric     }
6030b57cec5SDimitry Andric   }
6040b57cec5SDimitry Andric 
6050b57cec5SDimitry Andric   Value *Base = FixedOperands[0];
6060b57cec5SDimitry Andric   GetElementPtrInst *NewGEP =
6070b57cec5SDimitry Andric       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
608bdd1243dSDimitry Andric                                 ArrayRef(FixedOperands).slice(1));
6090b57cec5SDimitry Andric   if (AllInBounds) NewGEP->setIsInBounds();
6100b57cec5SDimitry Andric   PHIArgMergedDebugLoc(NewGEP, PN);
6110b57cec5SDimitry Andric   return NewGEP;
6120b57cec5SDimitry Andric }
6130b57cec5SDimitry Andric 
6140b57cec5SDimitry Andric /// Return true if we know that it is safe to sink the load out of the block
6150b57cec5SDimitry Andric /// that defines it. This means that it must be obvious the value of the load is
6160b57cec5SDimitry Andric /// not changed from the point of the load to the end of the block it is in.
6170b57cec5SDimitry Andric ///
6180b57cec5SDimitry Andric /// Finally, it is safe, but not profitable, to sink a load targeting a
6190b57cec5SDimitry Andric /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
6200b57cec5SDimitry Andric /// to a register.
isSafeAndProfitableToSinkLoad(LoadInst * L)6210b57cec5SDimitry Andric static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
6220b57cec5SDimitry Andric   BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
6230b57cec5SDimitry Andric 
6240b57cec5SDimitry Andric   for (++BBI; BBI != E; ++BBI)
625d409305fSDimitry Andric     if (BBI->mayWriteToMemory()) {
626d409305fSDimitry Andric       // Calls that only access inaccessible memory do not block sinking the
627d409305fSDimitry Andric       // load.
628d409305fSDimitry Andric       if (auto *CB = dyn_cast<CallBase>(BBI))
629d409305fSDimitry Andric         if (CB->onlyAccessesInaccessibleMemory())
630d409305fSDimitry Andric           continue;
6310b57cec5SDimitry Andric       return false;
632d409305fSDimitry Andric     }
6330b57cec5SDimitry Andric 
6340b57cec5SDimitry Andric   // Check for non-address taken alloca.  If not address-taken already, it isn't
6350b57cec5SDimitry Andric   // profitable to do this xform.
6360b57cec5SDimitry Andric   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
6371fd87a68SDimitry Andric     bool IsAddressTaken = false;
6380b57cec5SDimitry Andric     for (User *U : AI->users()) {
6390b57cec5SDimitry Andric       if (isa<LoadInst>(U)) continue;
6400b57cec5SDimitry Andric       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
6410b57cec5SDimitry Andric         // If storing TO the alloca, then the address isn't taken.
6420b57cec5SDimitry Andric         if (SI->getOperand(1) == AI) continue;
6430b57cec5SDimitry Andric       }
6441fd87a68SDimitry Andric       IsAddressTaken = true;
6450b57cec5SDimitry Andric       break;
6460b57cec5SDimitry Andric     }
6470b57cec5SDimitry Andric 
6481fd87a68SDimitry Andric     if (!IsAddressTaken && AI->isStaticAlloca())
6490b57cec5SDimitry Andric       return false;
6500b57cec5SDimitry Andric   }
6510b57cec5SDimitry Andric 
6520b57cec5SDimitry Andric   // If this load is a load from a GEP with a constant offset from an alloca,
6530b57cec5SDimitry Andric   // then we don't want to sink it.  In its present form, it will be
6540b57cec5SDimitry Andric   // load [constant stack offset].  Sinking it will cause us to have to
6550b57cec5SDimitry Andric   // materialize the stack addresses in each predecessor in a register only to
6560b57cec5SDimitry Andric   // do a shared load from register in the successor.
6570b57cec5SDimitry Andric   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
6580b57cec5SDimitry Andric     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
6590b57cec5SDimitry Andric       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
6600b57cec5SDimitry Andric         return false;
6610b57cec5SDimitry Andric 
6620b57cec5SDimitry Andric   return true;
6630b57cec5SDimitry Andric }
6640b57cec5SDimitry Andric 
foldPHIArgLoadIntoPHI(PHINode & PN)665e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
6660b57cec5SDimitry Andric   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
6670b57cec5SDimitry Andric 
66881ad6265SDimitry Andric   // Can't forward swifterror through a phi.
66981ad6265SDimitry Andric   if (FirstLI->getOperand(0)->isSwiftError())
67081ad6265SDimitry Andric     return nullptr;
67181ad6265SDimitry Andric 
6720b57cec5SDimitry Andric   // FIXME: This is overconservative; this transform is allowed in some cases
6730b57cec5SDimitry Andric   // for atomic operations.
6740b57cec5SDimitry Andric   if (FirstLI->isAtomic())
6750b57cec5SDimitry Andric     return nullptr;
6760b57cec5SDimitry Andric 
6770b57cec5SDimitry Andric   // When processing loads, we need to propagate two bits of information to the
6780eae32dcSDimitry Andric   // sunk load: whether it is volatile, and what its alignment is.
6791fd87a68SDimitry Andric   bool IsVolatile = FirstLI->isVolatile();
6805ffd83dbSDimitry Andric   Align LoadAlignment = FirstLI->getAlign();
6811fd87a68SDimitry Andric   const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
6820b57cec5SDimitry Andric 
6830b57cec5SDimitry Andric   // We can't sink the load if the loaded value could be modified between the
6840b57cec5SDimitry Andric   // load and the PHI.
6850b57cec5SDimitry Andric   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
6860b57cec5SDimitry Andric       !isSafeAndProfitableToSinkLoad(FirstLI))
6870b57cec5SDimitry Andric     return nullptr;
6880b57cec5SDimitry Andric 
6890b57cec5SDimitry Andric   // If the PHI is of volatile loads and the load block has multiple
6900b57cec5SDimitry Andric   // successors, sinking it would remove a load of the volatile value from
6910b57cec5SDimitry Andric   // the path through the other successor.
6921fd87a68SDimitry Andric   if (IsVolatile &&
6930b57cec5SDimitry Andric       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
6940b57cec5SDimitry Andric     return nullptr;
6950b57cec5SDimitry Andric 
6961fd87a68SDimitry Andric   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
6971fd87a68SDimitry Andric     BasicBlock *InBB = std::get<0>(Incoming);
6981fd87a68SDimitry Andric     Value *InVal = std::get<1>(Incoming);
6991fd87a68SDimitry Andric     LoadInst *LI = dyn_cast<LoadInst>(InVal);
7001fd87a68SDimitry Andric     if (!LI || !LI->hasOneUser() || LI->isAtomic())
7011fd87a68SDimitry Andric       return nullptr;
7021fd87a68SDimitry Andric 
7031fd87a68SDimitry Andric     // Make sure all arguments are the same type of operation.
7041fd87a68SDimitry Andric     if (LI->isVolatile() != IsVolatile ||
7051fd87a68SDimitry Andric         LI->getPointerAddressSpace() != LoadAddrSpace)
7060b57cec5SDimitry Andric       return nullptr;
7070b57cec5SDimitry Andric 
70881ad6265SDimitry Andric     // Can't forward swifterror through a phi.
70981ad6265SDimitry Andric     if (LI->getOperand(0)->isSwiftError())
71081ad6265SDimitry Andric       return nullptr;
71181ad6265SDimitry Andric 
7120b57cec5SDimitry Andric     // We can't sink the load if the loaded value could be modified between
7130b57cec5SDimitry Andric     // the load and the PHI.
7141fd87a68SDimitry Andric     if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
7150b57cec5SDimitry Andric       return nullptr;
7160b57cec5SDimitry Andric 
7170eae32dcSDimitry Andric     LoadAlignment = std::min(LoadAlignment, LI->getAlign());
7180b57cec5SDimitry Andric 
7190b57cec5SDimitry Andric     // If the PHI is of volatile loads and the load block has multiple
7200b57cec5SDimitry Andric     // successors, sinking it would remove a load of the volatile value from
7210b57cec5SDimitry Andric     // the path through the other successor.
7221fd87a68SDimitry Andric     if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
7230b57cec5SDimitry Andric       return nullptr;
7240b57cec5SDimitry Andric   }
7250b57cec5SDimitry Andric 
7260b57cec5SDimitry Andric   // Okay, they are all the same operation.  Create a new PHI node of the
7270b57cec5SDimitry Andric   // correct type, and PHI together all of the LHS's of the instructions.
7280b57cec5SDimitry Andric   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
7290b57cec5SDimitry Andric                                    PN.getNumIncomingValues(),
7300b57cec5SDimitry Andric                                    PN.getName()+".in");
7310b57cec5SDimitry Andric 
7320b57cec5SDimitry Andric   Value *InVal = FirstLI->getOperand(0);
7330b57cec5SDimitry Andric   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
7340b57cec5SDimitry Andric   LoadInst *NewLI =
7351fd87a68SDimitry Andric       new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
7360b57cec5SDimitry Andric 
7370b57cec5SDimitry Andric   unsigned KnownIDs[] = {
7380b57cec5SDimitry Andric     LLVMContext::MD_tbaa,
7390b57cec5SDimitry Andric     LLVMContext::MD_range,
7400b57cec5SDimitry Andric     LLVMContext::MD_invariant_load,
7410b57cec5SDimitry Andric     LLVMContext::MD_alias_scope,
7420b57cec5SDimitry Andric     LLVMContext::MD_noalias,
7430b57cec5SDimitry Andric     LLVMContext::MD_nonnull,
7440b57cec5SDimitry Andric     LLVMContext::MD_align,
7450b57cec5SDimitry Andric     LLVMContext::MD_dereferenceable,
7460b57cec5SDimitry Andric     LLVMContext::MD_dereferenceable_or_null,
7470b57cec5SDimitry Andric     LLVMContext::MD_access_group,
74806c3fb27SDimitry Andric     LLVMContext::MD_noundef,
7490b57cec5SDimitry Andric   };
7500b57cec5SDimitry Andric 
7510b57cec5SDimitry Andric   for (unsigned ID : KnownIDs)
7520b57cec5SDimitry Andric     NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
7530b57cec5SDimitry Andric 
7540b57cec5SDimitry Andric   // Add all operands to the new PHI and combine TBAA metadata.
7551fd87a68SDimitry Andric   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
7561fd87a68SDimitry Andric     BasicBlock *BB = std::get<0>(Incoming);
7571fd87a68SDimitry Andric     Value *V = std::get<1>(Incoming);
7581fd87a68SDimitry Andric     LoadInst *LI = cast<LoadInst>(V);
7590b57cec5SDimitry Andric     combineMetadata(NewLI, LI, KnownIDs, true);
7600b57cec5SDimitry Andric     Value *NewInVal = LI->getOperand(0);
7610b57cec5SDimitry Andric     if (NewInVal != InVal)
7620b57cec5SDimitry Andric       InVal = nullptr;
7631fd87a68SDimitry Andric     NewPN->addIncoming(NewInVal, BB);
7640b57cec5SDimitry Andric   }
7650b57cec5SDimitry Andric 
7660b57cec5SDimitry Andric   if (InVal) {
7670b57cec5SDimitry Andric     // The new PHI unions all of the same values together.  This is really
7680b57cec5SDimitry Andric     // common, so we handle it intelligently here for compile-time speed.
7690b57cec5SDimitry Andric     NewLI->setOperand(0, InVal);
7700b57cec5SDimitry Andric     delete NewPN;
7710b57cec5SDimitry Andric   } else {
7725f757f3fSDimitry Andric     InsertNewInstBefore(NewPN, PN.getIterator());
7730b57cec5SDimitry Andric   }
7740b57cec5SDimitry Andric 
7750b57cec5SDimitry Andric   // If this was a volatile load that we are merging, make sure to loop through
7760b57cec5SDimitry Andric   // and mark all the input loads as non-volatile.  If we don't do this, we will
7770b57cec5SDimitry Andric   // insert a new volatile load and the old ones will not be deletable.
7781fd87a68SDimitry Andric   if (IsVolatile)
7790b57cec5SDimitry Andric     for (Value *IncValue : PN.incoming_values())
7800b57cec5SDimitry Andric       cast<LoadInst>(IncValue)->setVolatile(false);
7810b57cec5SDimitry Andric 
7820b57cec5SDimitry Andric   PHIArgMergedDebugLoc(NewLI, PN);
7830b57cec5SDimitry Andric   return NewLI;
7840b57cec5SDimitry Andric }
7850b57cec5SDimitry Andric 
7860b57cec5SDimitry Andric /// TODO: This function could handle other cast types, but then it might
7870b57cec5SDimitry Andric /// require special-casing a cast from the 'i1' type. See the comment in
7880b57cec5SDimitry Andric /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
foldPHIArgZextsIntoPHI(PHINode & Phi)789e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
7900b57cec5SDimitry Andric   // We cannot create a new instruction after the PHI if the terminator is an
7910b57cec5SDimitry Andric   // EHPad because there is no valid insertion point.
7920b57cec5SDimitry Andric   if (Instruction *TI = Phi.getParent()->getTerminator())
7930b57cec5SDimitry Andric     if (TI->isEHPad())
7940b57cec5SDimitry Andric       return nullptr;
7950b57cec5SDimitry Andric 
7960b57cec5SDimitry Andric   // Early exit for the common case of a phi with two operands. These are
7970b57cec5SDimitry Andric   // handled elsewhere. See the comment below where we check the count of zexts
7980b57cec5SDimitry Andric   // and constants for more details.
7990b57cec5SDimitry Andric   unsigned NumIncomingValues = Phi.getNumIncomingValues();
8000b57cec5SDimitry Andric   if (NumIncomingValues < 3)
8010b57cec5SDimitry Andric     return nullptr;
8020b57cec5SDimitry Andric 
8030b57cec5SDimitry Andric   // Find the narrower type specified by the first zext.
8040b57cec5SDimitry Andric   Type *NarrowType = nullptr;
8050b57cec5SDimitry Andric   for (Value *V : Phi.incoming_values()) {
8060b57cec5SDimitry Andric     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
8070b57cec5SDimitry Andric       NarrowType = Zext->getSrcTy();
8080b57cec5SDimitry Andric       break;
8090b57cec5SDimitry Andric     }
8100b57cec5SDimitry Andric   }
8110b57cec5SDimitry Andric   if (!NarrowType)
8120b57cec5SDimitry Andric     return nullptr;
8130b57cec5SDimitry Andric 
8140b57cec5SDimitry Andric   // Walk the phi operands checking that we only have zexts or constants that
8150b57cec5SDimitry Andric   // we can shrink for free. Store the new operands for the new phi.
8160b57cec5SDimitry Andric   SmallVector<Value *, 4> NewIncoming;
8170b57cec5SDimitry Andric   unsigned NumZexts = 0;
8180b57cec5SDimitry Andric   unsigned NumConsts = 0;
8190b57cec5SDimitry Andric   for (Value *V : Phi.incoming_values()) {
8200b57cec5SDimitry Andric     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
821e8d8bef9SDimitry Andric       // All zexts must be identical and have one user.
822e8d8bef9SDimitry Andric       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
8230b57cec5SDimitry Andric         return nullptr;
8240b57cec5SDimitry Andric       NewIncoming.push_back(Zext->getOperand(0));
8250b57cec5SDimitry Andric       NumZexts++;
8260b57cec5SDimitry Andric     } else if (auto *C = dyn_cast<Constant>(V)) {
8270b57cec5SDimitry Andric       // Make sure that constants can fit in the new type.
8285f757f3fSDimitry Andric       Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
8295f757f3fSDimitry Andric       if (!Trunc)
8300b57cec5SDimitry Andric         return nullptr;
8310b57cec5SDimitry Andric       NewIncoming.push_back(Trunc);
8320b57cec5SDimitry Andric       NumConsts++;
8330b57cec5SDimitry Andric     } else {
8340b57cec5SDimitry Andric       // If it's not a cast or a constant, bail out.
8350b57cec5SDimitry Andric       return nullptr;
8360b57cec5SDimitry Andric     }
8370b57cec5SDimitry Andric   }
8380b57cec5SDimitry Andric 
8390b57cec5SDimitry Andric   // The more common cases of a phi with no constant operands or just one
8400b57cec5SDimitry Andric   // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
8410b57cec5SDimitry Andric   // respectively. foldOpIntoPhi() wants to do the opposite transform that is
8420b57cec5SDimitry Andric   // performed here. It tries to replicate a cast in the phi operand's basic
8430b57cec5SDimitry Andric   // block to expose other folding opportunities. Thus, InstCombine will
8440b57cec5SDimitry Andric   // infinite loop without this check.
8450b57cec5SDimitry Andric   if (NumConsts == 0 || NumZexts < 2)
8460b57cec5SDimitry Andric     return nullptr;
8470b57cec5SDimitry Andric 
8480b57cec5SDimitry Andric   // All incoming values are zexts or constants that are safe to truncate.
8490b57cec5SDimitry Andric   // Create a new phi node of the narrow type, phi together all of the new
8500b57cec5SDimitry Andric   // operands, and zext the result back to the original type.
8510b57cec5SDimitry Andric   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
8520b57cec5SDimitry Andric                                     Phi.getName() + ".shrunk");
8531fd87a68SDimitry Andric   for (unsigned I = 0; I != NumIncomingValues; ++I)
8541fd87a68SDimitry Andric     NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
8550b57cec5SDimitry Andric 
8565f757f3fSDimitry Andric   InsertNewInstBefore(NewPhi, Phi.getIterator());
8570b57cec5SDimitry Andric   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
8580b57cec5SDimitry Andric }
8590b57cec5SDimitry Andric 
8600b57cec5SDimitry Andric /// If all operands to a PHI node are the same "unary" operator and they all are
8610b57cec5SDimitry Andric /// only used by the PHI, PHI together their inputs, and do the operation once,
8620b57cec5SDimitry Andric /// to the result of the PHI.
foldPHIArgOpIntoPHI(PHINode & PN)863e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
8640b57cec5SDimitry Andric   // We cannot create a new instruction after the PHI if the terminator is an
8650b57cec5SDimitry Andric   // EHPad because there is no valid insertion point.
8660b57cec5SDimitry Andric   if (Instruction *TI = PN.getParent()->getTerminator())
8670b57cec5SDimitry Andric     if (TI->isEHPad())
8680b57cec5SDimitry Andric       return nullptr;
8690b57cec5SDimitry Andric 
8700b57cec5SDimitry Andric   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8710b57cec5SDimitry Andric 
8720b57cec5SDimitry Andric   if (isa<GetElementPtrInst>(FirstInst))
873e8d8bef9SDimitry Andric     return foldPHIArgGEPIntoPHI(PN);
8740b57cec5SDimitry Andric   if (isa<LoadInst>(FirstInst))
875e8d8bef9SDimitry Andric     return foldPHIArgLoadIntoPHI(PN);
876e8d8bef9SDimitry Andric   if (isa<InsertValueInst>(FirstInst))
877e8d8bef9SDimitry Andric     return foldPHIArgInsertValueInstructionIntoPHI(PN);
878e8d8bef9SDimitry Andric   if (isa<ExtractValueInst>(FirstInst))
879e8d8bef9SDimitry Andric     return foldPHIArgExtractValueInstructionIntoPHI(PN);
8800b57cec5SDimitry Andric 
8810b57cec5SDimitry Andric   // Scan the instruction, looking for input operations that can be folded away.
8820b57cec5SDimitry Andric   // If all input operands to the phi are the same instruction (e.g. a cast from
8830b57cec5SDimitry Andric   // the same type or "+42") we can pull the operation through the PHI, reducing
8840b57cec5SDimitry Andric   // code size and simplifying code.
8850b57cec5SDimitry Andric   Constant *ConstantOp = nullptr;
8860b57cec5SDimitry Andric   Type *CastSrcTy = nullptr;
8870b57cec5SDimitry Andric 
8880b57cec5SDimitry Andric   if (isa<CastInst>(FirstInst)) {
8890b57cec5SDimitry Andric     CastSrcTy = FirstInst->getOperand(0)->getType();
8900b57cec5SDimitry Andric 
8910b57cec5SDimitry Andric     // Be careful about transforming integer PHIs.  We don't want to pessimize
8920b57cec5SDimitry Andric     // the code by turning an i32 into an i1293.
8930b57cec5SDimitry Andric     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
8940b57cec5SDimitry Andric       if (!shouldChangeType(PN.getType(), CastSrcTy))
8950b57cec5SDimitry Andric         return nullptr;
8960b57cec5SDimitry Andric     }
8970b57cec5SDimitry Andric   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
8980b57cec5SDimitry Andric     // Can fold binop, compare or shift here if the RHS is a constant,
8990b57cec5SDimitry Andric     // otherwise call FoldPHIArgBinOpIntoPHI.
9000b57cec5SDimitry Andric     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
9010b57cec5SDimitry Andric     if (!ConstantOp)
902e8d8bef9SDimitry Andric       return foldPHIArgBinOpIntoPHI(PN);
9030b57cec5SDimitry Andric   } else {
9040b57cec5SDimitry Andric     return nullptr;  // Cannot fold this operation.
9050b57cec5SDimitry Andric   }
9060b57cec5SDimitry Andric 
9070b57cec5SDimitry Andric   // Check to see if all arguments are the same operation.
9081fd87a68SDimitry Andric   for (Value *V : drop_begin(PN.incoming_values())) {
9091fd87a68SDimitry Andric     Instruction *I = dyn_cast<Instruction>(V);
910e8d8bef9SDimitry Andric     if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
9110b57cec5SDimitry Andric       return nullptr;
9120b57cec5SDimitry Andric     if (CastSrcTy) {
9130b57cec5SDimitry Andric       if (I->getOperand(0)->getType() != CastSrcTy)
9140b57cec5SDimitry Andric         return nullptr; // Cast operation must match.
9150b57cec5SDimitry Andric     } else if (I->getOperand(1) != ConstantOp) {
9160b57cec5SDimitry Andric       return nullptr;
9170b57cec5SDimitry Andric     }
9180b57cec5SDimitry Andric   }
9190b57cec5SDimitry Andric 
9200b57cec5SDimitry Andric   // Okay, they are all the same operation.  Create a new PHI node of the
9210b57cec5SDimitry Andric   // correct type, and PHI together all of the LHS's of the instructions.
9220b57cec5SDimitry Andric   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
9230b57cec5SDimitry Andric                                    PN.getNumIncomingValues(),
9240b57cec5SDimitry Andric                                    PN.getName()+".in");
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric   Value *InVal = FirstInst->getOperand(0);
9270b57cec5SDimitry Andric   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
9280b57cec5SDimitry Andric 
9290b57cec5SDimitry Andric   // Add all operands to the new PHI.
9301fd87a68SDimitry Andric   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
9311fd87a68SDimitry Andric     BasicBlock *BB = std::get<0>(Incoming);
9321fd87a68SDimitry Andric     Value *V = std::get<1>(Incoming);
9331fd87a68SDimitry Andric     Value *NewInVal = cast<Instruction>(V)->getOperand(0);
9340b57cec5SDimitry Andric     if (NewInVal != InVal)
9350b57cec5SDimitry Andric       InVal = nullptr;
9361fd87a68SDimitry Andric     NewPN->addIncoming(NewInVal, BB);
9370b57cec5SDimitry Andric   }
9380b57cec5SDimitry Andric 
9390b57cec5SDimitry Andric   Value *PhiVal;
9400b57cec5SDimitry Andric   if (InVal) {
9410b57cec5SDimitry Andric     // The new PHI unions all of the same values together.  This is really
9420b57cec5SDimitry Andric     // common, so we handle it intelligently here for compile-time speed.
9430b57cec5SDimitry Andric     PhiVal = InVal;
9440b57cec5SDimitry Andric     delete NewPN;
9450b57cec5SDimitry Andric   } else {
9465f757f3fSDimitry Andric     InsertNewInstBefore(NewPN, PN.getIterator());
9470b57cec5SDimitry Andric     PhiVal = NewPN;
9480b57cec5SDimitry Andric   }
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric   // Insert and return the new operation.
9510b57cec5SDimitry Andric   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
9520b57cec5SDimitry Andric     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
9530b57cec5SDimitry Andric                                        PN.getType());
9540b57cec5SDimitry Andric     PHIArgMergedDebugLoc(NewCI, PN);
9550b57cec5SDimitry Andric     return NewCI;
9560b57cec5SDimitry Andric   }
9570b57cec5SDimitry Andric 
9580b57cec5SDimitry Andric   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
9590b57cec5SDimitry Andric     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
9600b57cec5SDimitry Andric     BinOp->copyIRFlags(PN.getIncomingValue(0));
9610b57cec5SDimitry Andric 
9621fd87a68SDimitry Andric     for (Value *V : drop_begin(PN.incoming_values()))
9631fd87a68SDimitry Andric       BinOp->andIRFlags(V);
9640b57cec5SDimitry Andric 
9650b57cec5SDimitry Andric     PHIArgMergedDebugLoc(BinOp, PN);
9660b57cec5SDimitry Andric     return BinOp;
9670b57cec5SDimitry Andric   }
9680b57cec5SDimitry Andric 
9690b57cec5SDimitry Andric   CmpInst *CIOp = cast<CmpInst>(FirstInst);
9700b57cec5SDimitry Andric   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
9710b57cec5SDimitry Andric                                    PhiVal, ConstantOp);
9720b57cec5SDimitry Andric   PHIArgMergedDebugLoc(NewCI, PN);
9730b57cec5SDimitry Andric   return NewCI;
9740b57cec5SDimitry Andric }
9750b57cec5SDimitry Andric 
9760b57cec5SDimitry Andric /// Return true if this PHI node is only used by a PHI node cycle that is dead.
isDeadPHICycle(PHINode * PN,SmallPtrSetImpl<PHINode * > & PotentiallyDeadPHIs)9771fd87a68SDimitry Andric static bool isDeadPHICycle(PHINode *PN,
9780b57cec5SDimitry Andric                            SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) {
9790b57cec5SDimitry Andric   if (PN->use_empty()) return true;
9800b57cec5SDimitry Andric   if (!PN->hasOneUse()) return false;
9810b57cec5SDimitry Andric 
9820b57cec5SDimitry Andric   // Remember this node, and if we find the cycle, return.
9830b57cec5SDimitry Andric   if (!PotentiallyDeadPHIs.insert(PN).second)
9840b57cec5SDimitry Andric     return true;
9850b57cec5SDimitry Andric 
9860b57cec5SDimitry Andric   // Don't scan crazily complex things.
9870b57cec5SDimitry Andric   if (PotentiallyDeadPHIs.size() == 16)
9880b57cec5SDimitry Andric     return false;
9890b57cec5SDimitry Andric 
9900b57cec5SDimitry Andric   if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
9911fd87a68SDimitry Andric     return isDeadPHICycle(PU, PotentiallyDeadPHIs);
9920b57cec5SDimitry Andric 
9930b57cec5SDimitry Andric   return false;
9940b57cec5SDimitry Andric }
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric /// Return true if this phi node is always equal to NonPhiInVal.
9970b57cec5SDimitry Andric /// This happens with mutually cyclic phi nodes like:
9980b57cec5SDimitry Andric ///   z = some value; x = phi (y, z); y = phi (x, z)
PHIsEqualValue(PHINode * PN,Value * & NonPhiInVal,SmallPtrSetImpl<PHINode * > & ValueEqualPHIs)9995f757f3fSDimitry Andric static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
10000b57cec5SDimitry Andric                            SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
10010b57cec5SDimitry Andric   // See if we already saw this PHI node.
10020b57cec5SDimitry Andric   if (!ValueEqualPHIs.insert(PN).second)
10030b57cec5SDimitry Andric     return true;
10040b57cec5SDimitry Andric 
10050b57cec5SDimitry Andric   // Don't scan crazily complex things.
10060b57cec5SDimitry Andric   if (ValueEqualPHIs.size() == 16)
10070b57cec5SDimitry Andric     return false;
10080b57cec5SDimitry Andric 
10090b57cec5SDimitry Andric   // Scan the operands to see if they are either phi nodes or are equal to
10100b57cec5SDimitry Andric   // the value.
10110b57cec5SDimitry Andric   for (Value *Op : PN->incoming_values()) {
10120b57cec5SDimitry Andric     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10135f757f3fSDimitry Andric       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
10145f757f3fSDimitry Andric         if (NonPhiInVal)
10150b57cec5SDimitry Andric           return false;
10165f757f3fSDimitry Andric         NonPhiInVal = OpPN;
10175f757f3fSDimitry Andric       }
10180b57cec5SDimitry Andric     } else if (Op != NonPhiInVal)
10190b57cec5SDimitry Andric       return false;
10200b57cec5SDimitry Andric   }
10210b57cec5SDimitry Andric 
10220b57cec5SDimitry Andric   return true;
10230b57cec5SDimitry Andric }
10240b57cec5SDimitry Andric 
10250b57cec5SDimitry Andric /// Return an existing non-zero constant if this phi node has one, otherwise
10260b57cec5SDimitry Andric /// return constant 1.
getAnyNonZeroConstInt(PHINode & PN)10271fd87a68SDimitry Andric static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
10280b57cec5SDimitry Andric   assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
10290b57cec5SDimitry Andric   for (Value *V : PN.operands())
10300b57cec5SDimitry Andric     if (auto *ConstVA = dyn_cast<ConstantInt>(V))
10310b57cec5SDimitry Andric       if (!ConstVA->isZero())
10320b57cec5SDimitry Andric         return ConstVA;
10330b57cec5SDimitry Andric   return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
10340b57cec5SDimitry Andric }
10350b57cec5SDimitry Andric 
10360b57cec5SDimitry Andric namespace {
10370b57cec5SDimitry Andric struct PHIUsageRecord {
10380b57cec5SDimitry Andric   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
10390b57cec5SDimitry Andric   unsigned Shift;     // The amount shifted.
10400b57cec5SDimitry Andric   Instruction *Inst;  // The trunc instruction.
10410b57cec5SDimitry Andric 
PHIUsageRecord__anon063dd3dc0611::PHIUsageRecord10421fd87a68SDimitry Andric   PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
10431fd87a68SDimitry Andric       : PHIId(Pn), Shift(Sh), Inst(User) {}
10440b57cec5SDimitry Andric 
operator <__anon063dd3dc0611::PHIUsageRecord10450b57cec5SDimitry Andric   bool operator<(const PHIUsageRecord &RHS) const {
10460b57cec5SDimitry Andric     if (PHIId < RHS.PHIId) return true;
10470b57cec5SDimitry Andric     if (PHIId > RHS.PHIId) return false;
10480b57cec5SDimitry Andric     if (Shift < RHS.Shift) return true;
10490b57cec5SDimitry Andric     if (Shift > RHS.Shift) return false;
10500b57cec5SDimitry Andric     return Inst->getType()->getPrimitiveSizeInBits() <
10510b57cec5SDimitry Andric            RHS.Inst->getType()->getPrimitiveSizeInBits();
10520b57cec5SDimitry Andric   }
10530b57cec5SDimitry Andric };
10540b57cec5SDimitry Andric 
10550b57cec5SDimitry Andric struct LoweredPHIRecord {
10560b57cec5SDimitry Andric   PHINode *PN;        // The PHI that was lowered.
10570b57cec5SDimitry Andric   unsigned Shift;     // The amount shifted.
10580b57cec5SDimitry Andric   unsigned Width;     // The width extracted.
10590b57cec5SDimitry Andric 
LoweredPHIRecord__anon063dd3dc0611::LoweredPHIRecord10601fd87a68SDimitry Andric   LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
10611fd87a68SDimitry Andric       : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
10620b57cec5SDimitry Andric 
10630b57cec5SDimitry Andric   // Ctor form used by DenseMap.
LoweredPHIRecord__anon063dd3dc0611::LoweredPHIRecord10641fd87a68SDimitry Andric   LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
10650b57cec5SDimitry Andric };
1066e8d8bef9SDimitry Andric } // namespace
10670b57cec5SDimitry Andric 
10680b57cec5SDimitry Andric namespace llvm {
10690b57cec5SDimitry Andric   template<>
10700b57cec5SDimitry Andric   struct DenseMapInfo<LoweredPHIRecord> {
getEmptyKeyllvm::DenseMapInfo10710b57cec5SDimitry Andric     static inline LoweredPHIRecord getEmptyKey() {
10720b57cec5SDimitry Andric       return LoweredPHIRecord(nullptr, 0);
10730b57cec5SDimitry Andric     }
getTombstoneKeyllvm::DenseMapInfo10740b57cec5SDimitry Andric     static inline LoweredPHIRecord getTombstoneKey() {
10750b57cec5SDimitry Andric       return LoweredPHIRecord(nullptr, 1);
10760b57cec5SDimitry Andric     }
getHashValuellvm::DenseMapInfo10770b57cec5SDimitry Andric     static unsigned getHashValue(const LoweredPHIRecord &Val) {
10780b57cec5SDimitry Andric       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
10790b57cec5SDimitry Andric              (Val.Width>>3);
10800b57cec5SDimitry Andric     }
isEqualllvm::DenseMapInfo10810b57cec5SDimitry Andric     static bool isEqual(const LoweredPHIRecord &LHS,
10820b57cec5SDimitry Andric                         const LoweredPHIRecord &RHS) {
10830b57cec5SDimitry Andric       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
10840b57cec5SDimitry Andric              LHS.Width == RHS.Width;
10850b57cec5SDimitry Andric     }
10860b57cec5SDimitry Andric   };
1087e8d8bef9SDimitry Andric } // namespace llvm
10880b57cec5SDimitry Andric 
10890b57cec5SDimitry Andric 
10900b57cec5SDimitry Andric /// This is an integer PHI and we know that it has an illegal type: see if it is
10910b57cec5SDimitry Andric /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
10920b57cec5SDimitry Andric /// the various pieces being extracted. This sort of thing is introduced when
10930b57cec5SDimitry Andric /// SROA promotes an aggregate to large integer values.
10940b57cec5SDimitry Andric ///
10950b57cec5SDimitry Andric /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
10960b57cec5SDimitry Andric /// inttoptr.  We should produce new PHIs in the right type.
10970b57cec5SDimitry Andric ///
SliceUpIllegalIntegerPHI(PHINode & FirstPhi)1098e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
10990b57cec5SDimitry Andric   // PHIUsers - Keep track of all of the truncated values extracted from a set
11000b57cec5SDimitry Andric   // of PHIs, along with their offset.  These are the things we want to rewrite.
11010b57cec5SDimitry Andric   SmallVector<PHIUsageRecord, 16> PHIUsers;
11020b57cec5SDimitry Andric 
11030b57cec5SDimitry Andric   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
11040b57cec5SDimitry Andric   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
11050b57cec5SDimitry Andric   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
11060b57cec5SDimitry Andric   // check the uses of (to ensure they are all extracts).
11070b57cec5SDimitry Andric   SmallVector<PHINode*, 8> PHIsToSlice;
11080b57cec5SDimitry Andric   SmallPtrSet<PHINode*, 8> PHIsInspected;
11090b57cec5SDimitry Andric 
11100b57cec5SDimitry Andric   PHIsToSlice.push_back(&FirstPhi);
11110b57cec5SDimitry Andric   PHIsInspected.insert(&FirstPhi);
11120b57cec5SDimitry Andric 
11130b57cec5SDimitry Andric   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
11140b57cec5SDimitry Andric     PHINode *PN = PHIsToSlice[PHIId];
11150b57cec5SDimitry Andric 
11160b57cec5SDimitry Andric     // Scan the input list of the PHI.  If any input is an invoke, and if the
11170b57cec5SDimitry Andric     // input is defined in the predecessor, then we won't be split the critical
11180b57cec5SDimitry Andric     // edge which is required to insert a truncate.  Because of this, we have to
11190b57cec5SDimitry Andric     // bail out.
11201fd87a68SDimitry Andric     for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
11211fd87a68SDimitry Andric       BasicBlock *BB = std::get<0>(Incoming);
11221fd87a68SDimitry Andric       Value *V = std::get<1>(Incoming);
11231fd87a68SDimitry Andric       InvokeInst *II = dyn_cast<InvokeInst>(V);
11241fd87a68SDimitry Andric       if (!II)
11251fd87a68SDimitry Andric         continue;
11261fd87a68SDimitry Andric       if (II->getParent() != BB)
11270b57cec5SDimitry Andric         continue;
11280b57cec5SDimitry Andric 
11290b57cec5SDimitry Andric       // If we have a phi, and if it's directly in the predecessor, then we have
11300b57cec5SDimitry Andric       // a critical edge where we need to put the truncate.  Since we can't
11310b57cec5SDimitry Andric       // split the edge in instcombine, we have to bail out.
11320b57cec5SDimitry Andric       return nullptr;
11330b57cec5SDimitry Andric     }
11340b57cec5SDimitry Andric 
113581ad6265SDimitry Andric     // If the incoming value is a PHI node before a catchswitch, we cannot
113681ad6265SDimitry Andric     // extract the value within that BB because we cannot insert any non-PHI
113781ad6265SDimitry Andric     // instructions in the BB.
113881ad6265SDimitry Andric     for (auto *Pred : PN->blocks())
113981ad6265SDimitry Andric       if (Pred->getFirstInsertionPt() == Pred->end())
114081ad6265SDimitry Andric         return nullptr;
114181ad6265SDimitry Andric 
11420b57cec5SDimitry Andric     for (User *U : PN->users()) {
11430b57cec5SDimitry Andric       Instruction *UserI = cast<Instruction>(U);
11440b57cec5SDimitry Andric 
11450b57cec5SDimitry Andric       // If the user is a PHI, inspect its uses recursively.
11460b57cec5SDimitry Andric       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
11470b57cec5SDimitry Andric         if (PHIsInspected.insert(UserPN).second)
11480b57cec5SDimitry Andric           PHIsToSlice.push_back(UserPN);
11490b57cec5SDimitry Andric         continue;
11500b57cec5SDimitry Andric       }
11510b57cec5SDimitry Andric 
11520b57cec5SDimitry Andric       // Truncates are always ok.
11530b57cec5SDimitry Andric       if (isa<TruncInst>(UserI)) {
11540b57cec5SDimitry Andric         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
11550b57cec5SDimitry Andric         continue;
11560b57cec5SDimitry Andric       }
11570b57cec5SDimitry Andric 
11580b57cec5SDimitry Andric       // Otherwise it must be a lshr which can only be used by one trunc.
11590b57cec5SDimitry Andric       if (UserI->getOpcode() != Instruction::LShr ||
11600b57cec5SDimitry Andric           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
11610b57cec5SDimitry Andric           !isa<ConstantInt>(UserI->getOperand(1)))
11620b57cec5SDimitry Andric         return nullptr;
11630b57cec5SDimitry Andric 
11640b57cec5SDimitry Andric       // Bail on out of range shifts.
11650b57cec5SDimitry Andric       unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
11660b57cec5SDimitry Andric       if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
11670b57cec5SDimitry Andric         return nullptr;
11680b57cec5SDimitry Andric 
11690b57cec5SDimitry Andric       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
11700b57cec5SDimitry Andric       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
11710b57cec5SDimitry Andric     }
11720b57cec5SDimitry Andric   }
11730b57cec5SDimitry Andric 
11740b57cec5SDimitry Andric   // If we have no users, they must be all self uses, just nuke the PHI.
11750b57cec5SDimitry Andric   if (PHIUsers.empty())
1176fe6060f1SDimitry Andric     return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
11770b57cec5SDimitry Andric 
11780b57cec5SDimitry Andric   // If this phi node is transformable, create new PHIs for all the pieces
11790b57cec5SDimitry Andric   // extracted out of it.  First, sort the users by their offset and size.
11800b57cec5SDimitry Andric   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
11810b57cec5SDimitry Andric 
11820b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
11831fd87a68SDimitry Andric              for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
11841fd87a68SDimitry Andric              << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
11850b57cec5SDimitry Andric 
11860b57cec5SDimitry Andric   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
11870b57cec5SDimitry Andric   // hoisted out here to avoid construction/destruction thrashing.
11880b57cec5SDimitry Andric   DenseMap<BasicBlock*, Value*> PredValues;
11890b57cec5SDimitry Andric 
11900b57cec5SDimitry Andric   // ExtractedVals - Each new PHI we introduce is saved here so we don't
11910b57cec5SDimitry Andric   // introduce redundant PHIs.
11920b57cec5SDimitry Andric   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
11930b57cec5SDimitry Andric 
11940b57cec5SDimitry Andric   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
11950b57cec5SDimitry Andric     unsigned PHIId = PHIUsers[UserI].PHIId;
11960b57cec5SDimitry Andric     PHINode *PN = PHIsToSlice[PHIId];
11970b57cec5SDimitry Andric     unsigned Offset = PHIUsers[UserI].Shift;
11980b57cec5SDimitry Andric     Type *Ty = PHIUsers[UserI].Inst->getType();
11990b57cec5SDimitry Andric 
12000b57cec5SDimitry Andric     PHINode *EltPHI;
12010b57cec5SDimitry Andric 
12020b57cec5SDimitry Andric     // If we've already lowered a user like this, reuse the previously lowered
12030b57cec5SDimitry Andric     // value.
12040b57cec5SDimitry Andric     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
12050b57cec5SDimitry Andric 
12060b57cec5SDimitry Andric       // Otherwise, Create the new PHI node for this user.
12070b57cec5SDimitry Andric       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
12080b57cec5SDimitry Andric                                PN->getName()+".off"+Twine(Offset), PN);
12090b57cec5SDimitry Andric       assert(EltPHI->getType() != PN->getType() &&
12100b57cec5SDimitry Andric              "Truncate didn't shrink phi?");
12110b57cec5SDimitry Andric 
12121fd87a68SDimitry Andric       for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
12131fd87a68SDimitry Andric         BasicBlock *Pred = std::get<0>(Incoming);
12141fd87a68SDimitry Andric         Value *InVal = std::get<1>(Incoming);
12150b57cec5SDimitry Andric         Value *&PredVal = PredValues[Pred];
12160b57cec5SDimitry Andric 
12170b57cec5SDimitry Andric         // If we already have a value for this predecessor, reuse it.
12180b57cec5SDimitry Andric         if (PredVal) {
12190b57cec5SDimitry Andric           EltPHI->addIncoming(PredVal, Pred);
12200b57cec5SDimitry Andric           continue;
12210b57cec5SDimitry Andric         }
12220b57cec5SDimitry Andric 
12230b57cec5SDimitry Andric         // Handle the PHI self-reuse case.
12240b57cec5SDimitry Andric         if (InVal == PN) {
12250b57cec5SDimitry Andric           PredVal = EltPHI;
12260b57cec5SDimitry Andric           EltPHI->addIncoming(PredVal, Pred);
12270b57cec5SDimitry Andric           continue;
12280b57cec5SDimitry Andric         }
12290b57cec5SDimitry Andric 
12300b57cec5SDimitry Andric         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
12310b57cec5SDimitry Andric           // If the incoming value was a PHI, and if it was one of the PHIs we
12320b57cec5SDimitry Andric           // already rewrote it, just use the lowered value.
12330b57cec5SDimitry Andric           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
12340b57cec5SDimitry Andric             PredVal = Res;
12350b57cec5SDimitry Andric             EltPHI->addIncoming(PredVal, Pred);
12360b57cec5SDimitry Andric             continue;
12370b57cec5SDimitry Andric           }
12380b57cec5SDimitry Andric         }
12390b57cec5SDimitry Andric 
12400b57cec5SDimitry Andric         // Otherwise, do an extract in the predecessor.
12410b57cec5SDimitry Andric         Builder.SetInsertPoint(Pred->getTerminator());
12420b57cec5SDimitry Andric         Value *Res = InVal;
12430b57cec5SDimitry Andric         if (Offset)
12441fd87a68SDimitry Andric           Res = Builder.CreateLShr(
12451fd87a68SDimitry Andric               Res, ConstantInt::get(InVal->getType(), Offset), "extract");
12460b57cec5SDimitry Andric         Res = Builder.CreateTrunc(Res, Ty, "extract.t");
12470b57cec5SDimitry Andric         PredVal = Res;
12480b57cec5SDimitry Andric         EltPHI->addIncoming(Res, Pred);
12490b57cec5SDimitry Andric 
12500b57cec5SDimitry Andric         // If the incoming value was a PHI, and if it was one of the PHIs we are
12510b57cec5SDimitry Andric         // rewriting, we will ultimately delete the code we inserted.  This
12520b57cec5SDimitry Andric         // means we need to revisit that PHI to make sure we extract out the
12530b57cec5SDimitry Andric         // needed piece.
12541fd87a68SDimitry Andric         if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
12550b57cec5SDimitry Andric           if (PHIsInspected.count(OldInVal)) {
12560b57cec5SDimitry Andric             unsigned RefPHIId =
12570b57cec5SDimitry Andric                 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
12581fd87a68SDimitry Andric             PHIUsers.push_back(
12591fd87a68SDimitry Andric                 PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
12600b57cec5SDimitry Andric             ++UserE;
12610b57cec5SDimitry Andric           }
12620b57cec5SDimitry Andric       }
12630b57cec5SDimitry Andric       PredValues.clear();
12640b57cec5SDimitry Andric 
12650b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
12660b57cec5SDimitry Andric                         << *EltPHI << '\n');
12670b57cec5SDimitry Andric       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
12680b57cec5SDimitry Andric     }
12690b57cec5SDimitry Andric 
12700b57cec5SDimitry Andric     // Replace the use of this piece with the PHI node.
12710b57cec5SDimitry Andric     replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
12720b57cec5SDimitry Andric   }
12730b57cec5SDimitry Andric 
12740b57cec5SDimitry Andric   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1275fe6060f1SDimitry Andric   // with poison.
1276fe6060f1SDimitry Andric   Value *Poison = PoisonValue::get(FirstPhi.getType());
12771fd87a68SDimitry Andric   for (PHINode *PHI : drop_begin(PHIsToSlice))
12781fd87a68SDimitry Andric     replaceInstUsesWith(*PHI, Poison);
1279fe6060f1SDimitry Andric   return replaceInstUsesWith(FirstPhi, Poison);
12800b57cec5SDimitry Andric }
12810b57cec5SDimitry Andric 
simplifyUsingControlFlow(InstCombiner & Self,PHINode & PN,const DominatorTree & DT)12821fd87a68SDimitry Andric static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
1283e8d8bef9SDimitry Andric                                        const DominatorTree &DT) {
1284e8d8bef9SDimitry Andric   // Simplify the following patterns:
1285e8d8bef9SDimitry Andric   //       if (cond)
1286e8d8bef9SDimitry Andric   //       /       \
1287e8d8bef9SDimitry Andric   //      ...      ...
1288e8d8bef9SDimitry Andric   //       \       /
1289e8d8bef9SDimitry Andric   //    phi [true] [false]
129081ad6265SDimitry Andric   // and
129181ad6265SDimitry Andric   //        switch (cond)
129281ad6265SDimitry Andric   // case v1: /       \ case v2:
129381ad6265SDimitry Andric   //         ...      ...
129481ad6265SDimitry Andric   //          \       /
129581ad6265SDimitry Andric   //       phi [v1] [v2]
1296e8d8bef9SDimitry Andric   // Make sure all inputs are constants.
1297e8d8bef9SDimitry Andric   if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1298e8d8bef9SDimitry Andric     return nullptr;
1299e8d8bef9SDimitry Andric 
1300e8d8bef9SDimitry Andric   BasicBlock *BB = PN.getParent();
1301e8d8bef9SDimitry Andric   // Do not bother with unreachable instructions.
1302e8d8bef9SDimitry Andric   if (!DT.isReachableFromEntry(BB))
1303e8d8bef9SDimitry Andric     return nullptr;
1304e8d8bef9SDimitry Andric 
130581ad6265SDimitry Andric   // Determine which value the condition of the idom has for which successor.
130681ad6265SDimitry Andric   LLVMContext &Context = PN.getContext();
1307e8d8bef9SDimitry Andric   auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
130881ad6265SDimitry Andric   Value *Cond;
130981ad6265SDimitry Andric   SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
131081ad6265SDimitry Andric   SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
131181ad6265SDimitry Andric   auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
131281ad6265SDimitry Andric     SuccForValue[C] = Succ;
131381ad6265SDimitry Andric     ++SuccCount[Succ];
131481ad6265SDimitry Andric   };
131581ad6265SDimitry Andric   if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
131681ad6265SDimitry Andric     if (BI->isUnconditional())
131781ad6265SDimitry Andric       return nullptr;
131881ad6265SDimitry Andric 
131981ad6265SDimitry Andric     Cond = BI->getCondition();
132081ad6265SDimitry Andric     AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
132181ad6265SDimitry Andric     AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
132281ad6265SDimitry Andric   } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
132381ad6265SDimitry Andric     Cond = SI->getCondition();
132481ad6265SDimitry Andric     ++SuccCount[SI->getDefaultDest()];
132581ad6265SDimitry Andric     for (auto Case : SI->cases())
132681ad6265SDimitry Andric       AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
132781ad6265SDimitry Andric   } else {
132881ad6265SDimitry Andric     return nullptr;
132981ad6265SDimitry Andric   }
133081ad6265SDimitry Andric 
133181ad6265SDimitry Andric   if (Cond->getType() != PN.getType())
1332e8d8bef9SDimitry Andric     return nullptr;
1333e8d8bef9SDimitry Andric 
1334e8d8bef9SDimitry Andric   // Check that edges outgoing from the idom's terminators dominate respective
1335e8d8bef9SDimitry Andric   // inputs of the Phi.
1336bdd1243dSDimitry Andric   std::optional<bool> Invert;
133781ad6265SDimitry Andric   for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
133881ad6265SDimitry Andric     auto *Input = cast<ConstantInt>(std::get<0>(Pair));
133981ad6265SDimitry Andric     BasicBlock *Pred = std::get<1>(Pair);
134081ad6265SDimitry Andric     auto IsCorrectInput = [&](ConstantInt *Input) {
134181ad6265SDimitry Andric       // The input needs to be dominated by the corresponding edge of the idom.
134281ad6265SDimitry Andric       // This edge cannot be a multi-edge, as that would imply that multiple
134381ad6265SDimitry Andric       // different condition values follow the same edge.
134481ad6265SDimitry Andric       auto It = SuccForValue.find(Input);
134581ad6265SDimitry Andric       return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
134681ad6265SDimitry Andric              DT.dominates(BasicBlockEdge(IDom, It->second),
134781ad6265SDimitry Andric                           BasicBlockEdge(Pred, BB));
134881ad6265SDimitry Andric     };
1349e8d8bef9SDimitry Andric 
135081ad6265SDimitry Andric     // Depending on the constant, the condition may need to be inverted.
135181ad6265SDimitry Andric     bool NeedsInvert;
135281ad6265SDimitry Andric     if (IsCorrectInput(Input))
135381ad6265SDimitry Andric       NeedsInvert = false;
135481ad6265SDimitry Andric     else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
135581ad6265SDimitry Andric       NeedsInvert = true;
135681ad6265SDimitry Andric     else
135781ad6265SDimitry Andric       return nullptr;
1358e8d8bef9SDimitry Andric 
135981ad6265SDimitry Andric     // Make sure the inversion requirement is always the same.
136081ad6265SDimitry Andric     if (Invert && *Invert != NeedsInvert)
136181ad6265SDimitry Andric       return nullptr;
136281ad6265SDimitry Andric 
136381ad6265SDimitry Andric     Invert = NeedsInvert;
136481ad6265SDimitry Andric   }
136581ad6265SDimitry Andric 
136681ad6265SDimitry Andric   if (!*Invert)
1367e8d8bef9SDimitry Andric     return Cond;
136881ad6265SDimitry Andric 
1369e8d8bef9SDimitry Andric   // This Phi is actually opposite to branching condition of IDom. We invert
1370e8d8bef9SDimitry Andric   // the condition that will potentially open up some opportunities for
1371e8d8bef9SDimitry Andric   // sinking.
1372e8d8bef9SDimitry Andric   auto InsertPt = BB->getFirstInsertionPt();
1373e8d8bef9SDimitry Andric   if (InsertPt != BB->end()) {
13745f757f3fSDimitry Andric     Self.Builder.SetInsertPoint(&*BB, InsertPt);
1375e8d8bef9SDimitry Andric     return Self.Builder.CreateNot(Cond);
1376e8d8bef9SDimitry Andric   }
1377e8d8bef9SDimitry Andric 
1378e8d8bef9SDimitry Andric   return nullptr;
1379e8d8bef9SDimitry Andric }
1380e8d8bef9SDimitry Andric 
13810b57cec5SDimitry Andric // PHINode simplification
13820b57cec5SDimitry Andric //
visitPHINode(PHINode & PN)1383e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
138481ad6265SDimitry Andric   if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
13850b57cec5SDimitry Andric     return replaceInstUsesWith(PN, V);
13860b57cec5SDimitry Andric 
1387e8d8bef9SDimitry Andric   if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
13880b57cec5SDimitry Andric     return Result;
13890b57cec5SDimitry Andric 
1390349cc55cSDimitry Andric   if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1391349cc55cSDimitry Andric     return Result;
1392349cc55cSDimitry Andric 
13930b57cec5SDimitry Andric   // If all PHI operands are the same operation, pull them through the PHI,
13940b57cec5SDimitry Andric   // reducing code size.
139506c3fb27SDimitry Andric   auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
139606c3fb27SDimitry Andric   auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
139706c3fb27SDimitry Andric   if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
139806c3fb27SDimitry Andric       Inst0->hasOneUser())
1399e8d8bef9SDimitry Andric     if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
14000b57cec5SDimitry Andric       return Result;
14010b57cec5SDimitry Andric 
1402fe6060f1SDimitry Andric   // If the incoming values are pointer casts of the same original value,
1403fe6060f1SDimitry Andric   // replace the phi with a single cast iff we can insert a non-PHI instruction.
1404fe6060f1SDimitry Andric   if (PN.getType()->isPointerTy() &&
1405fe6060f1SDimitry Andric       PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1406fe6060f1SDimitry Andric     Value *IV0 = PN.getIncomingValue(0);
1407fe6060f1SDimitry Andric     Value *IV0Stripped = IV0->stripPointerCasts();
1408fe6060f1SDimitry Andric     // Set to keep track of values known to be equal to IV0Stripped after
1409fe6060f1SDimitry Andric     // stripping pointer casts.
1410fe6060f1SDimitry Andric     SmallPtrSet<Value *, 4> CheckedIVs;
1411fe6060f1SDimitry Andric     CheckedIVs.insert(IV0);
1412fe6060f1SDimitry Andric     if (IV0 != IV0Stripped &&
1413fe6060f1SDimitry Andric         all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1414fe6060f1SDimitry Andric           return !CheckedIVs.insert(IV).second ||
1415fe6060f1SDimitry Andric                  IV0Stripped == IV->stripPointerCasts();
1416fe6060f1SDimitry Andric         })) {
1417fe6060f1SDimitry Andric       return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1418fe6060f1SDimitry Andric     }
1419fe6060f1SDimitry Andric   }
1420fe6060f1SDimitry Andric 
14210b57cec5SDimitry Andric   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
14220b57cec5SDimitry Andric   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
14230b57cec5SDimitry Andric   // PHI)... break the cycle.
14240b57cec5SDimitry Andric   if (PN.hasOneUse()) {
1425bdd1243dSDimitry Andric     if (foldIntegerTypedPHI(PN))
1426bdd1243dSDimitry Andric       return nullptr;
14270b57cec5SDimitry Andric 
14280b57cec5SDimitry Andric     Instruction *PHIUser = cast<Instruction>(PN.user_back());
14290b57cec5SDimitry Andric     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
14300b57cec5SDimitry Andric       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
14310b57cec5SDimitry Andric       PotentiallyDeadPHIs.insert(&PN);
14321fd87a68SDimitry Andric       if (isDeadPHICycle(PU, PotentiallyDeadPHIs))
1433fe6060f1SDimitry Andric         return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
14340b57cec5SDimitry Andric     }
14350b57cec5SDimitry Andric 
14360b57cec5SDimitry Andric     // If this phi has a single use, and if that use just computes a value for
14370b57cec5SDimitry Andric     // the next iteration of a loop, delete the phi.  This occurs with unused
14380b57cec5SDimitry Andric     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
14390b57cec5SDimitry Andric     // common case here is good because the only other things that catch this
14400b57cec5SDimitry Andric     // are induction variable analysis (sometimes) and ADCE, which is only run
14410b57cec5SDimitry Andric     // late.
14420b57cec5SDimitry Andric     if (PHIUser->hasOneUse() &&
14435f757f3fSDimitry Andric         (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
14445f757f3fSDimitry Andric          isa<GetElementPtrInst>(PHIUser)) &&
14450b57cec5SDimitry Andric         PHIUser->user_back() == &PN) {
1446fe6060f1SDimitry Andric       return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
14470b57cec5SDimitry Andric     }
14485f757f3fSDimitry Andric   }
14495f757f3fSDimitry Andric 
14500b57cec5SDimitry Andric   // When a PHI is used only to be compared with zero, it is safe to replace
14510b57cec5SDimitry Andric   // an incoming value proved as known nonzero with any non-zero constant.
14520b57cec5SDimitry Andric   // For example, in the code below, the incoming value %v can be replaced
14530b57cec5SDimitry Andric   // with any non-zero constant based on the fact that the PHI is only used to
14540b57cec5SDimitry Andric   // be compared with zero and %v is a known non-zero value:
14550b57cec5SDimitry Andric   // %v = select %cond, 1, 2
14560b57cec5SDimitry Andric   // %p = phi [%v, BB] ...
14570b57cec5SDimitry Andric   //      icmp eq, %p, 0
14580b57cec5SDimitry Andric   // FIXME: To be simple, handle only integer type for now.
14595f757f3fSDimitry Andric   // This handles a small number of uses to keep the complexity down, and an
14605f757f3fSDimitry Andric   // icmp(or(phi)) can equally be replaced with any non-zero constant as the
14615f757f3fSDimitry Andric   // "or" will only add bits.
14625f757f3fSDimitry Andric   if (!PN.hasNUsesOrMore(3)) {
14635f757f3fSDimitry Andric     SmallVector<Instruction *> DropPoisonFlags;
14645f757f3fSDimitry Andric     bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
14655f757f3fSDimitry Andric       auto *CmpInst = dyn_cast<ICmpInst>(U);
14665f757f3fSDimitry Andric       if (!CmpInst) {
14675f757f3fSDimitry Andric         // This is always correct as OR only add bits and we are checking
14685f757f3fSDimitry Andric         // against 0.
14695f757f3fSDimitry Andric         if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
14705f757f3fSDimitry Andric           DropPoisonFlags.push_back(cast<Instruction>(U));
14715f757f3fSDimitry Andric           CmpInst = dyn_cast<ICmpInst>(U->user_back());
14725f757f3fSDimitry Andric         }
14735f757f3fSDimitry Andric       }
14745f757f3fSDimitry Andric       if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
14755f757f3fSDimitry Andric           !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
14765f757f3fSDimitry Andric         return false;
14775f757f3fSDimitry Andric       }
14785f757f3fSDimitry Andric       return true;
14795f757f3fSDimitry Andric     });
14805f757f3fSDimitry Andric     // All uses of PHI results in a compare with zero.
14815f757f3fSDimitry Andric     if (AllUsesOfPhiEndsInCmp) {
14820b57cec5SDimitry Andric       ConstantInt *NonZeroConst = nullptr;
14835ffd83dbSDimitry Andric       bool MadeChange = false;
14841fd87a68SDimitry Andric       for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
14851fd87a68SDimitry Andric         Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
14861fd87a68SDimitry Andric         Value *VA = PN.getIncomingValue(I);
14870b57cec5SDimitry Andric         if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
14880b57cec5SDimitry Andric           if (!NonZeroConst)
14891fd87a68SDimitry Andric             NonZeroConst = getAnyNonZeroConstInt(PN);
14905ffd83dbSDimitry Andric           if (NonZeroConst != VA) {
14911fd87a68SDimitry Andric             replaceOperand(PN, I, NonZeroConst);
14925f757f3fSDimitry Andric             // The "disjoint" flag may no longer hold after the transform.
14935f757f3fSDimitry Andric             for (Instruction *I : DropPoisonFlags)
14945f757f3fSDimitry Andric               I->dropPoisonGeneratingFlags();
14955ffd83dbSDimitry Andric             MadeChange = true;
14960b57cec5SDimitry Andric           }
14970b57cec5SDimitry Andric         }
14980b57cec5SDimitry Andric       }
14995ffd83dbSDimitry Andric       if (MadeChange)
15005ffd83dbSDimitry Andric         return &PN;
15015ffd83dbSDimitry Andric     }
15020b57cec5SDimitry Andric   }
15030b57cec5SDimitry Andric 
15040b57cec5SDimitry Andric   // We sometimes end up with phi cycles that non-obviously end up being the
15050b57cec5SDimitry Andric   // same value, for example:
15060b57cec5SDimitry Andric   //   z = some value; x = phi (y, z); y = phi (x, z)
15070b57cec5SDimitry Andric   // where the phi nodes don't necessarily need to be in the same block.  Do a
15080b57cec5SDimitry Andric   // quick check to see if the PHI node only contains a single non-phi value, if
15095f757f3fSDimitry Andric   // so, scan to see if the phi cycle is actually equal to that value. If the
15105f757f3fSDimitry Andric   // phi has no non-phi values then allow the "NonPhiInVal" to be set later if
15115f757f3fSDimitry Andric   // one of the phis itself does not have a single input.
15120b57cec5SDimitry Andric   {
15130b57cec5SDimitry Andric     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
15140b57cec5SDimitry Andric     // Scan for the first non-phi operand.
15150b57cec5SDimitry Andric     while (InValNo != NumIncomingVals &&
15160b57cec5SDimitry Andric            isa<PHINode>(PN.getIncomingValue(InValNo)))
15170b57cec5SDimitry Andric       ++InValNo;
15180b57cec5SDimitry Andric 
15195f757f3fSDimitry Andric     Value *NonPhiInVal =
15205f757f3fSDimitry Andric         InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
15210b57cec5SDimitry Andric 
15220b57cec5SDimitry Andric     // Scan the rest of the operands to see if there are any conflicts, if so
15230b57cec5SDimitry Andric     // there is no need to recursively scan other phis.
15245f757f3fSDimitry Andric     if (NonPhiInVal)
15250b57cec5SDimitry Andric       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
15260b57cec5SDimitry Andric         Value *OpVal = PN.getIncomingValue(InValNo);
15270b57cec5SDimitry Andric         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
15280b57cec5SDimitry Andric           break;
15290b57cec5SDimitry Andric       }
15300b57cec5SDimitry Andric 
15310b57cec5SDimitry Andric     // If we scanned over all operands, then we have one unique value plus
15320b57cec5SDimitry Andric     // phi values.  Scan PHI nodes to see if they all merge in each other or
15330b57cec5SDimitry Andric     // the value.
15340b57cec5SDimitry Andric     if (InValNo == NumIncomingVals) {
15350b57cec5SDimitry Andric       SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
15360b57cec5SDimitry Andric       if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
15370b57cec5SDimitry Andric         return replaceInstUsesWith(PN, NonPhiInVal);
15380b57cec5SDimitry Andric     }
15390b57cec5SDimitry Andric   }
15400b57cec5SDimitry Andric 
15410b57cec5SDimitry Andric   // If there are multiple PHIs, sort their operands so that they all list
15420b57cec5SDimitry Andric   // the blocks in the same order. This will help identical PHIs be eliminated
15430b57cec5SDimitry Andric   // by other passes. Other passes shouldn't depend on this for correctness
15440b57cec5SDimitry Andric   // however.
15455f757f3fSDimitry Andric   auto Res = PredOrder.try_emplace(PN.getParent());
15465f757f3fSDimitry Andric   if (!Res.second) {
15475f757f3fSDimitry Andric     const auto &Preds = Res.first->second;
15485f757f3fSDimitry Andric     for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
15491fd87a68SDimitry Andric       BasicBlock *BBA = PN.getIncomingBlock(I);
15505f757f3fSDimitry Andric       BasicBlock *BBB = Preds[I];
15510b57cec5SDimitry Andric       if (BBA != BBB) {
15521fd87a68SDimitry Andric         Value *VA = PN.getIncomingValue(I);
15531fd87a68SDimitry Andric         unsigned J = PN.getBasicBlockIndex(BBB);
15541fd87a68SDimitry Andric         Value *VB = PN.getIncomingValue(J);
15551fd87a68SDimitry Andric         PN.setIncomingBlock(I, BBB);
15561fd87a68SDimitry Andric         PN.setIncomingValue(I, VB);
15571fd87a68SDimitry Andric         PN.setIncomingBlock(J, BBA);
15581fd87a68SDimitry Andric         PN.setIncomingValue(J, VA);
15590b57cec5SDimitry Andric         // NOTE: Instcombine normally would want us to "return &PN" if we
15600b57cec5SDimitry Andric         // modified any of the operands of an instruction.  However, since we
15610b57cec5SDimitry Andric         // aren't adding or removing uses (just rearranging them) we don't do
15620b57cec5SDimitry Andric         // this in this case.
15630b57cec5SDimitry Andric       }
15640b57cec5SDimitry Andric     }
15655f757f3fSDimitry Andric   } else {
15665f757f3fSDimitry Andric     // Remember the block order of the first encountered phi node.
15675f757f3fSDimitry Andric     append_range(Res.first->second, PN.blocks());
15685f757f3fSDimitry Andric   }
15690b57cec5SDimitry Andric 
1570e8d8bef9SDimitry Andric   // Is there an identical PHI node in this basic block?
1571e8d8bef9SDimitry Andric   for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1572e8d8bef9SDimitry Andric     // Ignore the PHI node itself.
1573e8d8bef9SDimitry Andric     if (&IdenticalPN == &PN)
1574e8d8bef9SDimitry Andric       continue;
1575e8d8bef9SDimitry Andric     // Note that even though we've just canonicalized this PHI, due to the
1576e8d8bef9SDimitry Andric     // worklist visitation order, there are no guarantess that *every* PHI
1577e8d8bef9SDimitry Andric     // has been canonicalized, so we can't just compare operands ranges.
1578e8d8bef9SDimitry Andric     if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1579e8d8bef9SDimitry Andric       continue;
1580e8d8bef9SDimitry Andric     // Just use that PHI instead then.
1581e8d8bef9SDimitry Andric     ++NumPHICSEs;
1582e8d8bef9SDimitry Andric     return replaceInstUsesWith(PN, &IdenticalPN);
1583e8d8bef9SDimitry Andric   }
1584e8d8bef9SDimitry Andric 
15850b57cec5SDimitry Andric   // If this is an integer PHI and we know that it has an illegal type, see if
15860b57cec5SDimitry Andric   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
15870b57cec5SDimitry Andric   // PHI into the various pieces being extracted.  This sort of thing is
15880b57cec5SDimitry Andric   // introduced when SROA promotes an aggregate to a single large integer type.
15890b57cec5SDimitry Andric   if (PN.getType()->isIntegerTy() &&
15900b57cec5SDimitry Andric       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
15910b57cec5SDimitry Andric     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
15920b57cec5SDimitry Andric       return Res;
15930b57cec5SDimitry Andric 
1594e8d8bef9SDimitry Andric   // Ultimately, try to replace this Phi with a dominating condition.
15951fd87a68SDimitry Andric   if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
1596e8d8bef9SDimitry Andric     return replaceInstUsesWith(PN, V);
1597e8d8bef9SDimitry Andric 
15980b57cec5SDimitry Andric   return nullptr;
15990b57cec5SDimitry Andric }
1600