1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34 
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/BlockFrequencyInfo.h"
44 #include "llvm/Analysis/ProfileSummaryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/SizeOpts.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <iterator>
71 #include <tuple>
72 #include <utility>
73 
74 using namespace llvm;
75 using namespace consthoist;
76 
77 #define DEBUG_TYPE "consthoist"
78 
79 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
80 STATISTIC(NumConstantsRebased, "Number of constants rebased");
81 
82 static cl::opt<bool> ConstHoistWithBlockFrequency(
83     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
84     cl::desc("Enable the use of the block frequency analysis to reduce the "
85              "chance to execute const materialization more frequently than "
86              "without hoisting."));
87 
88 static cl::opt<bool> ConstHoistGEP(
89     "consthoist-gep", cl::init(false), cl::Hidden,
90     cl::desc("Try hoisting constant gep expressions"));
91 
92 static cl::opt<unsigned>
93 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
94     cl::desc("Do not rebase if number of dependent constants of a Base is less "
95              "than this number."),
96     cl::init(0), cl::Hidden);
97 
98 namespace {
99 
100 /// The constant hoisting pass.
101 class ConstantHoistingLegacyPass : public FunctionPass {
102 public:
103   static char ID; // Pass identification, replacement for typeid
104 
105   ConstantHoistingLegacyPass() : FunctionPass(ID) {
106     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
107   }
108 
109   bool runOnFunction(Function &Fn) override;
110 
111   StringRef getPassName() const override { return "Constant Hoisting"; }
112 
113   void getAnalysisUsage(AnalysisUsage &AU) const override {
114     AU.setPreservesCFG();
115     if (ConstHoistWithBlockFrequency)
116       AU.addRequired<BlockFrequencyInfoWrapperPass>();
117     AU.addRequired<DominatorTreeWrapperPass>();
118     AU.addRequired<ProfileSummaryInfoWrapperPass>();
119     AU.addRequired<TargetTransformInfoWrapperPass>();
120   }
121 
122 private:
123   ConstantHoistingPass Impl;
124 };
125 
126 } // end anonymous namespace
127 
128 char ConstantHoistingLegacyPass::ID = 0;
129 
130 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
131                       "Constant Hoisting", false, false)
132 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
135 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
136 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
137                     "Constant Hoisting", false, false)
138 
139 FunctionPass *llvm::createConstantHoistingPass() {
140   return new ConstantHoistingLegacyPass();
141 }
142 
143 /// Perform the constant hoisting optimization for the given function.
144 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
145   if (skipFunction(Fn))
146     return false;
147 
148   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
149   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
150 
151   bool MadeChange =
152       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
153                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
154                    ConstHoistWithBlockFrequency
155                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
156                        : nullptr,
157                    Fn.getEntryBlock(),
158                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
159 
160   if (MadeChange) {
161     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
162                       << Fn.getName() << '\n');
163     LLVM_DEBUG(dbgs() << Fn);
164   }
165   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
166 
167   return MadeChange;
168 }
169 
170 /// Find the constant materialization insertion point.
171 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
172                                                    unsigned Idx) const {
173   // If the operand is a cast instruction, then we have to materialize the
174   // constant before the cast instruction.
175   if (Idx != ~0U) {
176     Value *Opnd = Inst->getOperand(Idx);
177     if (auto CastInst = dyn_cast<Instruction>(Opnd))
178       if (CastInst->isCast())
179         return CastInst;
180   }
181 
182   // The simple and common case. This also includes constant expressions.
183   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
184     return Inst;
185 
186   // We can't insert directly before a phi node or an eh pad. Insert before
187   // the terminator of the incoming or dominating block.
188   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
189   BasicBlock *InsertionBlock = nullptr;
190   if (Idx != ~0U && isa<PHINode>(Inst)) {
191     InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
192     if (!InsertionBlock->isEHPad()) {
193       return InsertionBlock->getTerminator();
194     }
195   } else {
196     InsertionBlock = Inst->getParent();
197   }
198 
199   // This must be an EH pad. Iterate over immediate dominators until we find a
200   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
201   // and terminators.
202   auto *IDom = DT->getNode(InsertionBlock)->getIDom();
203   while (IDom->getBlock()->isEHPad()) {
204     assert(Entry != IDom->getBlock() && "eh pad in entry block");
205     IDom = IDom->getIDom();
206   }
207 
208   return IDom->getBlock()->getTerminator();
209 }
210 
211 /// Given \p BBs as input, find another set of BBs which collectively
212 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
213 /// set found in \p BBs.
214 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
215                                  BasicBlock *Entry,
216                                  SetVector<BasicBlock *> &BBs) {
217   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
218   // Nodes on the current path to the root.
219   SmallPtrSet<BasicBlock *, 8> Path;
220   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
221   // dominated by any other blocks in set 'BBs', and all nodes in the path
222   // in the dominator tree from Entry to 'BB'.
223   SmallPtrSet<BasicBlock *, 16> Candidates;
224   for (auto BB : BBs) {
225     // Ignore unreachable basic blocks.
226     if (!DT.isReachableFromEntry(BB))
227       continue;
228     Path.clear();
229     // Walk up the dominator tree until Entry or another BB in BBs
230     // is reached. Insert the nodes on the way to the Path.
231     BasicBlock *Node = BB;
232     // The "Path" is a candidate path to be added into Candidates set.
233     bool isCandidate = false;
234     do {
235       Path.insert(Node);
236       if (Node == Entry || Candidates.count(Node)) {
237         isCandidate = true;
238         break;
239       }
240       assert(DT.getNode(Node)->getIDom() &&
241              "Entry doens't dominate current Node");
242       Node = DT.getNode(Node)->getIDom()->getBlock();
243     } while (!BBs.count(Node));
244 
245     // If isCandidate is false, Node is another Block in BBs dominating
246     // current 'BB'. Drop the nodes on the Path.
247     if (!isCandidate)
248       continue;
249 
250     // Add nodes on the Path into Candidates.
251     Candidates.insert(Path.begin(), Path.end());
252   }
253 
254   // Sort the nodes in Candidates in top-down order and save the nodes
255   // in Orders.
256   unsigned Idx = 0;
257   SmallVector<BasicBlock *, 16> Orders;
258   Orders.push_back(Entry);
259   while (Idx != Orders.size()) {
260     BasicBlock *Node = Orders[Idx++];
261     for (auto ChildDomNode : DT.getNode(Node)->children()) {
262       if (Candidates.count(ChildDomNode->getBlock()))
263         Orders.push_back(ChildDomNode->getBlock());
264     }
265   }
266 
267   // Visit Orders in bottom-up order.
268   using InsertPtsCostPair =
269       std::pair<SetVector<BasicBlock *>, BlockFrequency>;
270 
271   // InsertPtsMap is a map from a BB to the best insertion points for the
272   // subtree of BB (subtree not including the BB itself).
273   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
274   InsertPtsMap.reserve(Orders.size() + 1);
275   for (BasicBlock *Node : llvm::reverse(Orders)) {
276     bool NodeInBBs = BBs.count(Node);
277     auto &InsertPts = InsertPtsMap[Node].first;
278     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
279 
280     // Return the optimal insert points in BBs.
281     if (Node == Entry) {
282       BBs.clear();
283       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285         BBs.insert(Entry);
286       else
287         BBs.insert(InsertPts.begin(), InsertPts.end());
288       break;
289     }
290 
291     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293     // will update its parent's ParentInsertPts and ParentPtsFreq.
294     auto &ParentInsertPts = InsertPtsMap[Parent].first;
295     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296     // Choose to insert in Node or in subtree of Node.
297     // Don't hoist to EHPad because we may not find a proper place to insert
298     // in EHPad.
299     // If the total frequency of InsertPts is the same as the frequency of the
300     // target Node, and InsertPts contains more than one nodes, choose hoisting
301     // to reduce code size.
302     if (NodeInBBs ||
303         (!Node->isEHPad() &&
304          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306       ParentInsertPts.insert(Node);
307       ParentPtsFreq += BFI.getBlockFreq(Node);
308     } else {
309       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310       ParentPtsFreq += InsertPtsFreq;
311     }
312   }
313 }
314 
315 /// Find an insertion point that dominates all uses.
316 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
317     const ConstantInfo &ConstInfo) const {
318   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
319   // Collect all basic blocks.
320   SetVector<BasicBlock *> BBs;
321   SetVector<Instruction *> InsertPts;
322   for (auto const &RCI : ConstInfo.RebasedConstants)
323     for (auto const &U : RCI.Uses)
324       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
325 
326   if (BBs.count(Entry)) {
327     InsertPts.insert(&Entry->front());
328     return InsertPts;
329   }
330 
331   if (BFI) {
332     findBestInsertionSet(*DT, *BFI, Entry, BBs);
333     for (auto BB : BBs) {
334       BasicBlock::iterator InsertPt = BB->begin();
335       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
336         ;
337       InsertPts.insert(&*InsertPt);
338     }
339     return InsertPts;
340   }
341 
342   while (BBs.size() >= 2) {
343     BasicBlock *BB, *BB1, *BB2;
344     BB1 = BBs.pop_back_val();
345     BB2 = BBs.pop_back_val();
346     BB = DT->findNearestCommonDominator(BB1, BB2);
347     if (BB == Entry) {
348       InsertPts.insert(&Entry->front());
349       return InsertPts;
350     }
351     BBs.insert(BB);
352   }
353   assert((BBs.size() == 1) && "Expected only one element.");
354   Instruction &FirstInst = (*BBs.begin())->front();
355   InsertPts.insert(findMatInsertPt(&FirstInst));
356   return InsertPts;
357 }
358 
359 /// Record constant integer ConstInt for instruction Inst at operand
360 /// index Idx.
361 ///
362 /// The operand at index Idx is not necessarily the constant integer itself. It
363 /// could also be a cast instruction or a constant expression that uses the
364 /// constant integer.
365 void ConstantHoistingPass::collectConstantCandidates(
366     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
367     ConstantInt *ConstInt) {
368   InstructionCost Cost;
369   // Ask the target about the cost of materializing the constant for the given
370   // instruction and operand index.
371   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
372     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
373                                     ConstInt->getValue(), ConstInt->getType(),
374                                     TargetTransformInfo::TCK_SizeAndLatency);
375   else
376     Cost = TTI->getIntImmCostInst(
377         Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
378         TargetTransformInfo::TCK_SizeAndLatency, Inst);
379 
380   // Ignore cheap integer constants.
381   if (Cost > TargetTransformInfo::TCC_Basic) {
382     ConstCandMapType::iterator Itr;
383     bool Inserted;
384     ConstPtrUnionType Cand = ConstInt;
385     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
386     if (Inserted) {
387       ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
388       Itr->second = ConstIntCandVec.size() - 1;
389     }
390     ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
391     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
392                    << "Collect constant " << *ConstInt << " from " << *Inst
393                    << " with cost " << Cost << '\n';
394                else dbgs() << "Collect constant " << *ConstInt
395                            << " indirectly from " << *Inst << " via "
396                            << *Inst->getOperand(Idx) << " with cost " << Cost
397                            << '\n';);
398   }
399 }
400 
401 /// Record constant GEP expression for instruction Inst at operand index Idx.
402 void ConstantHoistingPass::collectConstantCandidates(
403     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
404     ConstantExpr *ConstExpr) {
405   // TODO: Handle vector GEPs
406   if (ConstExpr->getType()->isVectorTy())
407     return;
408 
409   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
410   if (!BaseGV)
411     return;
412 
413   // Get offset from the base GV.
414   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
415   IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
416   APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
417   auto *GEPO = cast<GEPOperator>(ConstExpr);
418 
419   // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
420   // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
421   // inbounds GEP for now -- alternatively, we could drop inbounds from the
422   // constant expression,
423   if (!GEPO->isInBounds())
424     return;
425 
426   if (!GEPO->accumulateConstantOffset(*DL, Offset))
427     return;
428 
429   if (!Offset.isIntN(32))
430     return;
431 
432   // A constant GEP expression that has a GlobalVariable as base pointer is
433   // usually lowered to a load from constant pool. Such operation is unlikely
434   // to be cheaper than compute it by <Base + Offset>, which can be lowered to
435   // an ADD instruction or folded into Load/Store instruction.
436   InstructionCost Cost =
437       TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
438                              TargetTransformInfo::TCK_SizeAndLatency, Inst);
439   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
440   ConstCandMapType::iterator Itr;
441   bool Inserted;
442   ConstPtrUnionType Cand = ConstExpr;
443   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
444   if (Inserted) {
445     ExprCandVec.push_back(ConstantCandidate(
446         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
447         ConstExpr));
448     Itr->second = ExprCandVec.size() - 1;
449   }
450   ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
451 }
452 
453 /// Check the operand for instruction Inst at index Idx.
454 void ConstantHoistingPass::collectConstantCandidates(
455     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
456   Value *Opnd = Inst->getOperand(Idx);
457 
458   // Visit constant integers.
459   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
460     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
461     return;
462   }
463 
464   // Visit cast instructions that have constant integers.
465   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
466     // Only visit cast instructions, which have been skipped. All other
467     // instructions should have already been visited.
468     if (!CastInst->isCast())
469       return;
470 
471     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
472       // Pretend the constant is directly used by the instruction and ignore
473       // the cast instruction.
474       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
475       return;
476     }
477   }
478 
479   // Visit constant expressions that have constant integers.
480   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
481     // Handle constant gep expressions.
482     if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
483       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
484 
485     // Only visit constant cast expressions.
486     if (!ConstExpr->isCast())
487       return;
488 
489     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
490       // Pretend the constant is directly used by the instruction and ignore
491       // the constant expression.
492       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
493       return;
494     }
495   }
496 }
497 
498 /// Scan the instruction for expensive integer constants and record them
499 /// in the constant candidate vector.
500 void ConstantHoistingPass::collectConstantCandidates(
501     ConstCandMapType &ConstCandMap, Instruction *Inst) {
502   // Skip all cast instructions. They are visited indirectly later on.
503   if (Inst->isCast())
504     return;
505 
506   // Scan all operands.
507   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
508     // The cost of materializing the constants (defined in
509     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
510     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
511     // So it's safe for us to collect constant candidates from all
512     // IntrinsicInsts.
513     if (canReplaceOperandWithVariable(Inst, Idx)) {
514       collectConstantCandidates(ConstCandMap, Inst, Idx);
515     }
516   } // end of for all operands
517 }
518 
519 /// Collect all integer constants in the function that cannot be folded
520 /// into an instruction itself.
521 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
522   ConstCandMapType ConstCandMap;
523   for (BasicBlock &BB : Fn) {
524     // Ignore unreachable basic blocks.
525     if (!DT->isReachableFromEntry(&BB))
526       continue;
527     for (Instruction &Inst : BB)
528       collectConstantCandidates(ConstCandMap, &Inst);
529   }
530 }
531 
532 // This helper function is necessary to deal with values that have different
533 // bit widths (APInt Operator- does not like that). If the value cannot be
534 // represented in uint64 we return an "empty" APInt. This is then interpreted
535 // as the value is not in range.
536 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
537   Optional<APInt> Res = None;
538   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
539                 V1.getBitWidth() : V2.getBitWidth();
540   uint64_t LimVal1 = V1.getLimitedValue();
541   uint64_t LimVal2 = V2.getLimitedValue();
542 
543   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
544     return Res;
545 
546   uint64_t Diff = LimVal1 - LimVal2;
547   return APInt(BW, Diff, true);
548 }
549 
550 // From a list of constants, one needs to picked as the base and the other
551 // constants will be transformed into an offset from that base constant. The
552 // question is which we can pick best? For example, consider these constants
553 // and their number of uses:
554 //
555 //  Constants| 2 | 4 | 12 | 42 |
556 //  NumUses  | 3 | 2 |  8 |  7 |
557 //
558 // Selecting constant 12 because it has the most uses will generate negative
559 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
560 // offsets lead to less optimal code generation, then there might be better
561 // solutions. Suppose immediates in the range of 0..35 are most optimally
562 // supported by the architecture, then selecting constant 2 is most optimal
563 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
564 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
565 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
566 // selecting the base constant the range of the offsets is a very important
567 // factor too that we take into account here. This algorithm calculates a total
568 // costs for selecting a constant as the base and substract the costs if
569 // immediates are out of range. It has quadratic complexity, so we call this
570 // function only when we're optimising for size and there are less than 100
571 // constants, we fall back to the straightforward algorithm otherwise
572 // which does not do all the offset calculations.
573 unsigned
574 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
575                                            ConstCandVecType::iterator E,
576                                            ConstCandVecType::iterator &MaxCostItr) {
577   unsigned NumUses = 0;
578 
579   bool OptForSize = Entry->getParent()->hasOptSize() ||
580                     llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
581                                                 PGSOQueryType::IRPass);
582   if (!OptForSize || std::distance(S,E) > 100) {
583     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
584       NumUses += ConstCand->Uses.size();
585       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
586         MaxCostItr = ConstCand;
587     }
588     return NumUses;
589   }
590 
591   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
592   InstructionCost MaxCost = -1;
593   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
594     auto Value = ConstCand->ConstInt->getValue();
595     Type *Ty = ConstCand->ConstInt->getType();
596     InstructionCost Cost = 0;
597     NumUses += ConstCand->Uses.size();
598     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
599                       << "\n");
600 
601     for (auto User : ConstCand->Uses) {
602       unsigned Opcode = User.Inst->getOpcode();
603       unsigned OpndIdx = User.OpndIdx;
604       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
605                                      TargetTransformInfo::TCK_SizeAndLatency);
606       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
607 
608       for (auto C2 = S; C2 != E; ++C2) {
609         Optional<APInt> Diff = calculateOffsetDiff(
610                                    C2->ConstInt->getValue(),
611                                    ConstCand->ConstInt->getValue());
612         if (Diff) {
613           const InstructionCost ImmCosts =
614               TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.value(), Ty);
615           Cost -= ImmCosts;
616           LLVM_DEBUG(dbgs() << "Offset " << Diff.value() << " "
617                             << "has penalty: " << ImmCosts << "\n"
618                             << "Adjusted cost: " << Cost << "\n");
619         }
620       }
621     }
622     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
623     if (Cost > MaxCost) {
624       MaxCost = Cost;
625       MaxCostItr = ConstCand;
626       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
627                         << "\n");
628     }
629   }
630   return NumUses;
631 }
632 
633 /// Find the base constant within the given range and rebase all other
634 /// constants with respect to the base constant.
635 void ConstantHoistingPass::findAndMakeBaseConstant(
636     ConstCandVecType::iterator S, ConstCandVecType::iterator E,
637     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
638   auto MaxCostItr = S;
639   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
640 
641   // Don't hoist constants that have only one use.
642   if (NumUses <= 1)
643     return;
644 
645   ConstantInt *ConstInt = MaxCostItr->ConstInt;
646   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
647   ConstantInfo ConstInfo;
648   ConstInfo.BaseInt = ConstInt;
649   ConstInfo.BaseExpr = ConstExpr;
650   Type *Ty = ConstInt->getType();
651 
652   // Rebase the constants with respect to the base constant.
653   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
654     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
655     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
656     Type *ConstTy =
657         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
658     ConstInfo.RebasedConstants.push_back(
659       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
660   }
661   ConstInfoVec.push_back(std::move(ConstInfo));
662 }
663 
664 /// Finds and combines constant candidates that can be easily
665 /// rematerialized with an add from a common base constant.
666 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
667   // If BaseGV is nullptr, find base among candidate constant integers;
668   // Otherwise find base among constant GEPs that share the same BaseGV.
669   ConstCandVecType &ConstCandVec = BaseGV ?
670       ConstGEPCandMap[BaseGV] : ConstIntCandVec;
671   ConstInfoVecType &ConstInfoVec = BaseGV ?
672       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
673 
674   // Sort the constants by value and type. This invalidates the mapping!
675   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
676                                      const ConstantCandidate &RHS) {
677     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
678       return LHS.ConstInt->getType()->getBitWidth() <
679              RHS.ConstInt->getType()->getBitWidth();
680     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
681   });
682 
683   // Simple linear scan through the sorted constant candidate vector for viable
684   // merge candidates.
685   auto MinValItr = ConstCandVec.begin();
686   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
687        CC != E; ++CC) {
688     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
689       Type *MemUseValTy = nullptr;
690       for (auto &U : CC->Uses) {
691         auto *UI = U.Inst;
692         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
693           MemUseValTy = LI->getType();
694           break;
695         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
696           // Make sure the constant is used as pointer operand of the StoreInst.
697           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
698             MemUseValTy = SI->getValueOperand()->getType();
699             break;
700           }
701         }
702       }
703 
704       // Check if the constant is in range of an add with immediate.
705       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
706       if ((Diff.getBitWidth() <= 64) &&
707           TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
708           // Check if Diff can be used as offset in addressing mode of the user
709           // memory instruction.
710           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
711            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
712            /*HasBaseReg*/true, /*Scale*/0)))
713         continue;
714     }
715     // We either have now a different constant type or the constant is not in
716     // range of an add with immediate anymore.
717     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
718     // Start a new base constant search.
719     MinValItr = CC;
720   }
721   // Finalize the last base constant search.
722   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
723 }
724 
725 /// Updates the operand at Idx in instruction Inst with the result of
726 ///        instruction Mat. If the instruction is a PHI node then special
727 ///        handling for duplicate values form the same incoming basic block is
728 ///        required.
729 /// \return The update will always succeed, but the return value indicated if
730 ///         Mat was used for the update or not.
731 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
732   if (auto PHI = dyn_cast<PHINode>(Inst)) {
733     // Check if any previous operand of the PHI node has the same incoming basic
734     // block. This is a very odd case that happens when the incoming basic block
735     // has a switch statement. In this case use the same value as the previous
736     // operand(s), otherwise we will fail verification due to different values.
737     // The values are actually the same, but the variable names are different
738     // and the verifier doesn't like that.
739     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
740     for (unsigned i = 0; i < Idx; ++i) {
741       if (PHI->getIncomingBlock(i) == IncomingBB) {
742         Value *IncomingVal = PHI->getIncomingValue(i);
743         Inst->setOperand(Idx, IncomingVal);
744         return false;
745       }
746     }
747   }
748 
749   Inst->setOperand(Idx, Mat);
750   return true;
751 }
752 
753 /// Emit materialization code for all rebased constants and update their
754 /// users.
755 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
756                                              Constant *Offset,
757                                              Type *Ty,
758                                              const ConstantUser &ConstUser) {
759   Instruction *Mat = Base;
760 
761   // The same offset can be dereferenced to different types in nested struct.
762   if (!Offset && Ty && Ty != Base->getType())
763     Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
764 
765   if (Offset) {
766     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
767                                                ConstUser.OpndIdx);
768     if (Ty) {
769       // Constant being rebased is a ConstantExpr.
770       PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
771           cast<PointerType>(Ty)->getAddressSpace());
772       Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
773       Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base,
774           Offset, "mat_gep", InsertionPt);
775       Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
776     } else
777       // Constant being rebased is a ConstantInt.
778       Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
779                                  "const_mat", InsertionPt);
780 
781     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
782                       << " + " << *Offset << ") in BB "
783                       << Mat->getParent()->getName() << '\n'
784                       << *Mat << '\n');
785     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
786   }
787   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
788 
789   // Visit constant integer.
790   if (isa<ConstantInt>(Opnd)) {
791     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
792     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
793       Mat->eraseFromParent();
794     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
795     return;
796   }
797 
798   // Visit cast instruction.
799   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
800     assert(CastInst->isCast() && "Expected an cast instruction!");
801     // Check if we already have visited this cast instruction before to avoid
802     // unnecessary cloning.
803     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
804     if (!ClonedCastInst) {
805       ClonedCastInst = CastInst->clone();
806       ClonedCastInst->setOperand(0, Mat);
807       ClonedCastInst->insertAfter(CastInst);
808       // Use the same debug location as the original cast instruction.
809       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
810       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
811                         << "To               : " << *ClonedCastInst << '\n');
812     }
813 
814     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
815     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
816     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
817     return;
818   }
819 
820   // Visit constant expression.
821   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
822     if (isa<GEPOperator>(ConstExpr)) {
823       // Operand is a ConstantGEP, replace it.
824       updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
825       return;
826     }
827 
828     // Aside from constant GEPs, only constant cast expressions are collected.
829     assert(ConstExpr->isCast() && "ConstExpr should be a cast");
830     Instruction *ConstExprInst = ConstExpr->getAsInstruction(
831         findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx));
832     ConstExprInst->setOperand(0, Mat);
833 
834     // Use the same debug location as the instruction we are about to update.
835     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
836 
837     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
838                       << "From              : " << *ConstExpr << '\n');
839     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
840     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
841       ConstExprInst->eraseFromParent();
842       if (Offset)
843         Mat->eraseFromParent();
844     }
845     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
846     return;
847   }
848 }
849 
850 /// Hoist and hide the base constant behind a bitcast and emit
851 /// materialization code for derived constants.
852 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
853   bool MadeChange = false;
854   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
855       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
856   for (auto const &ConstInfo : ConstInfoVec) {
857     SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
858     // We can have an empty set if the function contains unreachable blocks.
859     if (IPSet.empty())
860       continue;
861 
862     unsigned UsesNum = 0;
863     unsigned ReBasesNum = 0;
864     unsigned NotRebasedNum = 0;
865     for (Instruction *IP : IPSet) {
866       // First, collect constants depending on this IP of the base.
867       unsigned Uses = 0;
868       using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
869       SmallVector<RebasedUse, 4> ToBeRebased;
870       for (auto const &RCI : ConstInfo.RebasedConstants) {
871         for (auto const &U : RCI.Uses) {
872           Uses++;
873           BasicBlock *OrigMatInsertBB =
874               findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
875           // If Base constant is to be inserted in multiple places,
876           // generate rebase for U using the Base dominating U.
877           if (IPSet.size() == 1 ||
878               DT->dominates(IP->getParent(), OrigMatInsertBB))
879             ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
880         }
881       }
882       UsesNum = Uses;
883 
884       // If only few constants depend on this IP of base, skip rebasing,
885       // assuming the base and the rebased have the same materialization cost.
886       if (ToBeRebased.size() < MinNumOfDependentToRebase) {
887         NotRebasedNum += ToBeRebased.size();
888         continue;
889       }
890 
891       // Emit an instance of the base at this IP.
892       Instruction *Base = nullptr;
893       // Hoist and hide the base constant behind a bitcast.
894       if (ConstInfo.BaseExpr) {
895         assert(BaseGV && "A base constant expression must have an base GV");
896         Type *Ty = ConstInfo.BaseExpr->getType();
897         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
898       } else {
899         IntegerType *Ty = ConstInfo.BaseInt->getType();
900         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
901       }
902 
903       Base->setDebugLoc(IP->getDebugLoc());
904 
905       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
906                         << ") to BB " << IP->getParent()->getName() << '\n'
907                         << *Base << '\n');
908 
909       // Emit materialization code for rebased constants depending on this IP.
910       for (auto const &R : ToBeRebased) {
911         Constant *Off = std::get<0>(R);
912         Type *Ty = std::get<1>(R);
913         ConstantUser U = std::get<2>(R);
914         emitBaseConstants(Base, Off, Ty, U);
915         ReBasesNum++;
916         // Use the same debug location as the last user of the constant.
917         Base->setDebugLoc(DILocation::getMergedLocation(
918             Base->getDebugLoc(), U.Inst->getDebugLoc()));
919       }
920       assert(!Base->use_empty() && "The use list is empty!?");
921       assert(isa<Instruction>(Base->user_back()) &&
922              "All uses should be instructions.");
923     }
924     (void)UsesNum;
925     (void)ReBasesNum;
926     (void)NotRebasedNum;
927     // Expect all uses are rebased after rebase is done.
928     assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
929            "Not all uses are rebased");
930 
931     NumConstantsHoisted++;
932 
933     // Base constant is also included in ConstInfo.RebasedConstants, so
934     // deduct 1 from ConstInfo.RebasedConstants.size().
935     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
936 
937     MadeChange = true;
938   }
939   return MadeChange;
940 }
941 
942 /// Check all cast instructions we made a copy of and remove them if they
943 /// have no more users.
944 void ConstantHoistingPass::deleteDeadCastInst() const {
945   for (auto const &I : ClonedCastMap)
946     if (I.first->use_empty())
947       I.first->eraseFromParent();
948 }
949 
950 /// Optimize expensive integer constants in the given function.
951 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
952                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
953                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) {
954   this->TTI = &TTI;
955   this->DT = &DT;
956   this->BFI = BFI;
957   this->DL = &Fn.getParent()->getDataLayout();
958   this->Ctx = &Fn.getContext();
959   this->Entry = &Entry;
960   this->PSI = PSI;
961   // Collect all constant candidates.
962   collectConstantCandidates(Fn);
963 
964   // Combine constants that can be easily materialized with an add from a common
965   // base constant.
966   if (!ConstIntCandVec.empty())
967     findBaseConstants(nullptr);
968   for (const auto &MapEntry : ConstGEPCandMap)
969     if (!MapEntry.second.empty())
970       findBaseConstants(MapEntry.first);
971 
972   // Finally hoist the base constant and emit materialization code for dependent
973   // constants.
974   bool MadeChange = false;
975   if (!ConstIntInfoVec.empty())
976     MadeChange = emitBaseConstants(nullptr);
977   for (const auto &MapEntry : ConstGEPInfoMap)
978     if (!MapEntry.second.empty())
979       MadeChange |= emitBaseConstants(MapEntry.first);
980 
981 
982   // Cleanup dead instructions.
983   deleteDeadCastInst();
984 
985   cleanup();
986 
987   return MadeChange;
988 }
989 
990 PreservedAnalyses ConstantHoistingPass::run(Function &F,
991                                             FunctionAnalysisManager &AM) {
992   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
993   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
994   auto BFI = ConstHoistWithBlockFrequency
995                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
996                  : nullptr;
997   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
998   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
999   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
1000     return PreservedAnalyses::all();
1001 
1002   PreservedAnalyses PA;
1003   PA.preserveSet<CFGAnalyses>();
1004   return PA;
1005 }
1006