1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Aggressive Dead Code Elimination pass.  This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/PostDominators.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/InstrProf.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include <cassert>
54 #include <cstddef>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "adce"
60 
61 STATISTIC(NumRemoved, "Number of instructions removed");
62 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
63 
64 // This is a temporary option until we change the interface to this pass based
65 // on optimization level.
66 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
67                                            cl::init(true), cl::Hidden);
68 
69 // This option enables removing of may-be-infinite loops which have no other
70 // effect.
71 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
72                                  cl::Hidden);
73 
74 namespace {
75 
76 /// Information about Instructions
77 struct InstInfoType {
78   /// True if the associated instruction is live.
79   bool Live = false;
80 
81   /// Quick access to information for block containing associated Instruction.
82   struct BlockInfoType *Block = nullptr;
83 };
84 
85 /// Information about basic blocks relevant to dead code elimination.
86 struct BlockInfoType {
87   /// True when this block contains a live instructions.
88   bool Live = false;
89 
90   /// True when this block ends in an unconditional branch.
91   bool UnconditionalBranch = false;
92 
93   /// True when this block is known to have live PHI nodes.
94   bool HasLivePhiNodes = false;
95 
96   /// Control dependence sources need to be live for this block.
97   bool CFLive = false;
98 
99   /// Quick access to the LiveInfo for the terminator,
100   /// holds the value &InstInfo[Terminator]
101   InstInfoType *TerminatorLiveInfo = nullptr;
102 
103   /// Corresponding BasicBlock.
104   BasicBlock *BB = nullptr;
105 
106   /// Cache of BB->getTerminator().
107   Instruction *Terminator = nullptr;
108 
109   /// Post-order numbering of reverse control flow graph.
110   unsigned PostOrder;
111 
112   bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
113 };
114 
115 class AggressiveDeadCodeElimination {
116   Function &F;
117 
118   // ADCE does not use DominatorTree per se, but it updates it to preserve the
119   // analysis.
120   DominatorTree *DT;
121   PostDominatorTree &PDT;
122 
123   /// Mapping of blocks to associated information, an element in BlockInfoVec.
124   /// Use MapVector to get deterministic iteration order.
125   MapVector<BasicBlock *, BlockInfoType> BlockInfo;
126   bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
127 
128   /// Mapping of instructions to associated information.
129   DenseMap<Instruction *, InstInfoType> InstInfo;
130   bool isLive(Instruction *I) { return InstInfo[I].Live; }
131 
132   /// Instructions known to be live where we need to mark
133   /// reaching definitions as live.
134   SmallVector<Instruction *, 128> Worklist;
135 
136   /// Debug info scopes around a live instruction.
137   SmallPtrSet<const Metadata *, 32> AliveScopes;
138 
139   /// Set of blocks with not known to have live terminators.
140   SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;
141 
142   /// The set of blocks which we have determined whose control
143   /// dependence sources must be live and which have not had
144   /// those dependences analyzed.
145   SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
146 
147   /// Set up auxiliary data structures for Instructions and BasicBlocks and
148   /// initialize the Worklist to the set of must-be-live Instruscions.
149   void initialize();
150 
151   /// Return true for operations which are always treated as live.
152   bool isAlwaysLive(Instruction &I);
153 
154   /// Return true for instrumentation instructions for value profiling.
155   bool isInstrumentsConstant(Instruction &I);
156 
157   /// Propagate liveness to reaching definitions.
158   void markLiveInstructions();
159 
160   /// Mark an instruction as live.
161   void markLive(Instruction *I);
162 
163   /// Mark a block as live.
164   void markLive(BlockInfoType &BB);
165   void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
166 
167   /// Mark terminators of control predecessors of a PHI node live.
168   void markPhiLive(PHINode *PN);
169 
170   /// Record the Debug Scopes which surround live debug information.
171   void collectLiveScopes(const DILocalScope &LS);
172   void collectLiveScopes(const DILocation &DL);
173 
174   /// Analyze dead branches to find those whose branches are the sources
175   /// of control dependences impacting a live block. Those branches are
176   /// marked live.
177   void markLiveBranchesFromControlDependences();
178 
179   /// Remove instructions not marked live, return if any instruction was
180   /// removed.
181   bool removeDeadInstructions();
182 
183   /// Identify connected sections of the control flow graph which have
184   /// dead terminators and rewrite the control flow graph to remove them.
185   bool updateDeadRegions();
186 
187   /// Set the BlockInfo::PostOrder field based on a post-order
188   /// numbering of the reverse control flow graph.
189   void computeReversePostOrder();
190 
191   /// Make the terminator of this block an unconditional branch to \p Target.
192   void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
193 
194 public:
195   AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
196                                 PostDominatorTree &PDT)
197       : F(F), DT(DT), PDT(PDT) {}
198 
199   bool performDeadCodeElimination();
200 };
201 
202 } // end anonymous namespace
203 
204 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
205   initialize();
206   markLiveInstructions();
207   return removeDeadInstructions();
208 }
209 
210 static bool isUnconditionalBranch(Instruction *Term) {
211   auto *BR = dyn_cast<BranchInst>(Term);
212   return BR && BR->isUnconditional();
213 }
214 
215 void AggressiveDeadCodeElimination::initialize() {
216   auto NumBlocks = F.size();
217 
218   // We will have an entry in the map for each block so we grow the
219   // structure to twice that size to keep the load factor low in the hash table.
220   BlockInfo.reserve(NumBlocks);
221   size_t NumInsts = 0;
222 
223   // Iterate over blocks and initialize BlockInfoVec entries, count
224   // instructions to size the InstInfo hash table.
225   for (auto &BB : F) {
226     NumInsts += BB.size();
227     auto &Info = BlockInfo[&BB];
228     Info.BB = &BB;
229     Info.Terminator = BB.getTerminator();
230     Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
231   }
232 
233   // Initialize instruction map and set pointers to block info.
234   InstInfo.reserve(NumInsts);
235   for (auto &BBInfo : BlockInfo)
236     for (Instruction &I : *BBInfo.second.BB)
237       InstInfo[&I].Block = &BBInfo.second;
238 
239   // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
240   // add any more elements to either after this point.
241   for (auto &BBInfo : BlockInfo)
242     BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
243 
244   // Collect the set of "root" instructions that are known live.
245   for (Instruction &I : instructions(F))
246     if (isAlwaysLive(I))
247       markLive(&I);
248 
249   if (!RemoveControlFlowFlag)
250     return;
251 
252   if (!RemoveLoops) {
253     // This stores state for the depth-first iterator. In addition
254     // to recording which nodes have been visited we also record whether
255     // a node is currently on the "stack" of active ancestors of the current
256     // node.
257     using StatusMap = DenseMap<BasicBlock *, bool>;
258 
259     class DFState : public StatusMap {
260     public:
261       std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
262         return StatusMap::insert(std::make_pair(BB, true));
263       }
264 
265       // Invoked after we have visited all children of a node.
266       void completed(BasicBlock *BB) { (*this)[BB] = false; }
267 
268       // Return true if \p BB is currently on the active stack
269       // of ancestors.
270       bool onStack(BasicBlock *BB) {
271         auto Iter = find(BB);
272         return Iter != end() && Iter->second;
273       }
274     } State;
275 
276     State.reserve(F.size());
277     // Iterate over blocks in depth-first pre-order and
278     // treat all edges to a block already seen as loop back edges
279     // and mark the branch live it if there is a back edge.
280     for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
281       Instruction *Term = BB->getTerminator();
282       if (isLive(Term))
283         continue;
284 
285       for (auto *Succ : successors(BB))
286         if (State.onStack(Succ)) {
287           // back edge....
288           markLive(Term);
289           break;
290         }
291     }
292   }
293 
294   // Mark blocks live if there is no path from the block to a
295   // return of the function.
296   // We do this by seeing which of the postdomtree root children exit the
297   // program, and for all others, mark the subtree live.
298   for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
299     auto *BB = PDTChild->getBlock();
300     auto &Info = BlockInfo[BB];
301     // Real function return
302     if (isa<ReturnInst>(Info.Terminator)) {
303       LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
304                         << '\n';);
305       continue;
306     }
307 
308     // This child is something else, like an infinite loop.
309     for (auto DFNode : depth_first(PDTChild))
310       markLive(BlockInfo[DFNode->getBlock()].Terminator);
311   }
312 
313   // Treat the entry block as always live
314   auto *BB = &F.getEntryBlock();
315   auto &EntryInfo = BlockInfo[BB];
316   EntryInfo.Live = true;
317   if (EntryInfo.UnconditionalBranch)
318     markLive(EntryInfo.Terminator);
319 
320   // Build initial collection of blocks with dead terminators
321   for (auto &BBInfo : BlockInfo)
322     if (!BBInfo.second.terminatorIsLive())
323       BlocksWithDeadTerminators.insert(BBInfo.second.BB);
324 }
325 
326 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
327   // TODO -- use llvm::isInstructionTriviallyDead
328   if (I.isEHPad() || I.mayHaveSideEffects()) {
329     // Skip any value profile instrumentation calls if they are
330     // instrumenting constants.
331     if (isInstrumentsConstant(I))
332       return false;
333     return true;
334   }
335   if (!I.isTerminator())
336     return false;
337   if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
338     return false;
339   return true;
340 }
341 
342 // Check if this instruction is a runtime call for value profiling and
343 // if it's instrumenting a constant.
344 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
345   // TODO -- move this test into llvm::isInstructionTriviallyDead
346   if (CallInst *CI = dyn_cast<CallInst>(&I))
347     if (Function *Callee = CI->getCalledFunction())
348       if (Callee->getName().equals(getInstrProfValueProfFuncName()))
349         if (isa<Constant>(CI->getArgOperand(0)))
350           return true;
351   return false;
352 }
353 
354 void AggressiveDeadCodeElimination::markLiveInstructions() {
355   // Propagate liveness backwards to operands.
356   do {
357     // Worklist holds newly discovered live instructions
358     // where we need to mark the inputs as live.
359     while (!Worklist.empty()) {
360       Instruction *LiveInst = Worklist.pop_back_val();
361       LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););
362 
363       for (Use &OI : LiveInst->operands())
364         if (Instruction *Inst = dyn_cast<Instruction>(OI))
365           markLive(Inst);
366 
367       if (auto *PN = dyn_cast<PHINode>(LiveInst))
368         markPhiLive(PN);
369     }
370 
371     // After data flow liveness has been identified, examine which branch
372     // decisions are required to determine live instructions are executed.
373     markLiveBranchesFromControlDependences();
374 
375   } while (!Worklist.empty());
376 }
377 
378 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
379   auto &Info = InstInfo[I];
380   if (Info.Live)
381     return;
382 
383   LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
384   Info.Live = true;
385   Worklist.push_back(I);
386 
387   // Collect the live debug info scopes attached to this instruction.
388   if (const DILocation *DL = I->getDebugLoc())
389     collectLiveScopes(*DL);
390 
391   // Mark the containing block live
392   auto &BBInfo = *Info.Block;
393   if (BBInfo.Terminator == I) {
394     BlocksWithDeadTerminators.remove(BBInfo.BB);
395     // For live terminators, mark destination blocks
396     // live to preserve this control flow edges.
397     if (!BBInfo.UnconditionalBranch)
398       for (auto *BB : successors(I->getParent()))
399         markLive(BB);
400   }
401   markLive(BBInfo);
402 }
403 
404 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
405   if (BBInfo.Live)
406     return;
407   LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
408   BBInfo.Live = true;
409   if (!BBInfo.CFLive) {
410     BBInfo.CFLive = true;
411     NewLiveBlocks.insert(BBInfo.BB);
412   }
413 
414   // Mark unconditional branches at the end of live
415   // blocks as live since there is no work to do for them later
416   if (BBInfo.UnconditionalBranch)
417     markLive(BBInfo.Terminator);
418 }
419 
420 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
421   if (!AliveScopes.insert(&LS).second)
422     return;
423 
424   if (isa<DISubprogram>(LS))
425     return;
426 
427   // Tail-recurse through the scope chain.
428   collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
429 }
430 
431 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
432   // Even though DILocations are not scopes, shove them into AliveScopes so we
433   // don't revisit them.
434   if (!AliveScopes.insert(&DL).second)
435     return;
436 
437   // Collect live scopes from the scope chain.
438   collectLiveScopes(*DL.getScope());
439 
440   // Tail-recurse through the inlined-at chain.
441   if (const DILocation *IA = DL.getInlinedAt())
442     collectLiveScopes(*IA);
443 }
444 
445 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
446   auto &Info = BlockInfo[PN->getParent()];
447   // Only need to check this once per block.
448   if (Info.HasLivePhiNodes)
449     return;
450   Info.HasLivePhiNodes = true;
451 
452   // If a predecessor block is not live, mark it as control-flow live
453   // which will trigger marking live branches upon which
454   // that block is control dependent.
455   for (auto *PredBB : predecessors(Info.BB)) {
456     auto &Info = BlockInfo[PredBB];
457     if (!Info.CFLive) {
458       Info.CFLive = true;
459       NewLiveBlocks.insert(PredBB);
460     }
461   }
462 }
463 
464 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
465   if (BlocksWithDeadTerminators.empty())
466     return;
467 
468   LLVM_DEBUG({
469     dbgs() << "new live blocks:\n";
470     for (auto *BB : NewLiveBlocks)
471       dbgs() << "\t" << BB->getName() << '\n';
472     dbgs() << "dead terminator blocks:\n";
473     for (auto *BB : BlocksWithDeadTerminators)
474       dbgs() << "\t" << BB->getName() << '\n';
475   });
476 
477   // The dominance frontier of a live block X in the reverse
478   // control graph is the set of blocks upon which X is control
479   // dependent. The following sequence computes the set of blocks
480   // which currently have dead terminators that are control
481   // dependence sources of a block which is in NewLiveBlocks.
482 
483   const SmallPtrSet<BasicBlock *, 16> BWDT{
484       BlocksWithDeadTerminators.begin(),
485       BlocksWithDeadTerminators.end()
486   };
487   SmallVector<BasicBlock *, 32> IDFBlocks;
488   ReverseIDFCalculator IDFs(PDT);
489   IDFs.setDefiningBlocks(NewLiveBlocks);
490   IDFs.setLiveInBlocks(BWDT);
491   IDFs.calculate(IDFBlocks);
492   NewLiveBlocks.clear();
493 
494   // Dead terminators which control live blocks are now marked live.
495   for (auto *BB : IDFBlocks) {
496     LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
497     markLive(BB->getTerminator());
498   }
499 }
500 
501 //===----------------------------------------------------------------------===//
502 //
503 //  Routines to update the CFG and SSA information before removing dead code.
504 //
505 //===----------------------------------------------------------------------===//
506 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
507   // Updates control and dataflow around dead blocks
508   bool RegionsUpdated = updateDeadRegions();
509 
510   LLVM_DEBUG({
511     for (Instruction &I : instructions(F)) {
512       // Check if the instruction is alive.
513       if (isLive(&I))
514         continue;
515 
516       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
517         // Check if the scope of this variable location is alive.
518         if (AliveScopes.count(DII->getDebugLoc()->getScope()))
519           continue;
520 
521         // If intrinsic is pointing at a live SSA value, there may be an
522         // earlier optimization bug: if we know the location of the variable,
523         // why isn't the scope of the location alive?
524         for (Value *V : DII->location_ops()) {
525           if (Instruction *II = dyn_cast<Instruction>(V)) {
526             if (isLive(II)) {
527               dbgs() << "Dropping debug info for " << *DII << "\n";
528               break;
529             }
530           }
531         }
532       }
533     }
534   });
535 
536   // The inverse of the live set is the dead set.  These are those instructions
537   // that have no side effects and do not influence the control flow or return
538   // value of the function, and may therefore be deleted safely.
539   // NOTE: We reuse the Worklist vector here for memory efficiency.
540   for (Instruction &I : llvm::reverse(instructions(F))) {
541     // Check if the instruction is alive.
542     if (isLive(&I))
543       continue;
544 
545     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
546       // Check if the scope of this variable location is alive.
547       if (AliveScopes.count(DII->getDebugLoc()->getScope()))
548         continue;
549 
550       // Fallthrough and drop the intrinsic.
551     }
552 
553     // Prepare to delete.
554     Worklist.push_back(&I);
555     salvageDebugInfo(I);
556   }
557 
558   for (Instruction *&I : Worklist)
559     I->dropAllReferences();
560 
561   for (Instruction *&I : Worklist) {
562     ++NumRemoved;
563     I->eraseFromParent();
564   }
565 
566   return !Worklist.empty() || RegionsUpdated;
567 }
568 
569 // A dead region is the set of dead blocks with a common live post-dominator.
570 bool AggressiveDeadCodeElimination::updateDeadRegions() {
571   LLVM_DEBUG({
572     dbgs() << "final dead terminator blocks: " << '\n';
573     for (auto *BB : BlocksWithDeadTerminators)
574       dbgs() << '\t' << BB->getName()
575              << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
576   });
577 
578   // Don't compute the post ordering unless we needed it.
579   bool HavePostOrder = false;
580   bool Changed = false;
581   SmallVector<DominatorTree::UpdateType, 10> DeletedEdges;
582 
583   for (auto *BB : BlocksWithDeadTerminators) {
584     auto &Info = BlockInfo[BB];
585     if (Info.UnconditionalBranch) {
586       InstInfo[Info.Terminator].Live = true;
587       continue;
588     }
589 
590     if (!HavePostOrder) {
591       computeReversePostOrder();
592       HavePostOrder = true;
593     }
594 
595     // Add an unconditional branch to the successor closest to the
596     // end of the function which insures a path to the exit for each
597     // live edge.
598     BlockInfoType *PreferredSucc = nullptr;
599     for (auto *Succ : successors(BB)) {
600       auto *Info = &BlockInfo[Succ];
601       if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
602         PreferredSucc = Info;
603     }
604     assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
605            "Failed to find safe successor for dead branch");
606 
607     // Collect removed successors to update the (Post)DominatorTrees.
608     SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
609     bool First = true;
610     for (auto *Succ : successors(BB)) {
611       if (!First || Succ != PreferredSucc->BB) {
612         Succ->removePredecessor(BB);
613         RemovedSuccessors.insert(Succ);
614       } else
615         First = false;
616     }
617     makeUnconditional(BB, PreferredSucc->BB);
618 
619     // Inform the dominators about the deleted CFG edges.
620     for (auto *Succ : RemovedSuccessors) {
621       // It might have happened that the same successor appeared multiple times
622       // and the CFG edge wasn't really removed.
623       if (Succ != PreferredSucc->BB) {
624         LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
625                           << BB->getName() << " -> " << Succ->getName()
626                           << "\n");
627         DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
628       }
629     }
630 
631     NumBranchesRemoved += 1;
632     Changed = true;
633   }
634 
635   if (!DeletedEdges.empty())
636     DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
637         .applyUpdates(DeletedEdges);
638 
639   return Changed;
640 }
641 
642 // reverse top-sort order
643 void AggressiveDeadCodeElimination::computeReversePostOrder() {
644   // This provides a post-order numbering of the reverse control flow graph
645   // Note that it is incomplete in the presence of infinite loops but we don't
646   // need numbers blocks which don't reach the end of the functions since
647   // all branches in those blocks are forced live.
648 
649   // For each block without successors, extend the DFS from the block
650   // backward through the graph
651   SmallPtrSet<BasicBlock*, 16> Visited;
652   unsigned PostOrder = 0;
653   for (auto &BB : F) {
654     if (!succ_empty(&BB))
655       continue;
656     for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
657       BlockInfo[Block].PostOrder = PostOrder++;
658   }
659 }
660 
661 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
662                                                       BasicBlock *Target) {
663   Instruction *PredTerm = BB->getTerminator();
664   // Collect the live debug info scopes attached to this instruction.
665   if (const DILocation *DL = PredTerm->getDebugLoc())
666     collectLiveScopes(*DL);
667 
668   // Just mark live an existing unconditional branch
669   if (isUnconditionalBranch(PredTerm)) {
670     PredTerm->setSuccessor(0, Target);
671     InstInfo[PredTerm].Live = true;
672     return;
673   }
674   LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
675   NumBranchesRemoved += 1;
676   IRBuilder<> Builder(PredTerm);
677   auto *NewTerm = Builder.CreateBr(Target);
678   InstInfo[NewTerm].Live = true;
679   if (const DILocation *DL = PredTerm->getDebugLoc())
680     NewTerm->setDebugLoc(DL);
681 
682   InstInfo.erase(PredTerm);
683   PredTerm->eraseFromParent();
684 }
685 
686 //===----------------------------------------------------------------------===//
687 //
688 // Pass Manager integration code
689 //
690 //===----------------------------------------------------------------------===//
691 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
692   // ADCE does not need DominatorTree, but require DominatorTree here
693   // to update analysis if it is already available.
694   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
695   auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
696   if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
697     return PreservedAnalyses::all();
698 
699   PreservedAnalyses PA;
700   // TODO: We could track if we have actually done CFG changes.
701   if (!RemoveControlFlowFlag)
702     PA.preserveSet<CFGAnalyses>();
703   else {
704     PA.preserve<DominatorTreeAnalysis>();
705     PA.preserve<PostDominatorTreeAnalysis>();
706   }
707   return PA;
708 }
709 
710 namespace {
711 
712 struct ADCELegacyPass : public FunctionPass {
713   static char ID; // Pass identification, replacement for typeid
714 
715   ADCELegacyPass() : FunctionPass(ID) {
716     initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
717   }
718 
719   bool runOnFunction(Function &F) override {
720     if (skipFunction(F))
721       return false;
722 
723     // ADCE does not need DominatorTree, but require DominatorTree here
724     // to update analysis if it is already available.
725     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
726     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
727     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
728     return AggressiveDeadCodeElimination(F, DT, PDT)
729         .performDeadCodeElimination();
730   }
731 
732   void getAnalysisUsage(AnalysisUsage &AU) const override {
733     AU.addRequired<PostDominatorTreeWrapperPass>();
734     if (!RemoveControlFlowFlag)
735       AU.setPreservesCFG();
736     else {
737       AU.addPreserved<DominatorTreeWrapperPass>();
738       AU.addPreserved<PostDominatorTreeWrapperPass>();
739     }
740     AU.addPreserved<GlobalsAAWrapperPass>();
741   }
742 };
743 
744 } // end anonymous namespace
745 
746 char ADCELegacyPass::ID = 0;
747 
748 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
749                       "Aggressive Dead Code Elimination", false, false)
750 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
751 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
752                     false, false)
753 
754 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
755