1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar/LoopReroll.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <iterator>
56 #include <map>
57 #include <utility>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "loop-reroll"
62 
63 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
64 
65 static cl::opt<unsigned>
66 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
67                           cl::Hidden,
68                           cl::desc("The maximum number of failures to tolerate"
69                                    " during fuzzy matching. (default: 400)"));
70 
71 // This loop re-rolling transformation aims to transform loops like this:
72 //
73 // int foo(int a);
74 // void bar(int *x) {
75 //   for (int i = 0; i < 500; i += 3) {
76 //     foo(i);
77 //     foo(i+1);
78 //     foo(i+2);
79 //   }
80 // }
81 //
82 // into a loop like this:
83 //
84 // void bar(int *x) {
85 //   for (int i = 0; i < 500; ++i)
86 //     foo(i);
87 // }
88 //
89 // It does this by looking for loops that, besides the latch code, are composed
90 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
91 // to the induction variable, and where each DAG is isomorphic to the DAG
92 // rooted at the induction variable (excepting the sub-DAGs which root the
93 // other induction-variable increments). In other words, we're looking for loop
94 // bodies of the form:
95 //
96 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
97 // f(%iv)
98 // %iv.1 = add %iv, 1                <-- a root increment
99 // f(%iv.1)
100 // %iv.2 = add %iv, 2                <-- a root increment
101 // f(%iv.2)
102 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
103 // f(%iv.scale_m_1)
104 // ...
105 // %iv.next = add %iv, scale
106 // %cmp = icmp(%iv, ...)
107 // br %cmp, header, exit
108 //
109 // where each f(i) is a set of instructions that, collectively, are a function
110 // only of i (and other loop-invariant values).
111 //
112 // As a special case, we can also reroll loops like this:
113 //
114 // int foo(int);
115 // void bar(int *x) {
116 //   for (int i = 0; i < 500; ++i) {
117 //     x[3*i] = foo(0);
118 //     x[3*i+1] = foo(0);
119 //     x[3*i+2] = foo(0);
120 //   }
121 // }
122 //
123 // into this:
124 //
125 // void bar(int *x) {
126 //   for (int i = 0; i < 1500; ++i)
127 //     x[i] = foo(0);
128 // }
129 //
130 // in which case, we're looking for inputs like this:
131 //
132 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
133 // %scaled.iv = mul %iv, scale
134 // f(%scaled.iv)
135 // %scaled.iv.1 = add %scaled.iv, 1
136 // f(%scaled.iv.1)
137 // %scaled.iv.2 = add %scaled.iv, 2
138 // f(%scaled.iv.2)
139 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
140 // f(%scaled.iv.scale_m_1)
141 // ...
142 // %iv.next = add %iv, 1
143 // %cmp = icmp(%iv, ...)
144 // br %cmp, header, exit
145 
146 namespace {
147 
148   enum IterationLimits {
149     /// The maximum number of iterations that we'll try and reroll.
150     IL_MaxRerollIterations = 32,
151     /// The bitvector index used by loop induction variables and other
152     /// instructions that belong to all iterations.
153     IL_All,
154     IL_End
155   };
156 
157   class LoopReroll {
158   public:
159     LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
160                TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
161         : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
162           PreserveLCSSA(PreserveLCSSA) {}
163     bool runOnLoop(Loop *L);
164 
165   protected:
166     AliasAnalysis *AA;
167     LoopInfo *LI;
168     ScalarEvolution *SE;
169     TargetLibraryInfo *TLI;
170     DominatorTree *DT;
171     bool PreserveLCSSA;
172 
173     using SmallInstructionVector = SmallVector<Instruction *, 16>;
174     using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
175     using TinyInstructionVector = SmallVector<Instruction *, 1>;
176 
177     // Map between induction variable and its increment
178     DenseMap<Instruction *, int64_t> IVToIncMap;
179 
180     // For loop with multiple induction variables, remember the ones used only to
181     // control the loop.
182     TinyInstructionVector LoopControlIVs;
183 
184     // A chain of isomorphic instructions, identified by a single-use PHI
185     // representing a reduction. Only the last value may be used outside the
186     // loop.
187     struct SimpleLoopReduction {
188       SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
189         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
190         add(L);
191       }
192 
193       bool valid() const {
194         return Valid;
195       }
196 
197       Instruction *getPHI() const {
198         assert(Valid && "Using invalid reduction");
199         return Instructions.front();
200       }
201 
202       Instruction *getReducedValue() const {
203         assert(Valid && "Using invalid reduction");
204         return Instructions.back();
205       }
206 
207       Instruction *get(size_t i) const {
208         assert(Valid && "Using invalid reduction");
209         return Instructions[i+1];
210       }
211 
212       Instruction *operator [] (size_t i) const { return get(i); }
213 
214       // The size, ignoring the initial PHI.
215       size_t size() const {
216         assert(Valid && "Using invalid reduction");
217         return Instructions.size()-1;
218       }
219 
220       using iterator = SmallInstructionVector::iterator;
221       using const_iterator = SmallInstructionVector::const_iterator;
222 
223       iterator begin() {
224         assert(Valid && "Using invalid reduction");
225         return std::next(Instructions.begin());
226       }
227 
228       const_iterator begin() const {
229         assert(Valid && "Using invalid reduction");
230         return std::next(Instructions.begin());
231       }
232 
233       iterator end() { return Instructions.end(); }
234       const_iterator end() const { return Instructions.end(); }
235 
236     protected:
237       bool Valid = false;
238       SmallInstructionVector Instructions;
239 
240       void add(Loop *L);
241     };
242 
243     // The set of all reductions, and state tracking of possible reductions
244     // during loop instruction processing.
245     struct ReductionTracker {
246       using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
247 
248       // Add a new possible reduction.
249       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
250 
251       // Setup to track possible reductions corresponding to the provided
252       // rerolling scale. Only reductions with a number of non-PHI instructions
253       // that is divisible by the scale are considered. Three instructions sets
254       // are filled in:
255       //   - A set of all possible instructions in eligible reductions.
256       //   - A set of all PHIs in eligible reductions
257       //   - A set of all reduced values (last instructions) in eligible
258       //     reductions.
259       void restrictToScale(uint64_t Scale,
260                            SmallInstructionSet &PossibleRedSet,
261                            SmallInstructionSet &PossibleRedPHISet,
262                            SmallInstructionSet &PossibleRedLastSet) {
263         PossibleRedIdx.clear();
264         PossibleRedIter.clear();
265         Reds.clear();
266 
267         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
268           if (PossibleReds[i].size() % Scale == 0) {
269             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
270             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
271 
272             PossibleRedSet.insert(PossibleReds[i].getPHI());
273             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
274             for (Instruction *J : PossibleReds[i]) {
275               PossibleRedSet.insert(J);
276               PossibleRedIdx[J] = i;
277             }
278           }
279       }
280 
281       // The functions below are used while processing the loop instructions.
282 
283       // Are the two instructions both from reductions, and furthermore, from
284       // the same reduction?
285       bool isPairInSame(Instruction *J1, Instruction *J2) {
286         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
287         if (J1I != PossibleRedIdx.end()) {
288           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
289           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
290             return true;
291         }
292 
293         return false;
294       }
295 
296       // The two provided instructions, the first from the base iteration, and
297       // the second from iteration i, form a matched pair. If these are part of
298       // a reduction, record that fact.
299       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
300         if (PossibleRedIdx.count(J1)) {
301           assert(PossibleRedIdx.count(J2) &&
302                  "Recording reduction vs. non-reduction instruction?");
303 
304           PossibleRedIter[J1] = 0;
305           PossibleRedIter[J2] = i;
306 
307           int Idx = PossibleRedIdx[J1];
308           assert(Idx == PossibleRedIdx[J2] &&
309                  "Recording pair from different reductions?");
310           Reds.insert(Idx);
311         }
312       }
313 
314       // The functions below can be called after we've finished processing all
315       // instructions in the loop, and we know which reductions were selected.
316 
317       bool validateSelected();
318       void replaceSelected();
319 
320     protected:
321       // The vector of all possible reductions (for any scale).
322       SmallReductionVector PossibleReds;
323 
324       DenseMap<Instruction *, int> PossibleRedIdx;
325       DenseMap<Instruction *, int> PossibleRedIter;
326       DenseSet<int> Reds;
327     };
328 
329     // A DAGRootSet models an induction variable being used in a rerollable
330     // loop. For example,
331     //
332     //   x[i*3+0] = y1
333     //   x[i*3+1] = y2
334     //   x[i*3+2] = y3
335     //
336     //   Base instruction -> i*3
337     //                    +---+----+
338     //                   /    |     \
339     //               ST[y1]  +1     +2  <-- Roots
340     //                        |      |
341     //                      ST[y2] ST[y3]
342     //
343     // There may be multiple DAGRoots, for example:
344     //
345     //   x[i*2+0] = ...   (1)
346     //   x[i*2+1] = ...   (1)
347     //   x[i*2+4] = ...   (2)
348     //   x[i*2+5] = ...   (2)
349     //   x[(i+1234)*2+5678] = ... (3)
350     //   x[(i+1234)*2+5679] = ... (3)
351     //
352     // The loop will be rerolled by adding a new loop induction variable,
353     // one for the Base instruction in each DAGRootSet.
354     //
355     struct DAGRootSet {
356       Instruction *BaseInst;
357       SmallInstructionVector Roots;
358 
359       // The instructions between IV and BaseInst (but not including BaseInst).
360       SmallInstructionSet SubsumedInsts;
361     };
362 
363     // The set of all DAG roots, and state tracking of all roots
364     // for a particular induction variable.
365     struct DAGRootTracker {
366       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
367                      ScalarEvolution *SE, AliasAnalysis *AA,
368                      TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
369                      bool PreserveLCSSA,
370                      DenseMap<Instruction *, int64_t> &IncrMap,
371                      TinyInstructionVector LoopCtrlIVs)
372           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
373             PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
374             LoopControlIVs(LoopCtrlIVs) {}
375 
376       /// Stage 1: Find all the DAG roots for the induction variable.
377       bool findRoots();
378 
379       /// Stage 2: Validate if the found roots are valid.
380       bool validate(ReductionTracker &Reductions);
381 
382       /// Stage 3: Assuming validate() returned true, perform the
383       /// replacement.
384       /// @param BackedgeTakenCount The backedge-taken count of L.
385       void replace(const SCEV *BackedgeTakenCount);
386 
387     protected:
388       using UsesTy = MapVector<Instruction *, BitVector>;
389 
390       void findRootsRecursive(Instruction *IVU,
391                               SmallInstructionSet SubsumedInsts);
392       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
393       bool collectPossibleRoots(Instruction *Base,
394                                 std::map<int64_t,Instruction*> &Roots);
395       bool validateRootSet(DAGRootSet &DRS);
396 
397       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
398       void collectInLoopUserSet(const SmallInstructionVector &Roots,
399                                 const SmallInstructionSet &Exclude,
400                                 const SmallInstructionSet &Final,
401                                 DenseSet<Instruction *> &Users);
402       void collectInLoopUserSet(Instruction *Root,
403                                 const SmallInstructionSet &Exclude,
404                                 const SmallInstructionSet &Final,
405                                 DenseSet<Instruction *> &Users);
406 
407       UsesTy::iterator nextInstr(int Val, UsesTy &In,
408                                  const SmallInstructionSet &Exclude,
409                                  UsesTy::iterator *StartI=nullptr);
410       bool isBaseInst(Instruction *I);
411       bool isRootInst(Instruction *I);
412       bool instrDependsOn(Instruction *I,
413                           UsesTy::iterator Start,
414                           UsesTy::iterator End);
415       void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
416 
417       LoopReroll *Parent;
418 
419       // Members of Parent, replicated here for brevity.
420       Loop *L;
421       ScalarEvolution *SE;
422       AliasAnalysis *AA;
423       TargetLibraryInfo *TLI;
424       DominatorTree *DT;
425       LoopInfo *LI;
426       bool PreserveLCSSA;
427 
428       // The loop induction variable.
429       Instruction *IV;
430 
431       // Loop step amount.
432       int64_t Inc;
433 
434       // Loop reroll count; if Inc == 1, this records the scaling applied
435       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
436       // If Inc is not 1, Scale = Inc.
437       uint64_t Scale;
438 
439       // The roots themselves.
440       SmallVector<DAGRootSet,16> RootSets;
441 
442       // All increment instructions for IV.
443       SmallInstructionVector LoopIncs;
444 
445       // Map of all instructions in the loop (in order) to the iterations
446       // they are used in (or specially, IL_All for instructions
447       // used in the loop increment mechanism).
448       UsesTy Uses;
449 
450       // Map between induction variable and its increment
451       DenseMap<Instruction *, int64_t> &IVToIncMap;
452 
453       TinyInstructionVector LoopControlIVs;
454     };
455 
456     // Check if it is a compare-like instruction whose user is a branch
457     bool isCompareUsedByBranch(Instruction *I) {
458       auto *TI = I->getParent()->getTerminator();
459       if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
460         return false;
461       return I->hasOneUse() && TI->getOperand(0) == I;
462     };
463 
464     bool isLoopControlIV(Loop *L, Instruction *IV);
465     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
466     void collectPossibleReductions(Loop *L,
467            ReductionTracker &Reductions);
468     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
469                 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
470   };
471 
472 } // end anonymous namespace
473 
474 // Returns true if the provided instruction is used outside the given loop.
475 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
476 // non-loop blocks to be outside the loop.
477 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
478   for (User *U : I->users()) {
479     if (!L->contains(cast<Instruction>(U)))
480       return true;
481   }
482   return false;
483 }
484 
485 // Check if an IV is only used to control the loop. There are two cases:
486 // 1. It only has one use which is loop increment, and the increment is only
487 // used by comparison and the PHI (could has sext with nsw in between), and the
488 // comparison is only used by branch.
489 // 2. It is used by loop increment and the comparison, the loop increment is
490 // only used by the PHI, and the comparison is used only by the branch.
491 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
492   unsigned IVUses = IV->getNumUses();
493   if (IVUses != 2 && IVUses != 1)
494     return false;
495 
496   for (auto *User : IV->users()) {
497     int32_t IncOrCmpUses = User->getNumUses();
498     bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
499 
500     // User can only have one or two uses.
501     if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
502       return false;
503 
504     // Case 1
505     if (IVUses == 1) {
506       // The only user must be the loop increment.
507       // The loop increment must have two uses.
508       if (IsCompInst || IncOrCmpUses != 2)
509         return false;
510     }
511 
512     // Case 2
513     if (IVUses == 2 && IncOrCmpUses != 1)
514       return false;
515 
516     // The users of the IV must be a binary operation or a comparison
517     if (auto *BO = dyn_cast<BinaryOperator>(User)) {
518       if (BO->getOpcode() == Instruction::Add) {
519         // Loop Increment
520         // User of Loop Increment should be either PHI or CMP
521         for (auto *UU : User->users()) {
522           if (PHINode *PN = dyn_cast<PHINode>(UU)) {
523             if (PN != IV)
524               return false;
525           }
526           // Must be a CMP or an ext (of a value with nsw) then CMP
527           else {
528             auto *UUser = cast<Instruction>(UU);
529             // Skip SExt if we are extending an nsw value
530             // TODO: Allow ZExt too
531             if (BO->hasNoSignedWrap() && UUser->hasOneUse() &&
532                 isa<SExtInst>(UUser))
533               UUser = cast<Instruction>(*(UUser->user_begin()));
534             if (!isCompareUsedByBranch(UUser))
535               return false;
536           }
537         }
538       } else
539         return false;
540       // Compare : can only have one use, and must be branch
541     } else if (!IsCompInst)
542       return false;
543   }
544   return true;
545 }
546 
547 // Collect the list of loop induction variables with respect to which it might
548 // be possible to reroll the loop.
549 void LoopReroll::collectPossibleIVs(Loop *L,
550                                     SmallInstructionVector &PossibleIVs) {
551   for (Instruction &IV : L->getHeader()->phis()) {
552     if (!IV.getType()->isIntegerTy() && !IV.getType()->isPointerTy())
553       continue;
554 
555     if (const SCEVAddRecExpr *PHISCEV =
556             dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&IV))) {
557       if (PHISCEV->getLoop() != L)
558         continue;
559       if (!PHISCEV->isAffine())
560         continue;
561       const auto *IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
562       if (IncSCEV) {
563         IVToIncMap[&IV] = IncSCEV->getValue()->getSExtValue();
564         LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << IV << " = " << *PHISCEV
565                           << "\n");
566 
567         if (isLoopControlIV(L, &IV)) {
568           LoopControlIVs.push_back(&IV);
569           LLVM_DEBUG(dbgs() << "LRR: Loop control only IV: " << IV
570                             << " = " << *PHISCEV << "\n");
571         } else
572           PossibleIVs.push_back(&IV);
573       }
574     }
575   }
576 }
577 
578 // Add the remainder of the reduction-variable chain to the instruction vector
579 // (the initial PHINode has already been added). If successful, the object is
580 // marked as valid.
581 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
582   assert(!Valid && "Cannot add to an already-valid chain");
583 
584   // The reduction variable must be a chain of single-use instructions
585   // (including the PHI), except for the last value (which is used by the PHI
586   // and also outside the loop).
587   Instruction *C = Instructions.front();
588   if (C->user_empty())
589     return;
590 
591   do {
592     C = cast<Instruction>(*C->user_begin());
593     if (C->hasOneUse()) {
594       if (!C->isBinaryOp())
595         return;
596 
597       if (!(isa<PHINode>(Instructions.back()) ||
598             C->isSameOperationAs(Instructions.back())))
599         return;
600 
601       Instructions.push_back(C);
602     }
603   } while (C->hasOneUse());
604 
605   if (Instructions.size() < 2 ||
606       !C->isSameOperationAs(Instructions.back()) ||
607       C->use_empty())
608     return;
609 
610   // C is now the (potential) last instruction in the reduction chain.
611   for (User *U : C->users()) {
612     // The only in-loop user can be the initial PHI.
613     if (L->contains(cast<Instruction>(U)))
614       if (cast<Instruction>(U) != Instructions.front())
615         return;
616   }
617 
618   Instructions.push_back(C);
619   Valid = true;
620 }
621 
622 // Collect the vector of possible reduction variables.
623 void LoopReroll::collectPossibleReductions(Loop *L,
624   ReductionTracker &Reductions) {
625   BasicBlock *Header = L->getHeader();
626   for (BasicBlock::iterator I = Header->begin(),
627        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
628     if (!isa<PHINode>(I))
629       continue;
630     if (!I->getType()->isSingleValueType())
631       continue;
632 
633     SimpleLoopReduction SLR(&*I, L);
634     if (!SLR.valid())
635       continue;
636 
637     LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
638                       << SLR.size() << " chained instructions)\n");
639     Reductions.addSLR(SLR);
640   }
641 }
642 
643 // Collect the set of all users of the provided root instruction. This set of
644 // users contains not only the direct users of the root instruction, but also
645 // all users of those users, and so on. There are two exceptions:
646 //
647 //   1. Instructions in the set of excluded instructions are never added to the
648 //   use set (even if they are users). This is used, for example, to exclude
649 //   including root increments in the use set of the primary IV.
650 //
651 //   2. Instructions in the set of final instructions are added to the use set
652 //   if they are users, but their users are not added. This is used, for
653 //   example, to prevent a reduction update from forcing all later reduction
654 //   updates into the use set.
655 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
656   Instruction *Root, const SmallInstructionSet &Exclude,
657   const SmallInstructionSet &Final,
658   DenseSet<Instruction *> &Users) {
659   SmallInstructionVector Queue(1, Root);
660   while (!Queue.empty()) {
661     Instruction *I = Queue.pop_back_val();
662     if (!Users.insert(I).second)
663       continue;
664 
665     if (!Final.count(I))
666       for (Use &U : I->uses()) {
667         Instruction *User = cast<Instruction>(U.getUser());
668         if (PHINode *PN = dyn_cast<PHINode>(User)) {
669           // Ignore "wrap-around" uses to PHIs of this loop's header.
670           if (PN->getIncomingBlock(U) == L->getHeader())
671             continue;
672         }
673 
674         if (L->contains(User) && !Exclude.count(User)) {
675           Queue.push_back(User);
676         }
677       }
678 
679     // We also want to collect single-user "feeder" values.
680     for (Use &U : I->operands()) {
681       if (Instruction *Op = dyn_cast<Instruction>(U))
682         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
683             !Final.count(Op))
684           Queue.push_back(Op);
685     }
686   }
687 }
688 
689 // Collect all of the users of all of the provided root instructions (combined
690 // into a single set).
691 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
692   const SmallInstructionVector &Roots,
693   const SmallInstructionSet &Exclude,
694   const SmallInstructionSet &Final,
695   DenseSet<Instruction *> &Users) {
696   for (Instruction *Root : Roots)
697     collectInLoopUserSet(Root, Exclude, Final, Users);
698 }
699 
700 static bool isUnorderedLoadStore(Instruction *I) {
701   if (LoadInst *LI = dyn_cast<LoadInst>(I))
702     return LI->isUnordered();
703   if (StoreInst *SI = dyn_cast<StoreInst>(I))
704     return SI->isUnordered();
705   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
706     return !MI->isVolatile();
707   return false;
708 }
709 
710 /// Return true if IVU is a "simple" arithmetic operation.
711 /// This is used for narrowing the search space for DAGRoots; only arithmetic
712 /// and GEPs can be part of a DAGRoot.
713 static bool isSimpleArithmeticOp(User *IVU) {
714   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
715     switch (I->getOpcode()) {
716     default: return false;
717     case Instruction::Add:
718     case Instruction::Sub:
719     case Instruction::Mul:
720     case Instruction::Shl:
721     case Instruction::AShr:
722     case Instruction::LShr:
723     case Instruction::GetElementPtr:
724     case Instruction::Trunc:
725     case Instruction::ZExt:
726     case Instruction::SExt:
727       return true;
728     }
729   }
730   return false;
731 }
732 
733 static bool isLoopIncrement(User *U, Instruction *IV) {
734   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
735 
736   if ((BO && BO->getOpcode() != Instruction::Add) ||
737       (!BO && !isa<GetElementPtrInst>(U)))
738     return false;
739 
740   for (auto *UU : U->users()) {
741     PHINode *PN = dyn_cast<PHINode>(UU);
742     if (PN && PN == IV)
743       return true;
744   }
745   return false;
746 }
747 
748 bool LoopReroll::DAGRootTracker::
749 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
750   SmallInstructionVector BaseUsers;
751 
752   for (auto *I : Base->users()) {
753     ConstantInt *CI = nullptr;
754 
755     if (isLoopIncrement(I, IV)) {
756       LoopIncs.push_back(cast<Instruction>(I));
757       continue;
758     }
759 
760     // The root nodes must be either GEPs, ORs or ADDs.
761     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
762       if (BO->getOpcode() == Instruction::Add ||
763           BO->getOpcode() == Instruction::Or)
764         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
765     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
766       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
767       CI = dyn_cast<ConstantInt>(LastOperand);
768     }
769 
770     if (!CI) {
771       if (Instruction *II = dyn_cast<Instruction>(I)) {
772         BaseUsers.push_back(II);
773         continue;
774       } else {
775         LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
776                           << "\n");
777         return false;
778       }
779     }
780 
781     int64_t V = std::abs(CI->getValue().getSExtValue());
782     if (Roots.find(V) != Roots.end())
783       // No duplicates, please.
784       return false;
785 
786     Roots[V] = cast<Instruction>(I);
787   }
788 
789   // Make sure we have at least two roots.
790   if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
791     return false;
792 
793   // If we found non-loop-inc, non-root users of Base, assume they are
794   // for the zeroth root index. This is because "add %a, 0" gets optimized
795   // away.
796   if (BaseUsers.size()) {
797     if (Roots.find(0) != Roots.end()) {
798       LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
799       return false;
800     }
801     Roots[0] = Base;
802   }
803 
804   // Calculate the number of users of the base, or lowest indexed, iteration.
805   unsigned NumBaseUses = BaseUsers.size();
806   if (NumBaseUses == 0)
807     NumBaseUses = Roots.begin()->second->getNumUses();
808 
809   // Check that every node has the same number of users.
810   for (auto &KV : Roots) {
811     if (KV.first == 0)
812       continue;
813     if (!KV.second->hasNUses(NumBaseUses)) {
814       LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
815                         << "#Base=" << NumBaseUses
816                         << ", #Root=" << KV.second->getNumUses() << "\n");
817       return false;
818     }
819   }
820 
821   return true;
822 }
823 
824 void LoopReroll::DAGRootTracker::
825 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
826   // Does the user look like it could be part of a root set?
827   // All its users must be simple arithmetic ops.
828   if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
829     return;
830 
831   if (I != IV && findRootsBase(I, SubsumedInsts))
832     return;
833 
834   SubsumedInsts.insert(I);
835 
836   for (User *V : I->users()) {
837     Instruction *I = cast<Instruction>(V);
838     if (is_contained(LoopIncs, I))
839       continue;
840 
841     if (!isSimpleArithmeticOp(I))
842       continue;
843 
844     // The recursive call makes a copy of SubsumedInsts.
845     findRootsRecursive(I, SubsumedInsts);
846   }
847 }
848 
849 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
850   if (DRS.Roots.empty())
851     return false;
852 
853   // If the value of the base instruction is used outside the loop, we cannot
854   // reroll the loop. Check for other root instructions is unnecessary because
855   // they don't match any base instructions if their values are used outside.
856   if (hasUsesOutsideLoop(DRS.BaseInst, L))
857     return false;
858 
859   // Consider a DAGRootSet with N-1 roots (so N different values including
860   //   BaseInst).
861   // Define d = Roots[0] - BaseInst, which should be the same as
862   //   Roots[I] - Roots[I-1] for all I in [1..N).
863   // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
864   //   loop iteration J.
865   //
866   // Now, For the loop iterations to be consecutive:
867   //   D = d * N
868   const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
869   if (!ADR)
870     return false;
871 
872   // Check that the first root is evenly spaced.
873   unsigned N = DRS.Roots.size() + 1;
874   const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
875   if (isa<SCEVCouldNotCompute>(StepSCEV) || StepSCEV->getType()->isPointerTy())
876     return false;
877   const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
878   if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
879     return false;
880 
881   // Check that the remainling roots are evenly spaced.
882   for (unsigned i = 1; i < N - 1; ++i) {
883     const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
884                                                SE->getSCEV(DRS.Roots[i-1]));
885     if (NewStepSCEV != StepSCEV)
886       return false;
887   }
888 
889   return true;
890 }
891 
892 bool LoopReroll::DAGRootTracker::
893 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
894   // The base of a RootSet must be an AddRec, so it can be erased.
895   const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
896   if (!IVU_ADR || IVU_ADR->getLoop() != L)
897     return false;
898 
899   std::map<int64_t, Instruction*> V;
900   if (!collectPossibleRoots(IVU, V))
901     return false;
902 
903   // If we didn't get a root for index zero, then IVU must be
904   // subsumed.
905   if (V.find(0) == V.end())
906     SubsumedInsts.insert(IVU);
907 
908   // Partition the vector into monotonically increasing indexes.
909   DAGRootSet DRS;
910   DRS.BaseInst = nullptr;
911 
912   SmallVector<DAGRootSet, 16> PotentialRootSets;
913 
914   for (auto &KV : V) {
915     if (!DRS.BaseInst) {
916       DRS.BaseInst = KV.second;
917       DRS.SubsumedInsts = SubsumedInsts;
918     } else if (DRS.Roots.empty()) {
919       DRS.Roots.push_back(KV.second);
920     } else if (V.find(KV.first - 1) != V.end()) {
921       DRS.Roots.push_back(KV.second);
922     } else {
923       // Linear sequence terminated.
924       if (!validateRootSet(DRS))
925         return false;
926 
927       // Construct a new DAGRootSet with the next sequence.
928       PotentialRootSets.push_back(DRS);
929       DRS.BaseInst = KV.second;
930       DRS.Roots.clear();
931     }
932   }
933 
934   if (!validateRootSet(DRS))
935     return false;
936 
937   PotentialRootSets.push_back(DRS);
938 
939   RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
940 
941   return true;
942 }
943 
944 bool LoopReroll::DAGRootTracker::findRoots() {
945   Inc = IVToIncMap[IV];
946 
947   assert(RootSets.empty() && "Unclean state!");
948   if (std::abs(Inc) == 1) {
949     for (auto *IVU : IV->users()) {
950       if (isLoopIncrement(IVU, IV))
951         LoopIncs.push_back(cast<Instruction>(IVU));
952     }
953     findRootsRecursive(IV, SmallInstructionSet());
954     LoopIncs.push_back(IV);
955   } else {
956     if (!findRootsBase(IV, SmallInstructionSet()))
957       return false;
958   }
959 
960   // Ensure all sets have the same size.
961   if (RootSets.empty()) {
962     LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
963     return false;
964   }
965   for (auto &V : RootSets) {
966     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
967       LLVM_DEBUG(
968           dbgs()
969           << "LRR: Aborting because not all root sets have the same size\n");
970       return false;
971     }
972   }
973 
974   Scale = RootSets[0].Roots.size() + 1;
975 
976   if (Scale > IL_MaxRerollIterations) {
977     LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
978                       << "#Found=" << Scale
979                       << ", #Max=" << IL_MaxRerollIterations << "\n");
980     return false;
981   }
982 
983   LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
984                     << "\n");
985 
986   return true;
987 }
988 
989 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
990   // Populate the MapVector with all instructions in the block, in order first,
991   // so we can iterate over the contents later in perfect order.
992   for (auto &I : *L->getHeader()) {
993     Uses[&I].resize(IL_End);
994   }
995 
996   SmallInstructionSet Exclude;
997   for (auto &DRS : RootSets) {
998     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
999     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1000     Exclude.insert(DRS.BaseInst);
1001   }
1002   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1003 
1004   for (auto &DRS : RootSets) {
1005     DenseSet<Instruction*> VBase;
1006     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1007     for (auto *I : VBase) {
1008       Uses[I].set(0);
1009     }
1010 
1011     unsigned Idx = 1;
1012     for (auto *Root : DRS.Roots) {
1013       DenseSet<Instruction*> V;
1014       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1015 
1016       // While we're here, check the use sets are the same size.
1017       if (V.size() != VBase.size()) {
1018         LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1019         return false;
1020       }
1021 
1022       for (auto *I : V) {
1023         Uses[I].set(Idx);
1024       }
1025       ++Idx;
1026     }
1027 
1028     // Make sure our subsumed instructions are remembered too.
1029     for (auto *I : DRS.SubsumedInsts) {
1030       Uses[I].set(IL_All);
1031     }
1032   }
1033 
1034   // Make sure the loop increments are also accounted for.
1035 
1036   Exclude.clear();
1037   for (auto &DRS : RootSets) {
1038     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1039     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1040     Exclude.insert(DRS.BaseInst);
1041   }
1042 
1043   DenseSet<Instruction*> V;
1044   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1045   for (auto *I : V) {
1046     if (I->mayHaveSideEffects()) {
1047       LLVM_DEBUG(dbgs() << "LRR: Aborting - "
1048                         << "An instruction which does not belong to any root "
1049                         << "sets must not have side effects: " << *I);
1050       return false;
1051     }
1052     Uses[I].set(IL_All);
1053   }
1054 
1055   return true;
1056 }
1057 
1058 /// Get the next instruction in "In" that is a member of set Val.
1059 /// Start searching from StartI, and do not return anything in Exclude.
1060 /// If StartI is not given, start from In.begin().
1061 LoopReroll::DAGRootTracker::UsesTy::iterator
1062 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1063                                       const SmallInstructionSet &Exclude,
1064                                       UsesTy::iterator *StartI) {
1065   UsesTy::iterator I = StartI ? *StartI : In.begin();
1066   while (I != In.end() && (I->second.test(Val) == 0 ||
1067                            Exclude.contains(I->first)))
1068     ++I;
1069   return I;
1070 }
1071 
1072 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1073   for (auto &DRS : RootSets) {
1074     if (DRS.BaseInst == I)
1075       return true;
1076   }
1077   return false;
1078 }
1079 
1080 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1081   for (auto &DRS : RootSets) {
1082     if (is_contained(DRS.Roots, I))
1083       return true;
1084   }
1085   return false;
1086 }
1087 
1088 /// Return true if instruction I depends on any instruction between
1089 /// Start and End.
1090 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1091                                                 UsesTy::iterator Start,
1092                                                 UsesTy::iterator End) {
1093   for (auto *U : I->users()) {
1094     for (auto It = Start; It != End; ++It)
1095       if (U == It->first)
1096         return true;
1097   }
1098   return false;
1099 }
1100 
1101 static bool isIgnorableInst(const Instruction *I) {
1102   if (isa<DbgInfoIntrinsic>(I))
1103     return true;
1104   const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1105   if (!II)
1106     return false;
1107   switch (II->getIntrinsicID()) {
1108     default:
1109       return false;
1110     case Intrinsic::annotation:
1111     case Intrinsic::ptr_annotation:
1112     case Intrinsic::var_annotation:
1113     // TODO: the following intrinsics may also be allowed:
1114     //   lifetime_start, lifetime_end, invariant_start, invariant_end
1115       return true;
1116   }
1117   return false;
1118 }
1119 
1120 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1121   // We now need to check for equivalence of the use graph of each root with
1122   // that of the primary induction variable (excluding the roots). Our goal
1123   // here is not to solve the full graph isomorphism problem, but rather to
1124   // catch common cases without a lot of work. As a result, we will assume
1125   // that the relative order of the instructions in each unrolled iteration
1126   // is the same (although we will not make an assumption about how the
1127   // different iterations are intermixed). Note that while the order must be
1128   // the same, the instructions may not be in the same basic block.
1129 
1130   // An array of just the possible reductions for this scale factor. When we
1131   // collect the set of all users of some root instructions, these reduction
1132   // instructions are treated as 'final' (their uses are not considered).
1133   // This is important because we don't want the root use set to search down
1134   // the reduction chain.
1135   SmallInstructionSet PossibleRedSet;
1136   SmallInstructionSet PossibleRedLastSet;
1137   SmallInstructionSet PossibleRedPHISet;
1138   Reductions.restrictToScale(Scale, PossibleRedSet,
1139                              PossibleRedPHISet, PossibleRedLastSet);
1140 
1141   // Populate "Uses" with where each instruction is used.
1142   if (!collectUsedInstructions(PossibleRedSet))
1143     return false;
1144 
1145   // Make sure we mark the reduction PHIs as used in all iterations.
1146   for (auto *I : PossibleRedPHISet) {
1147     Uses[I].set(IL_All);
1148   }
1149 
1150   // Make sure we mark loop-control-only PHIs as used in all iterations. See
1151   // comment above LoopReroll::isLoopControlIV for more information.
1152   BasicBlock *Header = L->getHeader();
1153   for (Instruction *LoopControlIV : LoopControlIVs) {
1154     for (auto *U : LoopControlIV->users()) {
1155       Instruction *IVUser = dyn_cast<Instruction>(U);
1156       // IVUser could be loop increment or compare
1157       Uses[IVUser].set(IL_All);
1158       for (auto *UU : IVUser->users()) {
1159         Instruction *UUser = dyn_cast<Instruction>(UU);
1160         // UUser could be compare, PHI or branch
1161         Uses[UUser].set(IL_All);
1162         // Skip SExt
1163         if (isa<SExtInst>(UUser)) {
1164           UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1165           Uses[UUser].set(IL_All);
1166         }
1167         // Is UUser a compare instruction?
1168         if (UU->hasOneUse()) {
1169           Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1170           if (BI == cast<BranchInst>(Header->getTerminator()))
1171             Uses[BI].set(IL_All);
1172         }
1173       }
1174     }
1175   }
1176 
1177   // Make sure all instructions in the loop are in one and only one
1178   // set.
1179   for (auto &KV : Uses) {
1180     if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1181       LLVM_DEBUG(
1182           dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1183                  << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1184       return false;
1185     }
1186   }
1187 
1188   LLVM_DEBUG(for (auto &KV
1189                   : Uses) {
1190     dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1191   });
1192 
1193   BatchAAResults BatchAA(*AA);
1194   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1195     // In addition to regular aliasing information, we need to look for
1196     // instructions from later (future) iterations that have side effects
1197     // preventing us from reordering them past other instructions with side
1198     // effects.
1199     bool FutureSideEffects = false;
1200     AliasSetTracker AST(BatchAA);
1201     // The map between instructions in f(%iv.(i+1)) and f(%iv).
1202     DenseMap<Value *, Value *> BaseMap;
1203 
1204     // Compare iteration Iter to the base.
1205     SmallInstructionSet Visited;
1206     auto BaseIt = nextInstr(0, Uses, Visited);
1207     auto RootIt = nextInstr(Iter, Uses, Visited);
1208     auto LastRootIt = Uses.begin();
1209 
1210     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1211       Instruction *BaseInst = BaseIt->first;
1212       Instruction *RootInst = RootIt->first;
1213 
1214       // Skip over the IV or root instructions; only match their users.
1215       bool Continue = false;
1216       if (isBaseInst(BaseInst)) {
1217         Visited.insert(BaseInst);
1218         BaseIt = nextInstr(0, Uses, Visited);
1219         Continue = true;
1220       }
1221       if (isRootInst(RootInst)) {
1222         LastRootIt = RootIt;
1223         Visited.insert(RootInst);
1224         RootIt = nextInstr(Iter, Uses, Visited);
1225         Continue = true;
1226       }
1227       if (Continue) continue;
1228 
1229       if (!BaseInst->isSameOperationAs(RootInst)) {
1230         // Last chance saloon. We don't try and solve the full isomorphism
1231         // problem, but try and at least catch the case where two instructions
1232         // *of different types* are round the wrong way. We won't be able to
1233         // efficiently tell, given two ADD instructions, which way around we
1234         // should match them, but given an ADD and a SUB, we can at least infer
1235         // which one is which.
1236         //
1237         // This should allow us to deal with a greater subset of the isomorphism
1238         // problem. It does however change a linear algorithm into a quadratic
1239         // one, so limit the number of probes we do.
1240         auto TryIt = RootIt;
1241         unsigned N = NumToleratedFailedMatches;
1242         while (TryIt != Uses.end() &&
1243                !BaseInst->isSameOperationAs(TryIt->first) &&
1244                N--) {
1245           ++TryIt;
1246           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1247         }
1248 
1249         if (TryIt == Uses.end() || TryIt == RootIt ||
1250             instrDependsOn(TryIt->first, RootIt, TryIt)) {
1251           LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1252                             << *BaseInst << " vs. " << *RootInst << "\n");
1253           return false;
1254         }
1255 
1256         RootIt = TryIt;
1257         RootInst = TryIt->first;
1258       }
1259 
1260       // All instructions between the last root and this root
1261       // may belong to some other iteration. If they belong to a
1262       // future iteration, then they're dangerous to alias with.
1263       //
1264       // Note that because we allow a limited amount of flexibility in the order
1265       // that we visit nodes, LastRootIt might be *before* RootIt, in which
1266       // case we've already checked this set of instructions so we shouldn't
1267       // do anything.
1268       for (; LastRootIt < RootIt; ++LastRootIt) {
1269         Instruction *I = LastRootIt->first;
1270         if (LastRootIt->second.find_first() < (int)Iter)
1271           continue;
1272         if (I->mayWriteToMemory())
1273           AST.add(I);
1274         // Note: This is specifically guarded by a check on isa<PHINode>,
1275         // which while a valid (somewhat arbitrary) micro-optimization, is
1276         // needed because otherwise isSafeToSpeculativelyExecute returns
1277         // false on PHI nodes.
1278         if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1279             !isSafeToSpeculativelyExecute(I))
1280           // Intervening instructions cause side effects.
1281           FutureSideEffects = true;
1282       }
1283 
1284       // Make sure that this instruction, which is in the use set of this
1285       // root instruction, does not also belong to the base set or the set of
1286       // some other root instruction.
1287       if (RootIt->second.count() > 1) {
1288         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1289                           << " vs. " << *RootInst << " (prev. case overlap)\n");
1290         return false;
1291       }
1292 
1293       // Make sure that we don't alias with any instruction in the alias set
1294       // tracker. If we do, then we depend on a future iteration, and we
1295       // can't reroll.
1296       if (RootInst->mayReadFromMemory()) {
1297         for (auto &K : AST) {
1298           if (isModOrRefSet(K.aliasesUnknownInst(RootInst, BatchAA))) {
1299             LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1300                               << *BaseInst << " vs. " << *RootInst
1301                               << " (depends on future store)\n");
1302             return false;
1303           }
1304         }
1305       }
1306 
1307       // If we've past an instruction from a future iteration that may have
1308       // side effects, and this instruction might also, then we can't reorder
1309       // them, and this matching fails. As an exception, we allow the alias
1310       // set tracker to handle regular (unordered) load/store dependencies.
1311       if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1312                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
1313                                 (!isUnorderedLoadStore(RootInst) &&
1314                                  !isSafeToSpeculativelyExecute(RootInst)))) {
1315         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1316                           << " vs. " << *RootInst
1317                           << " (side effects prevent reordering)\n");
1318         return false;
1319       }
1320 
1321       // For instructions that are part of a reduction, if the operation is
1322       // associative, then don't bother matching the operands (because we
1323       // already know that the instructions are isomorphic, and the order
1324       // within the iteration does not matter). For non-associative reductions,
1325       // we do need to match the operands, because we need to reject
1326       // out-of-order instructions within an iteration!
1327       // For example (assume floating-point addition), we need to reject this:
1328       //   x += a[i]; x += b[i];
1329       //   x += a[i+1]; x += b[i+1];
1330       //   x += b[i+2]; x += a[i+2];
1331       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1332 
1333       if (!(InReduction && BaseInst->isAssociative())) {
1334         bool Swapped = false, SomeOpMatched = false;
1335         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1336           Value *Op2 = RootInst->getOperand(j);
1337 
1338           // If this is part of a reduction (and the operation is not
1339           // associatve), then we match all operands, but not those that are
1340           // part of the reduction.
1341           if (InReduction)
1342             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1343               if (Reductions.isPairInSame(RootInst, Op2I))
1344                 continue;
1345 
1346           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1347           if (BMI != BaseMap.end()) {
1348             Op2 = BMI->second;
1349           } else {
1350             for (auto &DRS : RootSets) {
1351               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1352                 Op2 = DRS.BaseInst;
1353                 break;
1354               }
1355             }
1356           }
1357 
1358           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1359             // If we've not already decided to swap the matched operands, and
1360             // we've not already matched our first operand (note that we could
1361             // have skipped matching the first operand because it is part of a
1362             // reduction above), and the instruction is commutative, then try
1363             // the swapped match.
1364             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1365                 BaseInst->getOperand(!j) == Op2) {
1366               Swapped = true;
1367             } else {
1368               LLVM_DEBUG(dbgs()
1369                          << "LRR: iteration root match failed at " << *BaseInst
1370                          << " vs. " << *RootInst << " (operand " << j << ")\n");
1371               return false;
1372             }
1373           }
1374 
1375           SomeOpMatched = true;
1376         }
1377       }
1378 
1379       if ((!PossibleRedLastSet.count(BaseInst) &&
1380            hasUsesOutsideLoop(BaseInst, L)) ||
1381           (!PossibleRedLastSet.count(RootInst) &&
1382            hasUsesOutsideLoop(RootInst, L))) {
1383         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1384                           << " vs. " << *RootInst << " (uses outside loop)\n");
1385         return false;
1386       }
1387 
1388       Reductions.recordPair(BaseInst, RootInst, Iter);
1389       BaseMap.insert(std::make_pair(RootInst, BaseInst));
1390 
1391       LastRootIt = RootIt;
1392       Visited.insert(BaseInst);
1393       Visited.insert(RootInst);
1394       BaseIt = nextInstr(0, Uses, Visited);
1395       RootIt = nextInstr(Iter, Uses, Visited);
1396     }
1397     assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1398            "Mismatched set sizes!");
1399   }
1400 
1401   LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1402                     << "\n");
1403 
1404   return true;
1405 }
1406 
1407 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1408   BasicBlock *Header = L->getHeader();
1409 
1410   // Compute the start and increment for each BaseInst before we start erasing
1411   // instructions.
1412   SmallVector<const SCEV *, 8> StartExprs;
1413   SmallVector<const SCEV *, 8> IncrExprs;
1414   for (auto &DRS : RootSets) {
1415     const SCEVAddRecExpr *IVSCEV =
1416         cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1417     StartExprs.push_back(IVSCEV->getStart());
1418     IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1419   }
1420 
1421   // Remove instructions associated with non-base iterations.
1422   for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*Header))) {
1423     unsigned I = Uses[&Inst].find_first();
1424     if (I > 0 && I < IL_All) {
1425       LLVM_DEBUG(dbgs() << "LRR: removing: " << Inst << "\n");
1426       Inst.eraseFromParent();
1427     }
1428   }
1429 
1430   // Rewrite each BaseInst using SCEV.
1431   for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1432     // Insert the new induction variable.
1433     replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1434 
1435   { // Limit the lifetime of SCEVExpander.
1436     BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1437     const DataLayout &DL = Header->getModule()->getDataLayout();
1438     SCEVExpander Expander(*SE, DL, "reroll");
1439     auto Zero = SE->getZero(BackedgeTakenCount->getType());
1440     auto One = SE->getOne(BackedgeTakenCount->getType());
1441     auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1442     Value *NewIV =
1443         Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1444                                Header->getFirstNonPHIOrDbg());
1445     // FIXME: This arithmetic can overflow.
1446     auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1447     auto ScaledTripCount = SE->getMulExpr(
1448         TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1449     auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1450     Value *TakenCount =
1451         Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1452                                Header->getFirstNonPHIOrDbg());
1453     Value *Cond =
1454         new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1455     BI->setCondition(Cond);
1456 
1457     if (BI->getSuccessor(1) != Header)
1458       BI->swapSuccessors();
1459   }
1460 
1461   SimplifyInstructionsInBlock(Header, TLI);
1462   DeleteDeadPHIs(Header, TLI);
1463 }
1464 
1465 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1466                                            const SCEV *Start,
1467                                            const SCEV *IncrExpr) {
1468   BasicBlock *Header = L->getHeader();
1469   Instruction *Inst = DRS.BaseInst;
1470 
1471   const SCEV *NewIVSCEV =
1472       SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1473 
1474   { // Limit the lifetime of SCEVExpander.
1475     const DataLayout &DL = Header->getModule()->getDataLayout();
1476     SCEVExpander Expander(*SE, DL, "reroll");
1477     Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1478                                           Header->getFirstNonPHIOrDbg());
1479 
1480     for (auto &KV : Uses)
1481       if (KV.second.find_first() == 0)
1482         KV.first->replaceUsesOfWith(Inst, NewIV);
1483   }
1484 }
1485 
1486 // Validate the selected reductions. All iterations must have an isomorphic
1487 // part of the reduction chain and, for non-associative reductions, the chain
1488 // entries must appear in order.
1489 bool LoopReroll::ReductionTracker::validateSelected() {
1490   // For a non-associative reduction, the chain entries must appear in order.
1491   for (int i : Reds) {
1492     int PrevIter = 0, BaseCount = 0, Count = 0;
1493     for (Instruction *J : PossibleReds[i]) {
1494       // Note that all instructions in the chain must have been found because
1495       // all instructions in the function must have been assigned to some
1496       // iteration.
1497       int Iter = PossibleRedIter[J];
1498       if (Iter != PrevIter && Iter != PrevIter + 1 &&
1499           !PossibleReds[i].getReducedValue()->isAssociative()) {
1500         LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1501                           << J << "\n");
1502         return false;
1503       }
1504 
1505       if (Iter != PrevIter) {
1506         if (Count != BaseCount) {
1507           LLVM_DEBUG(dbgs()
1508                      << "LRR: Iteration " << PrevIter << " reduction use count "
1509                      << Count << " is not equal to the base use count "
1510                      << BaseCount << "\n");
1511           return false;
1512         }
1513 
1514         Count = 0;
1515       }
1516 
1517       ++Count;
1518       if (Iter == 0)
1519         ++BaseCount;
1520 
1521       PrevIter = Iter;
1522     }
1523   }
1524 
1525   return true;
1526 }
1527 
1528 // For all selected reductions, remove all parts except those in the first
1529 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1530 // of the first-iteration reduced value (in other words, reroll the selected
1531 // reductions).
1532 void LoopReroll::ReductionTracker::replaceSelected() {
1533   // Fixup reductions to refer to the last instruction associated with the
1534   // first iteration (not the last).
1535   for (int i : Reds) {
1536     int j = 0;
1537     for (int e = PossibleReds[i].size(); j != e; ++j)
1538       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1539         --j;
1540         break;
1541       }
1542 
1543     // Replace users with the new end-of-chain value.
1544     SmallInstructionVector Users;
1545     for (User *U : PossibleReds[i].getReducedValue()->users()) {
1546       Users.push_back(cast<Instruction>(U));
1547     }
1548 
1549     for (Instruction *User : Users)
1550       User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1551                               PossibleReds[i][j]);
1552   }
1553 }
1554 
1555 // Reroll the provided loop with respect to the provided induction variable.
1556 // Generally, we're looking for a loop like this:
1557 //
1558 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1559 // f(%iv)
1560 // %iv.1 = add %iv, 1                <-- a root increment
1561 // f(%iv.1)
1562 // %iv.2 = add %iv, 2                <-- a root increment
1563 // f(%iv.2)
1564 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1565 // f(%iv.scale_m_1)
1566 // ...
1567 // %iv.next = add %iv, scale
1568 // %cmp = icmp(%iv, ...)
1569 // br %cmp, header, exit
1570 //
1571 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1572 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1573 // be intermixed with eachother. The restriction imposed by this algorithm is
1574 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1575 // etc. be the same.
1576 //
1577 // First, we collect the use set of %iv, excluding the other increment roots.
1578 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1579 // times, having collected the use set of f(%iv.(i+1)), during which we:
1580 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1581 //     the next unmatched instruction in f(%iv.(i+1)).
1582 //   - Ensure that both matched instructions don't have any external users
1583 //     (with the exception of last-in-chain reduction instructions).
1584 //   - Track the (aliasing) write set, and other side effects, of all
1585 //     instructions that belong to future iterations that come before the matched
1586 //     instructions. If the matched instructions read from that write set, then
1587 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1588 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1589 //     if any of these future instructions had side effects (could not be
1590 //     speculatively executed), and so do the matched instructions, when we
1591 //     cannot reorder those side-effect-producing instructions, and rerolling
1592 //     fails.
1593 //
1594 // Finally, we make sure that all loop instructions are either loop increment
1595 // roots, belong to simple latch code, parts of validated reductions, part of
1596 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1597 // have been validated), then we reroll the loop.
1598 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1599                         const SCEV *BackedgeTakenCount,
1600                         ReductionTracker &Reductions) {
1601   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1602                           IVToIncMap, LoopControlIVs);
1603 
1604   if (!DAGRoots.findRoots())
1605     return false;
1606   LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1607                     << "\n");
1608 
1609   if (!DAGRoots.validate(Reductions))
1610     return false;
1611   if (!Reductions.validateSelected())
1612     return false;
1613   // At this point, we've validated the rerolling, and we're committed to
1614   // making changes!
1615 
1616   Reductions.replaceSelected();
1617   DAGRoots.replace(BackedgeTakenCount);
1618 
1619   ++NumRerolledLoops;
1620   return true;
1621 }
1622 
1623 bool LoopReroll::runOnLoop(Loop *L) {
1624   BasicBlock *Header = L->getHeader();
1625   LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1626                     << Header->getName() << " (" << L->getNumBlocks()
1627                     << " block(s))\n");
1628 
1629   // For now, we'll handle only single BB loops.
1630   if (L->getNumBlocks() > 1)
1631     return false;
1632 
1633   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1634     return false;
1635 
1636   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1637   LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1638   LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1639                << "\n");
1640 
1641   // First, we need to find the induction variable with respect to which we can
1642   // reroll (there may be several possible options).
1643   SmallInstructionVector PossibleIVs;
1644   IVToIncMap.clear();
1645   LoopControlIVs.clear();
1646   collectPossibleIVs(L, PossibleIVs);
1647 
1648   if (PossibleIVs.empty()) {
1649     LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1650     return false;
1651   }
1652 
1653   ReductionTracker Reductions;
1654   collectPossibleReductions(L, Reductions);
1655   bool Changed = false;
1656 
1657   // For each possible IV, collect the associated possible set of 'root' nodes
1658   // (i+1, i+2, etc.).
1659   for (Instruction *PossibleIV : PossibleIVs)
1660     if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1661       Changed = true;
1662       break;
1663     }
1664   LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1665 
1666   // Trip count of L has changed so SE must be re-evaluated.
1667   if (Changed)
1668     SE->forgetLoop(L);
1669 
1670   return Changed;
1671 }
1672 
1673 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
1674                                       LoopStandardAnalysisResults &AR,
1675                                       LPMUpdater &U) {
1676   return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
1677              ? getLoopPassPreservedAnalyses()
1678              : PreservedAnalyses::all();
1679 }
1680