1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/Analysis/VectorUtils.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LegacyPassManager.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PassManager.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Use.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/IR/ValueHandle.h"
90 #include "llvm/InitializePasses.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Support/CBindingWrapping.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/DebugCounter.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Transforms/InstCombine/InstCombine.h"
102 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <memory>
108 #include <string>
109 #include <utility>
110 
111 using namespace llvm;
112 using namespace llvm::PatternMatch;
113 
114 #define DEBUG_TYPE "instcombine"
115 
116 STATISTIC(NumCombined , "Number of insts combined");
117 STATISTIC(NumConstProp, "Number of constant folds");
118 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
119 STATISTIC(NumSunkInst , "Number of instructions sunk");
120 STATISTIC(NumExpand,    "Number of expansions");
121 STATISTIC(NumFactor   , "Number of factorizations");
122 STATISTIC(NumReassoc  , "Number of reassociations");
123 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
124               "Controls which instructions are visited");
125 
126 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
127 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
128 
129 static cl::opt<bool>
130 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
131                                               cl::init(true));
132 
133 static cl::opt<unsigned> LimitMaxIterations(
134     "instcombine-max-iterations",
135     cl::desc("Limit the maximum number of instruction combining iterations"),
136     cl::init(InstCombineDefaultMaxIterations));
137 
138 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
139     "instcombine-infinite-loop-threshold",
140     cl::desc("Number of instruction combining iterations considered an "
141              "infinite loop"),
142     cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
143 
144 static cl::opt<unsigned>
145 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
146              cl::desc("Maximum array size considered when doing a combine"));
147 
148 // FIXME: Remove this flag when it is no longer necessary to convert
149 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
150 // increases variable availability at the cost of accuracy. Variables that
151 // cannot be promoted by mem2reg or SROA will be described as living in memory
152 // for their entire lifetime. However, passes like DSE and instcombine can
153 // delete stores to the alloca, leading to misleading and inaccurate debug
154 // information. This flag can be removed when those passes are fixed.
155 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
156                                                cl::Hidden, cl::init(true));
157 
158 Value *InstCombiner::EmitGEPOffset(User *GEP) {
159   return llvm::EmitGEPOffset(&Builder, DL, GEP);
160 }
161 
162 /// Return true if it is desirable to convert an integer computation from a
163 /// given bit width to a new bit width.
164 /// We don't want to convert from a legal to an illegal type or from a smaller
165 /// to a larger illegal type. A width of '1' is always treated as a legal type
166 /// because i1 is a fundamental type in IR, and there are many specialized
167 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
168 /// legal to convert to, in order to open up more combining opportunities.
169 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
170 /// from frontend languages.
171 bool InstCombiner::shouldChangeType(unsigned FromWidth,
172                                     unsigned ToWidth) const {
173   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
174   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
175 
176   // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
177   // shrink types, to prevent infinite loops.
178   if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
179     return true;
180 
181   // If this is a legal integer from type, and the result would be an illegal
182   // type, don't do the transformation.
183   if (FromLegal && !ToLegal)
184     return false;
185 
186   // Otherwise, if both are illegal, do not increase the size of the result. We
187   // do allow things like i160 -> i64, but not i64 -> i160.
188   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
189     return false;
190 
191   return true;
192 }
193 
194 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
195 /// We don't want to convert from a legal to an illegal type or from a smaller
196 /// to a larger illegal type. i1 is always treated as a legal type because it is
197 /// a fundamental type in IR, and there are many specialized optimizations for
198 /// i1 types.
199 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
200   // TODO: This could be extended to allow vectors. Datalayout changes might be
201   // needed to properly support that.
202   if (!From->isIntegerTy() || !To->isIntegerTy())
203     return false;
204 
205   unsigned FromWidth = From->getPrimitiveSizeInBits();
206   unsigned ToWidth = To->getPrimitiveSizeInBits();
207   return shouldChangeType(FromWidth, ToWidth);
208 }
209 
210 // Return true, if No Signed Wrap should be maintained for I.
211 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
212 // where both B and C should be ConstantInts, results in a constant that does
213 // not overflow. This function only handles the Add and Sub opcodes. For
214 // all other opcodes, the function conservatively returns false.
215 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
216   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
217   if (!OBO || !OBO->hasNoSignedWrap())
218     return false;
219 
220   // We reason about Add and Sub Only.
221   Instruction::BinaryOps Opcode = I.getOpcode();
222   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
223     return false;
224 
225   const APInt *BVal, *CVal;
226   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
227     return false;
228 
229   bool Overflow = false;
230   if (Opcode == Instruction::Add)
231     (void)BVal->sadd_ov(*CVal, Overflow);
232   else
233     (void)BVal->ssub_ov(*CVal, Overflow);
234 
235   return !Overflow;
236 }
237 
238 static bool hasNoUnsignedWrap(BinaryOperator &I) {
239   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
240   return OBO && OBO->hasNoUnsignedWrap();
241 }
242 
243 static bool hasNoSignedWrap(BinaryOperator &I) {
244   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
245   return OBO && OBO->hasNoSignedWrap();
246 }
247 
248 /// Conservatively clears subclassOptionalData after a reassociation or
249 /// commutation. We preserve fast-math flags when applicable as they can be
250 /// preserved.
251 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
252   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
253   if (!FPMO) {
254     I.clearSubclassOptionalData();
255     return;
256   }
257 
258   FastMathFlags FMF = I.getFastMathFlags();
259   I.clearSubclassOptionalData();
260   I.setFastMathFlags(FMF);
261 }
262 
263 /// Combine constant operands of associative operations either before or after a
264 /// cast to eliminate one of the associative operations:
265 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
266 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
267 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombiner &IC) {
268   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
269   if (!Cast || !Cast->hasOneUse())
270     return false;
271 
272   // TODO: Enhance logic for other casts and remove this check.
273   auto CastOpcode = Cast->getOpcode();
274   if (CastOpcode != Instruction::ZExt)
275     return false;
276 
277   // TODO: Enhance logic for other BinOps and remove this check.
278   if (!BinOp1->isBitwiseLogicOp())
279     return false;
280 
281   auto AssocOpcode = BinOp1->getOpcode();
282   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
283   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
284     return false;
285 
286   Constant *C1, *C2;
287   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
288       !match(BinOp2->getOperand(1), m_Constant(C2)))
289     return false;
290 
291   // TODO: This assumes a zext cast.
292   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
293   // to the destination type might lose bits.
294 
295   // Fold the constants together in the destination type:
296   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
297   Type *DestTy = C1->getType();
298   Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
299   Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
300   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
301   IC.replaceOperand(*BinOp1, 1, FoldedC);
302   return true;
303 }
304 
305 /// This performs a few simplifications for operators that are associative or
306 /// commutative:
307 ///
308 ///  Commutative operators:
309 ///
310 ///  1. Order operands such that they are listed from right (least complex) to
311 ///     left (most complex).  This puts constants before unary operators before
312 ///     binary operators.
313 ///
314 ///  Associative operators:
315 ///
316 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
317 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
318 ///
319 ///  Associative and commutative operators:
320 ///
321 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
322 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
323 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
324 ///     if C1 and C2 are constants.
325 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
326   Instruction::BinaryOps Opcode = I.getOpcode();
327   bool Changed = false;
328 
329   do {
330     // Order operands such that they are listed from right (least complex) to
331     // left (most complex).  This puts constants before unary operators before
332     // binary operators.
333     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
334         getComplexity(I.getOperand(1)))
335       Changed = !I.swapOperands();
336 
337     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
338     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
339 
340     if (I.isAssociative()) {
341       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
342       if (Op0 && Op0->getOpcode() == Opcode) {
343         Value *A = Op0->getOperand(0);
344         Value *B = Op0->getOperand(1);
345         Value *C = I.getOperand(1);
346 
347         // Does "B op C" simplify?
348         if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
349           // It simplifies to V.  Form "A op V".
350           replaceOperand(I, 0, A);
351           replaceOperand(I, 1, V);
352           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
353           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
354 
355           // Conservatively clear all optional flags since they may not be
356           // preserved by the reassociation. Reset nsw/nuw based on the above
357           // analysis.
358           ClearSubclassDataAfterReassociation(I);
359 
360           // Note: this is only valid because SimplifyBinOp doesn't look at
361           // the operands to Op0.
362           if (IsNUW)
363             I.setHasNoUnsignedWrap(true);
364 
365           if (IsNSW)
366             I.setHasNoSignedWrap(true);
367 
368           Changed = true;
369           ++NumReassoc;
370           continue;
371         }
372       }
373 
374       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
375       if (Op1 && Op1->getOpcode() == Opcode) {
376         Value *A = I.getOperand(0);
377         Value *B = Op1->getOperand(0);
378         Value *C = Op1->getOperand(1);
379 
380         // Does "A op B" simplify?
381         if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
382           // It simplifies to V.  Form "V op C".
383           replaceOperand(I, 0, V);
384           replaceOperand(I, 1, C);
385           // Conservatively clear the optional flags, since they may not be
386           // preserved by the reassociation.
387           ClearSubclassDataAfterReassociation(I);
388           Changed = true;
389           ++NumReassoc;
390           continue;
391         }
392       }
393     }
394 
395     if (I.isAssociative() && I.isCommutative()) {
396       if (simplifyAssocCastAssoc(&I, *this)) {
397         Changed = true;
398         ++NumReassoc;
399         continue;
400       }
401 
402       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
403       if (Op0 && Op0->getOpcode() == Opcode) {
404         Value *A = Op0->getOperand(0);
405         Value *B = Op0->getOperand(1);
406         Value *C = I.getOperand(1);
407 
408         // Does "C op A" simplify?
409         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
410           // It simplifies to V.  Form "V op B".
411           replaceOperand(I, 0, V);
412           replaceOperand(I, 1, B);
413           // Conservatively clear the optional flags, since they may not be
414           // preserved by the reassociation.
415           ClearSubclassDataAfterReassociation(I);
416           Changed = true;
417           ++NumReassoc;
418           continue;
419         }
420       }
421 
422       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
423       if (Op1 && Op1->getOpcode() == Opcode) {
424         Value *A = I.getOperand(0);
425         Value *B = Op1->getOperand(0);
426         Value *C = Op1->getOperand(1);
427 
428         // Does "C op A" simplify?
429         if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
430           // It simplifies to V.  Form "B op V".
431           replaceOperand(I, 0, B);
432           replaceOperand(I, 1, V);
433           // Conservatively clear the optional flags, since they may not be
434           // preserved by the reassociation.
435           ClearSubclassDataAfterReassociation(I);
436           Changed = true;
437           ++NumReassoc;
438           continue;
439         }
440       }
441 
442       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
443       // if C1 and C2 are constants.
444       Value *A, *B;
445       Constant *C1, *C2;
446       if (Op0 && Op1 &&
447           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
448           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
449           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
450         bool IsNUW = hasNoUnsignedWrap(I) &&
451            hasNoUnsignedWrap(*Op0) &&
452            hasNoUnsignedWrap(*Op1);
453          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
454            BinaryOperator::CreateNUW(Opcode, A, B) :
455            BinaryOperator::Create(Opcode, A, B);
456 
457          if (isa<FPMathOperator>(NewBO)) {
458           FastMathFlags Flags = I.getFastMathFlags();
459           Flags &= Op0->getFastMathFlags();
460           Flags &= Op1->getFastMathFlags();
461           NewBO->setFastMathFlags(Flags);
462         }
463         InsertNewInstWith(NewBO, I);
464         NewBO->takeName(Op1);
465         replaceOperand(I, 0, NewBO);
466         replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
467         // Conservatively clear the optional flags, since they may not be
468         // preserved by the reassociation.
469         ClearSubclassDataAfterReassociation(I);
470         if (IsNUW)
471           I.setHasNoUnsignedWrap(true);
472 
473         Changed = true;
474         continue;
475       }
476     }
477 
478     // No further simplifications.
479     return Changed;
480   } while (true);
481 }
482 
483 /// Return whether "X LOp (Y ROp Z)" is always equal to
484 /// "(X LOp Y) ROp (X LOp Z)".
485 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
486                                      Instruction::BinaryOps ROp) {
487   // X & (Y | Z) <--> (X & Y) | (X & Z)
488   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
489   if (LOp == Instruction::And)
490     return ROp == Instruction::Or || ROp == Instruction::Xor;
491 
492   // X | (Y & Z) <--> (X | Y) & (X | Z)
493   if (LOp == Instruction::Or)
494     return ROp == Instruction::And;
495 
496   // X * (Y + Z) <--> (X * Y) + (X * Z)
497   // X * (Y - Z) <--> (X * Y) - (X * Z)
498   if (LOp == Instruction::Mul)
499     return ROp == Instruction::Add || ROp == Instruction::Sub;
500 
501   return false;
502 }
503 
504 /// Return whether "(X LOp Y) ROp Z" is always equal to
505 /// "(X ROp Z) LOp (Y ROp Z)".
506 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
507                                      Instruction::BinaryOps ROp) {
508   if (Instruction::isCommutative(ROp))
509     return leftDistributesOverRight(ROp, LOp);
510 
511   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
512   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
513 
514   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
515   // but this requires knowing that the addition does not overflow and other
516   // such subtleties.
517 }
518 
519 /// This function returns identity value for given opcode, which can be used to
520 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
521 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
522   if (isa<Constant>(V))
523     return nullptr;
524 
525   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
526 }
527 
528 /// This function predicates factorization using distributive laws. By default,
529 /// it just returns the 'Op' inputs. But for special-cases like
530 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
531 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
532 /// allow more factorization opportunities.
533 static Instruction::BinaryOps
534 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
535                           Value *&LHS, Value *&RHS) {
536   assert(Op && "Expected a binary operator");
537   LHS = Op->getOperand(0);
538   RHS = Op->getOperand(1);
539   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
540     Constant *C;
541     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
542       // X << C --> X * (1 << C)
543       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
544       return Instruction::Mul;
545     }
546     // TODO: We can add other conversions e.g. shr => div etc.
547   }
548   return Op->getOpcode();
549 }
550 
551 /// This tries to simplify binary operations by factorizing out common terms
552 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
553 Value *InstCombiner::tryFactorization(BinaryOperator &I,
554                                       Instruction::BinaryOps InnerOpcode,
555                                       Value *A, Value *B, Value *C, Value *D) {
556   assert(A && B && C && D && "All values must be provided");
557 
558   Value *V = nullptr;
559   Value *SimplifiedInst = nullptr;
560   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
561   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
562 
563   // Does "X op' Y" always equal "Y op' X"?
564   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
565 
566   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
567   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
568     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
569     // commutative case, "(A op' B) op (C op' A)"?
570     if (A == C || (InnerCommutative && A == D)) {
571       if (A != C)
572         std::swap(C, D);
573       // Consider forming "A op' (B op D)".
574       // If "B op D" simplifies then it can be formed with no cost.
575       V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
576       // If "B op D" doesn't simplify then only go on if both of the existing
577       // operations "A op' B" and "C op' D" will be zapped as no longer used.
578       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
579         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
580       if (V) {
581         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
582       }
583     }
584 
585   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
586   if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
587     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
588     // commutative case, "(A op' B) op (B op' D)"?
589     if (B == D || (InnerCommutative && B == C)) {
590       if (B != D)
591         std::swap(C, D);
592       // Consider forming "(A op C) op' B".
593       // If "A op C" simplifies then it can be formed with no cost.
594       V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
595 
596       // If "A op C" doesn't simplify then only go on if both of the existing
597       // operations "A op' B" and "C op' D" will be zapped as no longer used.
598       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
599         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
600       if (V) {
601         SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
602       }
603     }
604 
605   if (SimplifiedInst) {
606     ++NumFactor;
607     SimplifiedInst->takeName(&I);
608 
609     // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
610     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
611       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
612         bool HasNSW = false;
613         bool HasNUW = false;
614         if (isa<OverflowingBinaryOperator>(&I)) {
615           HasNSW = I.hasNoSignedWrap();
616           HasNUW = I.hasNoUnsignedWrap();
617         }
618 
619         if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
620           HasNSW &= LOBO->hasNoSignedWrap();
621           HasNUW &= LOBO->hasNoUnsignedWrap();
622         }
623 
624         if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
625           HasNSW &= ROBO->hasNoSignedWrap();
626           HasNUW &= ROBO->hasNoUnsignedWrap();
627         }
628 
629         if (TopLevelOpcode == Instruction::Add &&
630             InnerOpcode == Instruction::Mul) {
631           // We can propagate 'nsw' if we know that
632           //  %Y = mul nsw i16 %X, C
633           //  %Z = add nsw i16 %Y, %X
634           // =>
635           //  %Z = mul nsw i16 %X, C+1
636           //
637           // iff C+1 isn't INT_MIN
638           const APInt *CInt;
639           if (match(V, m_APInt(CInt))) {
640             if (!CInt->isMinSignedValue())
641               BO->setHasNoSignedWrap(HasNSW);
642           }
643 
644           // nuw can be propagated with any constant or nuw value.
645           BO->setHasNoUnsignedWrap(HasNUW);
646         }
647       }
648     }
649   }
650   return SimplifiedInst;
651 }
652 
653 /// This tries to simplify binary operations which some other binary operation
654 /// distributes over either by factorizing out common terms
655 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
656 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
657 /// Returns the simplified value, or null if it didn't simplify.
658 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
659   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
660   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
661   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
662   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
663 
664   {
665     // Factorization.
666     Value *A, *B, *C, *D;
667     Instruction::BinaryOps LHSOpcode, RHSOpcode;
668     if (Op0)
669       LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
670     if (Op1)
671       RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
672 
673     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
674     // a common term.
675     if (Op0 && Op1 && LHSOpcode == RHSOpcode)
676       if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
677         return V;
678 
679     // The instruction has the form "(A op' B) op (C)".  Try to factorize common
680     // term.
681     if (Op0)
682       if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
683         if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
684           return V;
685 
686     // The instruction has the form "(B) op (C op' D)".  Try to factorize common
687     // term.
688     if (Op1)
689       if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
690         if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
691           return V;
692   }
693 
694   // Expansion.
695   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
696     // The instruction has the form "(A op' B) op C".  See if expanding it out
697     // to "(A op C) op' (B op C)" results in simplifications.
698     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
699     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
700 
701     Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
702     Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
703 
704     // Do "A op C" and "B op C" both simplify?
705     if (L && R) {
706       // They do! Return "L op' R".
707       ++NumExpand;
708       C = Builder.CreateBinOp(InnerOpcode, L, R);
709       C->takeName(&I);
710       return C;
711     }
712 
713     // Does "A op C" simplify to the identity value for the inner opcode?
714     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
715       // They do! Return "B op C".
716       ++NumExpand;
717       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
718       C->takeName(&I);
719       return C;
720     }
721 
722     // Does "B op C" simplify to the identity value for the inner opcode?
723     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
724       // They do! Return "A op C".
725       ++NumExpand;
726       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
727       C->takeName(&I);
728       return C;
729     }
730   }
731 
732   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
733     // The instruction has the form "A op (B op' C)".  See if expanding it out
734     // to "(A op B) op' (A op C)" results in simplifications.
735     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
736     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
737 
738     Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
739     Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
740 
741     // Do "A op B" and "A op C" both simplify?
742     if (L && R) {
743       // They do! Return "L op' R".
744       ++NumExpand;
745       A = Builder.CreateBinOp(InnerOpcode, L, R);
746       A->takeName(&I);
747       return A;
748     }
749 
750     // Does "A op B" simplify to the identity value for the inner opcode?
751     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
752       // They do! Return "A op C".
753       ++NumExpand;
754       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
755       A->takeName(&I);
756       return A;
757     }
758 
759     // Does "A op C" simplify to the identity value for the inner opcode?
760     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
761       // They do! Return "A op B".
762       ++NumExpand;
763       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
764       A->takeName(&I);
765       return A;
766     }
767   }
768 
769   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
770 }
771 
772 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
773                                                     Value *LHS, Value *RHS) {
774   Value *A, *B, *C, *D, *E, *F;
775   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
776   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
777   if (!LHSIsSelect && !RHSIsSelect)
778     return nullptr;
779 
780   FastMathFlags FMF;
781   BuilderTy::FastMathFlagGuard Guard(Builder);
782   if (isa<FPMathOperator>(&I)) {
783     FMF = I.getFastMathFlags();
784     Builder.setFastMathFlags(FMF);
785   }
786 
787   Instruction::BinaryOps Opcode = I.getOpcode();
788   SimplifyQuery Q = SQ.getWithInstruction(&I);
789 
790   Value *Cond, *True = nullptr, *False = nullptr;
791   if (LHSIsSelect && RHSIsSelect && A == D) {
792     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
793     Cond = A;
794     True = SimplifyBinOp(Opcode, B, E, FMF, Q);
795     False = SimplifyBinOp(Opcode, C, F, FMF, Q);
796 
797     if (LHS->hasOneUse() && RHS->hasOneUse()) {
798       if (False && !True)
799         True = Builder.CreateBinOp(Opcode, B, E);
800       else if (True && !False)
801         False = Builder.CreateBinOp(Opcode, C, F);
802     }
803   } else if (LHSIsSelect && LHS->hasOneUse()) {
804     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
805     Cond = A;
806     True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
807     False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
808   } else if (RHSIsSelect && RHS->hasOneUse()) {
809     // X op (D ? E : F) -> D ? (X op E) : (X op F)
810     Cond = D;
811     True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
812     False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
813   }
814 
815   if (!True || !False)
816     return nullptr;
817 
818   Value *SI = Builder.CreateSelect(Cond, True, False);
819   SI->takeName(&I);
820   return SI;
821 }
822 
823 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
824 /// constant zero (which is the 'negate' form).
825 Value *InstCombiner::dyn_castNegVal(Value *V) const {
826   Value *NegV;
827   if (match(V, m_Neg(m_Value(NegV))))
828     return NegV;
829 
830   // Constants can be considered to be negated values if they can be folded.
831   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
832     return ConstantExpr::getNeg(C);
833 
834   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
835     if (C->getType()->getElementType()->isIntegerTy())
836       return ConstantExpr::getNeg(C);
837 
838   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
839     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
840       Constant *Elt = CV->getAggregateElement(i);
841       if (!Elt)
842         return nullptr;
843 
844       if (isa<UndefValue>(Elt))
845         continue;
846 
847       if (!isa<ConstantInt>(Elt))
848         return nullptr;
849     }
850     return ConstantExpr::getNeg(CV);
851   }
852 
853   return nullptr;
854 }
855 
856 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
857                                              InstCombiner::BuilderTy &Builder) {
858   if (auto *Cast = dyn_cast<CastInst>(&I))
859     return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
860 
861   assert(I.isBinaryOp() && "Unexpected opcode for select folding");
862 
863   // Figure out if the constant is the left or the right argument.
864   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
865   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
866 
867   if (auto *SOC = dyn_cast<Constant>(SO)) {
868     if (ConstIsRHS)
869       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
870     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
871   }
872 
873   Value *Op0 = SO, *Op1 = ConstOperand;
874   if (!ConstIsRHS)
875     std::swap(Op0, Op1);
876 
877   auto *BO = cast<BinaryOperator>(&I);
878   Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
879                                   SO->getName() + ".op");
880   auto *FPInst = dyn_cast<Instruction>(RI);
881   if (FPInst && isa<FPMathOperator>(FPInst))
882     FPInst->copyFastMathFlags(BO);
883   return RI;
884 }
885 
886 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
887   // Don't modify shared select instructions.
888   if (!SI->hasOneUse())
889     return nullptr;
890 
891   Value *TV = SI->getTrueValue();
892   Value *FV = SI->getFalseValue();
893   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
894     return nullptr;
895 
896   // Bool selects with constant operands can be folded to logical ops.
897   if (SI->getType()->isIntOrIntVectorTy(1))
898     return nullptr;
899 
900   // If it's a bitcast involving vectors, make sure it has the same number of
901   // elements on both sides.
902   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
903     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
904     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
905 
906     // Verify that either both or neither are vectors.
907     if ((SrcTy == nullptr) != (DestTy == nullptr))
908       return nullptr;
909 
910     // If vectors, verify that they have the same number of elements.
911     if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
912       return nullptr;
913   }
914 
915   // Test if a CmpInst instruction is used exclusively by a select as
916   // part of a minimum or maximum operation. If so, refrain from doing
917   // any other folding. This helps out other analyses which understand
918   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
919   // and CodeGen. And in this case, at least one of the comparison
920   // operands has at least one user besides the compare (the select),
921   // which would often largely negate the benefit of folding anyway.
922   if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
923     if (CI->hasOneUse()) {
924       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
925 
926       // FIXME: This is a hack to avoid infinite looping with min/max patterns.
927       //        We have to ensure that vector constants that only differ with
928       //        undef elements are treated as equivalent.
929       auto areLooselyEqual = [](Value *A, Value *B) {
930         if (A == B)
931           return true;
932 
933         // Test for vector constants.
934         Constant *ConstA, *ConstB;
935         if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
936           return false;
937 
938         // TODO: Deal with FP constants?
939         if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
940           return false;
941 
942         // Compare for equality including undefs as equal.
943         auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
944         const APInt *C;
945         return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
946       };
947 
948       if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
949           (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
950         return nullptr;
951     }
952   }
953 
954   Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
955   Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
956   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
957 }
958 
959 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
960                                         InstCombiner::BuilderTy &Builder) {
961   bool ConstIsRHS = isa<Constant>(I->getOperand(1));
962   Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
963 
964   if (auto *InC = dyn_cast<Constant>(InV)) {
965     if (ConstIsRHS)
966       return ConstantExpr::get(I->getOpcode(), InC, C);
967     return ConstantExpr::get(I->getOpcode(), C, InC);
968   }
969 
970   Value *Op0 = InV, *Op1 = C;
971   if (!ConstIsRHS)
972     std::swap(Op0, Op1);
973 
974   Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
975   auto *FPInst = dyn_cast<Instruction>(RI);
976   if (FPInst && isa<FPMathOperator>(FPInst))
977     FPInst->copyFastMathFlags(I);
978   return RI;
979 }
980 
981 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
982   unsigned NumPHIValues = PN->getNumIncomingValues();
983   if (NumPHIValues == 0)
984     return nullptr;
985 
986   // We normally only transform phis with a single use.  However, if a PHI has
987   // multiple uses and they are all the same operation, we can fold *all* of the
988   // uses into the PHI.
989   if (!PN->hasOneUse()) {
990     // Walk the use list for the instruction, comparing them to I.
991     for (User *U : PN->users()) {
992       Instruction *UI = cast<Instruction>(U);
993       if (UI != &I && !I.isIdenticalTo(UI))
994         return nullptr;
995     }
996     // Otherwise, we can replace *all* users with the new PHI we form.
997   }
998 
999   // Check to see if all of the operands of the PHI are simple constants
1000   // (constantint/constantfp/undef).  If there is one non-constant value,
1001   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1002   // bail out.  We don't do arbitrary constant expressions here because moving
1003   // their computation can be expensive without a cost model.
1004   BasicBlock *NonConstBB = nullptr;
1005   for (unsigned i = 0; i != NumPHIValues; ++i) {
1006     Value *InVal = PN->getIncomingValue(i);
1007     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
1008       continue;
1009 
1010     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1011     if (NonConstBB) return nullptr;  // More than one non-const value.
1012 
1013     NonConstBB = PN->getIncomingBlock(i);
1014 
1015     // If the InVal is an invoke at the end of the pred block, then we can't
1016     // insert a computation after it without breaking the edge.
1017     if (isa<InvokeInst>(InVal))
1018       if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1019         return nullptr;
1020 
1021     // If the incoming non-constant value is in I's block, we will remove one
1022     // instruction, but insert another equivalent one, leading to infinite
1023     // instcombine.
1024     if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1025       return nullptr;
1026   }
1027 
1028   // If there is exactly one non-constant value, we can insert a copy of the
1029   // operation in that block.  However, if this is a critical edge, we would be
1030   // inserting the computation on some other paths (e.g. inside a loop).  Only
1031   // do this if the pred block is unconditionally branching into the phi block.
1032   if (NonConstBB != nullptr) {
1033     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1034     if (!BI || !BI->isUnconditional()) return nullptr;
1035   }
1036 
1037   // Okay, we can do the transformation: create the new PHI node.
1038   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1039   InsertNewInstBefore(NewPN, *PN);
1040   NewPN->takeName(PN);
1041 
1042   // If we are going to have to insert a new computation, do so right before the
1043   // predecessor's terminator.
1044   if (NonConstBB)
1045     Builder.SetInsertPoint(NonConstBB->getTerminator());
1046 
1047   // Next, add all of the operands to the PHI.
1048   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1049     // We only currently try to fold the condition of a select when it is a phi,
1050     // not the true/false values.
1051     Value *TrueV = SI->getTrueValue();
1052     Value *FalseV = SI->getFalseValue();
1053     BasicBlock *PhiTransBB = PN->getParent();
1054     for (unsigned i = 0; i != NumPHIValues; ++i) {
1055       BasicBlock *ThisBB = PN->getIncomingBlock(i);
1056       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1057       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1058       Value *InV = nullptr;
1059       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1060       // even if currently isNullValue gives false.
1061       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1062       // For vector constants, we cannot use isNullValue to fold into
1063       // FalseVInPred versus TrueVInPred. When we have individual nonzero
1064       // elements in the vector, we will incorrectly fold InC to
1065       // `TrueVInPred`.
1066       if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1067         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1068       else {
1069         // Generate the select in the same block as PN's current incoming block.
1070         // Note: ThisBB need not be the NonConstBB because vector constants
1071         // which are constants by definition are handled here.
1072         // FIXME: This can lead to an increase in IR generation because we might
1073         // generate selects for vector constant phi operand, that could not be
1074         // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1075         // non-vector phis, this transformation was always profitable because
1076         // the select would be generated exactly once in the NonConstBB.
1077         Builder.SetInsertPoint(ThisBB->getTerminator());
1078         InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1079                                    FalseVInPred, "phi.sel");
1080       }
1081       NewPN->addIncoming(InV, ThisBB);
1082     }
1083   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1084     Constant *C = cast<Constant>(I.getOperand(1));
1085     for (unsigned i = 0; i != NumPHIValues; ++i) {
1086       Value *InV = nullptr;
1087       if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1088         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1089       else
1090         InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1091                                 C, "phi.cmp");
1092       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1093     }
1094   } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1095     for (unsigned i = 0; i != NumPHIValues; ++i) {
1096       Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1097                                              Builder);
1098       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1099     }
1100   } else {
1101     CastInst *CI = cast<CastInst>(&I);
1102     Type *RetTy = CI->getType();
1103     for (unsigned i = 0; i != NumPHIValues; ++i) {
1104       Value *InV;
1105       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1106         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1107       else
1108         InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1109                                  I.getType(), "phi.cast");
1110       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1111     }
1112   }
1113 
1114   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1115     Instruction *User = cast<Instruction>(*UI++);
1116     if (User == &I) continue;
1117     replaceInstUsesWith(*User, NewPN);
1118     eraseInstFromFunction(*User);
1119   }
1120   return replaceInstUsesWith(I, NewPN);
1121 }
1122 
1123 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1124   if (!isa<Constant>(I.getOperand(1)))
1125     return nullptr;
1126 
1127   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1128     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1129       return NewSel;
1130   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1131     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1132       return NewPhi;
1133   }
1134   return nullptr;
1135 }
1136 
1137 /// Given a pointer type and a constant offset, determine whether or not there
1138 /// is a sequence of GEP indices into the pointed type that will land us at the
1139 /// specified offset. If so, fill them into NewIndices and return the resultant
1140 /// element type, otherwise return null.
1141 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1142                                         SmallVectorImpl<Value *> &NewIndices) {
1143   Type *Ty = PtrTy->getElementType();
1144   if (!Ty->isSized())
1145     return nullptr;
1146 
1147   // Start with the index over the outer type.  Note that the type size
1148   // might be zero (even if the offset isn't zero) if the indexed type
1149   // is something like [0 x {int, int}]
1150   Type *IndexTy = DL.getIndexType(PtrTy);
1151   int64_t FirstIdx = 0;
1152   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1153     FirstIdx = Offset/TySize;
1154     Offset -= FirstIdx*TySize;
1155 
1156     // Handle hosts where % returns negative instead of values [0..TySize).
1157     if (Offset < 0) {
1158       --FirstIdx;
1159       Offset += TySize;
1160       assert(Offset >= 0);
1161     }
1162     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1163   }
1164 
1165   NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1166 
1167   // Index into the types.  If we fail, set OrigBase to null.
1168   while (Offset) {
1169     // Indexing into tail padding between struct/array elements.
1170     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1171       return nullptr;
1172 
1173     if (StructType *STy = dyn_cast<StructType>(Ty)) {
1174       const StructLayout *SL = DL.getStructLayout(STy);
1175       assert(Offset < (int64_t)SL->getSizeInBytes() &&
1176              "Offset must stay within the indexed type");
1177 
1178       unsigned Elt = SL->getElementContainingOffset(Offset);
1179       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1180                                             Elt));
1181 
1182       Offset -= SL->getElementOffset(Elt);
1183       Ty = STy->getElementType(Elt);
1184     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1185       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1186       assert(EltSize && "Cannot index into a zero-sized array");
1187       NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1188       Offset %= EltSize;
1189       Ty = AT->getElementType();
1190     } else {
1191       // Otherwise, we can't index into the middle of this atomic type, bail.
1192       return nullptr;
1193     }
1194   }
1195 
1196   return Ty;
1197 }
1198 
1199 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1200   // If this GEP has only 0 indices, it is the same pointer as
1201   // Src. If Src is not a trivial GEP too, don't combine
1202   // the indices.
1203   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1204       !Src.hasOneUse())
1205     return false;
1206   return true;
1207 }
1208 
1209 /// Return a value X such that Val = X * Scale, or null if none.
1210 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1211 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1212   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1213   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1214          Scale.getBitWidth() && "Scale not compatible with value!");
1215 
1216   // If Val is zero or Scale is one then Val = Val * Scale.
1217   if (match(Val, m_Zero()) || Scale == 1) {
1218     NoSignedWrap = true;
1219     return Val;
1220   }
1221 
1222   // If Scale is zero then it does not divide Val.
1223   if (Scale.isMinValue())
1224     return nullptr;
1225 
1226   // Look through chains of multiplications, searching for a constant that is
1227   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1228   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1229   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1230   // down from Val:
1231   //
1232   //     Val = M1 * X          ||   Analysis starts here and works down
1233   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1234   //      M2 =  Z * 4          \/   than one use
1235   //
1236   // Then to modify a term at the bottom:
1237   //
1238   //     Val = M1 * X
1239   //      M1 =  Z * Y          ||   Replaced M2 with Z
1240   //
1241   // Then to work back up correcting nsw flags.
1242 
1243   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1244   // Replaced with its descaled value before exiting from the drill down loop.
1245   Value *Op = Val;
1246 
1247   // Parent - initially null, but after drilling down notes where Op came from.
1248   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1249   // 0'th operand of Val.
1250   std::pair<Instruction *, unsigned> Parent;
1251 
1252   // Set if the transform requires a descaling at deeper levels that doesn't
1253   // overflow.
1254   bool RequireNoSignedWrap = false;
1255 
1256   // Log base 2 of the scale. Negative if not a power of 2.
1257   int32_t logScale = Scale.exactLogBase2();
1258 
1259   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1260     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1261       // If Op is a constant divisible by Scale then descale to the quotient.
1262       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1263       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1264       if (!Remainder.isMinValue())
1265         // Not divisible by Scale.
1266         return nullptr;
1267       // Replace with the quotient in the parent.
1268       Op = ConstantInt::get(CI->getType(), Quotient);
1269       NoSignedWrap = true;
1270       break;
1271     }
1272 
1273     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1274       if (BO->getOpcode() == Instruction::Mul) {
1275         // Multiplication.
1276         NoSignedWrap = BO->hasNoSignedWrap();
1277         if (RequireNoSignedWrap && !NoSignedWrap)
1278           return nullptr;
1279 
1280         // There are three cases for multiplication: multiplication by exactly
1281         // the scale, multiplication by a constant different to the scale, and
1282         // multiplication by something else.
1283         Value *LHS = BO->getOperand(0);
1284         Value *RHS = BO->getOperand(1);
1285 
1286         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1287           // Multiplication by a constant.
1288           if (CI->getValue() == Scale) {
1289             // Multiplication by exactly the scale, replace the multiplication
1290             // by its left-hand side in the parent.
1291             Op = LHS;
1292             break;
1293           }
1294 
1295           // Otherwise drill down into the constant.
1296           if (!Op->hasOneUse())
1297             return nullptr;
1298 
1299           Parent = std::make_pair(BO, 1);
1300           continue;
1301         }
1302 
1303         // Multiplication by something else. Drill down into the left-hand side
1304         // since that's where the reassociate pass puts the good stuff.
1305         if (!Op->hasOneUse())
1306           return nullptr;
1307 
1308         Parent = std::make_pair(BO, 0);
1309         continue;
1310       }
1311 
1312       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1313           isa<ConstantInt>(BO->getOperand(1))) {
1314         // Multiplication by a power of 2.
1315         NoSignedWrap = BO->hasNoSignedWrap();
1316         if (RequireNoSignedWrap && !NoSignedWrap)
1317           return nullptr;
1318 
1319         Value *LHS = BO->getOperand(0);
1320         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1321           getLimitedValue(Scale.getBitWidth());
1322         // Op = LHS << Amt.
1323 
1324         if (Amt == logScale) {
1325           // Multiplication by exactly the scale, replace the multiplication
1326           // by its left-hand side in the parent.
1327           Op = LHS;
1328           break;
1329         }
1330         if (Amt < logScale || !Op->hasOneUse())
1331           return nullptr;
1332 
1333         // Multiplication by more than the scale.  Reduce the multiplying amount
1334         // by the scale in the parent.
1335         Parent = std::make_pair(BO, 1);
1336         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1337         break;
1338       }
1339     }
1340 
1341     if (!Op->hasOneUse())
1342       return nullptr;
1343 
1344     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1345       if (Cast->getOpcode() == Instruction::SExt) {
1346         // Op is sign-extended from a smaller type, descale in the smaller type.
1347         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1348         APInt SmallScale = Scale.trunc(SmallSize);
1349         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1350         // descale Op as (sext Y) * Scale.  In order to have
1351         //   sext (Y * SmallScale) = (sext Y) * Scale
1352         // some conditions need to hold however: SmallScale must sign-extend to
1353         // Scale and the multiplication Y * SmallScale should not overflow.
1354         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1355           // SmallScale does not sign-extend to Scale.
1356           return nullptr;
1357         assert(SmallScale.exactLogBase2() == logScale);
1358         // Require that Y * SmallScale must not overflow.
1359         RequireNoSignedWrap = true;
1360 
1361         // Drill down through the cast.
1362         Parent = std::make_pair(Cast, 0);
1363         Scale = SmallScale;
1364         continue;
1365       }
1366 
1367       if (Cast->getOpcode() == Instruction::Trunc) {
1368         // Op is truncated from a larger type, descale in the larger type.
1369         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1370         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1371         // always holds.  However (trunc Y) * Scale may overflow even if
1372         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1373         // from this point up in the expression (see later).
1374         if (RequireNoSignedWrap)
1375           return nullptr;
1376 
1377         // Drill down through the cast.
1378         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1379         Parent = std::make_pair(Cast, 0);
1380         Scale = Scale.sext(LargeSize);
1381         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1382           logScale = -1;
1383         assert(Scale.exactLogBase2() == logScale);
1384         continue;
1385       }
1386     }
1387 
1388     // Unsupported expression, bail out.
1389     return nullptr;
1390   }
1391 
1392   // If Op is zero then Val = Op * Scale.
1393   if (match(Op, m_Zero())) {
1394     NoSignedWrap = true;
1395     return Op;
1396   }
1397 
1398   // We know that we can successfully descale, so from here on we can safely
1399   // modify the IR.  Op holds the descaled version of the deepest term in the
1400   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1401   // not to overflow.
1402 
1403   if (!Parent.first)
1404     // The expression only had one term.
1405     return Op;
1406 
1407   // Rewrite the parent using the descaled version of its operand.
1408   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1409   assert(Op != Parent.first->getOperand(Parent.second) &&
1410          "Descaling was a no-op?");
1411   replaceOperand(*Parent.first, Parent.second, Op);
1412   Worklist.push(Parent.first);
1413 
1414   // Now work back up the expression correcting nsw flags.  The logic is based
1415   // on the following observation: if X * Y is known not to overflow as a signed
1416   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1417   // then X * Z will not overflow as a signed multiplication either.  As we work
1418   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1419   // current level has strictly smaller absolute value than the original.
1420   Instruction *Ancestor = Parent.first;
1421   do {
1422     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1423       // If the multiplication wasn't nsw then we can't say anything about the
1424       // value of the descaled multiplication, and we have to clear nsw flags
1425       // from this point on up.
1426       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1427       NoSignedWrap &= OpNoSignedWrap;
1428       if (NoSignedWrap != OpNoSignedWrap) {
1429         BO->setHasNoSignedWrap(NoSignedWrap);
1430         Worklist.push(Ancestor);
1431       }
1432     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1433       // The fact that the descaled input to the trunc has smaller absolute
1434       // value than the original input doesn't tell us anything useful about
1435       // the absolute values of the truncations.
1436       NoSignedWrap = false;
1437     }
1438     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1439            "Failed to keep proper track of nsw flags while drilling down?");
1440 
1441     if (Ancestor == Val)
1442       // Got to the top, all done!
1443       return Val;
1444 
1445     // Move up one level in the expression.
1446     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1447     Ancestor = Ancestor->user_back();
1448   } while (true);
1449 }
1450 
1451 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1452   // FIXME: some of this is likely fine for scalable vectors
1453   if (!isa<FixedVectorType>(Inst.getType()))
1454     return nullptr;
1455 
1456   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1457   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1458   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1459          cast<VectorType>(Inst.getType())->getElementCount());
1460   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1461          cast<VectorType>(Inst.getType())->getElementCount());
1462 
1463   // If both operands of the binop are vector concatenations, then perform the
1464   // narrow binop on each pair of the source operands followed by concatenation
1465   // of the results.
1466   Value *L0, *L1, *R0, *R1;
1467   ArrayRef<int> Mask;
1468   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1469       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1470       LHS->hasOneUse() && RHS->hasOneUse() &&
1471       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1472       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1473     // This transform does not have the speculative execution constraint as
1474     // below because the shuffle is a concatenation. The new binops are
1475     // operating on exactly the same elements as the existing binop.
1476     // TODO: We could ease the mask requirement to allow different undef lanes,
1477     //       but that requires an analysis of the binop-with-undef output value.
1478     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1479     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1480       BO->copyIRFlags(&Inst);
1481     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1482     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1483       BO->copyIRFlags(&Inst);
1484     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1485   }
1486 
1487   // It may not be safe to reorder shuffles and things like div, urem, etc.
1488   // because we may trap when executing those ops on unknown vector elements.
1489   // See PR20059.
1490   if (!isSafeToSpeculativelyExecute(&Inst))
1491     return nullptr;
1492 
1493   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1494     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1495     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1496       BO->copyIRFlags(&Inst);
1497     return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1498   };
1499 
1500   // If both arguments of the binary operation are shuffles that use the same
1501   // mask and shuffle within a single vector, move the shuffle after the binop.
1502   Value *V1, *V2;
1503   if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1504       match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1505       V1->getType() == V2->getType() &&
1506       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1507     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1508     return createBinOpShuffle(V1, V2, Mask);
1509   }
1510 
1511   // If both arguments of a commutative binop are select-shuffles that use the
1512   // same mask with commuted operands, the shuffles are unnecessary.
1513   if (Inst.isCommutative() &&
1514       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1515       match(RHS,
1516             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1517     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1518     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1519     // TODO: Allow shuffles that contain undefs in the mask?
1520     //       That is legal, but it reduces undef knowledge.
1521     // TODO: Allow arbitrary shuffles by shuffling after binop?
1522     //       That might be legal, but we have to deal with poison.
1523     if (LShuf->isSelect() &&
1524         !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1525         RShuf->isSelect() &&
1526         !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1527       // Example:
1528       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1529       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1530       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1531       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1532       NewBO->copyIRFlags(&Inst);
1533       return NewBO;
1534     }
1535   }
1536 
1537   // If one argument is a shuffle within one vector and the other is a constant,
1538   // try moving the shuffle after the binary operation. This canonicalization
1539   // intends to move shuffles closer to other shuffles and binops closer to
1540   // other binops, so they can be folded. It may also enable demanded elements
1541   // transforms.
1542   unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1543   Constant *C;
1544   if (match(&Inst,
1545             m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1546                       m_Constant(C))) && !isa<ConstantExpr>(C) &&
1547       cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1548     assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1549            "Shuffle should not change scalar type");
1550 
1551     // Find constant NewC that has property:
1552     //   shuffle(NewC, ShMask) = C
1553     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1554     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1555     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1556     bool ConstOp1 = isa<Constant>(RHS);
1557     ArrayRef<int> ShMask = Mask;
1558     unsigned SrcVecNumElts =
1559         cast<FixedVectorType>(V1->getType())->getNumElements();
1560     UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1561     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1562     bool MayChange = true;
1563     for (unsigned I = 0; I < NumElts; ++I) {
1564       Constant *CElt = C->getAggregateElement(I);
1565       if (ShMask[I] >= 0) {
1566         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1567         Constant *NewCElt = NewVecC[ShMask[I]];
1568         // Bail out if:
1569         // 1. The constant vector contains a constant expression.
1570         // 2. The shuffle needs an element of the constant vector that can't
1571         //    be mapped to a new constant vector.
1572         // 3. This is a widening shuffle that copies elements of V1 into the
1573         //    extended elements (extending with undef is allowed).
1574         if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1575             I >= SrcVecNumElts) {
1576           MayChange = false;
1577           break;
1578         }
1579         NewVecC[ShMask[I]] = CElt;
1580       }
1581       // If this is a widening shuffle, we must be able to extend with undef
1582       // elements. If the original binop does not produce an undef in the high
1583       // lanes, then this transform is not safe.
1584       // Similarly for undef lanes due to the shuffle mask, we can only
1585       // transform binops that preserve undef.
1586       // TODO: We could shuffle those non-undef constant values into the
1587       //       result by using a constant vector (rather than an undef vector)
1588       //       as operand 1 of the new binop, but that might be too aggressive
1589       //       for target-independent shuffle creation.
1590       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1591         Constant *MaybeUndef =
1592             ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1593                      : ConstantExpr::get(Opcode, CElt, UndefScalar);
1594         if (!isa<UndefValue>(MaybeUndef)) {
1595           MayChange = false;
1596           break;
1597         }
1598       }
1599     }
1600     if (MayChange) {
1601       Constant *NewC = ConstantVector::get(NewVecC);
1602       // It may not be safe to execute a binop on a vector with undef elements
1603       // because the entire instruction can be folded to undef or create poison
1604       // that did not exist in the original code.
1605       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1606         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1607 
1608       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1609       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1610       Value *NewLHS = ConstOp1 ? V1 : NewC;
1611       Value *NewRHS = ConstOp1 ? NewC : V1;
1612       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1613     }
1614   }
1615 
1616   // Try to reassociate to sink a splat shuffle after a binary operation.
1617   if (Inst.isAssociative() && Inst.isCommutative()) {
1618     // Canonicalize shuffle operand as LHS.
1619     if (isa<ShuffleVectorInst>(RHS))
1620       std::swap(LHS, RHS);
1621 
1622     Value *X;
1623     ArrayRef<int> MaskC;
1624     int SplatIndex;
1625     BinaryOperator *BO;
1626     if (!match(LHS,
1627                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1628         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1629         X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1630         BO->getOpcode() != Opcode)
1631       return nullptr;
1632 
1633     // FIXME: This may not be safe if the analysis allows undef elements. By
1634     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1635     //        that it is not undef/poison at the splat index.
1636     Value *Y, *OtherOp;
1637     if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1638       Y = BO->getOperand(0);
1639       OtherOp = BO->getOperand(1);
1640     } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1641       Y = BO->getOperand(1);
1642       OtherOp = BO->getOperand(0);
1643     } else {
1644       return nullptr;
1645     }
1646 
1647     // X and Y are splatted values, so perform the binary operation on those
1648     // values followed by a splat followed by the 2nd binary operation:
1649     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1650     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1651     UndefValue *Undef = UndefValue::get(Inst.getType());
1652     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1653     Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask);
1654     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1655 
1656     // Intersect FMF on both new binops. Other (poison-generating) flags are
1657     // dropped to be safe.
1658     if (isa<FPMathOperator>(R)) {
1659       R->copyFastMathFlags(&Inst);
1660       R->andIRFlags(BO);
1661     }
1662     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1663       NewInstBO->copyIRFlags(R);
1664     return R;
1665   }
1666 
1667   return nullptr;
1668 }
1669 
1670 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1671 /// of a value. This requires a potentially expensive known bits check to make
1672 /// sure the narrow op does not overflow.
1673 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1674   // We need at least one extended operand.
1675   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1676 
1677   // If this is a sub, we swap the operands since we always want an extension
1678   // on the RHS. The LHS can be an extension or a constant.
1679   if (BO.getOpcode() == Instruction::Sub)
1680     std::swap(Op0, Op1);
1681 
1682   Value *X;
1683   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1684   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1685     return nullptr;
1686 
1687   // If both operands are the same extension from the same source type and we
1688   // can eliminate at least one (hasOneUse), this might work.
1689   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1690   Value *Y;
1691   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1692         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1693         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1694     // If that did not match, see if we have a suitable constant operand.
1695     // Truncating and extending must produce the same constant.
1696     Constant *WideC;
1697     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1698       return nullptr;
1699     Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1700     if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1701       return nullptr;
1702     Y = NarrowC;
1703   }
1704 
1705   // Swap back now that we found our operands.
1706   if (BO.getOpcode() == Instruction::Sub)
1707     std::swap(X, Y);
1708 
1709   // Both operands have narrow versions. Last step: the math must not overflow
1710   // in the narrow width.
1711   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1712     return nullptr;
1713 
1714   // bo (ext X), (ext Y) --> ext (bo X, Y)
1715   // bo (ext X), C       --> ext (bo X, C')
1716   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1717   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1718     if (IsSext)
1719       NewBinOp->setHasNoSignedWrap();
1720     else
1721       NewBinOp->setHasNoUnsignedWrap();
1722   }
1723   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1724 }
1725 
1726 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1727   // At least one GEP must be inbounds.
1728   if (!GEP1.isInBounds() && !GEP2.isInBounds())
1729     return false;
1730 
1731   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1732          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1733 }
1734 
1735 /// Thread a GEP operation with constant indices through the constant true/false
1736 /// arms of a select.
1737 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1738                                   InstCombiner::BuilderTy &Builder) {
1739   if (!GEP.hasAllConstantIndices())
1740     return nullptr;
1741 
1742   Instruction *Sel;
1743   Value *Cond;
1744   Constant *TrueC, *FalseC;
1745   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1746       !match(Sel,
1747              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1748     return nullptr;
1749 
1750   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1751   // Propagate 'inbounds' and metadata from existing instructions.
1752   // Note: using IRBuilder to create the constants for efficiency.
1753   SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1754   bool IsInBounds = GEP.isInBounds();
1755   Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1756                                : Builder.CreateGEP(TrueC, IndexC);
1757   Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1758                                 : Builder.CreateGEP(FalseC, IndexC);
1759   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1760 }
1761 
1762 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1763   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1764   Type *GEPType = GEP.getType();
1765   Type *GEPEltType = GEP.getSourceElementType();
1766   bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1767   if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1768     return replaceInstUsesWith(GEP, V);
1769 
1770   // For vector geps, use the generic demanded vector support.
1771   // Skip if GEP return type is scalable. The number of elements is unknown at
1772   // compile-time.
1773   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1774     auto VWidth = GEPFVTy->getNumElements();
1775     APInt UndefElts(VWidth, 0);
1776     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1777     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1778                                               UndefElts)) {
1779       if (V != &GEP)
1780         return replaceInstUsesWith(GEP, V);
1781       return &GEP;
1782     }
1783 
1784     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1785     // possible (decide on canonical form for pointer broadcast), 3) exploit
1786     // undef elements to decrease demanded bits
1787   }
1788 
1789   Value *PtrOp = GEP.getOperand(0);
1790 
1791   // Eliminate unneeded casts for indices, and replace indices which displace
1792   // by multiples of a zero size type with zero.
1793   bool MadeChange = false;
1794 
1795   // Index width may not be the same width as pointer width.
1796   // Data layout chooses the right type based on supported integer types.
1797   Type *NewScalarIndexTy =
1798       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1799 
1800   gep_type_iterator GTI = gep_type_begin(GEP);
1801   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1802        ++I, ++GTI) {
1803     // Skip indices into struct types.
1804     if (GTI.isStruct())
1805       continue;
1806 
1807     Type *IndexTy = (*I)->getType();
1808     Type *NewIndexType =
1809         IndexTy->isVectorTy()
1810             ? VectorType::get(NewScalarIndexTy,
1811                               cast<VectorType>(IndexTy)->getElementCount())
1812             : NewScalarIndexTy;
1813 
1814     // If the element type has zero size then any index over it is equivalent
1815     // to an index of zero, so replace it with zero if it is not zero already.
1816     Type *EltTy = GTI.getIndexedType();
1817     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1818       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1819         *I = Constant::getNullValue(NewIndexType);
1820         MadeChange = true;
1821       }
1822 
1823     if (IndexTy != NewIndexType) {
1824       // If we are using a wider index than needed for this platform, shrink
1825       // it to what we need.  If narrower, sign-extend it to what we need.
1826       // This explicit cast can make subsequent optimizations more obvious.
1827       *I = Builder.CreateIntCast(*I, NewIndexType, true);
1828       MadeChange = true;
1829     }
1830   }
1831   if (MadeChange)
1832     return &GEP;
1833 
1834   // Check to see if the inputs to the PHI node are getelementptr instructions.
1835   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1836     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1837     if (!Op1)
1838       return nullptr;
1839 
1840     // Don't fold a GEP into itself through a PHI node. This can only happen
1841     // through the back-edge of a loop. Folding a GEP into itself means that
1842     // the value of the previous iteration needs to be stored in the meantime,
1843     // thus requiring an additional register variable to be live, but not
1844     // actually achieving anything (the GEP still needs to be executed once per
1845     // loop iteration).
1846     if (Op1 == &GEP)
1847       return nullptr;
1848 
1849     int DI = -1;
1850 
1851     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1852       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1853       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1854         return nullptr;
1855 
1856       // As for Op1 above, don't try to fold a GEP into itself.
1857       if (Op2 == &GEP)
1858         return nullptr;
1859 
1860       // Keep track of the type as we walk the GEP.
1861       Type *CurTy = nullptr;
1862 
1863       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1864         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1865           return nullptr;
1866 
1867         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1868           if (DI == -1) {
1869             // We have not seen any differences yet in the GEPs feeding the
1870             // PHI yet, so we record this one if it is allowed to be a
1871             // variable.
1872 
1873             // The first two arguments can vary for any GEP, the rest have to be
1874             // static for struct slots
1875             if (J > 1) {
1876               assert(CurTy && "No current type?");
1877               if (CurTy->isStructTy())
1878                 return nullptr;
1879             }
1880 
1881             DI = J;
1882           } else {
1883             // The GEP is different by more than one input. While this could be
1884             // extended to support GEPs that vary by more than one variable it
1885             // doesn't make sense since it greatly increases the complexity and
1886             // would result in an R+R+R addressing mode which no backend
1887             // directly supports and would need to be broken into several
1888             // simpler instructions anyway.
1889             return nullptr;
1890           }
1891         }
1892 
1893         // Sink down a layer of the type for the next iteration.
1894         if (J > 0) {
1895           if (J == 1) {
1896             CurTy = Op1->getSourceElementType();
1897           } else {
1898             CurTy =
1899                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1900           }
1901         }
1902       }
1903     }
1904 
1905     // If not all GEPs are identical we'll have to create a new PHI node.
1906     // Check that the old PHI node has only one use so that it will get
1907     // removed.
1908     if (DI != -1 && !PN->hasOneUse())
1909       return nullptr;
1910 
1911     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1912     if (DI == -1) {
1913       // All the GEPs feeding the PHI are identical. Clone one down into our
1914       // BB so that it can be merged with the current GEP.
1915     } else {
1916       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1917       // into the current block so it can be merged, and create a new PHI to
1918       // set that index.
1919       PHINode *NewPN;
1920       {
1921         IRBuilderBase::InsertPointGuard Guard(Builder);
1922         Builder.SetInsertPoint(PN);
1923         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1924                                   PN->getNumOperands());
1925       }
1926 
1927       for (auto &I : PN->operands())
1928         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1929                            PN->getIncomingBlock(I));
1930 
1931       NewGEP->setOperand(DI, NewPN);
1932     }
1933 
1934     GEP.getParent()->getInstList().insert(
1935         GEP.getParent()->getFirstInsertionPt(), NewGEP);
1936     replaceOperand(GEP, 0, NewGEP);
1937     PtrOp = NewGEP;
1938   }
1939 
1940   // Combine Indices - If the source pointer to this getelementptr instruction
1941   // is a getelementptr instruction, combine the indices of the two
1942   // getelementptr instructions into a single instruction.
1943   if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1944     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1945       return nullptr;
1946 
1947     // Try to reassociate loop invariant GEP chains to enable LICM.
1948     if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1949         Src->hasOneUse()) {
1950       if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1951         Value *GO1 = GEP.getOperand(1);
1952         Value *SO1 = Src->getOperand(1);
1953         // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1954         // invariant: this breaks the dependence between GEPs and allows LICM
1955         // to hoist the invariant part out of the loop.
1956         if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1957           // We have to be careful here.
1958           // We have something like:
1959           //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1960           //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1961           // If we just swap idx & idx2 then we could inadvertantly
1962           // change %src from a vector to a scalar, or vice versa.
1963           // Cases:
1964           //  1) %base a scalar & idx a scalar & idx2 a vector
1965           //      => Swapping idx & idx2 turns %src into a vector type.
1966           //  2) %base a scalar & idx a vector & idx2 a scalar
1967           //      => Swapping idx & idx2 turns %src in a scalar type
1968           //  3) %base, %idx, and %idx2 are scalars
1969           //      => %src & %gep are scalars
1970           //      => swapping idx & idx2 is safe
1971           //  4) %base a vector
1972           //      => %src is a vector
1973           //      => swapping idx & idx2 is safe.
1974           auto *SO0 = Src->getOperand(0);
1975           auto *SO0Ty = SO0->getType();
1976           if (!isa<VectorType>(GEPType) || // case 3
1977               isa<VectorType>(SO0Ty)) {    // case 4
1978             Src->setOperand(1, GO1);
1979             GEP.setOperand(1, SO1);
1980             return &GEP;
1981           } else {
1982             // Case 1 or 2
1983             // -- have to recreate %src & %gep
1984             // put NewSrc at same location as %src
1985             Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1986             auto *NewSrc = cast<GetElementPtrInst>(
1987                 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1988             NewSrc->setIsInBounds(Src->isInBounds());
1989             auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1990             NewGEP->setIsInBounds(GEP.isInBounds());
1991             return NewGEP;
1992           }
1993         }
1994       }
1995     }
1996 
1997     // Note that if our source is a gep chain itself then we wait for that
1998     // chain to be resolved before we perform this transformation.  This
1999     // avoids us creating a TON of code in some cases.
2000     if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2001       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2002         return nullptr;   // Wait until our source is folded to completion.
2003 
2004     SmallVector<Value*, 8> Indices;
2005 
2006     // Find out whether the last index in the source GEP is a sequential idx.
2007     bool EndsWithSequential = false;
2008     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2009          I != E; ++I)
2010       EndsWithSequential = I.isSequential();
2011 
2012     // Can we combine the two pointer arithmetics offsets?
2013     if (EndsWithSequential) {
2014       // Replace: gep (gep %P, long B), long A, ...
2015       // With:    T = long A+B; gep %P, T, ...
2016       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2017       Value *GO1 = GEP.getOperand(1);
2018 
2019       // If they aren't the same type, then the input hasn't been processed
2020       // by the loop above yet (which canonicalizes sequential index types to
2021       // intptr_t).  Just avoid transforming this until the input has been
2022       // normalized.
2023       if (SO1->getType() != GO1->getType())
2024         return nullptr;
2025 
2026       Value *Sum =
2027           SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2028       // Only do the combine when we are sure the cost after the
2029       // merge is never more than that before the merge.
2030       if (Sum == nullptr)
2031         return nullptr;
2032 
2033       // Update the GEP in place if possible.
2034       if (Src->getNumOperands() == 2) {
2035         GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2036         replaceOperand(GEP, 0, Src->getOperand(0));
2037         replaceOperand(GEP, 1, Sum);
2038         return &GEP;
2039       }
2040       Indices.append(Src->op_begin()+1, Src->op_end()-1);
2041       Indices.push_back(Sum);
2042       Indices.append(GEP.op_begin()+2, GEP.op_end());
2043     } else if (isa<Constant>(*GEP.idx_begin()) &&
2044                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2045                Src->getNumOperands() != 1) {
2046       // Otherwise we can do the fold if the first index of the GEP is a zero
2047       Indices.append(Src->op_begin()+1, Src->op_end());
2048       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2049     }
2050 
2051     if (!Indices.empty())
2052       return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2053                  ? GetElementPtrInst::CreateInBounds(
2054                        Src->getSourceElementType(), Src->getOperand(0), Indices,
2055                        GEP.getName())
2056                  : GetElementPtrInst::Create(Src->getSourceElementType(),
2057                                              Src->getOperand(0), Indices,
2058                                              GEP.getName());
2059   }
2060 
2061   // Skip if GEP source element type is scalable. The type alloc size is unknown
2062   // at compile-time.
2063   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2064     unsigned AS = GEP.getPointerAddressSpace();
2065     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2066         DL.getIndexSizeInBits(AS)) {
2067       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2068 
2069       bool Matched = false;
2070       uint64_t C;
2071       Value *V = nullptr;
2072       if (TyAllocSize == 1) {
2073         V = GEP.getOperand(1);
2074         Matched = true;
2075       } else if (match(GEP.getOperand(1),
2076                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
2077         if (TyAllocSize == 1ULL << C)
2078           Matched = true;
2079       } else if (match(GEP.getOperand(1),
2080                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2081         if (TyAllocSize == C)
2082           Matched = true;
2083       }
2084 
2085       if (Matched) {
2086         // Canonicalize (gep i8* X, -(ptrtoint Y))
2087         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2088         // The GEP pattern is emitted by the SCEV expander for certain kinds of
2089         // pointer arithmetic.
2090         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2091           Operator *Index = cast<Operator>(V);
2092           Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2093           Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2094           return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2095         }
2096         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2097         // to (bitcast Y)
2098         Value *Y;
2099         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2100                            m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2101           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2102       }
2103     }
2104   }
2105 
2106   // We do not handle pointer-vector geps here.
2107   if (GEPType->isVectorTy())
2108     return nullptr;
2109 
2110   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2111   Value *StrippedPtr = PtrOp->stripPointerCasts();
2112   PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2113 
2114   if (StrippedPtr != PtrOp) {
2115     bool HasZeroPointerIndex = false;
2116     Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2117 
2118     if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2119       HasZeroPointerIndex = C->isZero();
2120 
2121     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2122     // into     : GEP [10 x i8]* X, i32 0, ...
2123     //
2124     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2125     //           into     : GEP i8* X, ...
2126     //
2127     // This occurs when the program declares an array extern like "int X[];"
2128     if (HasZeroPointerIndex) {
2129       if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2130         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2131         if (CATy->getElementType() == StrippedPtrEltTy) {
2132           // -> GEP i8* X, ...
2133           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2134           GetElementPtrInst *Res = GetElementPtrInst::Create(
2135               StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2136           Res->setIsInBounds(GEP.isInBounds());
2137           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2138             return Res;
2139           // Insert Res, and create an addrspacecast.
2140           // e.g.,
2141           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2142           // ->
2143           // %0 = GEP i8 addrspace(1)* X, ...
2144           // addrspacecast i8 addrspace(1)* %0 to i8*
2145           return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2146         }
2147 
2148         if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2149           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2150           if (CATy->getElementType() == XATy->getElementType()) {
2151             // -> GEP [10 x i8]* X, i32 0, ...
2152             // At this point, we know that the cast source type is a pointer
2153             // to an array of the same type as the destination pointer
2154             // array.  Because the array type is never stepped over (there
2155             // is a leading zero) we can fold the cast into this GEP.
2156             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2157               GEP.setSourceElementType(XATy);
2158               return replaceOperand(GEP, 0, StrippedPtr);
2159             }
2160             // Cannot replace the base pointer directly because StrippedPtr's
2161             // address space is different. Instead, create a new GEP followed by
2162             // an addrspacecast.
2163             // e.g.,
2164             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2165             //   i32 0, ...
2166             // ->
2167             // %0 = GEP [10 x i8] addrspace(1)* X, ...
2168             // addrspacecast i8 addrspace(1)* %0 to i8*
2169             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2170             Value *NewGEP =
2171                 GEP.isInBounds()
2172                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2173                                                 Idx, GEP.getName())
2174                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2175                                         GEP.getName());
2176             return new AddrSpaceCastInst(NewGEP, GEPType);
2177           }
2178         }
2179       }
2180     } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2181       // Skip if GEP source element type is scalable. The type alloc size is
2182       // unknown at compile-time.
2183       // Transform things like: %t = getelementptr i32*
2184       // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2185       // x i32]* %str, i32 0, i32 %V; bitcast
2186       if (StrippedPtrEltTy->isArrayTy() &&
2187           DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2188               DL.getTypeAllocSize(GEPEltType)) {
2189         Type *IdxType = DL.getIndexType(GEPType);
2190         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2191         Value *NewGEP =
2192             GEP.isInBounds()
2193                 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2194                                             GEP.getName())
2195                 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2196                                     GEP.getName());
2197 
2198         // V and GEP are both pointer types --> BitCast
2199         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2200       }
2201 
2202       // Transform things like:
2203       // %V = mul i64 %N, 4
2204       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2205       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2206       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2207         // Check that changing the type amounts to dividing the index by a scale
2208         // factor.
2209         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2210         uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2211         if (ResSize && SrcSize % ResSize == 0) {
2212           Value *Idx = GEP.getOperand(1);
2213           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2214           uint64_t Scale = SrcSize / ResSize;
2215 
2216           // Earlier transforms ensure that the index has the right type
2217           // according to Data Layout, which considerably simplifies the
2218           // logic by eliminating implicit casts.
2219           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2220                  "Index type does not match the Data Layout preferences");
2221 
2222           bool NSW;
2223           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2224             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2225             // If the multiplication NewIdx * Scale may overflow then the new
2226             // GEP may not be "inbounds".
2227             Value *NewGEP =
2228                 GEP.isInBounds() && NSW
2229                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2230                                                 NewIdx, GEP.getName())
2231                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2232                                         GEP.getName());
2233 
2234             // The NewGEP must be pointer typed, so must the old one -> BitCast
2235             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2236                                                                  GEPType);
2237           }
2238         }
2239       }
2240 
2241       // Similarly, transform things like:
2242       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2243       //   (where tmp = 8*tmp2) into:
2244       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2245       if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2246           StrippedPtrEltTy->isArrayTy()) {
2247         // Check that changing to the array element type amounts to dividing the
2248         // index by a scale factor.
2249         uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2250         uint64_t ArrayEltSize =
2251             DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2252                 .getFixedSize();
2253         if (ResSize && ArrayEltSize % ResSize == 0) {
2254           Value *Idx = GEP.getOperand(1);
2255           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2256           uint64_t Scale = ArrayEltSize / ResSize;
2257 
2258           // Earlier transforms ensure that the index has the right type
2259           // according to the Data Layout, which considerably simplifies
2260           // the logic by eliminating implicit casts.
2261           assert(Idx->getType() == DL.getIndexType(GEPType) &&
2262                  "Index type does not match the Data Layout preferences");
2263 
2264           bool NSW;
2265           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2266             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2267             // If the multiplication NewIdx * Scale may overflow then the new
2268             // GEP may not be "inbounds".
2269             Type *IndTy = DL.getIndexType(GEPType);
2270             Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2271 
2272             Value *NewGEP =
2273                 GEP.isInBounds() && NSW
2274                     ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2275                                                 Off, GEP.getName())
2276                     : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2277                                         GEP.getName());
2278             // The NewGEP must be pointer typed, so must the old one -> BitCast
2279             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2280                                                                  GEPType);
2281           }
2282         }
2283       }
2284     }
2285   }
2286 
2287   // addrspacecast between types is canonicalized as a bitcast, then an
2288   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2289   // through the addrspacecast.
2290   Value *ASCStrippedPtrOp = PtrOp;
2291   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2292     //   X = bitcast A addrspace(1)* to B addrspace(1)*
2293     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2294     //   Z = gep Y, <...constant indices...>
2295     // Into an addrspacecasted GEP of the struct.
2296     if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2297       ASCStrippedPtrOp = BC;
2298   }
2299 
2300   if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2301     Value *SrcOp = BCI->getOperand(0);
2302     PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2303     Type *SrcEltType = SrcType->getElementType();
2304 
2305     // GEP directly using the source operand if this GEP is accessing an element
2306     // of a bitcasted pointer to vector or array of the same dimensions:
2307     // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2308     // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2309     auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2310                                           const DataLayout &DL) {
2311       auto *VecVTy = cast<VectorType>(VecTy);
2312       return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2313              ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2314              DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2315     };
2316     if (GEP.getNumOperands() == 3 &&
2317         ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2318           areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2319          (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2320           areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2321 
2322       // Create a new GEP here, as using `setOperand()` followed by
2323       // `setSourceElementType()` won't actually update the type of the
2324       // existing GEP Value. Causing issues if this Value is accessed when
2325       // constructing an AddrSpaceCastInst
2326       Value *NGEP =
2327           GEP.isInBounds()
2328               ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2329               : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2330       NGEP->takeName(&GEP);
2331 
2332       // Preserve GEP address space to satisfy users
2333       if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2334         return new AddrSpaceCastInst(NGEP, GEPType);
2335 
2336       return replaceInstUsesWith(GEP, NGEP);
2337     }
2338 
2339     // See if we can simplify:
2340     //   X = bitcast A* to B*
2341     //   Y = gep X, <...constant indices...>
2342     // into a gep of the original struct. This is important for SROA and alias
2343     // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2344     unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2345     APInt Offset(OffsetBits, 0);
2346     if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2347       // If this GEP instruction doesn't move the pointer, just replace the GEP
2348       // with a bitcast of the real input to the dest type.
2349       if (!Offset) {
2350         // If the bitcast is of an allocation, and the allocation will be
2351         // converted to match the type of the cast, don't touch this.
2352         if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2353           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2354           if (Instruction *I = visitBitCast(*BCI)) {
2355             if (I != BCI) {
2356               I->takeName(BCI);
2357               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2358               replaceInstUsesWith(*BCI, I);
2359             }
2360             return &GEP;
2361           }
2362         }
2363 
2364         if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2365           return new AddrSpaceCastInst(SrcOp, GEPType);
2366         return new BitCastInst(SrcOp, GEPType);
2367       }
2368 
2369       // Otherwise, if the offset is non-zero, we need to find out if there is a
2370       // field at Offset in 'A's type.  If so, we can pull the cast through the
2371       // GEP.
2372       SmallVector<Value*, 8> NewIndices;
2373       if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2374         Value *NGEP =
2375             GEP.isInBounds()
2376                 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2377                 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2378 
2379         if (NGEP->getType() == GEPType)
2380           return replaceInstUsesWith(GEP, NGEP);
2381         NGEP->takeName(&GEP);
2382 
2383         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2384           return new AddrSpaceCastInst(NGEP, GEPType);
2385         return new BitCastInst(NGEP, GEPType);
2386       }
2387     }
2388   }
2389 
2390   if (!GEP.isInBounds()) {
2391     unsigned IdxWidth =
2392         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2393     APInt BasePtrOffset(IdxWidth, 0);
2394     Value *UnderlyingPtrOp =
2395             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2396                                                              BasePtrOffset);
2397     if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2398       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2399           BasePtrOffset.isNonNegative()) {
2400         APInt AllocSize(
2401             IdxWidth,
2402             DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2403         if (BasePtrOffset.ule(AllocSize)) {
2404           return GetElementPtrInst::CreateInBounds(
2405               GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2406               GEP.getName());
2407         }
2408       }
2409     }
2410   }
2411 
2412   if (Instruction *R = foldSelectGEP(GEP, Builder))
2413     return R;
2414 
2415   return nullptr;
2416 }
2417 
2418 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2419                                          Instruction *AI) {
2420   if (isa<ConstantPointerNull>(V))
2421     return true;
2422   if (auto *LI = dyn_cast<LoadInst>(V))
2423     return isa<GlobalVariable>(LI->getPointerOperand());
2424   // Two distinct allocations will never be equal.
2425   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2426   // through bitcasts of V can cause
2427   // the result statement below to be true, even when AI and V (ex:
2428   // i8* ->i32* ->i8* of AI) are the same allocations.
2429   return isAllocLikeFn(V, TLI) && V != AI;
2430 }
2431 
2432 static bool isAllocSiteRemovable(Instruction *AI,
2433                                  SmallVectorImpl<WeakTrackingVH> &Users,
2434                                  const TargetLibraryInfo *TLI) {
2435   SmallVector<Instruction*, 4> Worklist;
2436   Worklist.push_back(AI);
2437 
2438   do {
2439     Instruction *PI = Worklist.pop_back_val();
2440     for (User *U : PI->users()) {
2441       Instruction *I = cast<Instruction>(U);
2442       switch (I->getOpcode()) {
2443       default:
2444         // Give up the moment we see something we can't handle.
2445         return false;
2446 
2447       case Instruction::AddrSpaceCast:
2448       case Instruction::BitCast:
2449       case Instruction::GetElementPtr:
2450         Users.emplace_back(I);
2451         Worklist.push_back(I);
2452         continue;
2453 
2454       case Instruction::ICmp: {
2455         ICmpInst *ICI = cast<ICmpInst>(I);
2456         // We can fold eq/ne comparisons with null to false/true, respectively.
2457         // We also fold comparisons in some conditions provided the alloc has
2458         // not escaped (see isNeverEqualToUnescapedAlloc).
2459         if (!ICI->isEquality())
2460           return false;
2461         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2462         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2463           return false;
2464         Users.emplace_back(I);
2465         continue;
2466       }
2467 
2468       case Instruction::Call:
2469         // Ignore no-op and store intrinsics.
2470         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2471           switch (II->getIntrinsicID()) {
2472           default:
2473             return false;
2474 
2475           case Intrinsic::memmove:
2476           case Intrinsic::memcpy:
2477           case Intrinsic::memset: {
2478             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2479             if (MI->isVolatile() || MI->getRawDest() != PI)
2480               return false;
2481             LLVM_FALLTHROUGH;
2482           }
2483           case Intrinsic::assume:
2484           case Intrinsic::invariant_start:
2485           case Intrinsic::invariant_end:
2486           case Intrinsic::lifetime_start:
2487           case Intrinsic::lifetime_end:
2488           case Intrinsic::objectsize:
2489             Users.emplace_back(I);
2490             continue;
2491           }
2492         }
2493 
2494         if (isFreeCall(I, TLI)) {
2495           Users.emplace_back(I);
2496           continue;
2497         }
2498         return false;
2499 
2500       case Instruction::Store: {
2501         StoreInst *SI = cast<StoreInst>(I);
2502         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2503           return false;
2504         Users.emplace_back(I);
2505         continue;
2506       }
2507       }
2508       llvm_unreachable("missing a return?");
2509     }
2510   } while (!Worklist.empty());
2511   return true;
2512 }
2513 
2514 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2515   // If we have a malloc call which is only used in any amount of comparisons to
2516   // null and free calls, delete the calls and replace the comparisons with true
2517   // or false as appropriate.
2518 
2519   // This is based on the principle that we can substitute our own allocation
2520   // function (which will never return null) rather than knowledge of the
2521   // specific function being called. In some sense this can change the permitted
2522   // outputs of a program (when we convert a malloc to an alloca, the fact that
2523   // the allocation is now on the stack is potentially visible, for example),
2524   // but we believe in a permissible manner.
2525   SmallVector<WeakTrackingVH, 64> Users;
2526 
2527   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2528   // before each store.
2529   TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2530   std::unique_ptr<DIBuilder> DIB;
2531   if (isa<AllocaInst>(MI)) {
2532     DIIs = FindDbgAddrUses(&MI);
2533     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2534   }
2535 
2536   if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2537     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2538       // Lowering all @llvm.objectsize calls first because they may
2539       // use a bitcast/GEP of the alloca we are removing.
2540       if (!Users[i])
2541        continue;
2542 
2543       Instruction *I = cast<Instruction>(&*Users[i]);
2544 
2545       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2546         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2547           Value *Result =
2548               lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2549           replaceInstUsesWith(*I, Result);
2550           eraseInstFromFunction(*I);
2551           Users[i] = nullptr; // Skip examining in the next loop.
2552         }
2553       }
2554     }
2555     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2556       if (!Users[i])
2557         continue;
2558 
2559       Instruction *I = cast<Instruction>(&*Users[i]);
2560 
2561       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2562         replaceInstUsesWith(*C,
2563                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2564                                              C->isFalseWhenEqual()));
2565       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2566         for (auto *DII : DIIs)
2567           ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2568       } else {
2569         // Casts, GEP, or anything else: we're about to delete this instruction,
2570         // so it can not have any valid uses.
2571         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2572       }
2573       eraseInstFromFunction(*I);
2574     }
2575 
2576     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2577       // Replace invoke with a NOP intrinsic to maintain the original CFG
2578       Module *M = II->getModule();
2579       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2580       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2581                          None, "", II->getParent());
2582     }
2583 
2584     for (auto *DII : DIIs)
2585       eraseInstFromFunction(*DII);
2586 
2587     return eraseInstFromFunction(MI);
2588   }
2589   return nullptr;
2590 }
2591 
2592 /// Move the call to free before a NULL test.
2593 ///
2594 /// Check if this free is accessed after its argument has been test
2595 /// against NULL (property 0).
2596 /// If yes, it is legal to move this call in its predecessor block.
2597 ///
2598 /// The move is performed only if the block containing the call to free
2599 /// will be removed, i.e.:
2600 /// 1. it has only one predecessor P, and P has two successors
2601 /// 2. it contains the call, noops, and an unconditional branch
2602 /// 3. its successor is the same as its predecessor's successor
2603 ///
2604 /// The profitability is out-of concern here and this function should
2605 /// be called only if the caller knows this transformation would be
2606 /// profitable (e.g., for code size).
2607 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2608                                                 const DataLayout &DL) {
2609   Value *Op = FI.getArgOperand(0);
2610   BasicBlock *FreeInstrBB = FI.getParent();
2611   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2612 
2613   // Validate part of constraint #1: Only one predecessor
2614   // FIXME: We can extend the number of predecessor, but in that case, we
2615   //        would duplicate the call to free in each predecessor and it may
2616   //        not be profitable even for code size.
2617   if (!PredBB)
2618     return nullptr;
2619 
2620   // Validate constraint #2: Does this block contains only the call to
2621   //                         free, noops, and an unconditional branch?
2622   BasicBlock *SuccBB;
2623   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2624   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2625     return nullptr;
2626 
2627   // If there are only 2 instructions in the block, at this point,
2628   // this is the call to free and unconditional.
2629   // If there are more than 2 instructions, check that they are noops
2630   // i.e., they won't hurt the performance of the generated code.
2631   if (FreeInstrBB->size() != 2) {
2632     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2633       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2634         continue;
2635       auto *Cast = dyn_cast<CastInst>(&Inst);
2636       if (!Cast || !Cast->isNoopCast(DL))
2637         return nullptr;
2638     }
2639   }
2640   // Validate the rest of constraint #1 by matching on the pred branch.
2641   Instruction *TI = PredBB->getTerminator();
2642   BasicBlock *TrueBB, *FalseBB;
2643   ICmpInst::Predicate Pred;
2644   if (!match(TI, m_Br(m_ICmp(Pred,
2645                              m_CombineOr(m_Specific(Op),
2646                                          m_Specific(Op->stripPointerCasts())),
2647                              m_Zero()),
2648                       TrueBB, FalseBB)))
2649     return nullptr;
2650   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2651     return nullptr;
2652 
2653   // Validate constraint #3: Ensure the null case just falls through.
2654   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2655     return nullptr;
2656   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2657          "Broken CFG: missing edge from predecessor to successor");
2658 
2659   // At this point, we know that everything in FreeInstrBB can be moved
2660   // before TI.
2661   for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2662        It != End;) {
2663     Instruction &Instr = *It++;
2664     if (&Instr == FreeInstrBBTerminator)
2665       break;
2666     Instr.moveBefore(TI);
2667   }
2668   assert(FreeInstrBB->size() == 1 &&
2669          "Only the branch instruction should remain");
2670   return &FI;
2671 }
2672 
2673 Instruction *InstCombiner::visitFree(CallInst &FI) {
2674   Value *Op = FI.getArgOperand(0);
2675 
2676   // free undef -> unreachable.
2677   if (isa<UndefValue>(Op)) {
2678     // Leave a marker since we can't modify the CFG here.
2679     CreateNonTerminatorUnreachable(&FI);
2680     return eraseInstFromFunction(FI);
2681   }
2682 
2683   // If we have 'free null' delete the instruction.  This can happen in stl code
2684   // when lots of inlining happens.
2685   if (isa<ConstantPointerNull>(Op))
2686     return eraseInstFromFunction(FI);
2687 
2688   // If we optimize for code size, try to move the call to free before the null
2689   // test so that simplify cfg can remove the empty block and dead code
2690   // elimination the branch. I.e., helps to turn something like:
2691   // if (foo) free(foo);
2692   // into
2693   // free(foo);
2694   //
2695   // Note that we can only do this for 'free' and not for any flavor of
2696   // 'operator delete'; there is no 'operator delete' symbol for which we are
2697   // permitted to invent a call, even if we're passing in a null pointer.
2698   if (MinimizeSize) {
2699     LibFunc Func;
2700     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2701       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2702         return I;
2703   }
2704 
2705   return nullptr;
2706 }
2707 
2708 static bool isMustTailCall(Value *V) {
2709   if (auto *CI = dyn_cast<CallInst>(V))
2710     return CI->isMustTailCall();
2711   return false;
2712 }
2713 
2714 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2715   if (RI.getNumOperands() == 0) // ret void
2716     return nullptr;
2717 
2718   Value *ResultOp = RI.getOperand(0);
2719   Type *VTy = ResultOp->getType();
2720   if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2721     return nullptr;
2722 
2723   // Don't replace result of musttail calls.
2724   if (isMustTailCall(ResultOp))
2725     return nullptr;
2726 
2727   // There might be assume intrinsics dominating this return that completely
2728   // determine the value. If so, constant fold it.
2729   KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2730   if (Known.isConstant())
2731     return replaceOperand(RI, 0,
2732         Constant::getIntegerValue(VTy, Known.getConstant()));
2733 
2734   return nullptr;
2735 }
2736 
2737 Instruction *InstCombiner::visitUnconditionalBranchInst(BranchInst &BI) {
2738   assert(BI.isUnconditional() && "Only for unconditional branches.");
2739 
2740   // If this store is the second-to-last instruction in the basic block
2741   // (excluding debug info and bitcasts of pointers) and if the block ends with
2742   // an unconditional branch, try to move the store to the successor block.
2743 
2744   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2745     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2746       return isa<DbgInfoIntrinsic>(BBI) ||
2747              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2748     };
2749 
2750     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2751     do {
2752       if (BBI != FirstInstr)
2753         --BBI;
2754     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2755 
2756     return dyn_cast<StoreInst>(BBI);
2757   };
2758 
2759   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2760     if (mergeStoreIntoSuccessor(*SI))
2761       return &BI;
2762 
2763   return nullptr;
2764 }
2765 
2766 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2767   if (BI.isUnconditional())
2768     return visitUnconditionalBranchInst(BI);
2769 
2770   // Change br (not X), label True, label False to: br X, label False, True
2771   Value *X = nullptr;
2772   if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2773       !isa<Constant>(X)) {
2774     // Swap Destinations and condition...
2775     BI.swapSuccessors();
2776     return replaceOperand(BI, 0, X);
2777   }
2778 
2779   // If the condition is irrelevant, remove the use so that other
2780   // transforms on the condition become more effective.
2781   if (!isa<ConstantInt>(BI.getCondition()) &&
2782       BI.getSuccessor(0) == BI.getSuccessor(1))
2783     return replaceOperand(
2784         BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2785 
2786   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2787   CmpInst::Predicate Pred;
2788   if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2789                       m_BasicBlock(), m_BasicBlock())) &&
2790       !isCanonicalPredicate(Pred)) {
2791     // Swap destinations and condition.
2792     CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2793     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2794     BI.swapSuccessors();
2795     Worklist.push(Cond);
2796     return &BI;
2797   }
2798 
2799   return nullptr;
2800 }
2801 
2802 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2803   Value *Cond = SI.getCondition();
2804   Value *Op0;
2805   ConstantInt *AddRHS;
2806   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2807     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2808     for (auto Case : SI.cases()) {
2809       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2810       assert(isa<ConstantInt>(NewCase) &&
2811              "Result of expression should be constant");
2812       Case.setValue(cast<ConstantInt>(NewCase));
2813     }
2814     return replaceOperand(SI, 0, Op0);
2815   }
2816 
2817   KnownBits Known = computeKnownBits(Cond, 0, &SI);
2818   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2819   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2820 
2821   // Compute the number of leading bits we can ignore.
2822   // TODO: A better way to determine this would use ComputeNumSignBits().
2823   for (auto &C : SI.cases()) {
2824     LeadingKnownZeros = std::min(
2825         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2826     LeadingKnownOnes = std::min(
2827         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2828   }
2829 
2830   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2831 
2832   // Shrink the condition operand if the new type is smaller than the old type.
2833   // But do not shrink to a non-standard type, because backend can't generate
2834   // good code for that yet.
2835   // TODO: We can make it aggressive again after fixing PR39569.
2836   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2837       shouldChangeType(Known.getBitWidth(), NewWidth)) {
2838     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2839     Builder.SetInsertPoint(&SI);
2840     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2841 
2842     for (auto Case : SI.cases()) {
2843       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2844       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2845     }
2846     return replaceOperand(SI, 0, NewCond);
2847   }
2848 
2849   return nullptr;
2850 }
2851 
2852 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2853   Value *Agg = EV.getAggregateOperand();
2854 
2855   if (!EV.hasIndices())
2856     return replaceInstUsesWith(EV, Agg);
2857 
2858   if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2859                                           SQ.getWithInstruction(&EV)))
2860     return replaceInstUsesWith(EV, V);
2861 
2862   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2863     // We're extracting from an insertvalue instruction, compare the indices
2864     const unsigned *exti, *exte, *insi, *inse;
2865     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2866          exte = EV.idx_end(), inse = IV->idx_end();
2867          exti != exte && insi != inse;
2868          ++exti, ++insi) {
2869       if (*insi != *exti)
2870         // The insert and extract both reference distinctly different elements.
2871         // This means the extract is not influenced by the insert, and we can
2872         // replace the aggregate operand of the extract with the aggregate
2873         // operand of the insert. i.e., replace
2874         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2875         // %E = extractvalue { i32, { i32 } } %I, 0
2876         // with
2877         // %E = extractvalue { i32, { i32 } } %A, 0
2878         return ExtractValueInst::Create(IV->getAggregateOperand(),
2879                                         EV.getIndices());
2880     }
2881     if (exti == exte && insi == inse)
2882       // Both iterators are at the end: Index lists are identical. Replace
2883       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2884       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2885       // with "i32 42"
2886       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2887     if (exti == exte) {
2888       // The extract list is a prefix of the insert list. i.e. replace
2889       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2890       // %E = extractvalue { i32, { i32 } } %I, 1
2891       // with
2892       // %X = extractvalue { i32, { i32 } } %A, 1
2893       // %E = insertvalue { i32 } %X, i32 42, 0
2894       // by switching the order of the insert and extract (though the
2895       // insertvalue should be left in, since it may have other uses).
2896       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2897                                                 EV.getIndices());
2898       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2899                                      makeArrayRef(insi, inse));
2900     }
2901     if (insi == inse)
2902       // The insert list is a prefix of the extract list
2903       // We can simply remove the common indices from the extract and make it
2904       // operate on the inserted value instead of the insertvalue result.
2905       // i.e., replace
2906       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2907       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2908       // with
2909       // %E extractvalue { i32 } { i32 42 }, 0
2910       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2911                                       makeArrayRef(exti, exte));
2912   }
2913   if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2914     // We're extracting from an overflow intrinsic, see if we're the only user,
2915     // which allows us to simplify multiple result intrinsics to simpler
2916     // things that just get one value.
2917     if (WO->hasOneUse()) {
2918       // Check if we're grabbing only the result of a 'with overflow' intrinsic
2919       // and replace it with a traditional binary instruction.
2920       if (*EV.idx_begin() == 0) {
2921         Instruction::BinaryOps BinOp = WO->getBinaryOp();
2922         Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2923         replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2924         eraseInstFromFunction(*WO);
2925         return BinaryOperator::Create(BinOp, LHS, RHS);
2926       }
2927 
2928       // If the normal result of the add is dead, and the RHS is a constant,
2929       // we can transform this into a range comparison.
2930       // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2931       if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2932         if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2933           return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2934                               ConstantExpr::getNot(CI));
2935     }
2936   }
2937   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2938     // If the (non-volatile) load only has one use, we can rewrite this to a
2939     // load from a GEP. This reduces the size of the load. If a load is used
2940     // only by extractvalue instructions then this either must have been
2941     // optimized before, or it is a struct with padding, in which case we
2942     // don't want to do the transformation as it loses padding knowledge.
2943     if (L->isSimple() && L->hasOneUse()) {
2944       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2945       SmallVector<Value*, 4> Indices;
2946       // Prefix an i32 0 since we need the first element.
2947       Indices.push_back(Builder.getInt32(0));
2948       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2949             I != E; ++I)
2950         Indices.push_back(Builder.getInt32(*I));
2951 
2952       // We need to insert these at the location of the old load, not at that of
2953       // the extractvalue.
2954       Builder.SetInsertPoint(L);
2955       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2956                                              L->getPointerOperand(), Indices);
2957       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2958       // Whatever aliasing information we had for the orignal load must also
2959       // hold for the smaller load, so propagate the annotations.
2960       AAMDNodes Nodes;
2961       L->getAAMetadata(Nodes);
2962       NL->setAAMetadata(Nodes);
2963       // Returning the load directly will cause the main loop to insert it in
2964       // the wrong spot, so use replaceInstUsesWith().
2965       return replaceInstUsesWith(EV, NL);
2966     }
2967   // We could simplify extracts from other values. Note that nested extracts may
2968   // already be simplified implicitly by the above: extract (extract (insert) )
2969   // will be translated into extract ( insert ( extract ) ) first and then just
2970   // the value inserted, if appropriate. Similarly for extracts from single-use
2971   // loads: extract (extract (load)) will be translated to extract (load (gep))
2972   // and if again single-use then via load (gep (gep)) to load (gep).
2973   // However, double extracts from e.g. function arguments or return values
2974   // aren't handled yet.
2975   return nullptr;
2976 }
2977 
2978 /// Return 'true' if the given typeinfo will match anything.
2979 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2980   switch (Personality) {
2981   case EHPersonality::GNU_C:
2982   case EHPersonality::GNU_C_SjLj:
2983   case EHPersonality::Rust:
2984     // The GCC C EH and Rust personality only exists to support cleanups, so
2985     // it's not clear what the semantics of catch clauses are.
2986     return false;
2987   case EHPersonality::Unknown:
2988     return false;
2989   case EHPersonality::GNU_Ada:
2990     // While __gnat_all_others_value will match any Ada exception, it doesn't
2991     // match foreign exceptions (or didn't, before gcc-4.7).
2992     return false;
2993   case EHPersonality::GNU_CXX:
2994   case EHPersonality::GNU_CXX_SjLj:
2995   case EHPersonality::GNU_ObjC:
2996   case EHPersonality::MSVC_X86SEH:
2997   case EHPersonality::MSVC_Win64SEH:
2998   case EHPersonality::MSVC_CXX:
2999   case EHPersonality::CoreCLR:
3000   case EHPersonality::Wasm_CXX:
3001     return TypeInfo->isNullValue();
3002   }
3003   llvm_unreachable("invalid enum");
3004 }
3005 
3006 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3007   return
3008     cast<ArrayType>(LHS->getType())->getNumElements()
3009   <
3010     cast<ArrayType>(RHS->getType())->getNumElements();
3011 }
3012 
3013 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
3014   // The logic here should be correct for any real-world personality function.
3015   // However if that turns out not to be true, the offending logic can always
3016   // be conditioned on the personality function, like the catch-all logic is.
3017   EHPersonality Personality =
3018       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3019 
3020   // Simplify the list of clauses, eg by removing repeated catch clauses
3021   // (these are often created by inlining).
3022   bool MakeNewInstruction = false; // If true, recreate using the following:
3023   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3024   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3025 
3026   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3027   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3028     bool isLastClause = i + 1 == e;
3029     if (LI.isCatch(i)) {
3030       // A catch clause.
3031       Constant *CatchClause = LI.getClause(i);
3032       Constant *TypeInfo = CatchClause->stripPointerCasts();
3033 
3034       // If we already saw this clause, there is no point in having a second
3035       // copy of it.
3036       if (AlreadyCaught.insert(TypeInfo).second) {
3037         // This catch clause was not already seen.
3038         NewClauses.push_back(CatchClause);
3039       } else {
3040         // Repeated catch clause - drop the redundant copy.
3041         MakeNewInstruction = true;
3042       }
3043 
3044       // If this is a catch-all then there is no point in keeping any following
3045       // clauses or marking the landingpad as having a cleanup.
3046       if (isCatchAll(Personality, TypeInfo)) {
3047         if (!isLastClause)
3048           MakeNewInstruction = true;
3049         CleanupFlag = false;
3050         break;
3051       }
3052     } else {
3053       // A filter clause.  If any of the filter elements were already caught
3054       // then they can be dropped from the filter.  It is tempting to try to
3055       // exploit the filter further by saying that any typeinfo that does not
3056       // occur in the filter can't be caught later (and thus can be dropped).
3057       // However this would be wrong, since typeinfos can match without being
3058       // equal (for example if one represents a C++ class, and the other some
3059       // class derived from it).
3060       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3061       Constant *FilterClause = LI.getClause(i);
3062       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3063       unsigned NumTypeInfos = FilterType->getNumElements();
3064 
3065       // An empty filter catches everything, so there is no point in keeping any
3066       // following clauses or marking the landingpad as having a cleanup.  By
3067       // dealing with this case here the following code is made a bit simpler.
3068       if (!NumTypeInfos) {
3069         NewClauses.push_back(FilterClause);
3070         if (!isLastClause)
3071           MakeNewInstruction = true;
3072         CleanupFlag = false;
3073         break;
3074       }
3075 
3076       bool MakeNewFilter = false; // If true, make a new filter.
3077       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3078       if (isa<ConstantAggregateZero>(FilterClause)) {
3079         // Not an empty filter - it contains at least one null typeinfo.
3080         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3081         Constant *TypeInfo =
3082           Constant::getNullValue(FilterType->getElementType());
3083         // If this typeinfo is a catch-all then the filter can never match.
3084         if (isCatchAll(Personality, TypeInfo)) {
3085           // Throw the filter away.
3086           MakeNewInstruction = true;
3087           continue;
3088         }
3089 
3090         // There is no point in having multiple copies of this typeinfo, so
3091         // discard all but the first copy if there is more than one.
3092         NewFilterElts.push_back(TypeInfo);
3093         if (NumTypeInfos > 1)
3094           MakeNewFilter = true;
3095       } else {
3096         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3097         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3098         NewFilterElts.reserve(NumTypeInfos);
3099 
3100         // Remove any filter elements that were already caught or that already
3101         // occurred in the filter.  While there, see if any of the elements are
3102         // catch-alls.  If so, the filter can be discarded.
3103         bool SawCatchAll = false;
3104         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3105           Constant *Elt = Filter->getOperand(j);
3106           Constant *TypeInfo = Elt->stripPointerCasts();
3107           if (isCatchAll(Personality, TypeInfo)) {
3108             // This element is a catch-all.  Bail out, noting this fact.
3109             SawCatchAll = true;
3110             break;
3111           }
3112 
3113           // Even if we've seen a type in a catch clause, we don't want to
3114           // remove it from the filter.  An unexpected type handler may be
3115           // set up for a call site which throws an exception of the same
3116           // type caught.  In order for the exception thrown by the unexpected
3117           // handler to propagate correctly, the filter must be correctly
3118           // described for the call site.
3119           //
3120           // Example:
3121           //
3122           // void unexpected() { throw 1;}
3123           // void foo() throw (int) {
3124           //   std::set_unexpected(unexpected);
3125           //   try {
3126           //     throw 2.0;
3127           //   } catch (int i) {}
3128           // }
3129 
3130           // There is no point in having multiple copies of the same typeinfo in
3131           // a filter, so only add it if we didn't already.
3132           if (SeenInFilter.insert(TypeInfo).second)
3133             NewFilterElts.push_back(cast<Constant>(Elt));
3134         }
3135         // A filter containing a catch-all cannot match anything by definition.
3136         if (SawCatchAll) {
3137           // Throw the filter away.
3138           MakeNewInstruction = true;
3139           continue;
3140         }
3141 
3142         // If we dropped something from the filter, make a new one.
3143         if (NewFilterElts.size() < NumTypeInfos)
3144           MakeNewFilter = true;
3145       }
3146       if (MakeNewFilter) {
3147         FilterType = ArrayType::get(FilterType->getElementType(),
3148                                     NewFilterElts.size());
3149         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3150         MakeNewInstruction = true;
3151       }
3152 
3153       NewClauses.push_back(FilterClause);
3154 
3155       // If the new filter is empty then it will catch everything so there is
3156       // no point in keeping any following clauses or marking the landingpad
3157       // as having a cleanup.  The case of the original filter being empty was
3158       // already handled above.
3159       if (MakeNewFilter && !NewFilterElts.size()) {
3160         assert(MakeNewInstruction && "New filter but not a new instruction!");
3161         CleanupFlag = false;
3162         break;
3163       }
3164     }
3165   }
3166 
3167   // If several filters occur in a row then reorder them so that the shortest
3168   // filters come first (those with the smallest number of elements).  This is
3169   // advantageous because shorter filters are more likely to match, speeding up
3170   // unwinding, but mostly because it increases the effectiveness of the other
3171   // filter optimizations below.
3172   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3173     unsigned j;
3174     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3175     for (j = i; j != e; ++j)
3176       if (!isa<ArrayType>(NewClauses[j]->getType()))
3177         break;
3178 
3179     // Check whether the filters are already sorted by length.  We need to know
3180     // if sorting them is actually going to do anything so that we only make a
3181     // new landingpad instruction if it does.
3182     for (unsigned k = i; k + 1 < j; ++k)
3183       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3184         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3185         // correct too but reordering filters pointlessly might confuse users.
3186         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3187                          shorter_filter);
3188         MakeNewInstruction = true;
3189         break;
3190       }
3191 
3192     // Look for the next batch of filters.
3193     i = j + 1;
3194   }
3195 
3196   // If typeinfos matched if and only if equal, then the elements of a filter L
3197   // that occurs later than a filter F could be replaced by the intersection of
3198   // the elements of F and L.  In reality two typeinfos can match without being
3199   // equal (for example if one represents a C++ class, and the other some class
3200   // derived from it) so it would be wrong to perform this transform in general.
3201   // However the transform is correct and useful if F is a subset of L.  In that
3202   // case L can be replaced by F, and thus removed altogether since repeating a
3203   // filter is pointless.  So here we look at all pairs of filters F and L where
3204   // L follows F in the list of clauses, and remove L if every element of F is
3205   // an element of L.  This can occur when inlining C++ functions with exception
3206   // specifications.
3207   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3208     // Examine each filter in turn.
3209     Value *Filter = NewClauses[i];
3210     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3211     if (!FTy)
3212       // Not a filter - skip it.
3213       continue;
3214     unsigned FElts = FTy->getNumElements();
3215     // Examine each filter following this one.  Doing this backwards means that
3216     // we don't have to worry about filters disappearing under us when removed.
3217     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3218       Value *LFilter = NewClauses[j];
3219       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3220       if (!LTy)
3221         // Not a filter - skip it.
3222         continue;
3223       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3224       // an element of LFilter, then discard LFilter.
3225       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3226       // If Filter is empty then it is a subset of LFilter.
3227       if (!FElts) {
3228         // Discard LFilter.
3229         NewClauses.erase(J);
3230         MakeNewInstruction = true;
3231         // Move on to the next filter.
3232         continue;
3233       }
3234       unsigned LElts = LTy->getNumElements();
3235       // If Filter is longer than LFilter then it cannot be a subset of it.
3236       if (FElts > LElts)
3237         // Move on to the next filter.
3238         continue;
3239       // At this point we know that LFilter has at least one element.
3240       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3241         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3242         // already know that Filter is not longer than LFilter).
3243         if (isa<ConstantAggregateZero>(Filter)) {
3244           assert(FElts <= LElts && "Should have handled this case earlier!");
3245           // Discard LFilter.
3246           NewClauses.erase(J);
3247           MakeNewInstruction = true;
3248         }
3249         // Move on to the next filter.
3250         continue;
3251       }
3252       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3253       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3254         // Since Filter is non-empty and contains only zeros, it is a subset of
3255         // LFilter iff LFilter contains a zero.
3256         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3257         for (unsigned l = 0; l != LElts; ++l)
3258           if (LArray->getOperand(l)->isNullValue()) {
3259             // LFilter contains a zero - discard it.
3260             NewClauses.erase(J);
3261             MakeNewInstruction = true;
3262             break;
3263           }
3264         // Move on to the next filter.
3265         continue;
3266       }
3267       // At this point we know that both filters are ConstantArrays.  Loop over
3268       // operands to see whether every element of Filter is also an element of
3269       // LFilter.  Since filters tend to be short this is probably faster than
3270       // using a method that scales nicely.
3271       ConstantArray *FArray = cast<ConstantArray>(Filter);
3272       bool AllFound = true;
3273       for (unsigned f = 0; f != FElts; ++f) {
3274         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3275         AllFound = false;
3276         for (unsigned l = 0; l != LElts; ++l) {
3277           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3278           if (LTypeInfo == FTypeInfo) {
3279             AllFound = true;
3280             break;
3281           }
3282         }
3283         if (!AllFound)
3284           break;
3285       }
3286       if (AllFound) {
3287         // Discard LFilter.
3288         NewClauses.erase(J);
3289         MakeNewInstruction = true;
3290       }
3291       // Move on to the next filter.
3292     }
3293   }
3294 
3295   // If we changed any of the clauses, replace the old landingpad instruction
3296   // with a new one.
3297   if (MakeNewInstruction) {
3298     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3299                                                  NewClauses.size());
3300     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3301       NLI->addClause(NewClauses[i]);
3302     // A landing pad with no clauses must have the cleanup flag set.  It is
3303     // theoretically possible, though highly unlikely, that we eliminated all
3304     // clauses.  If so, force the cleanup flag to true.
3305     if (NewClauses.empty())
3306       CleanupFlag = true;
3307     NLI->setCleanup(CleanupFlag);
3308     return NLI;
3309   }
3310 
3311   // Even if none of the clauses changed, we may nonetheless have understood
3312   // that the cleanup flag is pointless.  Clear it if so.
3313   if (LI.isCleanup() != CleanupFlag) {
3314     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3315     LI.setCleanup(CleanupFlag);
3316     return &LI;
3317   }
3318 
3319   return nullptr;
3320 }
3321 
3322 Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
3323   Value *Op0 = I.getOperand(0);
3324 
3325   if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3326     return replaceInstUsesWith(I, V);
3327 
3328   return nullptr;
3329 }
3330 
3331 /// Try to move the specified instruction from its current block into the
3332 /// beginning of DestBlock, which can only happen if it's safe to move the
3333 /// instruction past all of the instructions between it and the end of its
3334 /// block.
3335 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3336   assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3337   BasicBlock *SrcBlock = I->getParent();
3338 
3339   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3340   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3341       I->isTerminator())
3342     return false;
3343 
3344   // Do not sink static or dynamic alloca instructions. Static allocas must
3345   // remain in the entry block, and dynamic allocas must not be sunk in between
3346   // a stacksave / stackrestore pair, which would incorrectly shorten its
3347   // lifetime.
3348   if (isa<AllocaInst>(I))
3349     return false;
3350 
3351   // Do not sink into catchswitch blocks.
3352   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3353     return false;
3354 
3355   // Do not sink convergent call instructions.
3356   if (auto *CI = dyn_cast<CallInst>(I)) {
3357     if (CI->isConvergent())
3358       return false;
3359   }
3360   // We can only sink load instructions if there is nothing between the load and
3361   // the end of block that could change the value.
3362   if (I->mayReadFromMemory()) {
3363     // We don't want to do any sophisticated alias analysis, so we only check
3364     // the instructions after I in I's parent block if we try to sink to its
3365     // successor block.
3366     if (DestBlock->getUniquePredecessor() != I->getParent())
3367       return false;
3368     for (BasicBlock::iterator Scan = I->getIterator(),
3369                               E = I->getParent()->end();
3370          Scan != E; ++Scan)
3371       if (Scan->mayWriteToMemory())
3372         return false;
3373   }
3374 
3375   I->dropDroppableUses([DestBlock](const Use *U) {
3376     if (auto *I = dyn_cast<Instruction>(U->getUser()))
3377       return I->getParent() != DestBlock;
3378     return true;
3379   });
3380   /// FIXME: We could remove droppable uses that are not dominated by
3381   /// the new position.
3382 
3383   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3384   I->moveBefore(&*InsertPos);
3385   ++NumSunkInst;
3386 
3387   // Also sink all related debug uses from the source basic block. Otherwise we
3388   // get debug use before the def. Attempt to salvage debug uses first, to
3389   // maximise the range variables have location for. If we cannot salvage, then
3390   // mark the location undef: we know it was supposed to receive a new location
3391   // here, but that computation has been sunk.
3392   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3393   findDbgUsers(DbgUsers, I);
3394 
3395   // Update the arguments of a dbg.declare instruction, so that it
3396   // does not point into a sunk instruction.
3397   auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3398     if (!isa<DbgDeclareInst>(DII))
3399       return false;
3400 
3401     if (isa<CastInst>(I))
3402       DII->setOperand(
3403           0, MetadataAsValue::get(I->getContext(),
3404                                   ValueAsMetadata::get(I->getOperand(0))));
3405     return true;
3406   };
3407 
3408   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3409   for (auto User : DbgUsers) {
3410     // A dbg.declare instruction should not be cloned, since there can only be
3411     // one per variable fragment. It should be left in the original place
3412     // because the sunk instruction is not an alloca (otherwise we could not be
3413     // here).
3414     if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3415       continue;
3416 
3417     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3418     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3419   }
3420 
3421   // Perform salvaging without the clones, then sink the clones.
3422   if (!DIIClones.empty()) {
3423     salvageDebugInfoForDbgValues(*I, DbgUsers);
3424     for (auto &DIIClone : DIIClones) {
3425       DIIClone->insertBefore(&*InsertPos);
3426       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3427     }
3428   }
3429 
3430   return true;
3431 }
3432 
3433 bool InstCombiner::run() {
3434   while (!Worklist.isEmpty()) {
3435     // Walk deferred instructions in reverse order, and push them to the
3436     // worklist, which means they'll end up popped from the worklist in-order.
3437     while (Instruction *I = Worklist.popDeferred()) {
3438       // Check to see if we can DCE the instruction. We do this already here to
3439       // reduce the number of uses and thus allow other folds to trigger.
3440       // Note that eraseInstFromFunction() may push additional instructions on
3441       // the deferred worklist, so this will DCE whole instruction chains.
3442       if (isInstructionTriviallyDead(I, &TLI)) {
3443         eraseInstFromFunction(*I);
3444         ++NumDeadInst;
3445         continue;
3446       }
3447 
3448       Worklist.push(I);
3449     }
3450 
3451     Instruction *I = Worklist.removeOne();
3452     if (I == nullptr) continue;  // skip null values.
3453 
3454     // Check to see if we can DCE the instruction.
3455     if (isInstructionTriviallyDead(I, &TLI)) {
3456       eraseInstFromFunction(*I);
3457       ++NumDeadInst;
3458       continue;
3459     }
3460 
3461     if (!DebugCounter::shouldExecute(VisitCounter))
3462       continue;
3463 
3464     // Instruction isn't dead, see if we can constant propagate it.
3465     if (!I->use_empty() &&
3466         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3467       if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3468         LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3469                           << '\n');
3470 
3471         // Add operands to the worklist.
3472         replaceInstUsesWith(*I, C);
3473         ++NumConstProp;
3474         if (isInstructionTriviallyDead(I, &TLI))
3475           eraseInstFromFunction(*I);
3476         MadeIRChange = true;
3477         continue;
3478       }
3479     }
3480 
3481     // See if we can trivially sink this instruction to its user if we can
3482     // prove that the successor is not executed more frequently than our block.
3483     if (EnableCodeSinking)
3484       if (Use *SingleUse = I->getSingleUndroppableUse()) {
3485         BasicBlock *BB = I->getParent();
3486         Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3487         BasicBlock *UserParent;
3488 
3489         // Get the block the use occurs in.
3490         if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3491           UserParent = PN->getIncomingBlock(*SingleUse);
3492         else
3493           UserParent = UserInst->getParent();
3494 
3495         if (UserParent != BB) {
3496           // See if the user is one of our successors that has only one
3497           // predecessor, so that we don't have to split the critical edge.
3498           bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3499           // Another option where we can sink is a block that ends with a
3500           // terminator that does not pass control to other block (such as
3501           // return or unreachable). In this case:
3502           //   - I dominates the User (by SSA form);
3503           //   - the User will be executed at most once.
3504           // So sinking I down to User is always profitable or neutral.
3505           if (!ShouldSink) {
3506             auto *Term = UserParent->getTerminator();
3507             ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3508           }
3509           if (ShouldSink) {
3510             assert(DT.dominates(BB, UserParent) &&
3511                    "Dominance relation broken?");
3512             // Okay, the CFG is simple enough, try to sink this instruction.
3513             if (TryToSinkInstruction(I, UserParent)) {
3514               LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3515               MadeIRChange = true;
3516               // We'll add uses of the sunk instruction below, but since sinking
3517               // can expose opportunities for it's *operands* add them to the
3518               // worklist
3519               for (Use &U : I->operands())
3520                 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3521                   Worklist.push(OpI);
3522             }
3523           }
3524         }
3525       }
3526 
3527     // Now that we have an instruction, try combining it to simplify it.
3528     Builder.SetInsertPoint(I);
3529     Builder.SetCurrentDebugLocation(I->getDebugLoc());
3530 
3531 #ifndef NDEBUG
3532     std::string OrigI;
3533 #endif
3534     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3535     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3536 
3537     if (Instruction *Result = visit(*I)) {
3538       ++NumCombined;
3539       // Should we replace the old instruction with a new one?
3540       if (Result != I) {
3541         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3542                           << "    New = " << *Result << '\n');
3543 
3544         if (I->getDebugLoc())
3545           Result->setDebugLoc(I->getDebugLoc());
3546         // Everything uses the new instruction now.
3547         I->replaceAllUsesWith(Result);
3548 
3549         // Move the name to the new instruction first.
3550         Result->takeName(I);
3551 
3552         // Insert the new instruction into the basic block...
3553         BasicBlock *InstParent = I->getParent();
3554         BasicBlock::iterator InsertPos = I->getIterator();
3555 
3556         // If we replace a PHI with something that isn't a PHI, fix up the
3557         // insertion point.
3558         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3559           InsertPos = InstParent->getFirstInsertionPt();
3560 
3561         InstParent->getInstList().insert(InsertPos, Result);
3562 
3563         // Push the new instruction and any users onto the worklist.
3564         Worklist.pushUsersToWorkList(*Result);
3565         Worklist.push(Result);
3566 
3567         eraseInstFromFunction(*I);
3568       } else {
3569         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3570                           << "    New = " << *I << '\n');
3571 
3572         // If the instruction was modified, it's possible that it is now dead.
3573         // if so, remove it.
3574         if (isInstructionTriviallyDead(I, &TLI)) {
3575           eraseInstFromFunction(*I);
3576         } else {
3577           Worklist.pushUsersToWorkList(*I);
3578           Worklist.push(I);
3579         }
3580       }
3581       MadeIRChange = true;
3582     }
3583   }
3584 
3585   Worklist.zap();
3586   return MadeIRChange;
3587 }
3588 
3589 /// Populate the IC worklist from a function, by walking it in depth-first
3590 /// order and adding all reachable code to the worklist.
3591 ///
3592 /// This has a couple of tricks to make the code faster and more powerful.  In
3593 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3594 /// them to the worklist (this significantly speeds up instcombine on code where
3595 /// many instructions are dead or constant).  Additionally, if we find a branch
3596 /// whose condition is a known constant, we only visit the reachable successors.
3597 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3598                                           const TargetLibraryInfo *TLI,
3599                                           InstCombineWorklist &ICWorklist) {
3600   bool MadeIRChange = false;
3601   SmallPtrSet<BasicBlock *, 32> Visited;
3602   SmallVector<BasicBlock*, 256> Worklist;
3603   Worklist.push_back(&F.front());
3604 
3605   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3606   DenseMap<Constant *, Constant *> FoldedConstants;
3607 
3608   do {
3609     BasicBlock *BB = Worklist.pop_back_val();
3610 
3611     // We have now visited this block!  If we've already been here, ignore it.
3612     if (!Visited.insert(BB).second)
3613       continue;
3614 
3615     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3616       Instruction *Inst = &*BBI++;
3617 
3618       // ConstantProp instruction if trivially constant.
3619       if (!Inst->use_empty() &&
3620           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3621         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3622           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3623                             << '\n');
3624           Inst->replaceAllUsesWith(C);
3625           ++NumConstProp;
3626           if (isInstructionTriviallyDead(Inst, TLI))
3627             Inst->eraseFromParent();
3628           MadeIRChange = true;
3629           continue;
3630         }
3631 
3632       // See if we can constant fold its operands.
3633       for (Use &U : Inst->operands()) {
3634         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3635           continue;
3636 
3637         auto *C = cast<Constant>(U);
3638         Constant *&FoldRes = FoldedConstants[C];
3639         if (!FoldRes)
3640           FoldRes = ConstantFoldConstant(C, DL, TLI);
3641 
3642         if (FoldRes != C) {
3643           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3644                             << "\n    Old = " << *C
3645                             << "\n    New = " << *FoldRes << '\n');
3646           U = FoldRes;
3647           MadeIRChange = true;
3648         }
3649       }
3650 
3651       // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3652       // consumes non-trivial amount of time and provides no value for the optimization.
3653       if (!isa<DbgInfoIntrinsic>(Inst))
3654         InstrsForInstCombineWorklist.push_back(Inst);
3655     }
3656 
3657     // Recursively visit successors.  If this is a branch or switch on a
3658     // constant, only visit the reachable successor.
3659     Instruction *TI = BB->getTerminator();
3660     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3661       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3662         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3663         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3664         Worklist.push_back(ReachableBB);
3665         continue;
3666       }
3667     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3668       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3669         Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3670         continue;
3671       }
3672     }
3673 
3674     for (BasicBlock *SuccBB : successors(TI))
3675       Worklist.push_back(SuccBB);
3676   } while (!Worklist.empty());
3677 
3678   // Remove instructions inside unreachable blocks. This prevents the
3679   // instcombine code from having to deal with some bad special cases, and
3680   // reduces use counts of instructions.
3681   for (BasicBlock &BB : F) {
3682     if (Visited.count(&BB))
3683       continue;
3684 
3685     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3686     MadeIRChange |= NumDeadInstInBB > 0;
3687     NumDeadInst += NumDeadInstInBB;
3688   }
3689 
3690   // Once we've found all of the instructions to add to instcombine's worklist,
3691   // add them in reverse order.  This way instcombine will visit from the top
3692   // of the function down.  This jives well with the way that it adds all uses
3693   // of instructions to the worklist after doing a transformation, thus avoiding
3694   // some N^2 behavior in pathological cases.
3695   ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3696   for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3697     // DCE instruction if trivially dead. As we iterate in reverse program
3698     // order here, we will clean up whole chains of dead instructions.
3699     if (isInstructionTriviallyDead(Inst, TLI)) {
3700       ++NumDeadInst;
3701       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3702       salvageDebugInfo(*Inst);
3703       Inst->eraseFromParent();
3704       MadeIRChange = true;
3705       continue;
3706     }
3707 
3708     ICWorklist.push(Inst);
3709   }
3710 
3711   return MadeIRChange;
3712 }
3713 
3714 static bool combineInstructionsOverFunction(
3715     Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3716     AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3717     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3718     ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3719   auto &DL = F.getParent()->getDataLayout();
3720   MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3721 
3722   /// Builder - This is an IRBuilder that automatically inserts new
3723   /// instructions into the worklist when they are created.
3724   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3725       F.getContext(), TargetFolder(DL),
3726       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3727         Worklist.add(I);
3728         if (match(I, m_Intrinsic<Intrinsic::assume>()))
3729           AC.registerAssumption(cast<CallInst>(I));
3730       }));
3731 
3732   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3733   // by instcombiner.
3734   bool MadeIRChange = false;
3735   if (ShouldLowerDbgDeclare)
3736     MadeIRChange = LowerDbgDeclare(F);
3737 
3738   // Iterate while there is work to do.
3739   unsigned Iteration = 0;
3740   while (true) {
3741     ++Iteration;
3742 
3743     if (Iteration > InfiniteLoopDetectionThreshold) {
3744       report_fatal_error(
3745           "Instruction Combining seems stuck in an infinite loop after " +
3746           Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3747     }
3748 
3749     if (Iteration > MaxIterations) {
3750       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3751                         << " on " << F.getName()
3752                         << " reached; stopping before reaching a fixpoint\n");
3753       break;
3754     }
3755 
3756     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3757                       << F.getName() << "\n");
3758 
3759     MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3760 
3761     InstCombiner IC(Worklist, Builder, F.hasMinSize(), AA,
3762                     AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3763     IC.MaxArraySizeForCombine = MaxArraySize;
3764 
3765     if (!IC.run())
3766       break;
3767 
3768     MadeIRChange = true;
3769   }
3770 
3771   return MadeIRChange;
3772 }
3773 
3774 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3775 
3776 InstCombinePass::InstCombinePass(unsigned MaxIterations)
3777     : MaxIterations(MaxIterations) {}
3778 
3779 PreservedAnalyses InstCombinePass::run(Function &F,
3780                                        FunctionAnalysisManager &AM) {
3781   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3782   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3783   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3784   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3785 
3786   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3787 
3788   auto *AA = &AM.getResult<AAManager>(F);
3789   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3790   ProfileSummaryInfo *PSI =
3791       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3792   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3793       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3794 
3795   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3796                                        PSI, MaxIterations, LI))
3797     // No changes, all analyses are preserved.
3798     return PreservedAnalyses::all();
3799 
3800   // Mark all the analyses that instcombine updates as preserved.
3801   PreservedAnalyses PA;
3802   PA.preserveSet<CFGAnalyses>();
3803   PA.preserve<AAManager>();
3804   PA.preserve<BasicAA>();
3805   PA.preserve<GlobalsAA>();
3806   return PA;
3807 }
3808 
3809 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3810   AU.setPreservesCFG();
3811   AU.addRequired<AAResultsWrapperPass>();
3812   AU.addRequired<AssumptionCacheTracker>();
3813   AU.addRequired<TargetLibraryInfoWrapperPass>();
3814   AU.addRequired<DominatorTreeWrapperPass>();
3815   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3816   AU.addPreserved<DominatorTreeWrapperPass>();
3817   AU.addPreserved<AAResultsWrapperPass>();
3818   AU.addPreserved<BasicAAWrapperPass>();
3819   AU.addPreserved<GlobalsAAWrapperPass>();
3820   AU.addRequired<ProfileSummaryInfoWrapperPass>();
3821   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3822 }
3823 
3824 bool InstructionCombiningPass::runOnFunction(Function &F) {
3825   if (skipFunction(F))
3826     return false;
3827 
3828   // Required analyses.
3829   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3830   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3831   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3832   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3833   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3834 
3835   // Optional analyses.
3836   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3837   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3838   ProfileSummaryInfo *PSI =
3839       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3840   BlockFrequencyInfo *BFI =
3841       (PSI && PSI->hasProfileSummary()) ?
3842       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3843       nullptr;
3844 
3845   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3846                                          PSI, MaxIterations, LI);
3847 }
3848 
3849 char InstructionCombiningPass::ID = 0;
3850 
3851 InstructionCombiningPass::InstructionCombiningPass()
3852     : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
3853   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3854 }
3855 
3856 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
3857     : FunctionPass(ID), MaxIterations(MaxIterations) {
3858   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3859 }
3860 
3861 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3862                       "Combine redundant instructions", false, false)
3863 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3864 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3865 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3866 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3867 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3868 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3869 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3870 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3871 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3872                     "Combine redundant instructions", false, false)
3873 
3874 // Initialization Routines
3875 void llvm::initializeInstCombine(PassRegistry &Registry) {
3876   initializeInstructionCombiningPassPass(Registry);
3877 }
3878 
3879 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3880   initializeInstructionCombiningPassPass(*unwrap(R));
3881 }
3882 
3883 FunctionPass *llvm::createInstructionCombiningPass() {
3884   return new InstructionCombiningPass();
3885 }
3886 
3887 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
3888   return new InstructionCombiningPass(MaxIterations);
3889 }
3890 
3891 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3892   unwrap(PM)->add(createInstructionCombiningPass());
3893 }
3894