1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 using namespace llvm;
47 using namespace PatternMatch;
48 
49 STATISTIC(NumAggregateReconstructionsSimplified,
50           "Number of aggregate reconstructions turned into reuse of the "
51           "original aggregate");
52 
53 /// Return true if the value is cheaper to scalarize than it is to leave as a
54 /// vector operation. If the extract index \p EI is a constant integer then
55 /// some operations may be cheap to scalarize.
56 ///
57 /// FIXME: It's possible to create more instructions than previously existed.
58 static bool cheapToScalarize(Value *V, Value *EI) {
59   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
60 
61   // If we can pick a scalar constant value out of a vector, that is free.
62   if (auto *C = dyn_cast<Constant>(V))
63     return CEI || C->getSplatValue();
64 
65   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
66     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
67     // Index needs to be lower than the minimum size of the vector, because
68     // for scalable vector, the vector size is known at run time.
69     return CEI->getValue().ult(EC.getKnownMinValue());
70   }
71 
72   // An insertelement to the same constant index as our extract will simplify
73   // to the scalar inserted element. An insertelement to a different constant
74   // index is irrelevant to our extract.
75   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
76     return CEI;
77 
78   if (match(V, m_OneUse(m_Load(m_Value()))))
79     return true;
80 
81   if (match(V, m_OneUse(m_UnOp())))
82     return true;
83 
84   Value *V0, *V1;
85   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
86     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
87       return true;
88 
89   CmpInst::Predicate UnusedPred;
90   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
91     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
92       return true;
93 
94   return false;
95 }
96 
97 // If we have a PHI node with a vector type that is only used to feed
98 // itself and be an operand of extractelement at a constant location,
99 // try to replace the PHI of the vector type with a PHI of a scalar type.
100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
101                                             PHINode *PN) {
102   SmallVector<Instruction *, 2> Extracts;
103   // The users we want the PHI to have are:
104   // 1) The EI ExtractElement (we already know this)
105   // 2) Possibly more ExtractElements with the same index.
106   // 3) Another operand, which will feed back into the PHI.
107   Instruction *PHIUser = nullptr;
108   for (auto *U : PN->users()) {
109     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
110       if (EI.getIndexOperand() == EU->getIndexOperand())
111         Extracts.push_back(EU);
112       else
113         return nullptr;
114     } else if (!PHIUser) {
115       PHIUser = cast<Instruction>(U);
116     } else {
117       return nullptr;
118     }
119   }
120 
121   if (!PHIUser)
122     return nullptr;
123 
124   // Verify that this PHI user has one use, which is the PHI itself,
125   // and that it is a binary operation which is cheap to scalarize.
126   // otherwise return nullptr.
127   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
128       !(isa<BinaryOperator>(PHIUser)) ||
129       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
130     return nullptr;
131 
132   // Create a scalar PHI node that will replace the vector PHI node
133   // just before the current PHI node.
134   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
135       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
136   // Scalarize each PHI operand.
137   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
138     Value *PHIInVal = PN->getIncomingValue(i);
139     BasicBlock *inBB = PN->getIncomingBlock(i);
140     Value *Elt = EI.getIndexOperand();
141     // If the operand is the PHI induction variable:
142     if (PHIInVal == PHIUser) {
143       // Scalarize the binary operation. Its first operand is the
144       // scalar PHI, and the second operand is extracted from the other
145       // vector operand.
146       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
147       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
148       Value *Op = InsertNewInstWith(
149           ExtractElementInst::Create(B0->getOperand(opId), Elt,
150                                      B0->getOperand(opId)->getName() + ".Elt"),
151           *B0);
152       Value *newPHIUser = InsertNewInstWith(
153           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
154                                                 scalarPHI, Op, B0), *B0);
155       scalarPHI->addIncoming(newPHIUser, inBB);
156     } else {
157       // Scalarize PHI input:
158       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
159       // Insert the new instruction into the predecessor basic block.
160       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161       BasicBlock::iterator InsertPos;
162       if (pos && !isa<PHINode>(pos)) {
163         InsertPos = ++pos->getIterator();
164       } else {
165         InsertPos = inBB->getFirstInsertionPt();
166       }
167 
168       InsertNewInstWith(newEI, *InsertPos);
169 
170       scalarPHI->addIncoming(newEI, inBB);
171     }
172   }
173 
174   for (auto *E : Extracts) {
175     replaceInstUsesWith(*E, scalarPHI);
176     // Add old extract to worklist for DCE.
177     addToWorklist(E);
178   }
179 
180   return &EI;
181 }
182 
183 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
184   Value *X;
185   uint64_t ExtIndexC;
186   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
187       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
188     return nullptr;
189 
190   ElementCount NumElts =
191       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
192   Type *DestTy = Ext.getType();
193   unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
194   bool IsBigEndian = DL.isBigEndian();
195 
196   // If we are casting an integer to vector and extracting a portion, that is
197   // a shift-right and truncate.
198   if (X->getType()->isIntegerTy()) {
199     assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
200            "Expected fixed vector type for bitcast from scalar integer");
201 
202     // Big endian requires adjusting the extract index since MSB is at index 0.
203     // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
204     // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
205     if (IsBigEndian)
206       ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
207     unsigned ShiftAmountC = ExtIndexC * DestWidth;
208     if (!ShiftAmountC ||
209         (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) &&
210         Ext.getVectorOperand()->hasOneUse())) {
211       if (ShiftAmountC)
212         X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
213       if (DestTy->isFloatingPointTy()) {
214         Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
215         Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
216         return new BitCastInst(Trunc, DestTy);
217       }
218       return new TruncInst(X, DestTy);
219     }
220   }
221 
222   if (!X->getType()->isVectorTy())
223     return nullptr;
224 
225   // If this extractelement is using a bitcast from a vector of the same number
226   // of elements, see if we can find the source element from the source vector:
227   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
228   auto *SrcTy = cast<VectorType>(X->getType());
229   ElementCount NumSrcElts = SrcTy->getElementCount();
230   if (NumSrcElts == NumElts)
231     if (Value *Elt = findScalarElement(X, ExtIndexC))
232       return new BitCastInst(Elt, DestTy);
233 
234   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
235          "Src and Dst must be the same sort of vector type");
236 
237   // If the source elements are wider than the destination, try to shift and
238   // truncate a subset of scalar bits of an insert op.
239   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
240     Value *Scalar;
241     Value *Vec;
242     uint64_t InsIndexC;
243     if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
244                               m_ConstantInt(InsIndexC))))
245       return nullptr;
246 
247     // The extract must be from the subset of vector elements that we inserted
248     // into. Example: if we inserted element 1 of a <2 x i64> and we are
249     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
250     // of elements 4-7 of the bitcasted vector.
251     unsigned NarrowingRatio =
252         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
253 
254     if (ExtIndexC / NarrowingRatio != InsIndexC) {
255       // Remove insertelement, if we don't use the inserted element.
256       // extractelement (bitcast (insertelement (Vec, b)), a) ->
257       // extractelement (bitcast (Vec), a)
258       // FIXME: this should be removed to SimplifyDemandedVectorElts,
259       // once scale vectors are supported.
260       if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
261         Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
262         return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
263       }
264       return nullptr;
265     }
266 
267     // We are extracting part of the original scalar. How that scalar is
268     // inserted into the vector depends on the endian-ness. Example:
269     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
270     //                                       +--+--+--+--+--+--+--+--+
271     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
272     // extelt <4 x i16> V', 3:               |                 |S2|S3|
273     //                                       +--+--+--+--+--+--+--+--+
274     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
275     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
276     // In this example, we must right-shift little-endian. Big-endian is just a
277     // truncate.
278     unsigned Chunk = ExtIndexC % NarrowingRatio;
279     if (IsBigEndian)
280       Chunk = NarrowingRatio - 1 - Chunk;
281 
282     // Bail out if this is an FP vector to FP vector sequence. That would take
283     // more instructions than we started with unless there is no shift, and it
284     // may not be handled as well in the backend.
285     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
286     bool NeedDestBitcast = DestTy->isFloatingPointTy();
287     if (NeedSrcBitcast && NeedDestBitcast)
288       return nullptr;
289 
290     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
291     unsigned ShAmt = Chunk * DestWidth;
292 
293     // TODO: This limitation is more strict than necessary. We could sum the
294     // number of new instructions and subtract the number eliminated to know if
295     // we can proceed.
296     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
297       if (NeedSrcBitcast || NeedDestBitcast)
298         return nullptr;
299 
300     if (NeedSrcBitcast) {
301       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
302       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
303     }
304 
305     if (ShAmt) {
306       // Bail out if we could end with more instructions than we started with.
307       if (!Ext.getVectorOperand()->hasOneUse())
308         return nullptr;
309       Scalar = Builder.CreateLShr(Scalar, ShAmt);
310     }
311 
312     if (NeedDestBitcast) {
313       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
314       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
315     }
316     return new TruncInst(Scalar, DestTy);
317   }
318 
319   return nullptr;
320 }
321 
322 /// Find elements of V demanded by UserInstr.
323 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
324   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
325 
326   // Conservatively assume that all elements are needed.
327   APInt UsedElts(APInt::getAllOnes(VWidth));
328 
329   switch (UserInstr->getOpcode()) {
330   case Instruction::ExtractElement: {
331     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
332     assert(EEI->getVectorOperand() == V);
333     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
334     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
335       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
336     }
337     break;
338   }
339   case Instruction::ShuffleVector: {
340     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
341     unsigned MaskNumElts =
342         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
343 
344     UsedElts = APInt(VWidth, 0);
345     for (unsigned i = 0; i < MaskNumElts; i++) {
346       unsigned MaskVal = Shuffle->getMaskValue(i);
347       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
348         continue;
349       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
350         UsedElts.setBit(MaskVal);
351       if (Shuffle->getOperand(1) == V &&
352           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
353         UsedElts.setBit(MaskVal - VWidth);
354     }
355     break;
356   }
357   default:
358     break;
359   }
360   return UsedElts;
361 }
362 
363 /// Find union of elements of V demanded by all its users.
364 /// If it is known by querying findDemandedEltsBySingleUser that
365 /// no user demands an element of V, then the corresponding bit
366 /// remains unset in the returned value.
367 static APInt findDemandedEltsByAllUsers(Value *V) {
368   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
369 
370   APInt UnionUsedElts(VWidth, 0);
371   for (const Use &U : V->uses()) {
372     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
373       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
374     } else {
375       UnionUsedElts = APInt::getAllOnes(VWidth);
376       break;
377     }
378 
379     if (UnionUsedElts.isAllOnes())
380       break;
381   }
382 
383   return UnionUsedElts;
384 }
385 
386 /// Given a constant index for a extractelement or insertelement instruction,
387 /// return it with the canonical type if it isn't already canonical.  We
388 /// arbitrarily pick 64 bit as our canonical type.  The actual bitwidth doesn't
389 /// matter, we just want a consistent type to simplify CSE.
390 static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
391   const unsigned IndexBW = IndexC->getType()->getBitWidth();
392   if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
393     return nullptr;
394   return ConstantInt::get(IndexC->getContext(),
395                           IndexC->getValue().zextOrTrunc(64));
396 }
397 
398 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
399   Value *SrcVec = EI.getVectorOperand();
400   Value *Index = EI.getIndexOperand();
401   if (Value *V = simplifyExtractElementInst(SrcVec, Index,
402                                             SQ.getWithInstruction(&EI)))
403     return replaceInstUsesWith(EI, V);
404 
405   // extractelt (select %x, %vec1, %vec2), %const ->
406   // select %x, %vec1[%const], %vec2[%const]
407   // TODO: Support constant folding of multiple select operands:
408   // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
409   // If the extractelement will for instance try to do out of bounds accesses
410   // because of the values of %c1 and/or %c2, the sequence could be optimized
411   // early. This is currently not possible because constant folding will reach
412   // an unreachable assertion if it doesn't find a constant operand.
413   if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
414     if (SI->getCondition()->getType()->isIntegerTy() &&
415         isa<Constant>(EI.getIndexOperand()))
416       if (Instruction *R = FoldOpIntoSelect(EI, SI))
417         return R;
418 
419   // If extracting a specified index from the vector, see if we can recursively
420   // find a previously computed scalar that was inserted into the vector.
421   auto *IndexC = dyn_cast<ConstantInt>(Index);
422   if (IndexC) {
423     // Canonicalize type of constant indices to i64 to simplify CSE
424     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
425       return replaceOperand(EI, 1, NewIdx);
426 
427     ElementCount EC = EI.getVectorOperandType()->getElementCount();
428     unsigned NumElts = EC.getKnownMinValue();
429 
430     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
431       Intrinsic::ID IID = II->getIntrinsicID();
432       // Index needs to be lower than the minimum size of the vector, because
433       // for scalable vector, the vector size is known at run time.
434       if (IID == Intrinsic::experimental_stepvector &&
435           IndexC->getValue().ult(NumElts)) {
436         Type *Ty = EI.getType();
437         unsigned BitWidth = Ty->getIntegerBitWidth();
438         Value *Idx;
439         // Return index when its value does not exceed the allowed limit
440         // for the element type of the vector, otherwise return undefined.
441         if (IndexC->getValue().getActiveBits() <= BitWidth)
442           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
443         else
444           Idx = UndefValue::get(Ty);
445         return replaceInstUsesWith(EI, Idx);
446       }
447     }
448 
449     // InstSimplify should handle cases where the index is invalid.
450     // For fixed-length vector, it's invalid to extract out-of-range element.
451     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
452       return nullptr;
453 
454     if (Instruction *I = foldBitcastExtElt(EI))
455       return I;
456 
457     // If there's a vector PHI feeding a scalar use through this extractelement
458     // instruction, try to scalarize the PHI.
459     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
460       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
461         return ScalarPHI;
462   }
463 
464   // TODO come up with a n-ary matcher that subsumes both unary and
465   // binary matchers.
466   UnaryOperator *UO;
467   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
468     // extelt (unop X), Index --> unop (extelt X, Index)
469     Value *X = UO->getOperand(0);
470     Value *E = Builder.CreateExtractElement(X, Index);
471     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
472   }
473 
474   BinaryOperator *BO;
475   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
476     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
477     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
478     Value *E0 = Builder.CreateExtractElement(X, Index);
479     Value *E1 = Builder.CreateExtractElement(Y, Index);
480     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
481   }
482 
483   Value *X, *Y;
484   CmpInst::Predicate Pred;
485   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
486       cheapToScalarize(SrcVec, Index)) {
487     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
488     Value *E0 = Builder.CreateExtractElement(X, Index);
489     Value *E1 = Builder.CreateExtractElement(Y, Index);
490     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
491   }
492 
493   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
494     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
495       // instsimplify already handled the case where the indices are constants
496       // and equal by value, if both are constants, they must not be the same
497       // value, extract from the pre-inserted value instead.
498       if (isa<Constant>(IE->getOperand(2)) && IndexC)
499         return replaceOperand(EI, 0, IE->getOperand(0));
500     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
501       auto *VecType = cast<VectorType>(GEP->getType());
502       ElementCount EC = VecType->getElementCount();
503       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
504       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
505         // Find out why we have a vector result - these are a few examples:
506         //  1. We have a scalar pointer and a vector of indices, or
507         //  2. We have a vector of pointers and a scalar index, or
508         //  3. We have a vector of pointers and a vector of indices, etc.
509         // Here we only consider combining when there is exactly one vector
510         // operand, since the optimization is less obviously a win due to
511         // needing more than one extractelements.
512 
513         unsigned VectorOps =
514             llvm::count_if(GEP->operands(), [](const Value *V) {
515               return isa<VectorType>(V->getType());
516             });
517         if (VectorOps == 1) {
518           Value *NewPtr = GEP->getPointerOperand();
519           if (isa<VectorType>(NewPtr->getType()))
520             NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
521 
522           SmallVector<Value *> NewOps;
523           for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
524             Value *Op = GEP->getOperand(I);
525             if (isa<VectorType>(Op->getType()))
526               NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
527             else
528               NewOps.push_back(Op);
529           }
530 
531           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
532               GEP->getSourceElementType(), NewPtr, NewOps);
533           NewGEP->setIsInBounds(GEP->isInBounds());
534           return NewGEP;
535         }
536       }
537     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
538       // If this is extracting an element from a shufflevector, figure out where
539       // it came from and extract from the appropriate input element instead.
540       // Restrict the following transformation to fixed-length vector.
541       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
542         int SrcIdx =
543             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
544         Value *Src;
545         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
546                                 ->getNumElements();
547 
548         if (SrcIdx < 0)
549           return replaceInstUsesWith(EI, PoisonValue::get(EI.getType()));
550         if (SrcIdx < (int)LHSWidth)
551           Src = SVI->getOperand(0);
552         else {
553           SrcIdx -= LHSWidth;
554           Src = SVI->getOperand(1);
555         }
556         Type *Int64Ty = Type::getInt64Ty(EI.getContext());
557         return ExtractElementInst::Create(
558             Src, ConstantInt::get(Int64Ty, SrcIdx, false));
559       }
560     } else if (auto *CI = dyn_cast<CastInst>(I)) {
561       // Canonicalize extractelement(cast) -> cast(extractelement).
562       // Bitcasts can change the number of vector elements, and they cost
563       // nothing.
564       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
565         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
566         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
567       }
568     }
569   }
570 
571   // Run demanded elements after other transforms as this can drop flags on
572   // binops.  If there's two paths to the same final result, we prefer the
573   // one which doesn't force us to drop flags.
574   if (IndexC) {
575     ElementCount EC = EI.getVectorOperandType()->getElementCount();
576     unsigned NumElts = EC.getKnownMinValue();
577     // This instruction only demands the single element from the input vector.
578     // Skip for scalable type, the number of elements is unknown at
579     // compile-time.
580     if (!EC.isScalable() && NumElts != 1) {
581       // If the input vector has a single use, simplify it based on this use
582       // property.
583       if (SrcVec->hasOneUse()) {
584         APInt UndefElts(NumElts, 0);
585         APInt DemandedElts(NumElts, 0);
586         DemandedElts.setBit(IndexC->getZExtValue());
587         if (Value *V =
588                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
589           return replaceOperand(EI, 0, V);
590       } else {
591         // If the input vector has multiple uses, simplify it based on a union
592         // of all elements used.
593         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
594         if (!DemandedElts.isAllOnes()) {
595           APInt UndefElts(NumElts, 0);
596           if (Value *V = SimplifyDemandedVectorElts(
597                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
598                   true /* AllowMultipleUsers */)) {
599             if (V != SrcVec) {
600               Worklist.addValue(SrcVec);
601               SrcVec->replaceAllUsesWith(V);
602               return &EI;
603             }
604           }
605         }
606       }
607     }
608   }
609   return nullptr;
610 }
611 
612 /// If V is a shuffle of values that ONLY returns elements from either LHS or
613 /// RHS, return the shuffle mask and true. Otherwise, return false.
614 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
615                                          SmallVectorImpl<int> &Mask) {
616   assert(LHS->getType() == RHS->getType() &&
617          "Invalid CollectSingleShuffleElements");
618   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
619 
620   if (match(V, m_Undef())) {
621     Mask.assign(NumElts, -1);
622     return true;
623   }
624 
625   if (V == LHS) {
626     for (unsigned i = 0; i != NumElts; ++i)
627       Mask.push_back(i);
628     return true;
629   }
630 
631   if (V == RHS) {
632     for (unsigned i = 0; i != NumElts; ++i)
633       Mask.push_back(i + NumElts);
634     return true;
635   }
636 
637   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
638     // If this is an insert of an extract from some other vector, include it.
639     Value *VecOp    = IEI->getOperand(0);
640     Value *ScalarOp = IEI->getOperand(1);
641     Value *IdxOp    = IEI->getOperand(2);
642 
643     if (!isa<ConstantInt>(IdxOp))
644       return false;
645     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
646 
647     if (isa<PoisonValue>(ScalarOp)) {  // inserting poison into vector.
648       // We can handle this if the vector we are inserting into is
649       // transitively ok.
650       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
651         // If so, update the mask to reflect the inserted poison.
652         Mask[InsertedIdx] = -1;
653         return true;
654       }
655     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
656       if (isa<ConstantInt>(EI->getOperand(1))) {
657         unsigned ExtractedIdx =
658         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
659         unsigned NumLHSElts =
660             cast<FixedVectorType>(LHS->getType())->getNumElements();
661 
662         // This must be extracting from either LHS or RHS.
663         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
664           // We can handle this if the vector we are inserting into is
665           // transitively ok.
666           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
667             // If so, update the mask to reflect the inserted value.
668             if (EI->getOperand(0) == LHS) {
669               Mask[InsertedIdx % NumElts] = ExtractedIdx;
670             } else {
671               assert(EI->getOperand(0) == RHS);
672               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
673             }
674             return true;
675           }
676         }
677       }
678     }
679   }
680 
681   return false;
682 }
683 
684 /// If we have insertion into a vector that is wider than the vector that we
685 /// are extracting from, try to widen the source vector to allow a single
686 /// shufflevector to replace one or more insert/extract pairs.
687 static bool replaceExtractElements(InsertElementInst *InsElt,
688                                    ExtractElementInst *ExtElt,
689                                    InstCombinerImpl &IC) {
690   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
691   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
692   unsigned NumInsElts = InsVecType->getNumElements();
693   unsigned NumExtElts = ExtVecType->getNumElements();
694 
695   // The inserted-to vector must be wider than the extracted-from vector.
696   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
697       NumExtElts >= NumInsElts)
698     return false;
699 
700   // Create a shuffle mask to widen the extended-from vector using poison
701   // values. The mask selects all of the values of the original vector followed
702   // by as many poison values as needed to create a vector of the same length
703   // as the inserted-to vector.
704   SmallVector<int, 16> ExtendMask;
705   for (unsigned i = 0; i < NumExtElts; ++i)
706     ExtendMask.push_back(i);
707   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
708     ExtendMask.push_back(-1);
709 
710   Value *ExtVecOp = ExtElt->getVectorOperand();
711   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
712   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
713                                    ? ExtVecOpInst->getParent()
714                                    : ExtElt->getParent();
715 
716   // TODO: This restriction matches the basic block check below when creating
717   // new extractelement instructions. If that limitation is removed, this one
718   // could also be removed. But for now, we just bail out to ensure that we
719   // will replace the extractelement instruction that is feeding our
720   // insertelement instruction. This allows the insertelement to then be
721   // replaced by a shufflevector. If the insertelement is not replaced, we can
722   // induce infinite looping because there's an optimization for extractelement
723   // that will delete our widening shuffle. This would trigger another attempt
724   // here to create that shuffle, and we spin forever.
725   if (InsertionBlock != InsElt->getParent())
726     return false;
727 
728   // TODO: This restriction matches the check in visitInsertElementInst() and
729   // prevents an infinite loop caused by not turning the extract/insert pair
730   // into a shuffle. We really should not need either check, but we're lacking
731   // folds for shufflevectors because we're afraid to generate shuffle masks
732   // that the backend can't handle.
733   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
734     return false;
735 
736   auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
737 
738   // Insert the new shuffle after the vector operand of the extract is defined
739   // (as long as it's not a PHI) or at the start of the basic block of the
740   // extract, so any subsequent extracts in the same basic block can use it.
741   // TODO: Insert before the earliest ExtractElementInst that is replaced.
742   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
743     WideVec->insertAfter(ExtVecOpInst);
744   else
745     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
746 
747   // Replace extracts from the original narrow vector with extracts from the new
748   // wide vector.
749   for (User *U : ExtVecOp->users()) {
750     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
751     if (!OldExt || OldExt->getParent() != WideVec->getParent())
752       continue;
753     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
754     IC.InsertNewInstWith(NewExt, *OldExt);
755     IC.replaceInstUsesWith(*OldExt, NewExt);
756     // Add the old extracts to the worklist for DCE. We can't remove the
757     // extracts directly, because they may still be used by the calling code.
758     IC.addToWorklist(OldExt);
759   }
760 
761   return true;
762 }
763 
764 /// We are building a shuffle to create V, which is a sequence of insertelement,
765 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
766 /// not rely on the second vector source. Return a std::pair containing the
767 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
768 /// parameter as required.
769 ///
770 /// Note: we intentionally don't try to fold earlier shuffles since they have
771 /// often been chosen carefully to be efficiently implementable on the target.
772 using ShuffleOps = std::pair<Value *, Value *>;
773 
774 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
775                                          Value *PermittedRHS,
776                                          InstCombinerImpl &IC, bool &Rerun) {
777   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
778   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
779 
780   if (match(V, m_Undef())) {
781     Mask.assign(NumElts, -1);
782     return std::make_pair(
783         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
784   }
785 
786   if (isa<ConstantAggregateZero>(V)) {
787     Mask.assign(NumElts, 0);
788     return std::make_pair(V, nullptr);
789   }
790 
791   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
792     // If this is an insert of an extract from some other vector, include it.
793     Value *VecOp    = IEI->getOperand(0);
794     Value *ScalarOp = IEI->getOperand(1);
795     Value *IdxOp    = IEI->getOperand(2);
796 
797     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
798       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
799         unsigned ExtractedIdx =
800           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
801         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
802 
803         // Either the extracted from or inserted into vector must be RHSVec,
804         // otherwise we'd end up with a shuffle of three inputs.
805         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
806           Value *RHS = EI->getOperand(0);
807           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun);
808           assert(LR.second == nullptr || LR.second == RHS);
809 
810           if (LR.first->getType() != RHS->getType()) {
811             // Although we are giving up for now, see if we can create extracts
812             // that match the inserts for another round of combining.
813             if (replaceExtractElements(IEI, EI, IC))
814               Rerun = true;
815 
816             // We tried our best, but we can't find anything compatible with RHS
817             // further up the chain. Return a trivial shuffle.
818             for (unsigned i = 0; i < NumElts; ++i)
819               Mask[i] = i;
820             return std::make_pair(V, nullptr);
821           }
822 
823           unsigned NumLHSElts =
824               cast<FixedVectorType>(RHS->getType())->getNumElements();
825           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
826           return std::make_pair(LR.first, RHS);
827         }
828 
829         if (VecOp == PermittedRHS) {
830           // We've gone as far as we can: anything on the other side of the
831           // extractelement will already have been converted into a shuffle.
832           unsigned NumLHSElts =
833               cast<FixedVectorType>(EI->getOperand(0)->getType())
834                   ->getNumElements();
835           for (unsigned i = 0; i != NumElts; ++i)
836             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
837           return std::make_pair(EI->getOperand(0), PermittedRHS);
838         }
839 
840         // If this insertelement is a chain that comes from exactly these two
841         // vectors, return the vector and the effective shuffle.
842         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
843             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
844                                          Mask))
845           return std::make_pair(EI->getOperand(0), PermittedRHS);
846       }
847     }
848   }
849 
850   // Otherwise, we can't do anything fancy. Return an identity vector.
851   for (unsigned i = 0; i != NumElts; ++i)
852     Mask.push_back(i);
853   return std::make_pair(V, nullptr);
854 }
855 
856 /// Look for chain of insertvalue's that fully define an aggregate, and trace
857 /// back the values inserted, see if they are all were extractvalue'd from
858 /// the same source aggregate from the exact same element indexes.
859 /// If they were, just reuse the source aggregate.
860 /// This potentially deals with PHI indirections.
861 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
862     InsertValueInst &OrigIVI) {
863   Type *AggTy = OrigIVI.getType();
864   unsigned NumAggElts;
865   switch (AggTy->getTypeID()) {
866   case Type::StructTyID:
867     NumAggElts = AggTy->getStructNumElements();
868     break;
869   case Type::ArrayTyID:
870     NumAggElts = AggTy->getArrayNumElements();
871     break;
872   default:
873     llvm_unreachable("Unhandled aggregate type?");
874   }
875 
876   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
877   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
878   // FIXME: any interesting patterns to be caught with larger limit?
879   assert(NumAggElts > 0 && "Aggregate should have elements.");
880   if (NumAggElts > 2)
881     return nullptr;
882 
883   static constexpr auto NotFound = std::nullopt;
884   static constexpr auto FoundMismatch = nullptr;
885 
886   // Try to find a value of each element of an aggregate.
887   // FIXME: deal with more complex, not one-dimensional, aggregate types
888   SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
889 
890   // Do we know values for each element of the aggregate?
891   auto KnowAllElts = [&AggElts]() {
892     return !llvm::is_contained(AggElts, NotFound);
893   };
894 
895   int Depth = 0;
896 
897   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
898   // every element being overwritten twice, which should never happen.
899   static const int DepthLimit = 2 * NumAggElts;
900 
901   // Recurse up the chain of `insertvalue` aggregate operands until either we've
902   // reconstructed full initializer or can't visit any more `insertvalue`'s.
903   for (InsertValueInst *CurrIVI = &OrigIVI;
904        Depth < DepthLimit && CurrIVI && !KnowAllElts();
905        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
906                        ++Depth) {
907     auto *InsertedValue =
908         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
909     if (!InsertedValue)
910       return nullptr; // Inserted value must be produced by an instruction.
911 
912     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
913 
914     // Don't bother with more than single-level aggregates.
915     if (Indices.size() != 1)
916       return nullptr; // FIXME: deal with more complex aggregates?
917 
918     // Now, we may have already previously recorded the value for this element
919     // of an aggregate. If we did, that means the CurrIVI will later be
920     // overwritten with the already-recorded value. But if not, let's record it!
921     std::optional<Instruction *> &Elt = AggElts[Indices.front()];
922     Elt = Elt.value_or(InsertedValue);
923 
924     // FIXME: should we handle chain-terminating undef base operand?
925   }
926 
927   // Was that sufficient to deduce the full initializer for the aggregate?
928   if (!KnowAllElts())
929     return nullptr; // Give up then.
930 
931   // We now want to find the source[s] of the aggregate elements we've found.
932   // And with "source" we mean the original aggregate[s] from which
933   // the inserted elements were extracted. This may require PHI translation.
934 
935   enum class AggregateDescription {
936     /// When analyzing the value that was inserted into an aggregate, we did
937     /// not manage to find defining `extractvalue` instruction to analyze.
938     NotFound,
939     /// When analyzing the value that was inserted into an aggregate, we did
940     /// manage to find defining `extractvalue` instruction[s], and everything
941     /// matched perfectly - aggregate type, element insertion/extraction index.
942     Found,
943     /// When analyzing the value that was inserted into an aggregate, we did
944     /// manage to find defining `extractvalue` instruction, but there was
945     /// a mismatch: either the source type from which the extraction was didn't
946     /// match the aggregate type into which the insertion was,
947     /// or the extraction/insertion channels mismatched,
948     /// or different elements had different source aggregates.
949     FoundMismatch
950   };
951   auto Describe = [](std::optional<Value *> SourceAggregate) {
952     if (SourceAggregate == NotFound)
953       return AggregateDescription::NotFound;
954     if (*SourceAggregate == FoundMismatch)
955       return AggregateDescription::FoundMismatch;
956     return AggregateDescription::Found;
957   };
958 
959   // Given the value \p Elt that was being inserted into element \p EltIdx of an
960   // aggregate AggTy, see if \p Elt was originally defined by an
961   // appropriate extractvalue (same element index, same aggregate type).
962   // If found, return the source aggregate from which the extraction was.
963   // If \p PredBB is provided, does PHI translation of an \p Elt first.
964   auto FindSourceAggregate =
965       [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
966           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
967     // For now(?), only deal with, at most, a single level of PHI indirection.
968     if (UseBB && PredBB)
969       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
970     // FIXME: deal with multiple levels of PHI indirection?
971 
972     // Did we find an extraction?
973     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
974     if (!EVI)
975       return NotFound;
976 
977     Value *SourceAggregate = EVI->getAggregateOperand();
978 
979     // Is the extraction from the same type into which the insertion was?
980     if (SourceAggregate->getType() != AggTy)
981       return FoundMismatch;
982     // And the element index doesn't change between extraction and insertion?
983     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
984       return FoundMismatch;
985 
986     return SourceAggregate; // AggregateDescription::Found
987   };
988 
989   // Given elements AggElts that were constructing an aggregate OrigIVI,
990   // see if we can find appropriate source aggregate for each of the elements,
991   // and see it's the same aggregate for each element. If so, return it.
992   auto FindCommonSourceAggregate =
993       [&](std::optional<BasicBlock *> UseBB,
994           std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
995     std::optional<Value *> SourceAggregate;
996 
997     for (auto I : enumerate(AggElts)) {
998       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
999              "We don't store nullptr in SourceAggregate!");
1000       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1001                  (I.index() != 0) &&
1002              "SourceAggregate should be valid after the first element,");
1003 
1004       // For this element, is there a plausible source aggregate?
1005       // FIXME: we could special-case undef element, IFF we know that in the
1006       //        source aggregate said element isn't poison.
1007       std::optional<Value *> SourceAggregateForElement =
1008           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
1009 
1010       // Okay, what have we found? Does that correlate with previous findings?
1011 
1012       // Regardless of whether or not we have previously found source
1013       // aggregate for previous elements (if any), if we didn't find one for
1014       // this element, passthrough whatever we have just found.
1015       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1016         return SourceAggregateForElement;
1017 
1018       // Okay, we have found source aggregate for this element.
1019       // Let's see what we already know from previous elements, if any.
1020       switch (Describe(SourceAggregate)) {
1021       case AggregateDescription::NotFound:
1022         // This is apparently the first element that we have examined.
1023         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
1024         continue; // Great, now look at next element.
1025       case AggregateDescription::Found:
1026         // We have previously already successfully examined other elements.
1027         // Is this the same source aggregate we've found for other elements?
1028         if (*SourceAggregateForElement != *SourceAggregate)
1029           return FoundMismatch;
1030         continue; // Still the same aggregate, look at next element.
1031       case AggregateDescription::FoundMismatch:
1032         llvm_unreachable("Can't happen. We would have early-exited then.");
1033       };
1034     }
1035 
1036     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1037            "Must be a valid Value");
1038     return *SourceAggregate;
1039   };
1040 
1041   std::optional<Value *> SourceAggregate;
1042 
1043   // Can we find the source aggregate without looking at predecessors?
1044   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
1045                                               /*PredBB=*/std::nullopt);
1046   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1047     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1048       return nullptr; // Conflicting source aggregates!
1049     ++NumAggregateReconstructionsSimplified;
1050     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1051   }
1052 
1053   // Okay, apparently we need to look at predecessors.
1054 
1055   // We should be smart about picking the "use" basic block, which will be the
1056   // merge point for aggregate, where we'll insert the final PHI that will be
1057   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1058   // We should look in which blocks each of the AggElts is being defined,
1059   // they all should be defined in the same basic block.
1060   BasicBlock *UseBB = nullptr;
1061 
1062   for (const std::optional<Instruction *> &I : AggElts) {
1063     BasicBlock *BB = (*I)->getParent();
1064     // If it's the first instruction we've encountered, record the basic block.
1065     if (!UseBB) {
1066       UseBB = BB;
1067       continue;
1068     }
1069     // Otherwise, this must be the same basic block we've seen previously.
1070     if (UseBB != BB)
1071       return nullptr;
1072   }
1073 
1074   // If *all* of the elements are basic-block-independent, meaning they are
1075   // either function arguments, or constant expressions, then if we didn't
1076   // handle them without predecessor-aware handling, we won't handle them now.
1077   if (!UseBB)
1078     return nullptr;
1079 
1080   // If we didn't manage to find source aggregate without looking at
1081   // predecessors, and there are no predecessors to look at, then we're done.
1082   if (pred_empty(UseBB))
1083     return nullptr;
1084 
1085   // Arbitrary predecessor count limit.
1086   static const int PredCountLimit = 64;
1087 
1088   // Cache the (non-uniqified!) list of predecessors in a vector,
1089   // checking the limit at the same time for efficiency.
1090   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1091   for (BasicBlock *Pred : predecessors(UseBB)) {
1092     // Don't bother if there are too many predecessors.
1093     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1094       return nullptr;
1095     Preds.emplace_back(Pred);
1096   }
1097 
1098   // For each predecessor, what is the source aggregate,
1099   // from which all the elements were originally extracted from?
1100   // Note that we want for the map to have stable iteration order!
1101   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1102   for (BasicBlock *Pred : Preds) {
1103     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1104         SourceAggregates.insert({Pred, nullptr});
1105     // Did we already evaluate this predecessor?
1106     if (!IV.second)
1107       continue;
1108 
1109     // Let's hope that when coming from predecessor Pred, all elements of the
1110     // aggregate produced by OrigIVI must have been originally extracted from
1111     // the same aggregate. Is that so? Can we find said original aggregate?
1112     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1113     if (Describe(SourceAggregate) != AggregateDescription::Found)
1114       return nullptr; // Give up.
1115     IV.first->second = *SourceAggregate;
1116   }
1117 
1118   // All good! Now we just need to thread the source aggregates here.
1119   // Note that we have to insert the new PHI here, ourselves, because we can't
1120   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1121   // Note that the same block can be a predecessor more than once,
1122   // and we need to preserve that invariant for the PHI node.
1123   BuilderTy::InsertPointGuard Guard(Builder);
1124   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1125   auto *PHI =
1126       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1127   for (BasicBlock *Pred : Preds)
1128     PHI->addIncoming(SourceAggregates[Pred], Pred);
1129 
1130   ++NumAggregateReconstructionsSimplified;
1131   return replaceInstUsesWith(OrigIVI, PHI);
1132 }
1133 
1134 /// Try to find redundant insertvalue instructions, like the following ones:
1135 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1136 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1137 /// Here the second instruction inserts values at the same indices, as the
1138 /// first one, making the first one redundant.
1139 /// It should be transformed to:
1140 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1141 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1142   if (Value *V = simplifyInsertValueInst(
1143           I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(),
1144           SQ.getWithInstruction(&I)))
1145     return replaceInstUsesWith(I, V);
1146 
1147   bool IsRedundant = false;
1148   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1149 
1150   // If there is a chain of insertvalue instructions (each of them except the
1151   // last one has only one use and it's another insertvalue insn from this
1152   // chain), check if any of the 'children' uses the same indices as the first
1153   // instruction. In this case, the first one is redundant.
1154   Value *V = &I;
1155   unsigned Depth = 0;
1156   while (V->hasOneUse() && Depth < 10) {
1157     User *U = V->user_back();
1158     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1159     if (!UserInsInst || U->getOperand(0) != V)
1160       break;
1161     if (UserInsInst->getIndices() == FirstIndices) {
1162       IsRedundant = true;
1163       break;
1164     }
1165     V = UserInsInst;
1166     Depth++;
1167   }
1168 
1169   if (IsRedundant)
1170     return replaceInstUsesWith(I, I.getOperand(0));
1171 
1172   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1173     return NewI;
1174 
1175   return nullptr;
1176 }
1177 
1178 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1179   // Can not analyze scalable type, the number of elements is not a compile-time
1180   // constant.
1181   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1182     return false;
1183 
1184   int MaskSize = Shuf.getShuffleMask().size();
1185   int VecSize =
1186       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1187 
1188   // A vector select does not change the size of the operands.
1189   if (MaskSize != VecSize)
1190     return false;
1191 
1192   // Each mask element must be undefined or choose a vector element from one of
1193   // the source operands without crossing vector lanes.
1194   for (int i = 0; i != MaskSize; ++i) {
1195     int Elt = Shuf.getMaskValue(i);
1196     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1197       return false;
1198   }
1199 
1200   return true;
1201 }
1202 
1203 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1204 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1205 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1206 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1207   // We are interested in the last insert in a chain. So if this insert has a
1208   // single user and that user is an insert, bail.
1209   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1210     return nullptr;
1211 
1212   VectorType *VecTy = InsElt.getType();
1213   // Can not handle scalable type, the number of elements is not a compile-time
1214   // constant.
1215   if (isa<ScalableVectorType>(VecTy))
1216     return nullptr;
1217   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1218 
1219   // Do not try to do this for a one-element vector, since that's a nop,
1220   // and will cause an inf-loop.
1221   if (NumElements == 1)
1222     return nullptr;
1223 
1224   Value *SplatVal = InsElt.getOperand(1);
1225   InsertElementInst *CurrIE = &InsElt;
1226   SmallBitVector ElementPresent(NumElements, false);
1227   InsertElementInst *FirstIE = nullptr;
1228 
1229   // Walk the chain backwards, keeping track of which indices we inserted into,
1230   // until we hit something that isn't an insert of the splatted value.
1231   while (CurrIE) {
1232     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1233     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1234       return nullptr;
1235 
1236     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1237     // Check none of the intermediate steps have any additional uses, except
1238     // for the root insertelement instruction, which can be re-used, if it
1239     // inserts at position 0.
1240     if (CurrIE != &InsElt &&
1241         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1242       return nullptr;
1243 
1244     ElementPresent[Idx->getZExtValue()] = true;
1245     FirstIE = CurrIE;
1246     CurrIE = NextIE;
1247   }
1248 
1249   // If this is just a single insertelement (not a sequence), we are done.
1250   if (FirstIE == &InsElt)
1251     return nullptr;
1252 
1253   // If we are not inserting into a poison vector, make sure we've seen an
1254   // insert into every element.
1255   // TODO: If the base vector is not undef, it might be better to create a splat
1256   //       and then a select-shuffle (blend) with the base vector.
1257   if (!match(FirstIE->getOperand(0), m_Poison()))
1258     if (!ElementPresent.all())
1259       return nullptr;
1260 
1261   // Create the insert + shuffle.
1262   Type *Int64Ty = Type::getInt64Ty(InsElt.getContext());
1263   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1264   Constant *Zero = ConstantInt::get(Int64Ty, 0);
1265   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1266     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1267 
1268   // Splat from element 0, but replace absent elements with poison in the mask.
1269   SmallVector<int, 16> Mask(NumElements, 0);
1270   for (unsigned i = 0; i != NumElements; ++i)
1271     if (!ElementPresent[i])
1272       Mask[i] = -1;
1273 
1274   return new ShuffleVectorInst(FirstIE, Mask);
1275 }
1276 
1277 /// Try to fold an insert element into an existing splat shuffle by changing
1278 /// the shuffle's mask to include the index of this insert element.
1279 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1280   // Check if the vector operand of this insert is a canonical splat shuffle.
1281   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1282   if (!Shuf || !Shuf->isZeroEltSplat())
1283     return nullptr;
1284 
1285   // Bail out early if shuffle is scalable type. The number of elements in
1286   // shuffle mask is unknown at compile-time.
1287   if (isa<ScalableVectorType>(Shuf->getType()))
1288     return nullptr;
1289 
1290   // Check for a constant insertion index.
1291   uint64_t IdxC;
1292   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1293     return nullptr;
1294 
1295   // Check if the splat shuffle's input is the same as this insert's scalar op.
1296   Value *X = InsElt.getOperand(1);
1297   Value *Op0 = Shuf->getOperand(0);
1298   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1299     return nullptr;
1300 
1301   // Replace the shuffle mask element at the index of this insert with a zero.
1302   // For example:
1303   // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1304   //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1305   unsigned NumMaskElts =
1306       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1307   SmallVector<int, 16> NewMask(NumMaskElts);
1308   for (unsigned i = 0; i != NumMaskElts; ++i)
1309     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1310 
1311   return new ShuffleVectorInst(Op0, NewMask);
1312 }
1313 
1314 /// Try to fold an extract+insert element into an existing identity shuffle by
1315 /// changing the shuffle's mask to include the index of this insert element.
1316 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1317   // Check if the vector operand of this insert is an identity shuffle.
1318   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1319   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1320       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1321     return nullptr;
1322 
1323   // Bail out early if shuffle is scalable type. The number of elements in
1324   // shuffle mask is unknown at compile-time.
1325   if (isa<ScalableVectorType>(Shuf->getType()))
1326     return nullptr;
1327 
1328   // Check for a constant insertion index.
1329   uint64_t IdxC;
1330   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1331     return nullptr;
1332 
1333   // Check if this insert's scalar op is extracted from the identity shuffle's
1334   // input vector.
1335   Value *Scalar = InsElt.getOperand(1);
1336   Value *X = Shuf->getOperand(0);
1337   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1338     return nullptr;
1339 
1340   // Replace the shuffle mask element at the index of this extract+insert with
1341   // that same index value.
1342   // For example:
1343   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1344   unsigned NumMaskElts =
1345       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1346   SmallVector<int, 16> NewMask(NumMaskElts);
1347   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1348   for (unsigned i = 0; i != NumMaskElts; ++i) {
1349     if (i != IdxC) {
1350       // All mask elements besides the inserted element remain the same.
1351       NewMask[i] = OldMask[i];
1352     } else if (OldMask[i] == (int)IdxC) {
1353       // If the mask element was already set, there's nothing to do
1354       // (demanded elements analysis may unset it later).
1355       return nullptr;
1356     } else {
1357       assert(OldMask[i] == PoisonMaskElem &&
1358              "Unexpected shuffle mask element for identity shuffle");
1359       NewMask[i] = IdxC;
1360     }
1361   }
1362 
1363   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1364 }
1365 
1366 /// If we have an insertelement instruction feeding into another insertelement
1367 /// and the 2nd is inserting a constant into the vector, canonicalize that
1368 /// constant insertion before the insertion of a variable:
1369 ///
1370 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1371 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1372 ///
1373 /// This has the potential of eliminating the 2nd insertelement instruction
1374 /// via constant folding of the scalar constant into a vector constant.
1375 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1376                                      InstCombiner::BuilderTy &Builder) {
1377   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1378   if (!InsElt1 || !InsElt1->hasOneUse())
1379     return nullptr;
1380 
1381   Value *X, *Y;
1382   Constant *ScalarC;
1383   ConstantInt *IdxC1, *IdxC2;
1384   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1385       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1386       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1387       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1388       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1389     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1390     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1391   }
1392 
1393   return nullptr;
1394 }
1395 
1396 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1397 /// --> shufflevector X, CVec', Mask'
1398 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1399   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1400   // Bail out if the parent has more than one use. In that case, we'd be
1401   // replacing the insertelt with a shuffle, and that's not a clear win.
1402   if (!Inst || !Inst->hasOneUse())
1403     return nullptr;
1404   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1405     // The shuffle must have a constant vector operand. The insertelt must have
1406     // a constant scalar being inserted at a constant position in the vector.
1407     Constant *ShufConstVec, *InsEltScalar;
1408     uint64_t InsEltIndex;
1409     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1410         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1411         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1412       return nullptr;
1413 
1414     // Adding an element to an arbitrary shuffle could be expensive, but a
1415     // shuffle that selects elements from vectors without crossing lanes is
1416     // assumed cheap.
1417     // If we're just adding a constant into that shuffle, it will still be
1418     // cheap.
1419     if (!isShuffleEquivalentToSelect(*Shuf))
1420       return nullptr;
1421 
1422     // From the above 'select' check, we know that the mask has the same number
1423     // of elements as the vector input operands. We also know that each constant
1424     // input element is used in its lane and can not be used more than once by
1425     // the shuffle. Therefore, replace the constant in the shuffle's constant
1426     // vector with the insertelt constant. Replace the constant in the shuffle's
1427     // mask vector with the insertelt index plus the length of the vector
1428     // (because the constant vector operand of a shuffle is always the 2nd
1429     // operand).
1430     ArrayRef<int> Mask = Shuf->getShuffleMask();
1431     unsigned NumElts = Mask.size();
1432     SmallVector<Constant *, 16> NewShufElts(NumElts);
1433     SmallVector<int, 16> NewMaskElts(NumElts);
1434     for (unsigned I = 0; I != NumElts; ++I) {
1435       if (I == InsEltIndex) {
1436         NewShufElts[I] = InsEltScalar;
1437         NewMaskElts[I] = InsEltIndex + NumElts;
1438       } else {
1439         // Copy over the existing values.
1440         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1441         NewMaskElts[I] = Mask[I];
1442       }
1443 
1444       // Bail if we failed to find an element.
1445       if (!NewShufElts[I])
1446         return nullptr;
1447     }
1448 
1449     // Create new operands for a shuffle that includes the constant of the
1450     // original insertelt. The old shuffle will be dead now.
1451     return new ShuffleVectorInst(Shuf->getOperand(0),
1452                                  ConstantVector::get(NewShufElts), NewMaskElts);
1453   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1454     // Transform sequences of insertelements ops with constant data/indexes into
1455     // a single shuffle op.
1456     // Can not handle scalable type, the number of elements needed to create
1457     // shuffle mask is not a compile-time constant.
1458     if (isa<ScalableVectorType>(InsElt.getType()))
1459       return nullptr;
1460     unsigned NumElts =
1461         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1462 
1463     uint64_t InsertIdx[2];
1464     Constant *Val[2];
1465     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1466         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1467         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1468         !match(IEI->getOperand(1), m_Constant(Val[1])))
1469       return nullptr;
1470     SmallVector<Constant *, 16> Values(NumElts);
1471     SmallVector<int, 16> Mask(NumElts);
1472     auto ValI = std::begin(Val);
1473     // Generate new constant vector and mask.
1474     // We have 2 values/masks from the insertelements instructions. Insert them
1475     // into new value/mask vectors.
1476     for (uint64_t I : InsertIdx) {
1477       if (!Values[I]) {
1478         Values[I] = *ValI;
1479         Mask[I] = NumElts + I;
1480       }
1481       ++ValI;
1482     }
1483     // Remaining values are filled with 'poison' values.
1484     for (unsigned I = 0; I < NumElts; ++I) {
1485       if (!Values[I]) {
1486         Values[I] = PoisonValue::get(InsElt.getType()->getElementType());
1487         Mask[I] = I;
1488       }
1489     }
1490     // Create new operands for a shuffle that includes the constant of the
1491     // original insertelt.
1492     return new ShuffleVectorInst(IEI->getOperand(0),
1493                                  ConstantVector::get(Values), Mask);
1494   }
1495   return nullptr;
1496 }
1497 
1498 /// If both the base vector and the inserted element are extended from the same
1499 /// type, do the insert element in the narrow source type followed by extend.
1500 /// TODO: This can be extended to include other cast opcodes, but particularly
1501 ///       if we create a wider insertelement, make sure codegen is not harmed.
1502 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1503                                  InstCombiner::BuilderTy &Builder) {
1504   // We are creating a vector extend. If the original vector extend has another
1505   // use, that would mean we end up with 2 vector extends, so avoid that.
1506   // TODO: We could ease the use-clause to "if at least one op has one use"
1507   //       (assuming that the source types match - see next TODO comment).
1508   Value *Vec = InsElt.getOperand(0);
1509   if (!Vec->hasOneUse())
1510     return nullptr;
1511 
1512   Value *Scalar = InsElt.getOperand(1);
1513   Value *X, *Y;
1514   CastInst::CastOps CastOpcode;
1515   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1516     CastOpcode = Instruction::FPExt;
1517   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1518     CastOpcode = Instruction::SExt;
1519   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1520     CastOpcode = Instruction::ZExt;
1521   else
1522     return nullptr;
1523 
1524   // TODO: We can allow mismatched types by creating an intermediate cast.
1525   if (X->getType()->getScalarType() != Y->getType())
1526     return nullptr;
1527 
1528   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1529   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1530   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1531 }
1532 
1533 /// If we are inserting 2 halves of a value into adjacent elements of a vector,
1534 /// try to convert to a single insert with appropriate bitcasts.
1535 static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
1536                                         bool IsBigEndian,
1537                                         InstCombiner::BuilderTy &Builder) {
1538   Value *VecOp    = InsElt.getOperand(0);
1539   Value *ScalarOp = InsElt.getOperand(1);
1540   Value *IndexOp  = InsElt.getOperand(2);
1541 
1542   // Pattern depends on endian because we expect lower index is inserted first.
1543   // Big endian:
1544   // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
1545   // Little endian:
1546   // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
1547   // Note: It is not safe to do this transform with an arbitrary base vector
1548   //       because the bitcast of that vector to fewer/larger elements could
1549   //       allow poison to spill into an element that was not poison before.
1550   // TODO: Detect smaller fractions of the scalar.
1551   // TODO: One-use checks are conservative.
1552   auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
1553   Value *Scalar0, *BaseVec;
1554   uint64_t Index0, Index1;
1555   if (!VTy || (VTy->getNumElements() & 1) ||
1556       !match(IndexOp, m_ConstantInt(Index1)) ||
1557       !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
1558                                 m_ConstantInt(Index0))) ||
1559       !match(BaseVec, m_Undef()))
1560     return nullptr;
1561 
1562   // The first insert must be to the index one less than this one, and
1563   // the first insert must be to an even index.
1564   if (Index0 + 1 != Index1 || Index0 & 1)
1565     return nullptr;
1566 
1567   // For big endian, the high half of the value should be inserted first.
1568   // For little endian, the low half of the value should be inserted first.
1569   Value *X;
1570   uint64_t ShAmt;
1571   if (IsBigEndian) {
1572     if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
1573         !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1574       return nullptr;
1575   } else {
1576     if (!match(Scalar0, m_Trunc(m_Value(X))) ||
1577         !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1578       return nullptr;
1579   }
1580 
1581   Type *SrcTy = X->getType();
1582   unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1583   unsigned VecEltWidth = VTy->getScalarSizeInBits();
1584   if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1585     return nullptr;
1586 
1587   // Bitcast the base vector to a vector type with the source element type.
1588   Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
1589   Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1590 
1591   // Scale the insert index for a vector with half as many elements.
1592   // bitcast (inselt (bitcast BaseVec), X, NewIndex)
1593   uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1594   Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
1595   return new BitCastInst(NewInsert, VTy);
1596 }
1597 
1598 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1599   Value *VecOp    = IE.getOperand(0);
1600   Value *ScalarOp = IE.getOperand(1);
1601   Value *IdxOp    = IE.getOperand(2);
1602 
1603   if (auto *V = simplifyInsertElementInst(
1604           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1605     return replaceInstUsesWith(IE, V);
1606 
1607   // Canonicalize type of constant indices to i64 to simplify CSE
1608   if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
1609     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1610       return replaceOperand(IE, 2, NewIdx);
1611 
1612     Value *BaseVec, *OtherScalar;
1613     uint64_t OtherIndexVal;
1614     if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
1615                                           m_Value(OtherScalar),
1616                                           m_ConstantInt(OtherIndexVal)))) &&
1617         !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1618       Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1619       return InsertElementInst::Create(NewIns, OtherScalar,
1620                                        Builder.getInt64(OtherIndexVal));
1621     }
1622   }
1623 
1624   // If the scalar is bitcast and inserted into undef, do the insert in the
1625   // source type followed by bitcast.
1626   // TODO: Generalize for insert into any constant, not just undef?
1627   Value *ScalarSrc;
1628   if (match(VecOp, m_Undef()) &&
1629       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1630       (ScalarSrc->getType()->isIntegerTy() ||
1631        ScalarSrc->getType()->isFloatingPointTy())) {
1632     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1633     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1634     Type *ScalarTy = ScalarSrc->getType();
1635     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1636     UndefValue *NewUndef = UndefValue::get(VecTy);
1637     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1638     return new BitCastInst(NewInsElt, IE.getType());
1639   }
1640 
1641   // If the vector and scalar are both bitcast from the same element type, do
1642   // the insert in that source type followed by bitcast.
1643   Value *VecSrc;
1644   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1645       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1646       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1647       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1648       cast<VectorType>(VecSrc->getType())->getElementType() ==
1649           ScalarSrc->getType()) {
1650     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1651     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1652     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1653     return new BitCastInst(NewInsElt, IE.getType());
1654   }
1655 
1656   // If the inserted element was extracted from some other fixed-length vector
1657   // and both indexes are valid constants, try to turn this into a shuffle.
1658   // Can not handle scalable vector type, the number of elements needed to
1659   // create shuffle mask is not a compile-time constant.
1660   uint64_t InsertedIdx, ExtractedIdx;
1661   Value *ExtVecOp;
1662   if (isa<FixedVectorType>(IE.getType()) &&
1663       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1664       match(ScalarOp,
1665             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1666       isa<FixedVectorType>(ExtVecOp->getType()) &&
1667       ExtractedIdx <
1668           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1669     // TODO: Looking at the user(s) to determine if this insert is a
1670     // fold-to-shuffle opportunity does not match the usual instcombine
1671     // constraints. We should decide if the transform is worthy based only
1672     // on this instruction and its operands, but that may not work currently.
1673     //
1674     // Here, we are trying to avoid creating shuffles before reaching
1675     // the end of a chain of extract-insert pairs. This is complicated because
1676     // we do not generally form arbitrary shuffle masks in instcombine
1677     // (because those may codegen poorly), but collectShuffleElements() does
1678     // exactly that.
1679     //
1680     // The rules for determining what is an acceptable target-independent
1681     // shuffle mask are fuzzy because they evolve based on the backend's
1682     // capabilities and real-world impact.
1683     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1684       if (!Insert.hasOneUse())
1685         return true;
1686       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1687       if (!InsertUser)
1688         return true;
1689       return false;
1690     };
1691 
1692     // Try to form a shuffle from a chain of extract-insert ops.
1693     if (isShuffleRootCandidate(IE)) {
1694       bool Rerun = true;
1695       while (Rerun) {
1696         Rerun = false;
1697 
1698         SmallVector<int, 16> Mask;
1699         ShuffleOps LR =
1700             collectShuffleElements(&IE, Mask, nullptr, *this, Rerun);
1701 
1702         // The proposed shuffle may be trivial, in which case we shouldn't
1703         // perform the combine.
1704         if (LR.first != &IE && LR.second != &IE) {
1705           // We now have a shuffle of LHS, RHS, Mask.
1706           if (LR.second == nullptr)
1707             LR.second = PoisonValue::get(LR.first->getType());
1708           return new ShuffleVectorInst(LR.first, LR.second, Mask);
1709         }
1710       }
1711     }
1712   }
1713 
1714   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1715     unsigned VWidth = VecTy->getNumElements();
1716     APInt UndefElts(VWidth, 0);
1717     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1718     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1719       if (V != &IE)
1720         return replaceInstUsesWith(IE, V);
1721       return &IE;
1722     }
1723   }
1724 
1725   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1726     return Shuf;
1727 
1728   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1729     return NewInsElt;
1730 
1731   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1732     return Broadcast;
1733 
1734   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1735     return Splat;
1736 
1737   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1738     return IdentityShuf;
1739 
1740   if (Instruction *Ext = narrowInsElt(IE, Builder))
1741     return Ext;
1742 
1743   if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
1744     return Ext;
1745 
1746   return nullptr;
1747 }
1748 
1749 /// Return true if we can evaluate the specified expression tree if the vector
1750 /// elements were shuffled in a different order.
1751 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1752                                 unsigned Depth = 5) {
1753   // We can always reorder the elements of a constant.
1754   if (isa<Constant>(V))
1755     return true;
1756 
1757   // We won't reorder vector arguments. No IPO here.
1758   Instruction *I = dyn_cast<Instruction>(V);
1759   if (!I) return false;
1760 
1761   // Two users may expect different orders of the elements. Don't try it.
1762   if (!I->hasOneUse())
1763     return false;
1764 
1765   if (Depth == 0) return false;
1766 
1767   switch (I->getOpcode()) {
1768     case Instruction::UDiv:
1769     case Instruction::SDiv:
1770     case Instruction::URem:
1771     case Instruction::SRem:
1772       // Propagating an undefined shuffle mask element to integer div/rem is not
1773       // allowed because those opcodes can create immediate undefined behavior
1774       // from an undefined element in an operand.
1775       if (llvm::is_contained(Mask, -1))
1776         return false;
1777       [[fallthrough]];
1778     case Instruction::Add:
1779     case Instruction::FAdd:
1780     case Instruction::Sub:
1781     case Instruction::FSub:
1782     case Instruction::Mul:
1783     case Instruction::FMul:
1784     case Instruction::FDiv:
1785     case Instruction::FRem:
1786     case Instruction::Shl:
1787     case Instruction::LShr:
1788     case Instruction::AShr:
1789     case Instruction::And:
1790     case Instruction::Or:
1791     case Instruction::Xor:
1792     case Instruction::ICmp:
1793     case Instruction::FCmp:
1794     case Instruction::Trunc:
1795     case Instruction::ZExt:
1796     case Instruction::SExt:
1797     case Instruction::FPToUI:
1798     case Instruction::FPToSI:
1799     case Instruction::UIToFP:
1800     case Instruction::SIToFP:
1801     case Instruction::FPTrunc:
1802     case Instruction::FPExt:
1803     case Instruction::GetElementPtr: {
1804       // Bail out if we would create longer vector ops. We could allow creating
1805       // longer vector ops, but that may result in more expensive codegen.
1806       Type *ITy = I->getType();
1807       if (ITy->isVectorTy() &&
1808           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1809         return false;
1810       for (Value *Operand : I->operands()) {
1811         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1812           return false;
1813       }
1814       return true;
1815     }
1816     case Instruction::InsertElement: {
1817       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1818       if (!CI) return false;
1819       int ElementNumber = CI->getLimitedValue();
1820 
1821       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1822       // can't put an element into multiple indices.
1823       bool SeenOnce = false;
1824       for (int I : Mask) {
1825         if (I == ElementNumber) {
1826           if (SeenOnce)
1827             return false;
1828           SeenOnce = true;
1829         }
1830       }
1831       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1832     }
1833   }
1834   return false;
1835 }
1836 
1837 /// Rebuild a new instruction just like 'I' but with the new operands given.
1838 /// In the event of type mismatch, the type of the operands is correct.
1839 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps,
1840                        IRBuilderBase &Builder) {
1841   Builder.SetInsertPoint(I);
1842   switch (I->getOpcode()) {
1843     case Instruction::Add:
1844     case Instruction::FAdd:
1845     case Instruction::Sub:
1846     case Instruction::FSub:
1847     case Instruction::Mul:
1848     case Instruction::FMul:
1849     case Instruction::UDiv:
1850     case Instruction::SDiv:
1851     case Instruction::FDiv:
1852     case Instruction::URem:
1853     case Instruction::SRem:
1854     case Instruction::FRem:
1855     case Instruction::Shl:
1856     case Instruction::LShr:
1857     case Instruction::AShr:
1858     case Instruction::And:
1859     case Instruction::Or:
1860     case Instruction::Xor: {
1861       BinaryOperator *BO = cast<BinaryOperator>(I);
1862       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1863       Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(),
1864                                        NewOps[0], NewOps[1]);
1865       if (auto *NewI = dyn_cast<Instruction>(New)) {
1866         if (isa<OverflowingBinaryOperator>(BO)) {
1867           NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1868           NewI->setHasNoSignedWrap(BO->hasNoSignedWrap());
1869         }
1870         if (isa<PossiblyExactOperator>(BO)) {
1871           NewI->setIsExact(BO->isExact());
1872         }
1873         if (isa<FPMathOperator>(BO))
1874           NewI->copyFastMathFlags(I);
1875       }
1876       return New;
1877     }
1878     case Instruction::ICmp:
1879       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1880       return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
1881                                 NewOps[1]);
1882     case Instruction::FCmp:
1883       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1884       return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
1885                                 NewOps[1]);
1886     case Instruction::Trunc:
1887     case Instruction::ZExt:
1888     case Instruction::SExt:
1889     case Instruction::FPToUI:
1890     case Instruction::FPToSI:
1891     case Instruction::UIToFP:
1892     case Instruction::SIToFP:
1893     case Instruction::FPTrunc:
1894     case Instruction::FPExt: {
1895       // It's possible that the mask has a different number of elements from
1896       // the original cast. We recompute the destination type to match the mask.
1897       Type *DestTy = VectorType::get(
1898           I->getType()->getScalarType(),
1899           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1900       assert(NewOps.size() == 1 && "cast with #ops != 1");
1901       return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0],
1902                                 DestTy);
1903     }
1904     case Instruction::GetElementPtr: {
1905       Value *Ptr = NewOps[0];
1906       ArrayRef<Value*> Idx = NewOps.slice(1);
1907       return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(),
1908                                Ptr, Idx, "",
1909                                cast<GEPOperator>(I)->isInBounds());
1910     }
1911   }
1912   llvm_unreachable("failed to rebuild vector instructions");
1913 }
1914 
1915 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask,
1916                                               IRBuilderBase &Builder) {
1917   // Mask.size() does not need to be equal to the number of vector elements.
1918 
1919   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1920   Type *EltTy = V->getType()->getScalarType();
1921   if (match(V, m_Undef()))
1922     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1923 
1924   if (isa<ConstantAggregateZero>(V))
1925     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1926 
1927   if (Constant *C = dyn_cast<Constant>(V))
1928     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1929                                           Mask);
1930 
1931   Instruction *I = cast<Instruction>(V);
1932   switch (I->getOpcode()) {
1933     case Instruction::Add:
1934     case Instruction::FAdd:
1935     case Instruction::Sub:
1936     case Instruction::FSub:
1937     case Instruction::Mul:
1938     case Instruction::FMul:
1939     case Instruction::UDiv:
1940     case Instruction::SDiv:
1941     case Instruction::FDiv:
1942     case Instruction::URem:
1943     case Instruction::SRem:
1944     case Instruction::FRem:
1945     case Instruction::Shl:
1946     case Instruction::LShr:
1947     case Instruction::AShr:
1948     case Instruction::And:
1949     case Instruction::Or:
1950     case Instruction::Xor:
1951     case Instruction::ICmp:
1952     case Instruction::FCmp:
1953     case Instruction::Trunc:
1954     case Instruction::ZExt:
1955     case Instruction::SExt:
1956     case Instruction::FPToUI:
1957     case Instruction::FPToSI:
1958     case Instruction::UIToFP:
1959     case Instruction::SIToFP:
1960     case Instruction::FPTrunc:
1961     case Instruction::FPExt:
1962     case Instruction::Select:
1963     case Instruction::GetElementPtr: {
1964       SmallVector<Value*, 8> NewOps;
1965       bool NeedsRebuild =
1966           (Mask.size() !=
1967            cast<FixedVectorType>(I->getType())->getNumElements());
1968       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1969         Value *V;
1970         // Recursively call evaluateInDifferentElementOrder on vector arguments
1971         // as well. E.g. GetElementPtr may have scalar operands even if the
1972         // return value is a vector, so we need to examine the operand type.
1973         if (I->getOperand(i)->getType()->isVectorTy())
1974           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder);
1975         else
1976           V = I->getOperand(i);
1977         NewOps.push_back(V);
1978         NeedsRebuild |= (V != I->getOperand(i));
1979       }
1980       if (NeedsRebuild)
1981         return buildNew(I, NewOps, Builder);
1982       return I;
1983     }
1984     case Instruction::InsertElement: {
1985       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1986 
1987       // The insertelement was inserting at Element. Figure out which element
1988       // that becomes after shuffling. The answer is guaranteed to be unique
1989       // by CanEvaluateShuffled.
1990       bool Found = false;
1991       int Index = 0;
1992       for (int e = Mask.size(); Index != e; ++Index) {
1993         if (Mask[Index] == Element) {
1994           Found = true;
1995           break;
1996         }
1997       }
1998 
1999       // If element is not in Mask, no need to handle the operand 1 (element to
2000       // be inserted). Just evaluate values in operand 0 according to Mask.
2001       if (!Found)
2002         return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder);
2003 
2004       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask,
2005                                                  Builder);
2006       Builder.SetInsertPoint(I);
2007       return Builder.CreateInsertElement(V, I->getOperand(1), Index);
2008     }
2009   }
2010   llvm_unreachable("failed to reorder elements of vector instruction!");
2011 }
2012 
2013 // Returns true if the shuffle is extracting a contiguous range of values from
2014 // LHS, for example:
2015 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2016 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
2017 //   Shuffles to:  |EE|FF|GG|HH|
2018 //                 +--+--+--+--+
2019 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
2020                                        ArrayRef<int> Mask) {
2021   unsigned LHSElems =
2022       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
2023   unsigned MaskElems = Mask.size();
2024   unsigned BegIdx = Mask.front();
2025   unsigned EndIdx = Mask.back();
2026   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2027     return false;
2028   for (unsigned I = 0; I != MaskElems; ++I)
2029     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
2030       return false;
2031   return true;
2032 }
2033 
2034 /// These are the ingredients in an alternate form binary operator as described
2035 /// below.
2036 struct BinopElts {
2037   BinaryOperator::BinaryOps Opcode;
2038   Value *Op0;
2039   Value *Op1;
2040   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
2041             Value *V0 = nullptr, Value *V1 = nullptr) :
2042       Opcode(Opc), Op0(V0), Op1(V1) {}
2043   operator bool() const { return Opcode != 0; }
2044 };
2045 
2046 /// Binops may be transformed into binops with different opcodes and operands.
2047 /// Reverse the usual canonicalization to enable folds with the non-canonical
2048 /// form of the binop. If a transform is possible, return the elements of the
2049 /// new binop. If not, return invalid elements.
2050 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
2051   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
2052   Type *Ty = BO->getType();
2053   switch (BO->getOpcode()) {
2054   case Instruction::Shl: {
2055     // shl X, C --> mul X, (1 << C)
2056     Constant *C;
2057     if (match(BO1, m_Constant(C))) {
2058       Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
2059       return {Instruction::Mul, BO0, ShlOne};
2060     }
2061     break;
2062   }
2063   case Instruction::Or: {
2064     // or X, C --> add X, C (when X and C have no common bits set)
2065     const APInt *C;
2066     if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
2067       return {Instruction::Add, BO0, BO1};
2068     break;
2069   }
2070   case Instruction::Sub:
2071     // sub 0, X --> mul X, -1
2072     if (match(BO0, m_ZeroInt()))
2073       return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
2074     break;
2075   default:
2076     break;
2077   }
2078   return {};
2079 }
2080 
2081 /// A select shuffle of a select shuffle with a shared operand can be reduced
2082 /// to a single select shuffle. This is an obvious improvement in IR, and the
2083 /// backend is expected to lower select shuffles efficiently.
2084 static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
2085   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2086 
2087   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2088   SmallVector<int, 16> Mask;
2089   Shuf.getShuffleMask(Mask);
2090   unsigned NumElts = Mask.size();
2091 
2092   // Canonicalize a select shuffle with common operand as Op1.
2093   auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
2094   if (ShufOp && ShufOp->isSelect() &&
2095       (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2096     std::swap(Op0, Op1);
2097     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2098   }
2099 
2100   ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
2101   if (!ShufOp || !ShufOp->isSelect() ||
2102       (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2103     return nullptr;
2104 
2105   Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
2106   SmallVector<int, 16> Mask1;
2107   ShufOp->getShuffleMask(Mask1);
2108   assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");
2109 
2110   // Canonicalize common operand (Op0) as X (first operand of first shuffle).
2111   if (Y == Op0) {
2112     std::swap(X, Y);
2113     ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
2114   }
2115 
2116   // If the mask chooses from X (operand 0), it stays the same.
2117   // If the mask chooses from the earlier shuffle, the other mask value is
2118   // transferred to the combined select shuffle:
2119   // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
2120   SmallVector<int, 16> NewMask(NumElts);
2121   for (unsigned i = 0; i != NumElts; ++i)
2122     NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];
2123 
2124   // A select mask with undef elements might look like an identity mask.
2125   assert((ShuffleVectorInst::isSelectMask(NewMask) ||
2126           ShuffleVectorInst::isIdentityMask(NewMask)) &&
2127          "Unexpected shuffle mask");
2128   return new ShuffleVectorInst(X, Y, NewMask);
2129 }
2130 
2131 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
2132   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2133 
2134   // Are we shuffling together some value and that same value after it has been
2135   // modified by a binop with a constant?
2136   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2137   Constant *C;
2138   bool Op0IsBinop;
2139   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
2140     Op0IsBinop = true;
2141   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
2142     Op0IsBinop = false;
2143   else
2144     return nullptr;
2145 
2146   // The identity constant for a binop leaves a variable operand unchanged. For
2147   // a vector, this is a splat of something like 0, -1, or 1.
2148   // If there's no identity constant for this binop, we're done.
2149   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
2150   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
2151   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
2152   if (!IdC)
2153     return nullptr;
2154 
2155   // Shuffle identity constants into the lanes that return the original value.
2156   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
2157   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
2158   // The existing binop constant vector remains in the same operand position.
2159   ArrayRef<int> Mask = Shuf.getShuffleMask();
2160   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
2161                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
2162 
2163   bool MightCreatePoisonOrUB =
2164       is_contained(Mask, PoisonMaskElem) &&
2165       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
2166   if (MightCreatePoisonOrUB)
2167     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
2168 
2169   // shuf (bop X, C), X, M --> bop X, C'
2170   // shuf X, (bop X, C), M --> bop X, C'
2171   Value *X = Op0IsBinop ? Op1 : Op0;
2172   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
2173   NewBO->copyIRFlags(BO);
2174 
2175   // An undef shuffle mask element may propagate as an undef constant element in
2176   // the new binop. That would produce poison where the original code might not.
2177   // If we already made a safe constant, then there's no danger.
2178   if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2179     NewBO->dropPoisonGeneratingFlags();
2180   return NewBO;
2181 }
2182 
2183 /// If we have an insert of a scalar to a non-zero element of an undefined
2184 /// vector and then shuffle that value, that's the same as inserting to the zero
2185 /// element and shuffling. Splatting from the zero element is recognized as the
2186 /// canonical form of splat.
2187 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2188                                             InstCombiner::BuilderTy &Builder) {
2189   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2190   ArrayRef<int> Mask = Shuf.getShuffleMask();
2191   Value *X;
2192   uint64_t IndexC;
2193 
2194   // Match a shuffle that is a splat to a non-zero element.
2195   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
2196                                        m_ConstantInt(IndexC)))) ||
2197       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2198     return nullptr;
2199 
2200   // Insert into element 0 of an undef vector.
2201   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
2202   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, (uint64_t)0);
2203 
2204   // Splat from element 0. Any mask element that is undefined remains undefined.
2205   // For example:
2206   // shuf (inselt undef, X, 2), _, <2,2,undef>
2207   //   --> shuf (inselt undef, X, 0), poison, <0,0,undef>
2208   unsigned NumMaskElts =
2209       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2210   SmallVector<int, 16> NewMask(NumMaskElts, 0);
2211   for (unsigned i = 0; i != NumMaskElts; ++i)
2212     if (Mask[i] == PoisonMaskElem)
2213       NewMask[i] = Mask[i];
2214 
2215   return new ShuffleVectorInst(NewIns, NewMask);
2216 }
2217 
2218 /// Try to fold shuffles that are the equivalent of a vector select.
2219 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2220   if (!Shuf.isSelect())
2221     return nullptr;
2222 
2223   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2224   // Commuting undef to operand 0 conflicts with another canonicalization.
2225   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2226   if (!match(Shuf.getOperand(1), m_Undef()) &&
2227       Shuf.getMaskValue(0) >= (int)NumElts) {
2228     // TODO: Can we assert that both operands of a shuffle-select are not undef
2229     // (otherwise, it would have been folded by instsimplify?
2230     Shuf.commute();
2231     return &Shuf;
2232   }
2233 
2234   if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
2235     return I;
2236 
2237   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
2238     return I;
2239 
2240   BinaryOperator *B0, *B1;
2241   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2242       !match(Shuf.getOperand(1), m_BinOp(B1)))
2243     return nullptr;
2244 
2245   // If one operand is "0 - X", allow that to be viewed as "X * -1"
2246   // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2247   // with a multiply, we will exit because C0/C1 will not be set.
2248   Value *X, *Y;
2249   Constant *C0 = nullptr, *C1 = nullptr;
2250   bool ConstantsAreOp1;
2251   if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2252       match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2253     ConstantsAreOp1 = false;
2254   else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
2255                                  m_Neg(m_Value(X)))) &&
2256            match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
2257                                  m_Neg(m_Value(Y)))))
2258     ConstantsAreOp1 = true;
2259   else
2260     return nullptr;
2261 
2262   // We need matching binops to fold the lanes together.
2263   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2264   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2265   bool DropNSW = false;
2266   if (ConstantsAreOp1 && Opc0 != Opc1) {
2267     // TODO: We drop "nsw" if shift is converted into multiply because it may
2268     // not be correct when the shift amount is BitWidth - 1. We could examine
2269     // each vector element to determine if it is safe to keep that flag.
2270     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2271       DropNSW = true;
2272     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2273       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2274       Opc0 = AltB0.Opcode;
2275       C0 = cast<Constant>(AltB0.Op1);
2276     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2277       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2278       Opc1 = AltB1.Opcode;
2279       C1 = cast<Constant>(AltB1.Op1);
2280     }
2281   }
2282 
2283   if (Opc0 != Opc1 || !C0 || !C1)
2284     return nullptr;
2285 
2286   // The opcodes must be the same. Use a new name to make that clear.
2287   BinaryOperator::BinaryOps BOpc = Opc0;
2288 
2289   // Select the constant elements needed for the single binop.
2290   ArrayRef<int> Mask = Shuf.getShuffleMask();
2291   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2292 
2293   // We are moving a binop after a shuffle. When a shuffle has an undefined
2294   // mask element, the result is undefined, but it is not poison or undefined
2295   // behavior. That is not necessarily true for div/rem/shift.
2296   bool MightCreatePoisonOrUB =
2297       is_contained(Mask, PoisonMaskElem) &&
2298       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2299   if (MightCreatePoisonOrUB)
2300     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2301                                                        ConstantsAreOp1);
2302 
2303   Value *V;
2304   if (X == Y) {
2305     // Remove a binop and the shuffle by rearranging the constant:
2306     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2307     // shuffle (op C0, V), (op C1, V), M --> op C', V
2308     V = X;
2309   } else {
2310     // If there are 2 different variable operands, we must create a new shuffle
2311     // (select) first, so check uses to ensure that we don't end up with more
2312     // instructions than we started with.
2313     if (!B0->hasOneUse() && !B1->hasOneUse())
2314       return nullptr;
2315 
2316     // If we use the original shuffle mask and op1 is *variable*, we would be
2317     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2318     // poison. We do not have to guard against UB when *constants* are op1
2319     // because safe constants guarantee that we do not overflow sdiv/srem (and
2320     // there's no danger for other opcodes).
2321     // TODO: To allow this case, create a new shuffle mask with no undefs.
2322     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2323       return nullptr;
2324 
2325     // Note: In general, we do not create new shuffles in InstCombine because we
2326     // do not know if a target can lower an arbitrary shuffle optimally. In this
2327     // case, the shuffle uses the existing mask, so there is no additional risk.
2328 
2329     // Select the variable vectors first, then perform the binop:
2330     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2331     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2332     V = Builder.CreateShuffleVector(X, Y, Mask);
2333   }
2334 
2335   Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2336                                    Builder.CreateBinOp(BOpc, NewC, V);
2337 
2338   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2339   // 1. If we changed an opcode, poison conditions might have changed.
2340   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2341   //    where the original code did not. But if we already made a safe constant,
2342   //    then there's no danger.
2343   if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2344     NewI->copyIRFlags(B0);
2345     NewI->andIRFlags(B1);
2346     if (DropNSW)
2347       NewI->setHasNoSignedWrap(false);
2348     if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2349       NewI->dropPoisonGeneratingFlags();
2350   }
2351   return replaceInstUsesWith(Shuf, NewBO);
2352 }
2353 
2354 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2355 /// Example (little endian):
2356 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2357 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2358                                      bool IsBigEndian) {
2359   // This must be a bitcasted shuffle of 1 vector integer operand.
2360   Type *DestType = Shuf.getType();
2361   Value *X;
2362   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2363       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2364     return nullptr;
2365 
2366   // The source type must have the same number of elements as the shuffle,
2367   // and the source element type must be larger than the shuffle element type.
2368   Type *SrcType = X->getType();
2369   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2370       cast<FixedVectorType>(SrcType)->getNumElements() !=
2371           cast<FixedVectorType>(DestType)->getNumElements() ||
2372       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2373     return nullptr;
2374 
2375   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2376          "Expected a shuffle that decreases length");
2377 
2378   // Last, check that the mask chooses the correct low bits for each narrow
2379   // element in the result.
2380   uint64_t TruncRatio =
2381       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2382   ArrayRef<int> Mask = Shuf.getShuffleMask();
2383   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2384     if (Mask[i] == PoisonMaskElem)
2385       continue;
2386     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2387     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2388     if (Mask[i] != (int)LSBIndex)
2389       return nullptr;
2390   }
2391 
2392   return new TruncInst(X, DestType);
2393 }
2394 
2395 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2396 /// narrowing (concatenating with undef and extracting back to the original
2397 /// length). This allows replacing the wide select with a narrow select.
2398 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2399                                        InstCombiner::BuilderTy &Builder) {
2400   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2401   // of the 1st vector operand of a shuffle.
2402   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2403     return nullptr;
2404 
2405   // The vector being shuffled must be a vector select that we can eliminate.
2406   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2407   Value *Cond, *X, *Y;
2408   if (!match(Shuf.getOperand(0),
2409              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2410     return nullptr;
2411 
2412   // We need a narrow condition value. It must be extended with undef elements
2413   // and have the same number of elements as this shuffle.
2414   unsigned NarrowNumElts =
2415       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2416   Value *NarrowCond;
2417   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2418       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2419           NarrowNumElts ||
2420       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2421     return nullptr;
2422 
2423   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2424   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2425   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2426   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2427   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2428 }
2429 
2430 /// Canonicalize FP negate/abs after shuffle.
2431 static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf,
2432                                           InstCombiner::BuilderTy &Builder) {
2433   auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0));
2434   Value *X;
2435   if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X)))))
2436     return nullptr;
2437 
2438   bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2439 
2440   // Match 1-input (unary) shuffle.
2441   // shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask)
2442   if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) {
2443     Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2444     if (IsFNeg)
2445       return UnaryOperator::CreateFNegFMF(NewShuf, S0);
2446 
2447     Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(),
2448                                                Intrinsic::fabs, Shuf.getType());
2449     CallInst *NewF = CallInst::Create(FAbs, {NewShuf});
2450     NewF->setFastMathFlags(S0->getFastMathFlags());
2451     return NewF;
2452   }
2453 
2454   // Match 2-input (binary) shuffle.
2455   auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1));
2456   Value *Y;
2457   if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) ||
2458       S0->getOpcode() != S1->getOpcode() ||
2459       (!S0->hasOneUse() && !S1->hasOneUse()))
2460     return nullptr;
2461 
2462   // shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask)
2463   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2464   Instruction *NewF;
2465   if (IsFNeg) {
2466     NewF = UnaryOperator::CreateFNeg(NewShuf);
2467   } else {
2468     Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(),
2469                                                Intrinsic::fabs, Shuf.getType());
2470     NewF = CallInst::Create(FAbs, {NewShuf});
2471   }
2472   NewF->copyIRFlags(S0);
2473   NewF->andIRFlags(S1);
2474   return NewF;
2475 }
2476 
2477 /// Canonicalize casts after shuffle.
2478 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
2479                                     InstCombiner::BuilderTy &Builder) {
2480   // Do we have 2 matching cast operands?
2481   auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
2482   auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
2483   if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2484       Cast0->getSrcTy() != Cast1->getSrcTy())
2485     return nullptr;
2486 
2487   // TODO: Allow other opcodes? That would require easing the type restrictions
2488   //       below here.
2489   CastInst::CastOps CastOpcode = Cast0->getOpcode();
2490   switch (CastOpcode) {
2491   case Instruction::FPToSI:
2492   case Instruction::FPToUI:
2493   case Instruction::SIToFP:
2494   case Instruction::UIToFP:
2495     break;
2496   default:
2497     return nullptr;
2498   }
2499 
2500   VectorType *ShufTy = Shuf.getType();
2501   VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
2502   VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
2503 
2504   // TODO: Allow length-increasing shuffles?
2505   if (ShufTy->getElementCount().getKnownMinValue() >
2506       ShufOpTy->getElementCount().getKnownMinValue())
2507     return nullptr;
2508 
2509   // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2510   assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
2511          "Expected fixed vector operands for casts and binary shuffle");
2512   if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2513     return nullptr;
2514 
2515   // At least one of the operands must have only one use (the shuffle).
2516   if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2517     return nullptr;
2518 
2519   // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2520   Value *X = Cast0->getOperand(0);
2521   Value *Y = Cast1->getOperand(0);
2522   Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2523   return CastInst::Create(CastOpcode, NewShuf, ShufTy);
2524 }
2525 
2526 /// Try to fold an extract subvector operation.
2527 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2528   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2529   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2530     return nullptr;
2531 
2532   // Check if we are extracting all bits of an inserted scalar:
2533   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2534   Value *X;
2535   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2536       X->getType()->getPrimitiveSizeInBits() ==
2537           Shuf.getType()->getPrimitiveSizeInBits())
2538     return new BitCastInst(X, Shuf.getType());
2539 
2540   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2541   Value *Y;
2542   ArrayRef<int> Mask;
2543   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2544     return nullptr;
2545 
2546   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2547   // then combining may result in worse codegen.
2548   if (!Op0->hasOneUse())
2549     return nullptr;
2550 
2551   // We are extracting a subvector from a shuffle. Remove excess elements from
2552   // the 1st shuffle mask to eliminate the extract.
2553   //
2554   // This transform is conservatively limited to identity extracts because we do
2555   // not allow arbitrary shuffle mask creation as a target-independent transform
2556   // (because we can't guarantee that will lower efficiently).
2557   //
2558   // If the extracting shuffle has an undef mask element, it transfers to the
2559   // new shuffle mask. Otherwise, copy the original mask element. Example:
2560   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2561   //   shuf X, Y, <C0, undef, C2, undef>
2562   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2563   SmallVector<int, 16> NewMask(NumElts);
2564   assert(NumElts < Mask.size() &&
2565          "Identity with extract must have less elements than its inputs");
2566 
2567   for (unsigned i = 0; i != NumElts; ++i) {
2568     int ExtractMaskElt = Shuf.getMaskValue(i);
2569     int MaskElt = Mask[i];
2570     NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt;
2571   }
2572   return new ShuffleVectorInst(X, Y, NewMask);
2573 }
2574 
2575 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2576 /// operand with the operand of an insertelement.
2577 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2578                                           InstCombinerImpl &IC) {
2579   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2580   SmallVector<int, 16> Mask;
2581   Shuf.getShuffleMask(Mask);
2582 
2583   int NumElts = Mask.size();
2584   int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2585 
2586   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2587   // not be able to handle it there if the insertelement has >1 use.
2588   // If the shuffle has an insertelement operand but does not choose the
2589   // inserted scalar element from that value, then we can replace that shuffle
2590   // operand with the source vector of the insertelement.
2591   Value *X;
2592   uint64_t IdxC;
2593   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2594     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2595     if (!is_contained(Mask, (int)IdxC))
2596       return IC.replaceOperand(Shuf, 0, X);
2597   }
2598   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2599     // Offset the index constant by the vector width because we are checking for
2600     // accesses to the 2nd vector input of the shuffle.
2601     IdxC += InpNumElts;
2602     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2603     if (!is_contained(Mask, (int)IdxC))
2604       return IC.replaceOperand(Shuf, 1, X);
2605   }
2606   // For the rest of the transform, the shuffle must not change vector sizes.
2607   // TODO: This restriction could be removed if the insert has only one use
2608   //       (because the transform would require a new length-changing shuffle).
2609   if (NumElts != InpNumElts)
2610     return nullptr;
2611 
2612   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2613   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2614     // We need an insertelement with a constant index.
2615     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2616                                m_ConstantInt(IndexC))))
2617       return false;
2618 
2619     // Test the shuffle mask to see if it splices the inserted scalar into the
2620     // operand 1 vector of the shuffle.
2621     int NewInsIndex = -1;
2622     for (int i = 0; i != NumElts; ++i) {
2623       // Ignore undef mask elements.
2624       if (Mask[i] == -1)
2625         continue;
2626 
2627       // The shuffle takes elements of operand 1 without lane changes.
2628       if (Mask[i] == NumElts + i)
2629         continue;
2630 
2631       // The shuffle must choose the inserted scalar exactly once.
2632       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2633         return false;
2634 
2635       // The shuffle is placing the inserted scalar into element i.
2636       NewInsIndex = i;
2637     }
2638 
2639     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2640 
2641     // Index is updated to the potentially translated insertion lane.
2642     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2643     return true;
2644   };
2645 
2646   // If the shuffle is unnecessary, insert the scalar operand directly into
2647   // operand 1 of the shuffle. Example:
2648   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2649   Value *Scalar;
2650   ConstantInt *IndexC;
2651   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2652     return InsertElementInst::Create(V1, Scalar, IndexC);
2653 
2654   // Try again after commuting shuffle. Example:
2655   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2656   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2657   std::swap(V0, V1);
2658   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2659   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2660     return InsertElementInst::Create(V1, Scalar, IndexC);
2661 
2662   return nullptr;
2663 }
2664 
2665 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2666   // Match the operands as identity with padding (also known as concatenation
2667   // with undef) shuffles of the same source type. The backend is expected to
2668   // recreate these concatenations from a shuffle of narrow operands.
2669   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2670   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2671   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2672       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2673     return nullptr;
2674 
2675   // We limit this transform to power-of-2 types because we expect that the
2676   // backend can convert the simplified IR patterns to identical nodes as the
2677   // original IR.
2678   // TODO: If we can verify the same behavior for arbitrary types, the
2679   //       power-of-2 checks can be removed.
2680   Value *X = Shuffle0->getOperand(0);
2681   Value *Y = Shuffle1->getOperand(0);
2682   if (X->getType() != Y->getType() ||
2683       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2684       !isPowerOf2_32(
2685           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2686       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2687       match(X, m_Undef()) || match(Y, m_Undef()))
2688     return nullptr;
2689   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2690          match(Shuffle1->getOperand(1), m_Undef()) &&
2691          "Unexpected operand for identity shuffle");
2692 
2693   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2694   // operands directly by adjusting the shuffle mask to account for the narrower
2695   // types:
2696   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2697   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2698   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2699   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2700 
2701   ArrayRef<int> Mask = Shuf.getShuffleMask();
2702   SmallVector<int, 16> NewMask(Mask.size(), -1);
2703   for (int i = 0, e = Mask.size(); i != e; ++i) {
2704     if (Mask[i] == -1)
2705       continue;
2706 
2707     // If this shuffle is choosing an undef element from 1 of the sources, that
2708     // element is undef.
2709     if (Mask[i] < WideElts) {
2710       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2711         continue;
2712     } else {
2713       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2714         continue;
2715     }
2716 
2717     // If this shuffle is choosing from the 1st narrow op, the mask element is
2718     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2719     // element is offset down to adjust for the narrow vector widths.
2720     if (Mask[i] < WideElts) {
2721       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2722       NewMask[i] = Mask[i];
2723     } else {
2724       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2725       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2726     }
2727   }
2728   return new ShuffleVectorInst(X, Y, NewMask);
2729 }
2730 
2731 // Splatting the first element of the result of a BinOp, where any of the
2732 // BinOp's operands are the result of a first element splat can be simplified to
2733 // splatting the first element of the result of the BinOp
2734 Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
2735   if (!match(SVI.getOperand(1), m_Undef()) ||
2736       !match(SVI.getShuffleMask(), m_ZeroMask()) ||
2737       !SVI.getOperand(0)->hasOneUse())
2738     return nullptr;
2739 
2740   Value *Op0 = SVI.getOperand(0);
2741   Value *X, *Y;
2742   if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()),
2743                           m_Value(Y))) &&
2744       !match(Op0, m_BinOp(m_Value(X),
2745                           m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask()))))
2746     return nullptr;
2747   if (X->getType() != Y->getType())
2748     return nullptr;
2749 
2750   auto *BinOp = cast<BinaryOperator>(Op0);
2751   if (!isSafeToSpeculativelyExecute(BinOp))
2752     return nullptr;
2753 
2754   Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
2755   if (auto NewBOI = dyn_cast<Instruction>(NewBO))
2756     NewBOI->copyIRFlags(BinOp);
2757 
2758   return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
2759 }
2760 
2761 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2762   Value *LHS = SVI.getOperand(0);
2763   Value *RHS = SVI.getOperand(1);
2764   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2765   if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2766                                           SVI.getType(), ShufQuery))
2767     return replaceInstUsesWith(SVI, V);
2768 
2769   if (Instruction *I = simplifyBinOpSplats(SVI))
2770     return I;
2771 
2772   if (isa<ScalableVectorType>(LHS->getType()))
2773     return nullptr;
2774 
2775   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2776   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2777 
2778   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2779   //
2780   // if X and Y are of the same (vector) type, and the element size is not
2781   // changed by the bitcasts, we can distribute the bitcasts through the
2782   // shuffle, hopefully reducing the number of instructions. We make sure that
2783   // at least one bitcast only has one use, so we don't *increase* the number of
2784   // instructions here.
2785   Value *X, *Y;
2786   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2787       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2788       X->getType()->getScalarSizeInBits() ==
2789           SVI.getType()->getScalarSizeInBits() &&
2790       (LHS->hasOneUse() || RHS->hasOneUse())) {
2791     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2792                                            SVI.getName() + ".uncasted");
2793     return new BitCastInst(V, SVI.getType());
2794   }
2795 
2796   ArrayRef<int> Mask = SVI.getShuffleMask();
2797 
2798   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2799   // simulated shuffle can simplify, then this shuffle is unnecessary:
2800   // shuf (bitcast X), undef, Mask --> bitcast X'
2801   // TODO: This could be extended to allow length-changing shuffles.
2802   //       The transform might also be obsoleted if we allowed canonicalization
2803   //       of bitcasted shuffles.
2804   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2805       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2806     // Try to create a scaled mask constant.
2807     auto *XType = cast<FixedVectorType>(X->getType());
2808     unsigned XNumElts = XType->getNumElements();
2809     SmallVector<int, 16> ScaledMask;
2810     if (XNumElts >= VWidth) {
2811       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2812       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2813     } else {
2814       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2815       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2816         ScaledMask.clear();
2817     }
2818     if (!ScaledMask.empty()) {
2819       // If the shuffled source vector simplifies, cast that value to this
2820       // shuffle's type.
2821       if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
2822                                               ScaledMask, XType, ShufQuery))
2823         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2824     }
2825   }
2826 
2827   // shuffle x, x, mask --> shuffle x, undef, mask'
2828   if (LHS == RHS) {
2829     assert(!match(RHS, m_Undef()) &&
2830            "Shuffle with 2 undef ops not simplified?");
2831     return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2832   }
2833 
2834   // shuffle undef, x, mask --> shuffle x, undef, mask'
2835   if (match(LHS, m_Undef())) {
2836     SVI.commute();
2837     return &SVI;
2838   }
2839 
2840   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2841     return I;
2842 
2843   if (Instruction *I = foldSelectShuffle(SVI))
2844     return I;
2845 
2846   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2847     return I;
2848 
2849   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2850     return I;
2851 
2852   if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder))
2853     return I;
2854 
2855   if (Instruction *I = foldCastShuffle(SVI, Builder))
2856     return I;
2857 
2858   APInt UndefElts(VWidth, 0);
2859   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2860   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2861     if (V != &SVI)
2862       return replaceInstUsesWith(SVI, V);
2863     return &SVI;
2864   }
2865 
2866   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2867     return I;
2868 
2869   // These transforms have the potential to lose undef knowledge, so they are
2870   // intentionally placed after SimplifyDemandedVectorElts().
2871   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2872     return I;
2873   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2874     return I;
2875 
2876   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2877     Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder);
2878     return replaceInstUsesWith(SVI, V);
2879   }
2880 
2881   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2882   // a non-vector type. We can instead bitcast the original vector followed by
2883   // an extract of the desired element:
2884   //
2885   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2886   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2887   //   %1 = bitcast <4 x i8> %sroa to i32
2888   // Becomes:
2889   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2890   //   %ext = extractelement <4 x i32> %bc, i32 0
2891   //
2892   // If the shuffle is extracting a contiguous range of values from the input
2893   // vector then each use which is a bitcast of the extracted size can be
2894   // replaced. This will work if the vector types are compatible, and the begin
2895   // index is aligned to a value in the casted vector type. If the begin index
2896   // isn't aligned then we can shuffle the original vector (keeping the same
2897   // vector type) before extracting.
2898   //
2899   // This code will bail out if the target type is fundamentally incompatible
2900   // with vectors of the source type.
2901   //
2902   // Example of <16 x i8>, target type i32:
2903   // Index range [4,8):         v-----------v Will work.
2904   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2905   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2906   //     <4 x i32>: |           |           |           |           |
2907   //                +-----------+-----------+-----------+-----------+
2908   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2909   // Target type i40:           ^--------------^ Won't work, bail.
2910   bool MadeChange = false;
2911   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2912     Value *V = LHS;
2913     unsigned MaskElems = Mask.size();
2914     auto *SrcTy = cast<FixedVectorType>(V->getType());
2915     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
2916     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2917     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2918     unsigned SrcNumElems = SrcTy->getNumElements();
2919     SmallVector<BitCastInst *, 8> BCs;
2920     DenseMap<Type *, Value *> NewBCs;
2921     for (User *U : SVI.users())
2922       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2923         if (!BC->use_empty())
2924           // Only visit bitcasts that weren't previously handled.
2925           BCs.push_back(BC);
2926     for (BitCastInst *BC : BCs) {
2927       unsigned BegIdx = Mask.front();
2928       Type *TgtTy = BC->getDestTy();
2929       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2930       if (!TgtElemBitWidth)
2931         continue;
2932       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2933       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2934       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2935       if (!VecBitWidthsEqual)
2936         continue;
2937       if (!VectorType::isValidElementType(TgtTy))
2938         continue;
2939       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2940       if (!BegIsAligned) {
2941         // Shuffle the input so [0,NumElements) contains the output, and
2942         // [NumElems,SrcNumElems) is undef.
2943         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2944         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2945           ShuffleMask[I] = Idx;
2946         V = Builder.CreateShuffleVector(V, ShuffleMask,
2947                                         SVI.getName() + ".extract");
2948         BegIdx = 0;
2949       }
2950       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2951       assert(SrcElemsPerTgtElem);
2952       BegIdx /= SrcElemsPerTgtElem;
2953       bool BCAlreadyExists = NewBCs.contains(CastSrcTy);
2954       auto *NewBC =
2955           BCAlreadyExists
2956               ? NewBCs[CastSrcTy]
2957               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2958       if (!BCAlreadyExists)
2959         NewBCs[CastSrcTy] = NewBC;
2960       auto *Ext = Builder.CreateExtractElement(NewBC, BegIdx,
2961                                                SVI.getName() + ".extract");
2962       // The shufflevector isn't being replaced: the bitcast that used it
2963       // is. InstCombine will visit the newly-created instructions.
2964       replaceInstUsesWith(*BC, Ext);
2965       MadeChange = true;
2966     }
2967   }
2968 
2969   // If the LHS is a shufflevector itself, see if we can combine it with this
2970   // one without producing an unusual shuffle.
2971   // Cases that might be simplified:
2972   // 1.
2973   // x1=shuffle(v1,v2,mask1)
2974   //  x=shuffle(x1,undef,mask)
2975   //        ==>
2976   //  x=shuffle(v1,undef,newMask)
2977   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2978   // 2.
2979   // x1=shuffle(v1,undef,mask1)
2980   //  x=shuffle(x1,x2,mask)
2981   // where v1.size() == mask1.size()
2982   //        ==>
2983   //  x=shuffle(v1,x2,newMask)
2984   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2985   // 3.
2986   // x2=shuffle(v2,undef,mask2)
2987   //  x=shuffle(x1,x2,mask)
2988   // where v2.size() == mask2.size()
2989   //        ==>
2990   //  x=shuffle(x1,v2,newMask)
2991   // newMask[i] = (mask[i] < x1.size())
2992   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2993   // 4.
2994   // x1=shuffle(v1,undef,mask1)
2995   // x2=shuffle(v2,undef,mask2)
2996   //  x=shuffle(x1,x2,mask)
2997   // where v1.size() == v2.size()
2998   //        ==>
2999   //  x=shuffle(v1,v2,newMask)
3000   // newMask[i] = (mask[i] < x1.size())
3001   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
3002   //
3003   // Here we are really conservative:
3004   // we are absolutely afraid of producing a shuffle mask not in the input
3005   // program, because the code gen may not be smart enough to turn a merged
3006   // shuffle into two specific shuffles: it may produce worse code.  As such,
3007   // we only merge two shuffles if the result is either a splat or one of the
3008   // input shuffle masks.  In this case, merging the shuffles just removes
3009   // one instruction, which we know is safe.  This is good for things like
3010   // turning: (splat(splat)) -> splat, or
3011   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
3012   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
3013   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
3014   if (LHSShuffle)
3015     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
3016       LHSShuffle = nullptr;
3017   if (RHSShuffle)
3018     if (!match(RHSShuffle->getOperand(1), m_Undef()))
3019       RHSShuffle = nullptr;
3020   if (!LHSShuffle && !RHSShuffle)
3021     return MadeChange ? &SVI : nullptr;
3022 
3023   Value* LHSOp0 = nullptr;
3024   Value* LHSOp1 = nullptr;
3025   Value* RHSOp0 = nullptr;
3026   unsigned LHSOp0Width = 0;
3027   unsigned RHSOp0Width = 0;
3028   if (LHSShuffle) {
3029     LHSOp0 = LHSShuffle->getOperand(0);
3030     LHSOp1 = LHSShuffle->getOperand(1);
3031     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
3032   }
3033   if (RHSShuffle) {
3034     RHSOp0 = RHSShuffle->getOperand(0);
3035     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
3036   }
3037   Value* newLHS = LHS;
3038   Value* newRHS = RHS;
3039   if (LHSShuffle) {
3040     // case 1
3041     if (match(RHS, m_Undef())) {
3042       newLHS = LHSOp0;
3043       newRHS = LHSOp1;
3044     }
3045     // case 2 or 4
3046     else if (LHSOp0Width == LHSWidth) {
3047       newLHS = LHSOp0;
3048     }
3049   }
3050   // case 3 or 4
3051   if (RHSShuffle && RHSOp0Width == LHSWidth) {
3052     newRHS = RHSOp0;
3053   }
3054   // case 4
3055   if (LHSOp0 == RHSOp0) {
3056     newLHS = LHSOp0;
3057     newRHS = nullptr;
3058   }
3059 
3060   if (newLHS == LHS && newRHS == RHS)
3061     return MadeChange ? &SVI : nullptr;
3062 
3063   ArrayRef<int> LHSMask;
3064   ArrayRef<int> RHSMask;
3065   if (newLHS != LHS)
3066     LHSMask = LHSShuffle->getShuffleMask();
3067   if (RHSShuffle && newRHS != RHS)
3068     RHSMask = RHSShuffle->getShuffleMask();
3069 
3070   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3071   SmallVector<int, 16> newMask;
3072   bool isSplat = true;
3073   int SplatElt = -1;
3074   // Create a new mask for the new ShuffleVectorInst so that the new
3075   // ShuffleVectorInst is equivalent to the original one.
3076   for (unsigned i = 0; i < VWidth; ++i) {
3077     int eltMask;
3078     if (Mask[i] < 0) {
3079       // This element is a poison value.
3080       eltMask = -1;
3081     } else if (Mask[i] < (int)LHSWidth) {
3082       // This element is from left hand side vector operand.
3083       //
3084       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
3085       // new mask value for the element.
3086       if (newLHS != LHS) {
3087         eltMask = LHSMask[Mask[i]];
3088         // If the value selected is an poison value, explicitly specify it
3089         // with a -1 mask value.
3090         if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1))
3091           eltMask = -1;
3092       } else
3093         eltMask = Mask[i];
3094     } else {
3095       // This element is from right hand side vector operand
3096       //
3097       // If the value selected is a poison value, explicitly specify it
3098       // with a -1 mask value. (case 1)
3099       if (match(RHS, m_Poison()))
3100         eltMask = -1;
3101       // If RHS is going to be replaced (case 3 or 4), calculate the
3102       // new mask value for the element.
3103       else if (newRHS != RHS) {
3104         eltMask = RHSMask[Mask[i]-LHSWidth];
3105         // If the value selected is an poison value, explicitly specify it
3106         // with a -1 mask value.
3107         if (eltMask >= (int)RHSOp0Width) {
3108           assert(match(RHSShuffle->getOperand(1), m_Poison()) &&
3109                  "should have been check above");
3110           eltMask = -1;
3111         }
3112       } else
3113         eltMask = Mask[i]-LHSWidth;
3114 
3115       // If LHS's width is changed, shift the mask value accordingly.
3116       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
3117       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
3118       // If newRHS == newLHS, we want to remap any references from newRHS to
3119       // newLHS so that we can properly identify splats that may occur due to
3120       // obfuscation across the two vectors.
3121       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
3122         eltMask += newLHSWidth;
3123     }
3124 
3125     // Check if this could still be a splat.
3126     if (eltMask >= 0) {
3127       if (SplatElt >= 0 && SplatElt != eltMask)
3128         isSplat = false;
3129       SplatElt = eltMask;
3130     }
3131 
3132     newMask.push_back(eltMask);
3133   }
3134 
3135   // If the result mask is equal to one of the original shuffle masks,
3136   // or is a splat, do the replacement.
3137   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3138     if (!newRHS)
3139       newRHS = PoisonValue::get(newLHS->getType());
3140     return new ShuffleVectorInst(newLHS, newRHS, newMask);
3141   }
3142 
3143   return MadeChange ? &SVI : nullptr;
3144 }
3145