1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "memcpyopt"
69 
70 static cl::opt<bool>
71     EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(false), cl::Hidden,
72                     cl::desc("Use MemorySSA-backed MemCpyOpt."));
73 
74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
75 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
76 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
77 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
78 STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
79 
80 namespace {
81 
82 /// Represents a range of memset'd bytes with the ByteVal value.
83 /// This allows us to analyze stores like:
84 ///   store 0 -> P+1
85 ///   store 0 -> P+0
86 ///   store 0 -> P+3
87 ///   store 0 -> P+2
88 /// which sometimes happens with stores to arrays of structs etc.  When we see
89 /// the first store, we make a range [1, 2).  The second store extends the range
90 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
91 /// two ranges into [0, 3) which is memset'able.
92 struct MemsetRange {
93   // Start/End - A semi range that describes the span that this range covers.
94   // The range is closed at the start and open at the end: [Start, End).
95   int64_t Start, End;
96 
97   /// StartPtr - The getelementptr instruction that points to the start of the
98   /// range.
99   Value *StartPtr;
100 
101   /// Alignment - The known alignment of the first store.
102   unsigned Alignment;
103 
104   /// TheStores - The actual stores that make up this range.
105   SmallVector<Instruction*, 16> TheStores;
106 
107   bool isProfitableToUseMemset(const DataLayout &DL) const;
108 };
109 
110 } // end anonymous namespace
111 
112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
113   // If we found more than 4 stores to merge or 16 bytes, use memset.
114   if (TheStores.size() >= 4 || End-Start >= 16) return true;
115 
116   // If there is nothing to merge, don't do anything.
117   if (TheStores.size() < 2) return false;
118 
119   // If any of the stores are a memset, then it is always good to extend the
120   // memset.
121   for (Instruction *SI : TheStores)
122     if (!isa<StoreInst>(SI))
123       return true;
124 
125   // Assume that the code generator is capable of merging pairs of stores
126   // together if it wants to.
127   if (TheStores.size() == 2) return false;
128 
129   // If we have fewer than 8 stores, it can still be worthwhile to do this.
130   // For example, merging 4 i8 stores into an i32 store is useful almost always.
131   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
132   // memset will be split into 2 32-bit stores anyway) and doing so can
133   // pessimize the llvm optimizer.
134   //
135   // Since we don't have perfect knowledge here, make some assumptions: assume
136   // the maximum GPR width is the same size as the largest legal integer
137   // size. If so, check to see whether we will end up actually reducing the
138   // number of stores used.
139   unsigned Bytes = unsigned(End-Start);
140   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
141   if (MaxIntSize == 0)
142     MaxIntSize = 1;
143   unsigned NumPointerStores = Bytes / MaxIntSize;
144 
145   // Assume the remaining bytes if any are done a byte at a time.
146   unsigned NumByteStores = Bytes % MaxIntSize;
147 
148   // If we will reduce the # stores (according to this heuristic), do the
149   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
150   // etc.
151   return TheStores.size() > NumPointerStores+NumByteStores;
152 }
153 
154 namespace {
155 
156 class MemsetRanges {
157   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
158 
159   /// A sorted list of the memset ranges.
160   SmallVector<MemsetRange, 8> Ranges;
161 
162   const DataLayout &DL;
163 
164 public:
165   MemsetRanges(const DataLayout &DL) : DL(DL) {}
166 
167   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
168 
169   const_iterator begin() const { return Ranges.begin(); }
170   const_iterator end() const { return Ranges.end(); }
171   bool empty() const { return Ranges.empty(); }
172 
173   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
174     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
175       addStore(OffsetFromFirst, SI);
176     else
177       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
178   }
179 
180   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
181     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
182 
183     addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
184              SI->getAlign().value(), SI);
185   }
186 
187   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
188     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
189     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
190   }
191 
192   void addRange(int64_t Start, int64_t Size, Value *Ptr,
193                 unsigned Alignment, Instruction *Inst);
194 };
195 
196 } // end anonymous namespace
197 
198 /// Add a new store to the MemsetRanges data structure.  This adds a
199 /// new range for the specified store at the specified offset, merging into
200 /// existing ranges as appropriate.
201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
202                             unsigned Alignment, Instruction *Inst) {
203   int64_t End = Start+Size;
204 
205   range_iterator I = partition_point(
206       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
207 
208   // We now know that I == E, in which case we didn't find anything to merge
209   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
210   // to insert a new range.  Handle this now.
211   if (I == Ranges.end() || End < I->Start) {
212     MemsetRange &R = *Ranges.insert(I, MemsetRange());
213     R.Start        = Start;
214     R.End          = End;
215     R.StartPtr     = Ptr;
216     R.Alignment    = Alignment;
217     R.TheStores.push_back(Inst);
218     return;
219   }
220 
221   // This store overlaps with I, add it.
222   I->TheStores.push_back(Inst);
223 
224   // At this point, we may have an interval that completely contains our store.
225   // If so, just add it to the interval and return.
226   if (I->Start <= Start && I->End >= End)
227     return;
228 
229   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
230   // but is not entirely contained within the range.
231 
232   // See if the range extends the start of the range.  In this case, it couldn't
233   // possibly cause it to join the prior range, because otherwise we would have
234   // stopped on *it*.
235   if (Start < I->Start) {
236     I->Start = Start;
237     I->StartPtr = Ptr;
238     I->Alignment = Alignment;
239   }
240 
241   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
242   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
243   // End.
244   if (End > I->End) {
245     I->End = End;
246     range_iterator NextI = I;
247     while (++NextI != Ranges.end() && End >= NextI->Start) {
248       // Merge the range in.
249       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
250       if (NextI->End > I->End)
251         I->End = NextI->End;
252       Ranges.erase(NextI);
253       NextI = I;
254     }
255   }
256 }
257 
258 //===----------------------------------------------------------------------===//
259 //                         MemCpyOptLegacyPass Pass
260 //===----------------------------------------------------------------------===//
261 
262 namespace {
263 
264 class MemCpyOptLegacyPass : public FunctionPass {
265   MemCpyOptPass Impl;
266 
267 public:
268   static char ID; // Pass identification, replacement for typeid
269 
270   MemCpyOptLegacyPass() : FunctionPass(ID) {
271     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
272   }
273 
274   bool runOnFunction(Function &F) override;
275 
276 private:
277   // This transformation requires dominator postdominator info
278   void getAnalysisUsage(AnalysisUsage &AU) const override {
279     AU.setPreservesCFG();
280     AU.addRequired<AssumptionCacheTracker>();
281     AU.addRequired<DominatorTreeWrapperPass>();
282     AU.addPreserved<DominatorTreeWrapperPass>();
283     AU.addPreserved<GlobalsAAWrapperPass>();
284     AU.addRequired<TargetLibraryInfoWrapperPass>();
285     if (!EnableMemorySSA)
286       AU.addRequired<MemoryDependenceWrapperPass>();
287     AU.addPreserved<MemoryDependenceWrapperPass>();
288     AU.addRequired<AAResultsWrapperPass>();
289     AU.addPreserved<AAResultsWrapperPass>();
290     if (EnableMemorySSA)
291       AU.addRequired<MemorySSAWrapperPass>();
292     AU.addPreserved<MemorySSAWrapperPass>();
293   }
294 };
295 
296 } // end anonymous namespace
297 
298 char MemCpyOptLegacyPass::ID = 0;
299 
300 /// The public interface to this file...
301 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
302 
303 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
304                       false, false)
305 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
307 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
309 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
310 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
311 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
312                     false, false)
313 
314 // Check that V is either not accessible by the caller, or unwinding cannot
315 // occur between Start and End.
316 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
317                                          Instruction *End) {
318   assert(Start->getParent() == End->getParent() && "Must be in same block");
319   if (!Start->getFunction()->doesNotThrow() &&
320       !isa<AllocaInst>(getUnderlyingObject(V))) {
321     for (const Instruction &I :
322          make_range(Start->getIterator(), End->getIterator())) {
323       if (I.mayThrow())
324         return true;
325     }
326   }
327   return false;
328 }
329 
330 void MemCpyOptPass::eraseInstruction(Instruction *I) {
331   if (MSSAU)
332     MSSAU->removeMemoryAccess(I);
333   if (MD)
334     MD->removeInstruction(I);
335   I->eraseFromParent();
336 }
337 
338 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
339 // Start and End must be in the same block
340 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
341                             const MemoryUseOrDef *Start,
342                             const MemoryUseOrDef *End) {
343   assert(Start->getBlock() == End->getBlock() && "Only local supported");
344   for (const MemoryAccess &MA :
345        make_range(++Start->getIterator(), End->getIterator())) {
346     if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
347                                        Loc)))
348       return true;
349   }
350   return false;
351 }
352 
353 // Check for mod of Loc between Start and End, excluding both boundaries.
354 // Start and End can be in different blocks.
355 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
356                            const MemoryUseOrDef *Start,
357                            const MemoryUseOrDef *End) {
358   // TODO: Only walk until we hit Start.
359   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
360       End->getDefiningAccess(), Loc);
361   return !MSSA->dominates(Clobber, Start);
362 }
363 
364 /// When scanning forward over instructions, we look for some other patterns to
365 /// fold away. In particular, this looks for stores to neighboring locations of
366 /// memory. If it sees enough consecutive ones, it attempts to merge them
367 /// together into a memcpy/memset.
368 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
369                                                  Value *StartPtr,
370                                                  Value *ByteVal) {
371   const DataLayout &DL = StartInst->getModule()->getDataLayout();
372 
373   // Okay, so we now have a single store that can be splatable.  Scan to find
374   // all subsequent stores of the same value to offset from the same pointer.
375   // Join these together into ranges, so we can decide whether contiguous blocks
376   // are stored.
377   MemsetRanges Ranges(DL);
378 
379   BasicBlock::iterator BI(StartInst);
380 
381   // Keeps track of the last memory use or def before the insertion point for
382   // the new memset. The new MemoryDef for the inserted memsets will be inserted
383   // after MemInsertPoint. It points to either LastMemDef or to the last user
384   // before the insertion point of the memset, if there are any such users.
385   MemoryUseOrDef *MemInsertPoint = nullptr;
386   // Keeps track of the last MemoryDef between StartInst and the insertion point
387   // for the new memset. This will become the defining access of the inserted
388   // memsets.
389   MemoryDef *LastMemDef = nullptr;
390   for (++BI; !BI->isTerminator(); ++BI) {
391     if (MSSAU) {
392       auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
393           MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
394       if (CurrentAcc) {
395         MemInsertPoint = CurrentAcc;
396         if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
397           LastMemDef = CurrentDef;
398       }
399     }
400 
401     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
402       // If the instruction is readnone, ignore it, otherwise bail out.  We
403       // don't even allow readonly here because we don't want something like:
404       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
405       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
406         break;
407       continue;
408     }
409 
410     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
411       // If this is a store, see if we can merge it in.
412       if (!NextStore->isSimple()) break;
413 
414       Value *StoredVal = NextStore->getValueOperand();
415 
416       // Don't convert stores of non-integral pointer types to memsets (which
417       // stores integers).
418       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
419         break;
420 
421       // Check to see if this stored value is of the same byte-splattable value.
422       Value *StoredByte = isBytewiseValue(StoredVal, DL);
423       if (isa<UndefValue>(ByteVal) && StoredByte)
424         ByteVal = StoredByte;
425       if (ByteVal != StoredByte)
426         break;
427 
428       // Check to see if this store is to a constant offset from the start ptr.
429       Optional<int64_t> Offset =
430           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
431       if (!Offset)
432         break;
433 
434       Ranges.addStore(*Offset, NextStore);
435     } else {
436       MemSetInst *MSI = cast<MemSetInst>(BI);
437 
438       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
439           !isa<ConstantInt>(MSI->getLength()))
440         break;
441 
442       // Check to see if this store is to a constant offset from the start ptr.
443       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
444       if (!Offset)
445         break;
446 
447       Ranges.addMemSet(*Offset, MSI);
448     }
449   }
450 
451   // If we have no ranges, then we just had a single store with nothing that
452   // could be merged in.  This is a very common case of course.
453   if (Ranges.empty())
454     return nullptr;
455 
456   // If we had at least one store that could be merged in, add the starting
457   // store as well.  We try to avoid this unless there is at least something
458   // interesting as a small compile-time optimization.
459   Ranges.addInst(0, StartInst);
460 
461   // If we create any memsets, we put it right before the first instruction that
462   // isn't part of the memset block.  This ensure that the memset is dominated
463   // by any addressing instruction needed by the start of the block.
464   IRBuilder<> Builder(&*BI);
465 
466   // Now that we have full information about ranges, loop over the ranges and
467   // emit memset's for anything big enough to be worthwhile.
468   Instruction *AMemSet = nullptr;
469   for (const MemsetRange &Range : Ranges) {
470     if (Range.TheStores.size() == 1) continue;
471 
472     // If it is profitable to lower this range to memset, do so now.
473     if (!Range.isProfitableToUseMemset(DL))
474       continue;
475 
476     // Otherwise, we do want to transform this!  Create a new memset.
477     // Get the starting pointer of the block.
478     StartPtr = Range.StartPtr;
479 
480     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
481                                    MaybeAlign(Range.Alignment));
482     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
483                                                    : Range.TheStores) dbgs()
484                                               << *SI << '\n';
485                dbgs() << "With: " << *AMemSet << '\n');
486     if (!Range.TheStores.empty())
487       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
488 
489     if (MSSAU) {
490       assert(LastMemDef && MemInsertPoint &&
491              "Both LastMemDef and MemInsertPoint need to be set");
492       auto *NewDef =
493           cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
494                               ? MSSAU->createMemoryAccessBefore(
495                                     AMemSet, LastMemDef, MemInsertPoint)
496                               : MSSAU->createMemoryAccessAfter(
497                                     AMemSet, LastMemDef, MemInsertPoint));
498       MSSAU->insertDef(NewDef, /*RenameUses=*/true);
499       LastMemDef = NewDef;
500       MemInsertPoint = NewDef;
501     }
502 
503     // Zap all the stores.
504     for (Instruction *SI : Range.TheStores)
505       eraseInstruction(SI);
506 
507     ++NumMemSetInfer;
508   }
509 
510   return AMemSet;
511 }
512 
513 // This method try to lift a store instruction before position P.
514 // It will lift the store and its argument + that anything that
515 // may alias with these.
516 // The method returns true if it was successful.
517 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
518   // If the store alias this position, early bail out.
519   MemoryLocation StoreLoc = MemoryLocation::get(SI);
520   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
521     return false;
522 
523   // Keep track of the arguments of all instruction we plan to lift
524   // so we can make sure to lift them as well if appropriate.
525   DenseSet<Instruction*> Args;
526   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
527     if (Ptr->getParent() == SI->getParent())
528       Args.insert(Ptr);
529 
530   // Instruction to lift before P.
531   SmallVector<Instruction *, 8> ToLift{SI};
532 
533   // Memory locations of lifted instructions.
534   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
535 
536   // Lifted calls.
537   SmallVector<const CallBase *, 8> Calls;
538 
539   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
540 
541   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
542     auto *C = &*I;
543 
544     // Make sure hoisting does not perform a store that was not guaranteed to
545     // happen.
546     if (!isGuaranteedToTransferExecutionToSuccessor(C))
547       return false;
548 
549     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
550 
551     bool NeedLift = false;
552     if (Args.erase(C))
553       NeedLift = true;
554     else if (MayAlias) {
555       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
556         return isModOrRefSet(AA->getModRefInfo(C, ML));
557       });
558 
559       if (!NeedLift)
560         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
561           return isModOrRefSet(AA->getModRefInfo(C, Call));
562         });
563     }
564 
565     if (!NeedLift)
566       continue;
567 
568     if (MayAlias) {
569       // Since LI is implicitly moved downwards past the lifted instructions,
570       // none of them may modify its source.
571       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
572         return false;
573       else if (const auto *Call = dyn_cast<CallBase>(C)) {
574         // If we can't lift this before P, it's game over.
575         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
576           return false;
577 
578         Calls.push_back(Call);
579       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
580         // If we can't lift this before P, it's game over.
581         auto ML = MemoryLocation::get(C);
582         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
583           return false;
584 
585         MemLocs.push_back(ML);
586       } else
587         // We don't know how to lift this instruction.
588         return false;
589     }
590 
591     ToLift.push_back(C);
592     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
593       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
594         if (A->getParent() == SI->getParent()) {
595           // Cannot hoist user of P above P
596           if(A == P) return false;
597           Args.insert(A);
598         }
599       }
600   }
601 
602   // Find MSSA insertion point. Normally P will always have a corresponding
603   // memory access before which we can insert. However, with non-standard AA
604   // pipelines, there may be a mismatch between AA and MSSA, in which case we
605   // will scan for a memory access before P. In either case, we know for sure
606   // that at least the load will have a memory access.
607   // TODO: Simplify this once P will be determined by MSSA, in which case the
608   // discrepancy can no longer occur.
609   MemoryUseOrDef *MemInsertPoint = nullptr;
610   if (MSSAU) {
611     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
612       MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
613     } else {
614       const Instruction *ConstP = P;
615       for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
616                                              ++LI->getReverseIterator())) {
617         if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
618           MemInsertPoint = MA;
619           break;
620         }
621       }
622     }
623   }
624 
625   // We made it, we need to lift.
626   for (auto *I : llvm::reverse(ToLift)) {
627     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
628     I->moveBefore(P);
629     if (MSSAU) {
630       assert(MemInsertPoint && "Must have found insert point");
631       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
632         MSSAU->moveAfter(MA, MemInsertPoint);
633         MemInsertPoint = MA;
634       }
635     }
636   }
637 
638   return true;
639 }
640 
641 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
642   if (!SI->isSimple()) return false;
643 
644   // Avoid merging nontemporal stores since the resulting
645   // memcpy/memset would not be able to preserve the nontemporal hint.
646   // In theory we could teach how to propagate the !nontemporal metadata to
647   // memset calls. However, that change would force the backend to
648   // conservatively expand !nontemporal memset calls back to sequences of
649   // store instructions (effectively undoing the merging).
650   if (SI->getMetadata(LLVMContext::MD_nontemporal))
651     return false;
652 
653   const DataLayout &DL = SI->getModule()->getDataLayout();
654 
655   Value *StoredVal = SI->getValueOperand();
656 
657   // Not all the transforms below are correct for non-integral pointers, bail
658   // until we've audited the individual pieces.
659   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
660     return false;
661 
662   // Load to store forwarding can be interpreted as memcpy.
663   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
664     if (LI->isSimple() && LI->hasOneUse() &&
665         LI->getParent() == SI->getParent()) {
666 
667       auto *T = LI->getType();
668       if (T->isAggregateType()) {
669         MemoryLocation LoadLoc = MemoryLocation::get(LI);
670 
671         // We use alias analysis to check if an instruction may store to
672         // the memory we load from in between the load and the store. If
673         // such an instruction is found, we try to promote there instead
674         // of at the store position.
675         // TODO: Can use MSSA for this.
676         Instruction *P = SI;
677         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
678           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
679             P = &I;
680             break;
681           }
682         }
683 
684         // We found an instruction that may write to the loaded memory.
685         // We can try to promote at this position instead of the store
686         // position if nothing alias the store memory after this and the store
687         // destination is not in the range.
688         if (P && P != SI) {
689           if (!moveUp(SI, P, LI))
690             P = nullptr;
691         }
692 
693         // If a valid insertion position is found, then we can promote
694         // the load/store pair to a memcpy.
695         if (P) {
696           // If we load from memory that may alias the memory we store to,
697           // memmove must be used to preserve semantic. If not, memcpy can
698           // be used.
699           bool UseMemMove = false;
700           if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
701             UseMemMove = true;
702 
703           uint64_t Size = DL.getTypeStoreSize(T);
704 
705           IRBuilder<> Builder(P);
706           Instruction *M;
707           if (UseMemMove)
708             M = Builder.CreateMemMove(
709                 SI->getPointerOperand(), SI->getAlign(),
710                 LI->getPointerOperand(), LI->getAlign(), Size);
711           else
712             M = Builder.CreateMemCpy(
713                 SI->getPointerOperand(), SI->getAlign(),
714                 LI->getPointerOperand(), LI->getAlign(), Size);
715 
716           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
717                             << *M << "\n");
718 
719           if (MSSAU) {
720             auto *LastDef =
721                 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
722             auto *NewAccess =
723                 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
724             MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
725           }
726 
727           eraseInstruction(SI);
728           eraseInstruction(LI);
729           ++NumMemCpyInstr;
730 
731           // Make sure we do not invalidate the iterator.
732           BBI = M->getIterator();
733           return true;
734         }
735       }
736 
737       // Detect cases where we're performing call slot forwarding, but
738       // happen to be using a load-store pair to implement it, rather than
739       // a memcpy.
740       CallInst *C = nullptr;
741       if (EnableMemorySSA) {
742         if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
743                 MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
744           // The load most post-dom the call. Limit to the same block for now.
745           // TODO: Support non-local call-slot optimization?
746           if (LoadClobber->getBlock() == SI->getParent())
747             C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
748         }
749       } else {
750         MemDepResult ldep = MD->getDependency(LI);
751         if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
752           C = dyn_cast<CallInst>(ldep.getInst());
753       }
754 
755       if (C) {
756         // Check that nothing touches the dest of the "copy" between
757         // the call and the store.
758         MemoryLocation StoreLoc = MemoryLocation::get(SI);
759         if (EnableMemorySSA) {
760           if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
761                               MSSA->getMemoryAccess(SI)))
762             C = nullptr;
763         } else {
764           for (BasicBlock::iterator I = --SI->getIterator(),
765                                     E = C->getIterator();
766                I != E; --I) {
767             if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
768               C = nullptr;
769               break;
770             }
771           }
772         }
773       }
774 
775       if (C) {
776         bool changed = performCallSlotOptzn(
777             LI, SI, SI->getPointerOperand()->stripPointerCasts(),
778             LI->getPointerOperand()->stripPointerCasts(),
779             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
780             commonAlignment(SI->getAlign(), LI->getAlign()), C);
781         if (changed) {
782           eraseInstruction(SI);
783           eraseInstruction(LI);
784           ++NumMemCpyInstr;
785           return true;
786         }
787       }
788     }
789   }
790 
791   // There are two cases that are interesting for this code to handle: memcpy
792   // and memset.  Right now we only handle memset.
793 
794   // Ensure that the value being stored is something that can be memset'able a
795   // byte at a time like "0" or "-1" or any width, as well as things like
796   // 0xA0A0A0A0 and 0.0.
797   auto *V = SI->getOperand(0);
798   if (Value *ByteVal = isBytewiseValue(V, DL)) {
799     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
800                                               ByteVal)) {
801       BBI = I->getIterator(); // Don't invalidate iterator.
802       return true;
803     }
804 
805     // If we have an aggregate, we try to promote it to memset regardless
806     // of opportunity for merging as it can expose optimization opportunities
807     // in subsequent passes.
808     auto *T = V->getType();
809     if (T->isAggregateType()) {
810       uint64_t Size = DL.getTypeStoreSize(T);
811       IRBuilder<> Builder(SI);
812       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
813                                      SI->getAlign());
814 
815       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
816 
817       if (MSSAU) {
818         assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
819         auto *LastDef =
820             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
821         auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
822         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
823       }
824 
825       eraseInstruction(SI);
826       NumMemSetInfer++;
827 
828       // Make sure we do not invalidate the iterator.
829       BBI = M->getIterator();
830       return true;
831     }
832   }
833 
834   return false;
835 }
836 
837 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
838   // See if there is another memset or store neighboring this memset which
839   // allows us to widen out the memset to do a single larger store.
840   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
841     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
842                                               MSI->getValue())) {
843       BBI = I->getIterator(); // Don't invalidate iterator.
844       return true;
845     }
846   return false;
847 }
848 
849 /// Takes a memcpy and a call that it depends on,
850 /// and checks for the possibility of a call slot optimization by having
851 /// the call write its result directly into the destination of the memcpy.
852 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
853                                          Instruction *cpyStore, Value *cpyDest,
854                                          Value *cpySrc, uint64_t cpyLen,
855                                          Align cpyAlign, CallInst *C) {
856   // The general transformation to keep in mind is
857   //
858   //   call @func(..., src, ...)
859   //   memcpy(dest, src, ...)
860   //
861   // ->
862   //
863   //   memcpy(dest, src, ...)
864   //   call @func(..., dest, ...)
865   //
866   // Since moving the memcpy is technically awkward, we additionally check that
867   // src only holds uninitialized values at the moment of the call, meaning that
868   // the memcpy can be discarded rather than moved.
869 
870   // Lifetime marks shouldn't be operated on.
871   if (Function *F = C->getCalledFunction())
872     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
873       return false;
874 
875   // Require that src be an alloca.  This simplifies the reasoning considerably.
876   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
877   if (!srcAlloca)
878     return false;
879 
880   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
881   if (!srcArraySize)
882     return false;
883 
884   const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
885   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
886                      srcArraySize->getZExtValue();
887 
888   if (cpyLen < srcSize)
889     return false;
890 
891   // Check that accessing the first srcSize bytes of dest will not cause a
892   // trap.  Otherwise the transform is invalid since it might cause a trap
893   // to occur earlier than it otherwise would.
894   if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen),
895                                           DL, C, DT))
896     return false;
897 
898   // Make sure that nothing can observe cpyDest being written early. There are
899   // a number of cases to consider:
900   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
901   //     the transform.
902   //  2. C itself may not access cpyDest (prior to the transform). This is
903   //     checked further below.
904   //  3. If cpyDest is accessible to the caller of this function (potentially
905   //     captured and not based on an alloca), we need to ensure that we cannot
906   //     unwind between C and cpyStore. This is checked here.
907   //  4. If cpyDest is potentially captured, there may be accesses to it from
908   //     another thread. In this case, we need to check that cpyStore is
909   //     guaranteed to be executed if C is. As it is a non-atomic access, it
910   //     renders accesses from other threads undefined.
911   //     TODO: This is currently not checked.
912   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
913     return false;
914 
915   // Check that dest points to memory that is at least as aligned as src.
916   Align srcAlign = srcAlloca->getAlign();
917   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
918   // If dest is not aligned enough and we can't increase its alignment then
919   // bail out.
920   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
921     return false;
922 
923   // Check that src is not accessed except via the call and the memcpy.  This
924   // guarantees that it holds only undefined values when passed in (so the final
925   // memcpy can be dropped), that it is not read or written between the call and
926   // the memcpy, and that writing beyond the end of it is undefined.
927   SmallVector<User *, 8> srcUseList(srcAlloca->users());
928   while (!srcUseList.empty()) {
929     User *U = srcUseList.pop_back_val();
930 
931     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
932       append_range(srcUseList, U->users());
933       continue;
934     }
935     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
936       if (!G->hasAllZeroIndices())
937         return false;
938 
939       append_range(srcUseList, U->users());
940       continue;
941     }
942     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
943       if (IT->isLifetimeStartOrEnd())
944         continue;
945 
946     if (U != C && U != cpyLoad)
947       return false;
948   }
949 
950   // Check that src isn't captured by the called function since the
951   // transformation can cause aliasing issues in that case.
952   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
953     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
954       return false;
955 
956   // Since we're changing the parameter to the callsite, we need to make sure
957   // that what would be the new parameter dominates the callsite.
958   if (!DT->dominates(cpyDest, C)) {
959     // Support moving a constant index GEP before the call.
960     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
961     if (GEP && GEP->hasAllConstantIndices() &&
962         DT->dominates(GEP->getPointerOperand(), C))
963       GEP->moveBefore(C);
964     else
965       return false;
966   }
967 
968   // In addition to knowing that the call does not access src in some
969   // unexpected manner, for example via a global, which we deduce from
970   // the use analysis, we also need to know that it does not sneakily
971   // access dest.  We rely on AA to figure this out for us.
972   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
973   // If necessary, perform additional analysis.
974   if (isModOrRefSet(MR))
975     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
976   if (isModOrRefSet(MR))
977     return false;
978 
979   // We can't create address space casts here because we don't know if they're
980   // safe for the target.
981   if (cpySrc->getType()->getPointerAddressSpace() !=
982       cpyDest->getType()->getPointerAddressSpace())
983     return false;
984   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
985     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
986         cpySrc->getType()->getPointerAddressSpace() !=
987             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
988       return false;
989 
990   // All the checks have passed, so do the transformation.
991   bool changedArgument = false;
992   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
993     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
994       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
995         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
996                                       cpyDest->getName(), C);
997       changedArgument = true;
998       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
999         C->setArgOperand(ArgI, Dest);
1000       else
1001         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1002                                    Dest, C->getArgOperand(ArgI)->getType(),
1003                                    Dest->getName(), C));
1004     }
1005 
1006   if (!changedArgument)
1007     return false;
1008 
1009   // If the destination wasn't sufficiently aligned then increase its alignment.
1010   if (!isDestSufficientlyAligned) {
1011     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1012     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1013   }
1014 
1015   // Drop any cached information about the call, because we may have changed
1016   // its dependence information by changing its parameter.
1017   if (MD)
1018     MD->removeInstruction(C);
1019 
1020   // Update AA metadata
1021   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1022   // handled here, but combineMetadata doesn't support them yet
1023   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1024                          LLVMContext::MD_noalias,
1025                          LLVMContext::MD_invariant_group,
1026                          LLVMContext::MD_access_group};
1027   combineMetadata(C, cpyLoad, KnownIDs, true);
1028 
1029   ++NumCallSlot;
1030   return true;
1031 }
1032 
1033 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1034 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1035 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1036                                                   MemCpyInst *MDep) {
1037   // We can only transforms memcpy's where the dest of one is the source of the
1038   // other.
1039   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1040     return false;
1041 
1042   // If dep instruction is reading from our current input, then it is a noop
1043   // transfer and substituting the input won't change this instruction.  Just
1044   // ignore the input and let someone else zap MDep.  This handles cases like:
1045   //    memcpy(a <- a)
1046   //    memcpy(b <- a)
1047   if (M->getSource() == MDep->getSource())
1048     return false;
1049 
1050   // Second, the length of the memcpy's must be the same, or the preceding one
1051   // must be larger than the following one.
1052   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1053   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1054   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1055     return false;
1056 
1057   // Verify that the copied-from memory doesn't change in between the two
1058   // transfers.  For example, in:
1059   //    memcpy(a <- b)
1060   //    *b = 42;
1061   //    memcpy(c <- a)
1062   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1063   //
1064   // TODO: If the code between M and MDep is transparent to the destination "c",
1065   // then we could still perform the xform by moving M up to the first memcpy.
1066   if (EnableMemorySSA) {
1067     // TODO: It would be sufficient to check the MDep source up to the memcpy
1068     // size of M, rather than MDep.
1069     if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1070                        MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1071       return false;
1072   } else {
1073     // NOTE: This is conservative, it will stop on any read from the source loc,
1074     // not just the defining memcpy.
1075     MemDepResult SourceDep =
1076         MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1077                                      M->getIterator(), M->getParent());
1078     if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1079       return false;
1080   }
1081 
1082   // If the dest of the second might alias the source of the first, then the
1083   // source and dest might overlap.  We still want to eliminate the intermediate
1084   // value, but we have to generate a memmove instead of memcpy.
1085   bool UseMemMove = false;
1086   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1087                      MemoryLocation::getForSource(MDep)))
1088     UseMemMove = true;
1089 
1090   // If all checks passed, then we can transform M.
1091   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1092                     << *MDep << '\n' << *M << '\n');
1093 
1094   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1095   // example we could be moving from movaps -> movq on x86.
1096   IRBuilder<> Builder(M);
1097   Instruction *NewM;
1098   if (UseMemMove)
1099     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1100                                  MDep->getRawSource(), MDep->getSourceAlign(),
1101                                  M->getLength(), M->isVolatile());
1102   else
1103     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1104                                 MDep->getRawSource(), MDep->getSourceAlign(),
1105                                 M->getLength(), M->isVolatile());
1106 
1107   if (MSSAU) {
1108     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1109     auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1110     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1111     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1112   }
1113 
1114   // Remove the instruction we're replacing.
1115   eraseInstruction(M);
1116   ++NumMemCpyInstr;
1117   return true;
1118 }
1119 
1120 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1121 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1122 /// weren't copied over by \p MemCpy.
1123 ///
1124 /// In other words, transform:
1125 /// \code
1126 ///   memset(dst, c, dst_size);
1127 ///   memcpy(dst, src, src_size);
1128 /// \endcode
1129 /// into:
1130 /// \code
1131 ///   memcpy(dst, src, src_size);
1132 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1133 /// \endcode
1134 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1135                                                   MemSetInst *MemSet) {
1136   // We can only transform memset/memcpy with the same destination.
1137   if (MemSet->getDest() != MemCpy->getDest())
1138     return false;
1139 
1140   // Check that src and dst of the memcpy aren't the same. While memcpy
1141   // operands cannot partially overlap, exact equality is allowed.
1142   if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
1143                                     LocationSize::precise(1)),
1144                      MemoryLocation(MemCpy->getDest(),
1145                                     LocationSize::precise(1))))
1146     return false;
1147 
1148   if (EnableMemorySSA) {
1149     // We know that dst up to src_size is not written. We now need to make sure
1150     // that dst up to dst_size is not accessed. (If we did not move the memset,
1151     // checking for reads would be sufficient.)
1152     if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1153                         MSSA->getMemoryAccess(MemSet),
1154                         MSSA->getMemoryAccess(MemCpy))) {
1155       return false;
1156     }
1157   } else {
1158     // We have already checked that dst up to src_size is not accessed. We
1159     // need to make sure that there are no accesses up to dst_size either.
1160     MemDepResult DstDepInfo = MD->getPointerDependencyFrom(
1161         MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(),
1162         MemCpy->getParent());
1163     if (DstDepInfo.getInst() != MemSet)
1164       return false;
1165   }
1166 
1167   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1168   Value *Dest = MemCpy->getRawDest();
1169   Value *DestSize = MemSet->getLength();
1170   Value *SrcSize = MemCpy->getLength();
1171 
1172   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1173     return false;
1174 
1175   // By default, create an unaligned memset.
1176   unsigned Align = 1;
1177   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1178   // of the sum.
1179   const unsigned DestAlign =
1180       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1181   if (DestAlign > 1)
1182     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1183       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1184 
1185   IRBuilder<> Builder(MemCpy);
1186 
1187   // If the sizes have different types, zext the smaller one.
1188   if (DestSize->getType() != SrcSize->getType()) {
1189     if (DestSize->getType()->getIntegerBitWidth() >
1190         SrcSize->getType()->getIntegerBitWidth())
1191       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1192     else
1193       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1194   }
1195 
1196   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1197   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1198   Value *MemsetLen = Builder.CreateSelect(
1199       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1200   Instruction *NewMemSet = Builder.CreateMemSet(
1201       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1202                         SrcSize),
1203       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1204 
1205   if (MSSAU) {
1206     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1207            "MemCpy must be a MemoryDef");
1208     // The new memset is inserted after the memcpy, but it is known that its
1209     // defining access is the memset about to be removed which immediately
1210     // precedes the memcpy.
1211     auto *LastDef =
1212         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1213     auto *NewAccess = MSSAU->createMemoryAccessBefore(
1214         NewMemSet, LastDef->getDefiningAccess(), LastDef);
1215     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1216   }
1217 
1218   eraseInstruction(MemSet);
1219   return true;
1220 }
1221 
1222 /// Determine whether the instruction has undefined content for the given Size,
1223 /// either because it was freshly alloca'd or started its lifetime.
1224 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1225   if (isa<AllocaInst>(I))
1226     return true;
1227 
1228   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1229     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1230       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1231         if (LTSize->getZExtValue() >= Size->getZExtValue())
1232           return true;
1233 
1234   return false;
1235 }
1236 
1237 static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1238                                  MemoryDef *Def, ConstantInt *Size) {
1239   if (MSSA->isLiveOnEntryDef(Def))
1240     return isa<AllocaInst>(getUnderlyingObject(V));
1241 
1242   if (IntrinsicInst *II =
1243           dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1244     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1245       ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1246       if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1247           LTSize->getZExtValue() >= Size->getZExtValue())
1248         return true;
1249     }
1250   }
1251 
1252   return false;
1253 }
1254 
1255 /// Transform memcpy to memset when its source was just memset.
1256 /// In other words, turn:
1257 /// \code
1258 ///   memset(dst1, c, dst1_size);
1259 ///   memcpy(dst2, dst1, dst2_size);
1260 /// \endcode
1261 /// into:
1262 /// \code
1263 ///   memset(dst1, c, dst1_size);
1264 ///   memset(dst2, c, dst2_size);
1265 /// \endcode
1266 /// When dst2_size <= dst1_size.
1267 ///
1268 /// The \p MemCpy must have a Constant length.
1269 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1270                                                MemSetInst *MemSet) {
1271   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1272   // memcpying from the same address. Otherwise it is hard to reason about.
1273   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1274     return false;
1275 
1276   // A known memset size is required.
1277   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1278   if (!MemSetSize)
1279     return false;
1280 
1281   // Make sure the memcpy doesn't read any more than what the memset wrote.
1282   // Don't worry about sizes larger than i64.
1283   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1284   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1285     // If the memcpy is larger than the memset, but the memory was undef prior
1286     // to the memset, we can just ignore the tail. Technically we're only
1287     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1288     // easily represent this location, we use the full 0..CopySize range.
1289     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1290     bool CanReduceSize = false;
1291     if (EnableMemorySSA) {
1292       MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1293       MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1294           MemSetAccess->getDefiningAccess(), MemCpyLoc);
1295       if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1296         if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1297           CanReduceSize = true;
1298     } else {
1299       MemDepResult DepInfo = MD->getPointerDependencyFrom(
1300           MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1301       if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1302         CanReduceSize = true;
1303     }
1304 
1305     if (!CanReduceSize)
1306       return false;
1307     CopySize = MemSetSize;
1308   }
1309 
1310   IRBuilder<> Builder(MemCpy);
1311   Instruction *NewM =
1312       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1313                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1314   if (MSSAU) {
1315     auto *LastDef =
1316         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1317     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1318     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1319   }
1320 
1321   return true;
1322 }
1323 
1324 /// Perform simplification of memcpy's.  If we have memcpy A
1325 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1326 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1327 /// circumstances). This allows later passes to remove the first memcpy
1328 /// altogether.
1329 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1330   // We can only optimize non-volatile memcpy's.
1331   if (M->isVolatile()) return false;
1332 
1333   // If the source and destination of the memcpy are the same, then zap it.
1334   if (M->getSource() == M->getDest()) {
1335     ++BBI;
1336     eraseInstruction(M);
1337     return true;
1338   }
1339 
1340   // If copying from a constant, try to turn the memcpy into a memset.
1341   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1342     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1343       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1344                                            M->getModule()->getDataLayout())) {
1345         IRBuilder<> Builder(M);
1346         Instruction *NewM =
1347             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1348                                  MaybeAlign(M->getDestAlignment()), false);
1349         if (MSSAU) {
1350           auto *LastDef =
1351               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1352           auto *NewAccess =
1353               MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1354           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1355         }
1356 
1357         eraseInstruction(M);
1358         ++NumCpyToSet;
1359         return true;
1360       }
1361 
1362   if (EnableMemorySSA) {
1363     MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1364     MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
1365     MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1366     const MemoryAccess *DestClobber =
1367         MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1368 
1369     // Try to turn a partially redundant memset + memcpy into
1370     // memcpy + smaller memset.  We don't need the memcpy size for this.
1371     // The memcpy most post-dom the memset, so limit this to the same basic
1372     // block. A non-local generalization is likely not worthwhile.
1373     if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1374       if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1375         if (DestClobber->getBlock() == M->getParent())
1376           if (processMemSetMemCpyDependence(M, MDep))
1377             return true;
1378 
1379     // The optimizations after this point require the memcpy size.
1380     ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1381     if (!CopySize) return false;
1382 
1383     MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1384         AnyClobber, MemoryLocation::getForSource(M));
1385 
1386     // There are four possible optimizations we can do for memcpy:
1387     //   a) memcpy-memcpy xform which exposes redundance for DSE.
1388     //   b) call-memcpy xform for return slot optimization.
1389     //   c) memcpy from freshly alloca'd space or space that has just started
1390     //      its lifetime copies undefined data, and we can therefore eliminate
1391     //      the memcpy in favor of the data that was already at the destination.
1392     //   d) memcpy from a just-memset'd source can be turned into memset.
1393     if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1394       if (Instruction *MI = MD->getMemoryInst()) {
1395         if (auto *C = dyn_cast<CallInst>(MI)) {
1396           // The memcpy must post-dom the call. Limit to the same block for now.
1397           // Additionally, we need to ensure that there are no accesses to dest
1398           // between the call and the memcpy. Accesses to src will be checked
1399           // by performCallSlotOptzn().
1400           // TODO: Support non-local call-slot optimization?
1401           if (C->getParent() == M->getParent() &&
1402               !accessedBetween(*AA, DestLoc, MD, MA)) {
1403             // FIXME: Can we pass in either of dest/src alignment here instead
1404             // of conservatively taking the minimum?
1405             Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1406                                        M->getSourceAlign().valueOrOne());
1407             if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1408                                      CopySize->getZExtValue(), Alignment, C)) {
1409               LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1410                                 << "    call: " << *C << "\n"
1411                                 << "    memcpy: " << *M << "\n");
1412               eraseInstruction(M);
1413               ++NumMemCpyInstr;
1414               return true;
1415             }
1416           }
1417         }
1418         if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1419           return processMemCpyMemCpyDependence(M, MDep);
1420         if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1421           if (performMemCpyToMemSetOptzn(M, MDep)) {
1422             LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1423             eraseInstruction(M);
1424             ++NumCpyToSet;
1425             return true;
1426           }
1427         }
1428       }
1429 
1430       if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, CopySize)) {
1431         LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1432         eraseInstruction(M);
1433         ++NumMemCpyInstr;
1434         return true;
1435       }
1436     }
1437   } else {
1438     MemDepResult DepInfo = MD->getDependency(M);
1439 
1440     // Try to turn a partially redundant memset + memcpy into
1441     // memcpy + smaller memset.  We don't need the memcpy size for this.
1442     if (DepInfo.isClobber())
1443       if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1444         if (processMemSetMemCpyDependence(M, MDep))
1445           return true;
1446 
1447     // The optimizations after this point require the memcpy size.
1448     ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1449     if (!CopySize) return false;
1450 
1451     // There are four possible optimizations we can do for memcpy:
1452     //   a) memcpy-memcpy xform which exposes redundance for DSE.
1453     //   b) call-memcpy xform for return slot optimization.
1454     //   c) memcpy from freshly alloca'd space or space that has just started
1455     //      its lifetime copies undefined data, and we can therefore eliminate
1456     //      the memcpy in favor of the data that was already at the destination.
1457     //   d) memcpy from a just-memset'd source can be turned into memset.
1458     if (DepInfo.isClobber()) {
1459       if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1460         // FIXME: Can we pass in either of dest/src alignment here instead
1461         // of conservatively taking the minimum?
1462         Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1463                                    M->getSourceAlign().valueOrOne());
1464         if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1465                                  CopySize->getZExtValue(), Alignment, C)) {
1466           eraseInstruction(M);
1467           ++NumMemCpyInstr;
1468           return true;
1469         }
1470       }
1471     }
1472 
1473     MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1474     MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1475         SrcLoc, true, M->getIterator(), M->getParent());
1476 
1477     if (SrcDepInfo.isClobber()) {
1478       if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1479         return processMemCpyMemCpyDependence(M, MDep);
1480     } else if (SrcDepInfo.isDef()) {
1481       if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1482         eraseInstruction(M);
1483         ++NumMemCpyInstr;
1484         return true;
1485       }
1486     }
1487 
1488     if (SrcDepInfo.isClobber())
1489       if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1490         if (performMemCpyToMemSetOptzn(M, MDep)) {
1491           eraseInstruction(M);
1492           ++NumCpyToSet;
1493           return true;
1494         }
1495   }
1496 
1497   return false;
1498 }
1499 
1500 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1501 /// not to alias.
1502 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1503   if (!TLI->has(LibFunc_memmove))
1504     return false;
1505 
1506   // See if the pointers alias.
1507   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1508                      MemoryLocation::getForSource(M)))
1509     return false;
1510 
1511   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1512                     << "\n");
1513 
1514   // If not, then we know we can transform this.
1515   Type *ArgTys[3] = { M->getRawDest()->getType(),
1516                       M->getRawSource()->getType(),
1517                       M->getLength()->getType() };
1518   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1519                                                  Intrinsic::memcpy, ArgTys));
1520 
1521   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1522   // aliasing guarantees).
1523 
1524   // MemDep may have over conservative information about this instruction, just
1525   // conservatively flush it from the cache.
1526   if (MD)
1527     MD->removeInstruction(M);
1528 
1529   ++NumMoveToCpy;
1530   return true;
1531 }
1532 
1533 /// This is called on every byval argument in call sites.
1534 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1535   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1536   // Find out what feeds this byval argument.
1537   Value *ByValArg = CB.getArgOperand(ArgNo);
1538   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1539   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1540   MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1541   MemCpyInst *MDep = nullptr;
1542   if (EnableMemorySSA) {
1543     MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1544     MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1545         CallAccess->getDefiningAccess(), Loc);
1546     if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1547       MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1548   } else {
1549     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1550         Loc, true, CB.getIterator(), CB.getParent());
1551     if (!DepInfo.isClobber())
1552       return false;
1553     MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1554   }
1555 
1556   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1557   // a memcpy, see if we can byval from the source of the memcpy instead of the
1558   // result.
1559   if (!MDep || MDep->isVolatile() ||
1560       ByValArg->stripPointerCasts() != MDep->getDest())
1561     return false;
1562 
1563   // The length of the memcpy must be larger or equal to the size of the byval.
1564   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1565   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1566     return false;
1567 
1568   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1569   // then it is some target specific value that we can't know.
1570   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1571   if (!ByValAlign) return false;
1572 
1573   // If it is greater than the memcpy, then we check to see if we can force the
1574   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1575   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1576   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1577       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1578                                  DT) < *ByValAlign)
1579     return false;
1580 
1581   // The address space of the memcpy source must match the byval argument
1582   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1583       ByValArg->getType()->getPointerAddressSpace())
1584     return false;
1585 
1586   // Verify that the copied-from memory doesn't change in between the memcpy and
1587   // the byval call.
1588   //    memcpy(a <- b)
1589   //    *b = 42;
1590   //    foo(*a)
1591   // It would be invalid to transform the second memcpy into foo(*b).
1592   if (EnableMemorySSA) {
1593     if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1594                        MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1595       return false;
1596   } else {
1597     // NOTE: This is conservative, it will stop on any read from the source loc,
1598     // not just the defining memcpy.
1599     MemDepResult SourceDep = MD->getPointerDependencyFrom(
1600         MemoryLocation::getForSource(MDep), false,
1601         CB.getIterator(), MDep->getParent());
1602     if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1603       return false;
1604   }
1605 
1606   Value *TmpCast = MDep->getSource();
1607   if (MDep->getSource()->getType() != ByValArg->getType()) {
1608     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1609                                               "tmpcast", &CB);
1610     // Set the tmpcast's DebugLoc to MDep's
1611     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1612     TmpCast = TmpBitCast;
1613   }
1614 
1615   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1616                     << "  " << *MDep << "\n"
1617                     << "  " << CB << "\n");
1618 
1619   // Otherwise we're good!  Update the byval argument.
1620   CB.setArgOperand(ArgNo, TmpCast);
1621   ++NumMemCpyInstr;
1622   return true;
1623 }
1624 
1625 /// Executes one iteration of MemCpyOptPass.
1626 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1627   bool MadeChange = false;
1628 
1629   // Walk all instruction in the function.
1630   for (BasicBlock &BB : F) {
1631     // Skip unreachable blocks. For example processStore assumes that an
1632     // instruction in a BB can't be dominated by a later instruction in the
1633     // same BB (which is a scenario that can happen for an unreachable BB that
1634     // has itself as a predecessor).
1635     if (!DT->isReachableFromEntry(&BB))
1636       continue;
1637 
1638     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1639         // Avoid invalidating the iterator.
1640       Instruction *I = &*BI++;
1641 
1642       bool RepeatInstruction = false;
1643 
1644       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1645         MadeChange |= processStore(SI, BI);
1646       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1647         RepeatInstruction = processMemSet(M, BI);
1648       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1649         RepeatInstruction = processMemCpy(M, BI);
1650       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1651         RepeatInstruction = processMemMove(M);
1652       else if (auto *CB = dyn_cast<CallBase>(I)) {
1653         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1654           if (CB->isByValArgument(i))
1655             MadeChange |= processByValArgument(*CB, i);
1656       }
1657 
1658       // Reprocess the instruction if desired.
1659       if (RepeatInstruction) {
1660         if (BI != BB.begin())
1661           --BI;
1662         MadeChange = true;
1663       }
1664     }
1665   }
1666 
1667   return MadeChange;
1668 }
1669 
1670 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1671   auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F)
1672                               : AM.getCachedResult<MemoryDependenceAnalysis>(F);
1673   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1674   auto *AA = &AM.getResult<AAManager>(F);
1675   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1676   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1677   auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F)
1678                                : AM.getCachedResult<MemorySSAAnalysis>(F);
1679 
1680   bool MadeChange =
1681       runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1682   if (!MadeChange)
1683     return PreservedAnalyses::all();
1684 
1685   PreservedAnalyses PA;
1686   PA.preserveSet<CFGAnalyses>();
1687   PA.preserve<GlobalsAA>();
1688   if (MD)
1689     PA.preserve<MemoryDependenceAnalysis>();
1690   if (MSSA)
1691     PA.preserve<MemorySSAAnalysis>();
1692   return PA;
1693 }
1694 
1695 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1696                             TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1697                             AssumptionCache *AC_, DominatorTree *DT_,
1698                             MemorySSA *MSSA_) {
1699   bool MadeChange = false;
1700   MD = MD_;
1701   TLI = TLI_;
1702   AA = AA_;
1703   AC = AC_;
1704   DT = DT_;
1705   MSSA = MSSA_;
1706   MemorySSAUpdater MSSAU_(MSSA_);
1707   MSSAU = MSSA_ ? &MSSAU_ : nullptr;
1708   // If we don't have at least memset and memcpy, there is little point of doing
1709   // anything here.  These are required by a freestanding implementation, so if
1710   // even they are disabled, there is no point in trying hard.
1711   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1712     return false;
1713 
1714   while (true) {
1715     if (!iterateOnFunction(F))
1716       break;
1717     MadeChange = true;
1718   }
1719 
1720   if (MSSA_ && VerifyMemorySSA)
1721     MSSA_->verifyMemorySSA();
1722 
1723   MD = nullptr;
1724   return MadeChange;
1725 }
1726 
1727 /// This is the main transformation entry point for a function.
1728 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1729   if (skipFunction(F))
1730     return false;
1731 
1732   auto *MDWP = !EnableMemorySSA
1733       ? &getAnalysis<MemoryDependenceWrapperPass>()
1734       : getAnalysisIfAvailable<MemoryDependenceWrapperPass>();
1735   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1736   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1737   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1738   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1739   auto *MSSAWP = EnableMemorySSA
1740       ? &getAnalysis<MemorySSAWrapperPass>()
1741       : getAnalysisIfAvailable<MemorySSAWrapperPass>();
1742 
1743   return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT,
1744                       MSSAWP ? &MSSAWP->getMSSA() : nullptr);
1745 }
1746