1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Dead Loop Deletion Pass. This pass is responsible
10 // for eliminating loops with non-infinite computable trip counts that have no
11 // side effects or volatile instructions, and do not contribute to the
12 // computation of the function's return value.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopDeletion.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemorySSA.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/IR/Dominators.h"
27 
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Transforms/Scalar/LoopPassManager.h"
32 #include "llvm/Transforms/Utils/LoopUtils.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "loop-delete"
37 
38 STATISTIC(NumDeleted, "Number of loops deleted");
39 
40 static cl::opt<bool> EnableSymbolicExecution(
41     "loop-deletion-enable-symbolic-execution", cl::Hidden, cl::init(true),
42     cl::desc("Break backedge through symbolic execution of 1st iteration "
43              "attempting to prove that the backedge is never taken"));
44 
45 enum class LoopDeletionResult {
46   Unmodified,
47   Modified,
48   Deleted,
49 };
50 
51 static LoopDeletionResult merge(LoopDeletionResult A, LoopDeletionResult B) {
52   if (A == LoopDeletionResult::Deleted || B == LoopDeletionResult::Deleted)
53     return LoopDeletionResult::Deleted;
54   if (A == LoopDeletionResult::Modified || B == LoopDeletionResult::Modified)
55     return LoopDeletionResult::Modified;
56   return LoopDeletionResult::Unmodified;
57 }
58 
59 /// Determines if a loop is dead.
60 ///
61 /// This assumes that we've already checked for unique exit and exiting blocks,
62 /// and that the code is in LCSSA form.
63 static bool isLoopDead(Loop *L, ScalarEvolution &SE,
64                        SmallVectorImpl<BasicBlock *> &ExitingBlocks,
65                        BasicBlock *ExitBlock, bool &Changed,
66                        BasicBlock *Preheader, LoopInfo &LI) {
67   // Make sure that all PHI entries coming from the loop are loop invariant.
68   // Because the code is in LCSSA form, any values used outside of the loop
69   // must pass through a PHI in the exit block, meaning that this check is
70   // sufficient to guarantee that no loop-variant values are used outside
71   // of the loop.
72   bool AllEntriesInvariant = true;
73   bool AllOutgoingValuesSame = true;
74   if (!L->hasNoExitBlocks()) {
75     for (PHINode &P : ExitBlock->phis()) {
76       Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]);
77 
78       // Make sure all exiting blocks produce the same incoming value for the
79       // block. If there are different incoming values for different exiting
80       // blocks, then it is impossible to statically determine which value
81       // should be used.
82       AllOutgoingValuesSame =
83           all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
84             return incoming == P.getIncomingValueForBlock(BB);
85           });
86 
87       if (!AllOutgoingValuesSame)
88         break;
89 
90       if (Instruction *I = dyn_cast<Instruction>(incoming))
91         if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
92           AllEntriesInvariant = false;
93           break;
94         }
95     }
96   }
97 
98   if (Changed)
99     SE.forgetLoopDispositions(L);
100 
101   if (!AllEntriesInvariant || !AllOutgoingValuesSame)
102     return false;
103 
104   // Make sure that no instructions in the block have potential side-effects.
105   // This includes instructions that could write to memory, and loads that are
106   // marked volatile.
107   for (auto &I : L->blocks())
108     if (any_of(*I, [](Instruction &I) {
109           return I.mayHaveSideEffects() && !I.isDroppable();
110         }))
111       return false;
112 
113   // The loop or any of its sub-loops looping infinitely is legal. The loop can
114   // only be considered dead if either
115   // a. the function is mustprogress.
116   // b. all (sub-)loops are mustprogress or have a known trip-count.
117   if (L->getHeader()->getParent()->mustProgress())
118     return true;
119 
120   LoopBlocksRPO RPOT(L);
121   RPOT.perform(&LI);
122   // If the loop contains an irreducible cycle, it may loop infinitely.
123   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
124     return false;
125 
126   SmallVector<Loop *, 8> WorkList;
127   WorkList.push_back(L);
128   while (!WorkList.empty()) {
129     Loop *Current = WorkList.pop_back_val();
130     if (hasMustProgress(Current))
131       continue;
132 
133     const SCEV *S = SE.getConstantMaxBackedgeTakenCount(Current);
134     if (isa<SCEVCouldNotCompute>(S)) {
135       LLVM_DEBUG(
136           dbgs() << "Could not compute SCEV MaxBackedgeTakenCount and was "
137                     "not required to make progress.\n");
138       return false;
139     }
140     WorkList.append(Current->begin(), Current->end());
141   }
142   return true;
143 }
144 
145 /// This function returns true if there is no viable path from the
146 /// entry block to the header of \p L. Right now, it only does
147 /// a local search to save compile time.
148 static bool isLoopNeverExecuted(Loop *L) {
149   using namespace PatternMatch;
150 
151   auto *Preheader = L->getLoopPreheader();
152   // TODO: We can relax this constraint, since we just need a loop
153   // predecessor.
154   assert(Preheader && "Needs preheader!");
155 
156   if (Preheader->isEntryBlock())
157     return false;
158   // All predecessors of the preheader should have a constant conditional
159   // branch, with the loop's preheader as not-taken.
160   for (auto *Pred: predecessors(Preheader)) {
161     BasicBlock *Taken, *NotTaken;
162     ConstantInt *Cond;
163     if (!match(Pred->getTerminator(),
164                m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
165       return false;
166     if (!Cond->getZExtValue())
167       std::swap(Taken, NotTaken);
168     if (Taken == Preheader)
169       return false;
170   }
171   assert(!pred_empty(Preheader) &&
172          "Preheader should have predecessors at this point!");
173   // All the predecessors have the loop preheader as not-taken target.
174   return true;
175 }
176 
177 static Value *
178 getValueOnFirstIteration(Value *V, DenseMap<Value *, Value *> &FirstIterValue,
179                          const SimplifyQuery &SQ) {
180   // Quick hack: do not flood cache with non-instruction values.
181   if (!isa<Instruction>(V))
182     return V;
183   // Do we already know cached result?
184   auto Existing = FirstIterValue.find(V);
185   if (Existing != FirstIterValue.end())
186     return Existing->second;
187   Value *FirstIterV = nullptr;
188   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
189     Value *LHS =
190         getValueOnFirstIteration(BO->getOperand(0), FirstIterValue, SQ);
191     Value *RHS =
192         getValueOnFirstIteration(BO->getOperand(1), FirstIterValue, SQ);
193     FirstIterV = SimplifyBinOp(BO->getOpcode(), LHS, RHS, SQ);
194   }
195   if (!FirstIterV)
196     FirstIterV = V;
197   FirstIterValue[V] = FirstIterV;
198   return FirstIterV;
199 }
200 
201 // Try to prove that one of conditions that dominates the latch must exit on 1st
202 // iteration.
203 static bool canProveExitOnFirstIteration(Loop *L, DominatorTree &DT,
204                                          LoopInfo &LI) {
205   // Disabled by option.
206   if (!EnableSymbolicExecution)
207     return false;
208 
209   BasicBlock *Predecessor = L->getLoopPredecessor();
210   BasicBlock *Latch = L->getLoopLatch();
211 
212   if (!Predecessor || !Latch)
213     return false;
214 
215   LoopBlocksRPO RPOT(L);
216   RPOT.perform(&LI);
217 
218   // For the optimization to be correct, we need RPOT to have a property that
219   // each block is processed after all its predecessors, which may only be
220   // violated for headers of the current loop and all nested loops. Irreducible
221   // CFG provides multiple ways to break this assumption, so we do not want to
222   // deal with it.
223   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
224     return false;
225 
226   BasicBlock *Header = L->getHeader();
227   // Blocks that are reachable on the 1st iteration.
228   SmallPtrSet<BasicBlock *, 4> LiveBlocks;
229   // Edges that are reachable on the 1st iteration.
230   DenseSet<BasicBlockEdge> LiveEdges;
231   LiveBlocks.insert(Header);
232 
233   SmallPtrSet<BasicBlock *, 4> Visited;
234   auto MarkLiveEdge = [&](BasicBlock *From, BasicBlock *To) {
235     assert(LiveBlocks.count(From) && "Must be live!");
236     assert((LI.isLoopHeader(To) || !Visited.count(To)) &&
237            "Only canonical backedges are allowed. Irreducible CFG?");
238     assert((LiveBlocks.count(To) || !Visited.count(To)) &&
239            "We already discarded this block as dead!");
240     LiveBlocks.insert(To);
241     LiveEdges.insert({ From, To });
242   };
243 
244   auto MarkAllSuccessorsLive = [&](BasicBlock *BB) {
245     for (auto *Succ : successors(BB))
246       MarkLiveEdge(BB, Succ);
247   };
248 
249   // Check if there is only one value coming from all live predecessor blocks.
250   // Note that because we iterate in RPOT, we have already visited all its
251   // (non-latch) predecessors.
252   auto GetSoleInputOnFirstIteration = [&](PHINode & PN)->Value * {
253     BasicBlock *BB = PN.getParent();
254     bool HasLivePreds = false;
255     (void)HasLivePreds;
256     if (BB == Header)
257       return PN.getIncomingValueForBlock(Predecessor);
258     Value *OnlyInput = nullptr;
259     for (auto *Pred : predecessors(BB))
260       if (LiveEdges.count({ Pred, BB })) {
261         HasLivePreds = true;
262         Value *Incoming = PN.getIncomingValueForBlock(Pred);
263         // Skip undefs. If they are present, we can assume they are equal to
264         // the non-undef input.
265         if (isa<UndefValue>(Incoming))
266           continue;
267         // Two inputs.
268         if (OnlyInput && OnlyInput != Incoming)
269           return nullptr;
270         OnlyInput = Incoming;
271       }
272 
273     assert(HasLivePreds && "No live predecessors?");
274     // If all incoming live value were undefs, return undef.
275     return OnlyInput ? OnlyInput : UndefValue::get(PN.getType());
276   };
277   DenseMap<Value *, Value *> FirstIterValue;
278 
279   // Use the following algorithm to prove we never take the latch on the 1st
280   // iteration:
281   // 1. Traverse in topological order, so that whenever we visit a block, all
282   //    its predecessors are already visited.
283   // 2. If we can prove that the block may have only 1 predecessor on the 1st
284   //    iteration, map all its phis onto input from this predecessor.
285   // 3a. If we can prove which successor of out block is taken on the 1st
286   //     iteration, mark this successor live.
287   // 3b. If we cannot prove it, conservatively assume that all successors are
288   //     live.
289   auto &DL = Header->getModule()->getDataLayout();
290   const SimplifyQuery SQ(DL);
291   for (auto *BB : RPOT) {
292     Visited.insert(BB);
293 
294     // This block is not reachable on the 1st iterations.
295     if (!LiveBlocks.count(BB))
296       continue;
297 
298     // Skip inner loops.
299     if (LI.getLoopFor(BB) != L) {
300       MarkAllSuccessorsLive(BB);
301       continue;
302     }
303 
304     // If Phi has only one input from all live input blocks, use it.
305     for (auto &PN : BB->phis()) {
306       if (!PN.getType()->isIntegerTy())
307         continue;
308       auto *Incoming = GetSoleInputOnFirstIteration(PN);
309       if (Incoming && DT.dominates(Incoming, BB->getTerminator())) {
310         Value *FirstIterV =
311             getValueOnFirstIteration(Incoming, FirstIterValue, SQ);
312         FirstIterValue[&PN] = FirstIterV;
313       }
314     }
315 
316     using namespace PatternMatch;
317     ICmpInst::Predicate Pred;
318     Value *LHS, *RHS;
319     BasicBlock *IfTrue, *IfFalse;
320     auto *Term = BB->getTerminator();
321     if (match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
322                          m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) {
323       if (!LHS->getType()->isIntegerTy()) {
324         MarkAllSuccessorsLive(BB);
325         continue;
326       }
327 
328       // Can we prove constant true or false for this condition?
329       LHS = getValueOnFirstIteration(LHS, FirstIterValue, SQ);
330       RHS = getValueOnFirstIteration(RHS, FirstIterValue, SQ);
331       auto *KnownCondition = SimplifyICmpInst(Pred, LHS, RHS, SQ);
332       if (!KnownCondition) {
333         // Failed to simplify.
334         MarkAllSuccessorsLive(BB);
335         continue;
336       }
337       if (isa<UndefValue>(KnownCondition)) {
338         // TODO: According to langref, branching by undef is undefined behavior.
339         // It means that, theoretically, we should be able to just continue
340         // without marking any successors as live. However, we are not certain
341         // how correct our compiler is at handling such cases. So we are being
342         // very conservative here.
343         //
344         // If there is a non-loop successor, always assume this branch leaves the
345         // loop. Otherwise, arbitrarily take IfTrue.
346         //
347         // Once we are certain that branching by undef is handled correctly by
348         // other transforms, we should not mark any successors live here.
349         if (L->contains(IfTrue) && L->contains(IfFalse))
350           MarkLiveEdge(BB, IfTrue);
351         continue;
352       }
353       auto *ConstCondition = dyn_cast<ConstantInt>(KnownCondition);
354       if (!ConstCondition) {
355         // Non-constant condition, cannot analyze any further.
356         MarkAllSuccessorsLive(BB);
357         continue;
358       }
359       if (ConstCondition->isAllOnesValue())
360         MarkLiveEdge(BB, IfTrue);
361       else
362         MarkLiveEdge(BB, IfFalse);
363     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
364       auto *SwitchValue = SI->getCondition();
365       auto *SwitchValueOnFirstIter =
366           getValueOnFirstIteration(SwitchValue, FirstIterValue, SQ);
367       auto *ConstSwitchValue = dyn_cast<ConstantInt>(SwitchValueOnFirstIter);
368       if (!ConstSwitchValue) {
369         MarkAllSuccessorsLive(BB);
370         continue;
371       }
372       auto CaseIterator = SI->findCaseValue(ConstSwitchValue);
373       MarkLiveEdge(BB, CaseIterator->getCaseSuccessor());
374     } else {
375       MarkAllSuccessorsLive(BB);
376       continue;
377     }
378   }
379 
380   // We can break the latch if it wasn't live.
381   return !LiveEdges.count({ Latch, Header });
382 }
383 
384 /// If we can prove the backedge is untaken, remove it.  This destroys the
385 /// loop, but leaves the (now trivially loop invariant) control flow and
386 /// side effects (if any) in place.
387 static LoopDeletionResult
388 breakBackedgeIfNotTaken(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
389                         LoopInfo &LI, MemorySSA *MSSA,
390                         OptimizationRemarkEmitter &ORE) {
391   assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
392 
393   if (!L->getLoopLatch())
394     return LoopDeletionResult::Unmodified;
395 
396   auto *BTC = SE.getBackedgeTakenCount(L);
397   if (!isa<SCEVCouldNotCompute>(BTC) && SE.isKnownNonZero(BTC))
398     return LoopDeletionResult::Unmodified;
399   if (!BTC->isZero() && !canProveExitOnFirstIteration(L, DT, LI))
400     return LoopDeletionResult::Unmodified;
401 
402   breakLoopBackedge(L, DT, SE, LI, MSSA);
403   return LoopDeletionResult::Deleted;
404 }
405 
406 /// Remove a loop if it is dead.
407 ///
408 /// A loop is considered dead either if it does not impact the observable
409 /// behavior of the program other than finite running time, or if it is
410 /// required to make progress by an attribute such as 'mustprogress' or
411 /// 'llvm.loop.mustprogress' and does not make any. This may remove
412 /// infinite loops that have been required to make progress.
413 ///
414 /// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
415 /// order to make various safety checks work.
416 ///
417 /// \returns true if any changes were made. This may mutate the loop even if it
418 /// is unable to delete it due to hoisting trivially loop invariant
419 /// instructions out of the loop.
420 static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT,
421                                            ScalarEvolution &SE, LoopInfo &LI,
422                                            MemorySSA *MSSA,
423                                            OptimizationRemarkEmitter &ORE) {
424   assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
425 
426   // We can only remove the loop if there is a preheader that we can branch from
427   // after removing it. Also, if LoopSimplify form is not available, stay out
428   // of trouble.
429   BasicBlock *Preheader = L->getLoopPreheader();
430   if (!Preheader || !L->hasDedicatedExits()) {
431     LLVM_DEBUG(
432         dbgs()
433         << "Deletion requires Loop with preheader and dedicated exits.\n");
434     return LoopDeletionResult::Unmodified;
435   }
436 
437   BasicBlock *ExitBlock = L->getUniqueExitBlock();
438 
439   if (ExitBlock && isLoopNeverExecuted(L)) {
440     LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!");
441     // We need to forget the loop before setting the incoming values of the exit
442     // phis to undef, so we properly invalidate the SCEV expressions for those
443     // phis.
444     SE.forgetLoop(L);
445     // Set incoming value to undef for phi nodes in the exit block.
446     for (PHINode &P : ExitBlock->phis()) {
447       std::fill(P.incoming_values().begin(), P.incoming_values().end(),
448                 UndefValue::get(P.getType()));
449     }
450     ORE.emit([&]() {
451       return OptimizationRemark(DEBUG_TYPE, "NeverExecutes", L->getStartLoc(),
452                                 L->getHeader())
453              << "Loop deleted because it never executes";
454     });
455     deleteDeadLoop(L, &DT, &SE, &LI, MSSA);
456     ++NumDeleted;
457     return LoopDeletionResult::Deleted;
458   }
459 
460   // The remaining checks below are for a loop being dead because all statements
461   // in the loop are invariant.
462   SmallVector<BasicBlock *, 4> ExitingBlocks;
463   L->getExitingBlocks(ExitingBlocks);
464 
465   // We require that the loop has at most one exit block. Otherwise, we'd be in
466   // the situation of needing to be able to solve statically which exit block
467   // will be branched to, or trying to preserve the branching logic in a loop
468   // invariant manner.
469   if (!ExitBlock && !L->hasNoExitBlocks()) {
470     LLVM_DEBUG(dbgs() << "Deletion requires at most one exit block.\n");
471     return LoopDeletionResult::Unmodified;
472   }
473   // Finally, we have to check that the loop really is dead.
474   bool Changed = false;
475   if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader, LI)) {
476     LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
477     return Changed ? LoopDeletionResult::Modified
478                    : LoopDeletionResult::Unmodified;
479   }
480 
481   LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!");
482   ORE.emit([&]() {
483     return OptimizationRemark(DEBUG_TYPE, "Invariant", L->getStartLoc(),
484                               L->getHeader())
485            << "Loop deleted because it is invariant";
486   });
487   deleteDeadLoop(L, &DT, &SE, &LI, MSSA);
488   ++NumDeleted;
489 
490   return LoopDeletionResult::Deleted;
491 }
492 
493 PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
494                                         LoopStandardAnalysisResults &AR,
495                                         LPMUpdater &Updater) {
496 
497   LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
498   LLVM_DEBUG(L.dump());
499   std::string LoopName = std::string(L.getName());
500   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
501   // pass. Function analyses need to be preserved across loop transformations
502   // but ORE cannot be preserved (see comment before the pass definition).
503   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
504   auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, AR.MSSA, ORE);
505 
506   // If we can prove the backedge isn't taken, just break it and be done.  This
507   // leaves the loop structure in place which means it can handle dispatching
508   // to the right exit based on whatever loop invariant structure remains.
509   if (Result != LoopDeletionResult::Deleted)
510     Result = merge(Result, breakBackedgeIfNotTaken(&L, AR.DT, AR.SE, AR.LI,
511                                                    AR.MSSA, ORE));
512 
513   if (Result == LoopDeletionResult::Unmodified)
514     return PreservedAnalyses::all();
515 
516   if (Result == LoopDeletionResult::Deleted)
517     Updater.markLoopAsDeleted(L, LoopName);
518 
519   auto PA = getLoopPassPreservedAnalyses();
520   if (AR.MSSA)
521     PA.preserve<MemorySSAAnalysis>();
522   return PA;
523 }
524 
525 namespace {
526 class LoopDeletionLegacyPass : public LoopPass {
527 public:
528   static char ID; // Pass ID, replacement for typeid
529   LoopDeletionLegacyPass() : LoopPass(ID) {
530     initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
531   }
532 
533   // Possibly eliminate loop L if it is dead.
534   bool runOnLoop(Loop *L, LPPassManager &) override;
535 
536   void getAnalysisUsage(AnalysisUsage &AU) const override {
537     AU.addPreserved<MemorySSAWrapperPass>();
538     getLoopAnalysisUsage(AU);
539   }
540 };
541 }
542 
543 char LoopDeletionLegacyPass::ID = 0;
544 INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
545                       "Delete dead loops", false, false)
546 INITIALIZE_PASS_DEPENDENCY(LoopPass)
547 INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
548                     "Delete dead loops", false, false)
549 
550 Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
551 
552 bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
553   if (skipLoop(L))
554     return false;
555   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
556   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
557   LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
558   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
559   MemorySSA *MSSA = nullptr;
560   if (MSSAAnalysis)
561     MSSA = &MSSAAnalysis->getMSSA();
562   // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
563   // pass.  Function analyses need to be preserved across loop transformations
564   // but ORE cannot be preserved (see comment before the pass definition).
565   OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
566 
567   LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: ");
568   LLVM_DEBUG(L->dump());
569 
570   LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI, MSSA, ORE);
571 
572   // If we can prove the backedge isn't taken, just break it and be done.  This
573   // leaves the loop structure in place which means it can handle dispatching
574   // to the right exit based on whatever loop invariant structure remains.
575   if (Result != LoopDeletionResult::Deleted)
576     Result = merge(Result, breakBackedgeIfNotTaken(L, DT, SE, LI, MSSA, ORE));
577 
578   if (Result == LoopDeletionResult::Deleted)
579     LPM.markLoopAsDeleted(*L);
580 
581   return Result != LoopDeletionResult::Unmodified;
582 }
583