1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads.  These form the candidates for the
13 // transformation.  The source value of each store then propagated to the user
14 // of the corresponding load.  This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/BlockFrequencyInfo.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
35 #include "llvm/Analysis/LoopAccessAnalysis.h"
36 #include "llvm/Analysis/LoopAnalysisManager.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ProfileSummaryInfo.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopVersioning.h"
60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <forward_list>
65 #include <set>
66 #include <tuple>
67 #include <utility>
68 
69 using namespace llvm;
70 
71 #define LLE_OPTION "loop-load-elim"
72 #define DEBUG_TYPE LLE_OPTION
73 
74 static cl::opt<unsigned> CheckPerElim(
75     "runtime-check-per-loop-load-elim", cl::Hidden,
76     cl::desc("Max number of memchecks allowed per eliminated load on average"),
77     cl::init(1));
78 
79 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
80     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
81     cl::desc("The maximum number of SCEV checks allowed for Loop "
82              "Load Elimination"));
83 
84 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
85 
86 namespace {
87 
88 /// Represent a store-to-forwarding candidate.
89 struct StoreToLoadForwardingCandidate {
90   LoadInst *Load;
91   StoreInst *Store;
92 
93   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
94       : Load(Load), Store(Store) {}
95 
96   /// Return true if the dependence from the store to the load has a
97   /// distance of one.  E.g. A[i+1] = A[i]
98   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
99                                  Loop *L) const {
100     Value *LoadPtr = Load->getPointerOperand();
101     Value *StorePtr = Store->getPointerOperand();
102     Type *LoadPtrType = LoadPtr->getType();
103     Type *LoadType = LoadPtrType->getPointerElementType();
104 
105     assert(LoadPtrType->getPointerAddressSpace() ==
106                StorePtr->getType()->getPointerAddressSpace() &&
107            LoadType == StorePtr->getType()->getPointerElementType() &&
108            "Should be a known dependence");
109 
110     // Currently we only support accesses with unit stride.  FIXME: we should be
111     // able to handle non unit stirde as well as long as the stride is equal to
112     // the dependence distance.
113     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
114         getPtrStride(PSE, StorePtr, L) != 1)
115       return false;
116 
117     auto &DL = Load->getParent()->getModule()->getDataLayout();
118     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
119 
120     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
121     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
122 
123     // We don't need to check non-wrapping here because forward/backward
124     // dependence wouldn't be valid if these weren't monotonic accesses.
125     auto *Dist = cast<SCEVConstant>(
126         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
127     const APInt &Val = Dist->getAPInt();
128     return Val == TypeByteSize;
129   }
130 
131   Value *getLoadPtr() const { return Load->getPointerOperand(); }
132 
133 #ifndef NDEBUG
134   friend raw_ostream &operator<<(raw_ostream &OS,
135                                  const StoreToLoadForwardingCandidate &Cand) {
136     OS << *Cand.Store << " -->\n";
137     OS.indent(2) << *Cand.Load << "\n";
138     return OS;
139   }
140 #endif
141 };
142 
143 } // end anonymous namespace
144 
145 /// Check if the store dominates all latches, so as long as there is no
146 /// intervening store this value will be loaded in the next iteration.
147 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
148                                          DominatorTree *DT) {
149   SmallVector<BasicBlock *, 8> Latches;
150   L->getLoopLatches(Latches);
151   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
152     return DT->dominates(StoreBlock, Latch);
153   });
154 }
155 
156 /// Return true if the load is not executed on all paths in the loop.
157 static bool isLoadConditional(LoadInst *Load, Loop *L) {
158   return Load->getParent() != L->getHeader();
159 }
160 
161 namespace {
162 
163 /// The per-loop class that does most of the work.
164 class LoadEliminationForLoop {
165 public:
166   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
167                          DominatorTree *DT, BlockFrequencyInfo *BFI,
168                          ProfileSummaryInfo* PSI)
169       : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
170 
171   /// Look through the loop-carried and loop-independent dependences in
172   /// this loop and find store->load dependences.
173   ///
174   /// Note that no candidate is returned if LAA has failed to analyze the loop
175   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
176   std::forward_list<StoreToLoadForwardingCandidate>
177   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
178     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
179 
180     const auto *Deps = LAI.getDepChecker().getDependences();
181     if (!Deps)
182       return Candidates;
183 
184     // Find store->load dependences (consequently true dep).  Both lexically
185     // forward and backward dependences qualify.  Disqualify loads that have
186     // other unknown dependences.
187 
188     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
189 
190     for (const auto &Dep : *Deps) {
191       Instruction *Source = Dep.getSource(LAI);
192       Instruction *Destination = Dep.getDestination(LAI);
193 
194       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
195         if (isa<LoadInst>(Source))
196           LoadsWithUnknownDepedence.insert(Source);
197         if (isa<LoadInst>(Destination))
198           LoadsWithUnknownDepedence.insert(Destination);
199         continue;
200       }
201 
202       if (Dep.isBackward())
203         // Note that the designations source and destination follow the program
204         // order, i.e. source is always first.  (The direction is given by the
205         // DepType.)
206         std::swap(Source, Destination);
207       else
208         assert(Dep.isForward() && "Needs to be a forward dependence");
209 
210       auto *Store = dyn_cast<StoreInst>(Source);
211       if (!Store)
212         continue;
213       auto *Load = dyn_cast<LoadInst>(Destination);
214       if (!Load)
215         continue;
216 
217       // Only progagate the value if they are of the same type.
218       if (Store->getPointerOperandType() != Load->getPointerOperandType())
219         continue;
220 
221       Candidates.emplace_front(Load, Store);
222     }
223 
224     if (!LoadsWithUnknownDepedence.empty())
225       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
226         return LoadsWithUnknownDepedence.count(C.Load);
227       });
228 
229     return Candidates;
230   }
231 
232   /// Return the index of the instruction according to program order.
233   unsigned getInstrIndex(Instruction *Inst) {
234     auto I = InstOrder.find(Inst);
235     assert(I != InstOrder.end() && "No index for instruction");
236     return I->second;
237   }
238 
239   /// If a load has multiple candidates associated (i.e. different
240   /// stores), it means that it could be forwarding from multiple stores
241   /// depending on control flow.  Remove these candidates.
242   ///
243   /// Here, we rely on LAA to include the relevant loop-independent dependences.
244   /// LAA is known to omit these in the very simple case when the read and the
245   /// write within an alias set always takes place using the *same* pointer.
246   ///
247   /// However, we know that this is not the case here, i.e. we can rely on LAA
248   /// to provide us with loop-independent dependences for the cases we're
249   /// interested.  Consider the case for example where a loop-independent
250   /// dependece S1->S2 invalidates the forwarding S3->S2.
251   ///
252   ///         A[i]   = ...   (S1)
253   ///         ...    = A[i]  (S2)
254   ///         A[i+1] = ...   (S3)
255   ///
256   /// LAA will perform dependence analysis here because there are two
257   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
258   void removeDependencesFromMultipleStores(
259       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
260     // If Store is nullptr it means that we have multiple stores forwarding to
261     // this store.
262     using LoadToSingleCandT =
263         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
264     LoadToSingleCandT LoadToSingleCand;
265 
266     for (const auto &Cand : Candidates) {
267       bool NewElt;
268       LoadToSingleCandT::iterator Iter;
269 
270       std::tie(Iter, NewElt) =
271           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
272       if (!NewElt) {
273         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
274         // Already multiple stores forward to this load.
275         if (OtherCand == nullptr)
276           continue;
277 
278         // Handle the very basic case when the two stores are in the same block
279         // so deciding which one forwards is easy.  The later one forwards as
280         // long as they both have a dependence distance of one to the load.
281         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
282             Cand.isDependenceDistanceOfOne(PSE, L) &&
283             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
284           // They are in the same block, the later one will forward to the load.
285           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
286             OtherCand = &Cand;
287         } else
288           OtherCand = nullptr;
289       }
290     }
291 
292     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
293       if (LoadToSingleCand[Cand.Load] != &Cand) {
294         LLVM_DEBUG(
295             dbgs() << "Removing from candidates: \n"
296                    << Cand
297                    << "  The load may have multiple stores forwarding to "
298                    << "it\n");
299         return true;
300       }
301       return false;
302     });
303   }
304 
305   /// Given two pointers operations by their RuntimePointerChecking
306   /// indices, return true if they require an alias check.
307   ///
308   /// We need a check if one is a pointer for a candidate load and the other is
309   /// a pointer for a possibly intervening store.
310   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
311                      const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
312                      const std::set<Value *> &CandLoadPtrs) {
313     Value *Ptr1 =
314         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
315     Value *Ptr2 =
316         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
317     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
318             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
319   }
320 
321   /// Return pointers that are possibly written to on the path from a
322   /// forwarding store to a load.
323   ///
324   /// These pointers need to be alias-checked against the forwarding candidates.
325   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
326       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
327     // From FirstStore to LastLoad neither of the elimination candidate loads
328     // should overlap with any of the stores.
329     //
330     // E.g.:
331     //
332     // st1 C[i]
333     // ld1 B[i] <-------,
334     // ld0 A[i] <----,  |              * LastLoad
335     // ...           |  |
336     // st2 E[i]      |  |
337     // st3 B[i+1] -- | -'              * FirstStore
338     // st0 A[i+1] ---'
339     // st4 D[i]
340     //
341     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
342     // ld0.
343 
344     LoadInst *LastLoad =
345         std::max_element(Candidates.begin(), Candidates.end(),
346                          [&](const StoreToLoadForwardingCandidate &A,
347                              const StoreToLoadForwardingCandidate &B) {
348                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
349                          })
350             ->Load;
351     StoreInst *FirstStore =
352         std::min_element(Candidates.begin(), Candidates.end(),
353                          [&](const StoreToLoadForwardingCandidate &A,
354                              const StoreToLoadForwardingCandidate &B) {
355                            return getInstrIndex(A.Store) <
356                                   getInstrIndex(B.Store);
357                          })
358             ->Store;
359 
360     // We're looking for stores after the first forwarding store until the end
361     // of the loop, then from the beginning of the loop until the last
362     // forwarded-to load.  Collect the pointer for the stores.
363     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
364 
365     auto InsertStorePtr = [&](Instruction *I) {
366       if (auto *S = dyn_cast<StoreInst>(I))
367         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
368     };
369     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
370     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
371                   MemInstrs.end(), InsertStorePtr);
372     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
373                   InsertStorePtr);
374 
375     return PtrsWrittenOnFwdingPath;
376   }
377 
378   /// Determine the pointer alias checks to prove that there are no
379   /// intervening stores.
380   SmallVector<RuntimePointerCheck, 4> collectMemchecks(
381       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
382 
383     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
384         findPointersWrittenOnForwardingPath(Candidates);
385 
386     // Collect the pointers of the candidate loads.
387     // FIXME: SmallPtrSet does not work with std::inserter.
388     std::set<Value *> CandLoadPtrs;
389     transform(Candidates,
390                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
391                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
392 
393     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
394     SmallVector<RuntimePointerCheck, 4> Checks;
395 
396     copy_if(AllChecks, std::back_inserter(Checks),
397             [&](const RuntimePointerCheck &Check) {
398               for (auto PtrIdx1 : Check.first->Members)
399                 for (auto PtrIdx2 : Check.second->Members)
400                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
401                                     CandLoadPtrs))
402                     return true;
403               return false;
404             });
405 
406     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
407                       << "):\n");
408     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
409 
410     return Checks;
411   }
412 
413   /// Perform the transformation for a candidate.
414   void
415   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
416                                   SCEVExpander &SEE) {
417     // loop:
418     //      %x = load %gep_i
419     //         = ... %x
420     //      store %y, %gep_i_plus_1
421     //
422     // =>
423     //
424     // ph:
425     //      %x.initial = load %gep_0
426     // loop:
427     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
428     //      %x = load %gep_i            <---- now dead
429     //         = ... %x.storeforward
430     //      store %y, %gep_i_plus_1
431 
432     Value *Ptr = Cand.Load->getPointerOperand();
433     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
434     auto *PH = L->getLoopPreheader();
435     assert(PH && "Preheader should exist!");
436     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
437                                           PH->getTerminator());
438     Value *Initial = new LoadInst(
439         Cand.Load->getType(), InitialPtr, "load_initial",
440         /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
441 
442     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
443                                    &L->getHeader()->front());
444     PHI->addIncoming(Initial, PH);
445     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
446 
447     Cand.Load->replaceAllUsesWith(PHI);
448   }
449 
450   /// Top-level driver for each loop: find store->load forwarding
451   /// candidates, add run-time checks and perform transformation.
452   bool processLoop() {
453     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
454                       << "\" checking " << *L << "\n");
455 
456     // Look for store-to-load forwarding cases across the
457     // backedge. E.g.:
458     //
459     // loop:
460     //      %x = load %gep_i
461     //         = ... %x
462     //      store %y, %gep_i_plus_1
463     //
464     // =>
465     //
466     // ph:
467     //      %x.initial = load %gep_0
468     // loop:
469     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
470     //      %x = load %gep_i            <---- now dead
471     //         = ... %x.storeforward
472     //      store %y, %gep_i_plus_1
473 
474     // First start with store->load dependences.
475     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
476     if (StoreToLoadDependences.empty())
477       return false;
478 
479     // Generate an index for each load and store according to the original
480     // program order.  This will be used later.
481     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
482 
483     // To keep things simple for now, remove those where the load is potentially
484     // fed by multiple stores.
485     removeDependencesFromMultipleStores(StoreToLoadDependences);
486     if (StoreToLoadDependences.empty())
487       return false;
488 
489     // Filter the candidates further.
490     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
491     unsigned NumForwarding = 0;
492     for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
493       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
494 
495       // Make sure that the stored values is available everywhere in the loop in
496       // the next iteration.
497       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
498         continue;
499 
500       // If the load is conditional we can't hoist its 0-iteration instance to
501       // the preheader because that would make it unconditional.  Thus we would
502       // access a memory location that the original loop did not access.
503       if (isLoadConditional(Cand.Load, L))
504         continue;
505 
506       // Check whether the SCEV difference is the same as the induction step,
507       // thus we load the value in the next iteration.
508       if (!Cand.isDependenceDistanceOfOne(PSE, L))
509         continue;
510 
511       ++NumForwarding;
512       LLVM_DEBUG(
513           dbgs()
514           << NumForwarding
515           << ". Valid store-to-load forwarding across the loop backedge\n");
516       Candidates.push_back(Cand);
517     }
518     if (Candidates.empty())
519       return false;
520 
521     // Check intervening may-alias stores.  These need runtime checks for alias
522     // disambiguation.
523     SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
524 
525     // Too many checks are likely to outweigh the benefits of forwarding.
526     if (Checks.size() > Candidates.size() * CheckPerElim) {
527       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
528       return false;
529     }
530 
531     if (LAI.getPSE().getUnionPredicate().getComplexity() >
532         LoadElimSCEVCheckThreshold) {
533       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
534       return false;
535     }
536 
537     if (!L->isLoopSimplifyForm()) {
538       LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
539       return false;
540     }
541 
542     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
543       if (LAI.hasConvergentOp()) {
544         LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
545                              "convergent calls\n");
546         return false;
547       }
548 
549       auto *HeaderBB = L->getHeader();
550       auto *F = HeaderBB->getParent();
551       bool OptForSize = F->hasOptSize() ||
552                         llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
553                                                     PGSOQueryType::IRPass);
554       if (OptForSize) {
555         LLVM_DEBUG(
556             dbgs() << "Versioning is needed but not allowed when optimizing "
557                       "for size.\n");
558         return false;
559       }
560 
561       // Point of no-return, start the transformation.  First, version the loop
562       // if necessary.
563 
564       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
565       LV.setAliasChecks(std::move(Checks));
566       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
567       LV.versionLoop();
568     }
569 
570     // Next, propagate the value stored by the store to the users of the load.
571     // Also for the first iteration, generate the initial value of the load.
572     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
573                      "storeforward");
574     for (const auto &Cand : Candidates)
575       propagateStoredValueToLoadUsers(Cand, SEE);
576     NumLoopLoadEliminted += NumForwarding;
577 
578     return true;
579   }
580 
581 private:
582   Loop *L;
583 
584   /// Maps the load/store instructions to their index according to
585   /// program order.
586   DenseMap<Instruction *, unsigned> InstOrder;
587 
588   // Analyses used.
589   LoopInfo *LI;
590   const LoopAccessInfo &LAI;
591   DominatorTree *DT;
592   BlockFrequencyInfo *BFI;
593   ProfileSummaryInfo *PSI;
594   PredicatedScalarEvolution PSE;
595 };
596 
597 } // end anonymous namespace
598 
599 static bool
600 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
601                           BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
602                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
603   // Build up a worklist of inner-loops to transform to avoid iterator
604   // invalidation.
605   // FIXME: This logic comes from other passes that actually change the loop
606   // nest structure. It isn't clear this is necessary (or useful) for a pass
607   // which merely optimizes the use of loads in a loop.
608   SmallVector<Loop *, 8> Worklist;
609 
610   for (Loop *TopLevelLoop : LI)
611     for (Loop *L : depth_first(TopLevelLoop))
612       // We only handle inner-most loops.
613       if (L->empty())
614         Worklist.push_back(L);
615 
616   // Now walk the identified inner loops.
617   bool Changed = false;
618   for (Loop *L : Worklist) {
619     // The actual work is performed by LoadEliminationForLoop.
620     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
621     Changed |= LEL.processLoop();
622   }
623   return Changed;
624 }
625 
626 namespace {
627 
628 /// The pass.  Most of the work is delegated to the per-loop
629 /// LoadEliminationForLoop class.
630 class LoopLoadElimination : public FunctionPass {
631 public:
632   static char ID;
633 
634   LoopLoadElimination() : FunctionPass(ID) {
635     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
636   }
637 
638   bool runOnFunction(Function &F) override {
639     if (skipFunction(F))
640       return false;
641 
642     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
643     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
644     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
645     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
646     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
647                 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
648                 nullptr;
649 
650     // Process each loop nest in the function.
651     return eliminateLoadsAcrossLoops(
652         F, LI, DT, BFI, PSI,
653         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
654   }
655 
656   void getAnalysisUsage(AnalysisUsage &AU) const override {
657     AU.addRequiredID(LoopSimplifyID);
658     AU.addRequired<LoopInfoWrapperPass>();
659     AU.addPreserved<LoopInfoWrapperPass>();
660     AU.addRequired<LoopAccessLegacyAnalysis>();
661     AU.addRequired<ScalarEvolutionWrapperPass>();
662     AU.addRequired<DominatorTreeWrapperPass>();
663     AU.addPreserved<DominatorTreeWrapperPass>();
664     AU.addPreserved<GlobalsAAWrapperPass>();
665     AU.addRequired<ProfileSummaryInfoWrapperPass>();
666     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
667   }
668 };
669 
670 } // end anonymous namespace
671 
672 char LoopLoadElimination::ID;
673 
674 static const char LLE_name[] = "Loop Load Elimination";
675 
676 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
677 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
678 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
679 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
680 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
681 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
682 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
683 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
684 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
685 
686 FunctionPass *llvm::createLoopLoadEliminationPass() {
687   return new LoopLoadElimination();
688 }
689 
690 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
691                                                FunctionAnalysisManager &AM) {
692   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
693   auto &LI = AM.getResult<LoopAnalysis>(F);
694   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
695   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
696   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
697   auto &AA = AM.getResult<AAManager>(F);
698   auto &AC = AM.getResult<AssumptionAnalysis>(F);
699   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
700   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
701   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
702       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
703   MemorySSA *MSSA = EnableMSSALoopDependency
704                         ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
705                         : nullptr;
706 
707   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
708   bool Changed = eliminateLoadsAcrossLoops(
709       F, LI, DT, BFI, PSI, [&](Loop &L) -> const LoopAccessInfo & {
710         LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
711         return LAM.getResult<LoopAccessAnalysis>(L, AR);
712       });
713 
714   if (!Changed)
715     return PreservedAnalyses::all();
716 
717   PreservedAnalyses PA;
718   return PA;
719 }
720