1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Pass.h"
97 #include "llvm/Support/Allocator.h"
98 #include "llvm/Support/ArrayRecycler.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CommandLine.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/DebugCounter.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/PointerLikeTypeTraits.h"
105 #include "llvm/Support/raw_ostream.h"
106 #include "llvm/Transforms/Scalar.h"
107 #include "llvm/Transforms/Scalar/GVNExpression.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstdint>
113 #include <iterator>
114 #include <map>
115 #include <memory>
116 #include <set>
117 #include <string>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 using namespace llvm::GVNExpression;
124 using namespace llvm::VNCoercion;
125 
126 #define DEBUG_TYPE "newgvn"
127 
128 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
129 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
130 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
131 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
132 STATISTIC(NumGVNMaxIterations,
133           "Maximum Number of iterations it took to converge GVN");
134 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
135 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
136 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
137           "Number of avoided sorted leader changes");
138 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
139 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
140 STATISTIC(NumGVNPHIOfOpsEliminations,
141           "Number of things eliminated using PHI of ops");
142 DEBUG_COUNTER(VNCounter, "newgvn-vn",
143               "Controls which instructions are value numbered");
144 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
145               "Controls which instructions we create phi of ops for");
146 // Currently store defining access refinement is too slow due to basicaa being
147 // egregiously slow.  This flag lets us keep it working while we work on this
148 // issue.
149 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
150                                            cl::init(false), cl::Hidden);
151 
152 /// Currently, the generation "phi of ops" can result in correctness issues.
153 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
154                                     cl::Hidden);
155 
156 //===----------------------------------------------------------------------===//
157 //                                GVN Pass
158 //===----------------------------------------------------------------------===//
159 
160 // Anchor methods.
161 namespace llvm {
162 namespace GVNExpression {
163 
164 Expression::~Expression() = default;
165 BasicExpression::~BasicExpression() = default;
166 CallExpression::~CallExpression() = default;
167 LoadExpression::~LoadExpression() = default;
168 StoreExpression::~StoreExpression() = default;
169 AggregateValueExpression::~AggregateValueExpression() = default;
170 PHIExpression::~PHIExpression() = default;
171 
172 } // end namespace GVNExpression
173 } // end namespace llvm
174 
175 namespace {
176 
177 // Tarjan's SCC finding algorithm with Nuutila's improvements
178 // SCCIterator is actually fairly complex for the simple thing we want.
179 // It also wants to hand us SCC's that are unrelated to the phi node we ask
180 // about, and have us process them there or risk redoing work.
181 // Graph traits over a filter iterator also doesn't work that well here.
182 // This SCC finder is specialized to walk use-def chains, and only follows
183 // instructions,
184 // not generic values (arguments, etc).
185 struct TarjanSCC {
186   TarjanSCC() : Components(1) {}
187 
188   void Start(const Instruction *Start) {
189     if (Root.lookup(Start) == 0)
190       FindSCC(Start);
191   }
192 
193   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
194     unsigned ComponentID = ValueToComponent.lookup(V);
195 
196     assert(ComponentID > 0 &&
197            "Asking for a component for a value we never processed");
198     return Components[ComponentID];
199   }
200 
201 private:
202   void FindSCC(const Instruction *I) {
203     Root[I] = ++DFSNum;
204     // Store the DFS Number we had before it possibly gets incremented.
205     unsigned int OurDFS = DFSNum;
206     for (auto &Op : I->operands()) {
207       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
208         if (Root.lookup(Op) == 0)
209           FindSCC(InstOp);
210         if (!InComponent.count(Op))
211           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
212       }
213     }
214     // See if we really were the root of a component, by seeing if we still have
215     // our DFSNumber.  If we do, we are the root of the component, and we have
216     // completed a component. If we do not, we are not the root of a component,
217     // and belong on the component stack.
218     if (Root.lookup(I) == OurDFS) {
219       unsigned ComponentID = Components.size();
220       Components.resize(Components.size() + 1);
221       auto &Component = Components.back();
222       Component.insert(I);
223       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
224       InComponent.insert(I);
225       ValueToComponent[I] = ComponentID;
226       // Pop a component off the stack and label it.
227       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
228         auto *Member = Stack.back();
229         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
230         Component.insert(Member);
231         InComponent.insert(Member);
232         ValueToComponent[Member] = ComponentID;
233         Stack.pop_back();
234       }
235     } else {
236       // Part of a component, push to stack
237       Stack.push_back(I);
238     }
239   }
240 
241   unsigned int DFSNum = 1;
242   SmallPtrSet<const Value *, 8> InComponent;
243   DenseMap<const Value *, unsigned int> Root;
244   SmallVector<const Value *, 8> Stack;
245 
246   // Store the components as vector of ptr sets, because we need the topo order
247   // of SCC's, but not individual member order
248   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
249 
250   DenseMap<const Value *, unsigned> ValueToComponent;
251 };
252 
253 // Congruence classes represent the set of expressions/instructions
254 // that are all the same *during some scope in the function*.
255 // That is, because of the way we perform equality propagation, and
256 // because of memory value numbering, it is not correct to assume
257 // you can willy-nilly replace any member with any other at any
258 // point in the function.
259 //
260 // For any Value in the Member set, it is valid to replace any dominated member
261 // with that Value.
262 //
263 // Every congruence class has a leader, and the leader is used to symbolize
264 // instructions in a canonical way (IE every operand of an instruction that is a
265 // member of the same congruence class will always be replaced with leader
266 // during symbolization).  To simplify symbolization, we keep the leader as a
267 // constant if class can be proved to be a constant value.  Otherwise, the
268 // leader is the member of the value set with the smallest DFS number.  Each
269 // congruence class also has a defining expression, though the expression may be
270 // null.  If it exists, it can be used for forward propagation and reassociation
271 // of values.
272 
273 // For memory, we also track a representative MemoryAccess, and a set of memory
274 // members for MemoryPhis (which have no real instructions). Note that for
275 // memory, it seems tempting to try to split the memory members into a
276 // MemoryCongruenceClass or something.  Unfortunately, this does not work
277 // easily.  The value numbering of a given memory expression depends on the
278 // leader of the memory congruence class, and the leader of memory congruence
279 // class depends on the value numbering of a given memory expression.  This
280 // leads to wasted propagation, and in some cases, missed optimization.  For
281 // example: If we had value numbered two stores together before, but now do not,
282 // we move them to a new value congruence class.  This in turn will move at one
283 // of the memorydefs to a new memory congruence class.  Which in turn, affects
284 // the value numbering of the stores we just value numbered (because the memory
285 // congruence class is part of the value number).  So while theoretically
286 // possible to split them up, it turns out to be *incredibly* complicated to get
287 // it to work right, because of the interdependency.  While structurally
288 // slightly messier, it is algorithmically much simpler and faster to do what we
289 // do here, and track them both at once in the same class.
290 // Note: The default iterators for this class iterate over values
291 class CongruenceClass {
292 public:
293   using MemberType = Value;
294   using MemberSet = SmallPtrSet<MemberType *, 4>;
295   using MemoryMemberType = MemoryPhi;
296   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
297 
298   explicit CongruenceClass(unsigned ID) : ID(ID) {}
299   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
300       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
301 
302   unsigned getID() const { return ID; }
303 
304   // True if this class has no members left.  This is mainly used for assertion
305   // purposes, and for skipping empty classes.
306   bool isDead() const {
307     // If it's both dead from a value perspective, and dead from a memory
308     // perspective, it's really dead.
309     return empty() && memory_empty();
310   }
311 
312   // Leader functions
313   Value *getLeader() const { return RepLeader; }
314   void setLeader(Value *Leader) { RepLeader = Leader; }
315   const std::pair<Value *, unsigned int> &getNextLeader() const {
316     return NextLeader;
317   }
318   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
319   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
320     if (LeaderPair.second < NextLeader.second)
321       NextLeader = LeaderPair;
322   }
323 
324   Value *getStoredValue() const { return RepStoredValue; }
325   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
326   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
327   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
328 
329   // Forward propagation info
330   const Expression *getDefiningExpr() const { return DefiningExpr; }
331 
332   // Value member set
333   bool empty() const { return Members.empty(); }
334   unsigned size() const { return Members.size(); }
335   MemberSet::const_iterator begin() const { return Members.begin(); }
336   MemberSet::const_iterator end() const { return Members.end(); }
337   void insert(MemberType *M) { Members.insert(M); }
338   void erase(MemberType *M) { Members.erase(M); }
339   void swap(MemberSet &Other) { Members.swap(Other); }
340 
341   // Memory member set
342   bool memory_empty() const { return MemoryMembers.empty(); }
343   unsigned memory_size() const { return MemoryMembers.size(); }
344   MemoryMemberSet::const_iterator memory_begin() const {
345     return MemoryMembers.begin();
346   }
347   MemoryMemberSet::const_iterator memory_end() const {
348     return MemoryMembers.end();
349   }
350   iterator_range<MemoryMemberSet::const_iterator> memory() const {
351     return make_range(memory_begin(), memory_end());
352   }
353 
354   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
355   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
356 
357   // Store count
358   unsigned getStoreCount() const { return StoreCount; }
359   void incStoreCount() { ++StoreCount; }
360   void decStoreCount() {
361     assert(StoreCount != 0 && "Store count went negative");
362     --StoreCount;
363   }
364 
365   // True if this class has no memory members.
366   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
367 
368   // Return true if two congruence classes are equivalent to each other. This
369   // means that every field but the ID number and the dead field are equivalent.
370   bool isEquivalentTo(const CongruenceClass *Other) const {
371     if (!Other)
372       return false;
373     if (this == Other)
374       return true;
375 
376     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
377         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
378                  Other->RepMemoryAccess))
379       return false;
380     if (DefiningExpr != Other->DefiningExpr)
381       if (!DefiningExpr || !Other->DefiningExpr ||
382           *DefiningExpr != *Other->DefiningExpr)
383         return false;
384 
385     if (Members.size() != Other->Members.size())
386       return false;
387 
388     return all_of(Members,
389                   [&](const Value *V) { return Other->Members.count(V); });
390   }
391 
392 private:
393   unsigned ID;
394 
395   // Representative leader.
396   Value *RepLeader = nullptr;
397 
398   // The most dominating leader after our current leader, because the member set
399   // is not sorted and is expensive to keep sorted all the time.
400   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
401 
402   // If this is represented by a store, the value of the store.
403   Value *RepStoredValue = nullptr;
404 
405   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
406   // access.
407   const MemoryAccess *RepMemoryAccess = nullptr;
408 
409   // Defining Expression.
410   const Expression *DefiningExpr = nullptr;
411 
412   // Actual members of this class.
413   MemberSet Members;
414 
415   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
416   // MemoryUses have real instructions representing them, so we only need to
417   // track MemoryPhis here.
418   MemoryMemberSet MemoryMembers;
419 
420   // Number of stores in this congruence class.
421   // This is used so we can detect store equivalence changes properly.
422   int StoreCount = 0;
423 };
424 
425 } // end anonymous namespace
426 
427 namespace llvm {
428 
429 struct ExactEqualsExpression {
430   const Expression &E;
431 
432   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
433 
434   hash_code getComputedHash() const { return E.getComputedHash(); }
435 
436   bool operator==(const Expression &Other) const {
437     return E.exactlyEquals(Other);
438   }
439 };
440 
441 template <> struct DenseMapInfo<const Expression *> {
442   static const Expression *getEmptyKey() {
443     auto Val = static_cast<uintptr_t>(-1);
444     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
445     return reinterpret_cast<const Expression *>(Val);
446   }
447 
448   static const Expression *getTombstoneKey() {
449     auto Val = static_cast<uintptr_t>(~1U);
450     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
451     return reinterpret_cast<const Expression *>(Val);
452   }
453 
454   static unsigned getHashValue(const Expression *E) {
455     return E->getComputedHash();
456   }
457 
458   static unsigned getHashValue(const ExactEqualsExpression &E) {
459     return E.getComputedHash();
460   }
461 
462   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
463     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
464       return false;
465     return LHS == *RHS;
466   }
467 
468   static bool isEqual(const Expression *LHS, const Expression *RHS) {
469     if (LHS == RHS)
470       return true;
471     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
472         LHS == getEmptyKey() || RHS == getEmptyKey())
473       return false;
474     // Compare hashes before equality.  This is *not* what the hashtable does,
475     // since it is computing it modulo the number of buckets, whereas we are
476     // using the full hash keyspace.  Since the hashes are precomputed, this
477     // check is *much* faster than equality.
478     if (LHS->getComputedHash() != RHS->getComputedHash())
479       return false;
480     return *LHS == *RHS;
481   }
482 };
483 
484 } // end namespace llvm
485 
486 namespace {
487 
488 class NewGVN {
489   Function &F;
490   DominatorTree *DT;
491   const TargetLibraryInfo *TLI;
492   AliasAnalysis *AA;
493   MemorySSA *MSSA;
494   MemorySSAWalker *MSSAWalker;
495   const DataLayout &DL;
496   std::unique_ptr<PredicateInfo> PredInfo;
497 
498   // These are the only two things the create* functions should have
499   // side-effects on due to allocating memory.
500   mutable BumpPtrAllocator ExpressionAllocator;
501   mutable ArrayRecycler<Value *> ArgRecycler;
502   mutable TarjanSCC SCCFinder;
503   const SimplifyQuery SQ;
504 
505   // Number of function arguments, used by ranking
506   unsigned int NumFuncArgs;
507 
508   // RPOOrdering of basic blocks
509   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
510 
511   // Congruence class info.
512 
513   // This class is called INITIAL in the paper. It is the class everything
514   // startsout in, and represents any value. Being an optimistic analysis,
515   // anything in the TOP class has the value TOP, which is indeterminate and
516   // equivalent to everything.
517   CongruenceClass *TOPClass;
518   std::vector<CongruenceClass *> CongruenceClasses;
519   unsigned NextCongruenceNum;
520 
521   // Value Mappings.
522   DenseMap<Value *, CongruenceClass *> ValueToClass;
523   DenseMap<Value *, const Expression *> ValueToExpression;
524 
525   // Value PHI handling, used to make equivalence between phi(op, op) and
526   // op(phi, phi).
527   // These mappings just store various data that would normally be part of the
528   // IR.
529   SmallPtrSet<const Instruction *, 8> PHINodeUses;
530 
531   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
532 
533   // Map a temporary instruction we created to a parent block.
534   DenseMap<const Value *, BasicBlock *> TempToBlock;
535 
536   // Map between the already in-program instructions and the temporary phis we
537   // created that they are known equivalent to.
538   DenseMap<const Value *, PHINode *> RealToTemp;
539 
540   // In order to know when we should re-process instructions that have
541   // phi-of-ops, we track the set of expressions that they needed as
542   // leaders. When we discover new leaders for those expressions, we process the
543   // associated phi-of-op instructions again in case they have changed.  The
544   // other way they may change is if they had leaders, and those leaders
545   // disappear.  However, at the point they have leaders, there are uses of the
546   // relevant operands in the created phi node, and so they will get reprocessed
547   // through the normal user marking we perform.
548   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
549   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
550       ExpressionToPhiOfOps;
551 
552   // Map from temporary operation to MemoryAccess.
553   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
554 
555   // Set of all temporary instructions we created.
556   // Note: This will include instructions that were just created during value
557   // numbering.  The way to test if something is using them is to check
558   // RealToTemp.
559   DenseSet<Instruction *> AllTempInstructions;
560 
561   // This is the set of instructions to revisit on a reachability change.  At
562   // the end of the main iteration loop it will contain at least all the phi of
563   // ops instructions that will be changed to phis, as well as regular phis.
564   // During the iteration loop, it may contain other things, such as phi of ops
565   // instructions that used edge reachability to reach a result, and so need to
566   // be revisited when the edge changes, independent of whether the phi they
567   // depended on changes.
568   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
569 
570   // Mapping from predicate info we used to the instructions we used it with.
571   // In order to correctly ensure propagation, we must keep track of what
572   // comparisons we used, so that when the values of the comparisons change, we
573   // propagate the information to the places we used the comparison.
574   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
575       PredicateToUsers;
576 
577   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
578   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
579   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
580       MemoryToUsers;
581 
582   // A table storing which memorydefs/phis represent a memory state provably
583   // equivalent to another memory state.
584   // We could use the congruence class machinery, but the MemoryAccess's are
585   // abstract memory states, so they can only ever be equivalent to each other,
586   // and not to constants, etc.
587   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
588 
589   // We could, if we wanted, build MemoryPhiExpressions and
590   // MemoryVariableExpressions, etc, and value number them the same way we value
591   // number phi expressions.  For the moment, this seems like overkill.  They
592   // can only exist in one of three states: they can be TOP (equal to
593   // everything), Equivalent to something else, or unique.  Because we do not
594   // create expressions for them, we need to simulate leader change not just
595   // when they change class, but when they change state.  Note: We can do the
596   // same thing for phis, and avoid having phi expressions if we wanted, We
597   // should eventually unify in one direction or the other, so this is a little
598   // bit of an experiment in which turns out easier to maintain.
599   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
600   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
601 
602   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
603   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
604 
605   // Expression to class mapping.
606   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
607   ExpressionClassMap ExpressionToClass;
608 
609   // We have a single expression that represents currently DeadExpressions.
610   // For dead expressions we can prove will stay dead, we mark them with
611   // DFS number zero.  However, it's possible in the case of phi nodes
612   // for us to assume/prove all arguments are dead during fixpointing.
613   // We use DeadExpression for that case.
614   DeadExpression *SingletonDeadExpression = nullptr;
615 
616   // Which values have changed as a result of leader changes.
617   SmallPtrSet<Value *, 8> LeaderChanges;
618 
619   // Reachability info.
620   using BlockEdge = BasicBlockEdge;
621   DenseSet<BlockEdge> ReachableEdges;
622   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
623 
624   // This is a bitvector because, on larger functions, we may have
625   // thousands of touched instructions at once (entire blocks,
626   // instructions with hundreds of uses, etc).  Even with optimization
627   // for when we mark whole blocks as touched, when this was a
628   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
629   // the time in GVN just managing this list.  The bitvector, on the
630   // other hand, efficiently supports test/set/clear of both
631   // individual and ranges, as well as "find next element" This
632   // enables us to use it as a worklist with essentially 0 cost.
633   BitVector TouchedInstructions;
634 
635   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
636 
637 #ifndef NDEBUG
638   // Debugging for how many times each block and instruction got processed.
639   DenseMap<const Value *, unsigned> ProcessedCount;
640 #endif
641 
642   // DFS info.
643   // This contains a mapping from Instructions to DFS numbers.
644   // The numbering starts at 1. An instruction with DFS number zero
645   // means that the instruction is dead.
646   DenseMap<const Value *, unsigned> InstrDFS;
647 
648   // This contains the mapping DFS numbers to instructions.
649   SmallVector<Value *, 32> DFSToInstr;
650 
651   // Deletion info.
652   SmallPtrSet<Instruction *, 8> InstructionsToErase;
653 
654 public:
655   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
656          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
657          const DataLayout &DL)
658       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
659         PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)),
660         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
661 
662   bool runGVN();
663 
664 private:
665   // Expression handling.
666   const Expression *createExpression(Instruction *) const;
667   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
668                                            Instruction *) const;
669 
670   // Our canonical form for phi arguments is a pair of incoming value, incoming
671   // basic block.
672   using ValPair = std::pair<Value *, BasicBlock *>;
673 
674   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
675                                      BasicBlock *, bool &HasBackEdge,
676                                      bool &OriginalOpsConstant) const;
677   const DeadExpression *createDeadExpression() const;
678   const VariableExpression *createVariableExpression(Value *) const;
679   const ConstantExpression *createConstantExpression(Constant *) const;
680   const Expression *createVariableOrConstant(Value *V) const;
681   const UnknownExpression *createUnknownExpression(Instruction *) const;
682   const StoreExpression *createStoreExpression(StoreInst *,
683                                                const MemoryAccess *) const;
684   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
685                                        const MemoryAccess *) const;
686   const CallExpression *createCallExpression(CallInst *,
687                                              const MemoryAccess *) const;
688   const AggregateValueExpression *
689   createAggregateValueExpression(Instruction *) const;
690   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
691 
692   // Congruence class handling.
693   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
694     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
695     CongruenceClasses.emplace_back(result);
696     return result;
697   }
698 
699   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
700     auto *CC = createCongruenceClass(nullptr, nullptr);
701     CC->setMemoryLeader(MA);
702     return CC;
703   }
704 
705   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
706     auto *CC = getMemoryClass(MA);
707     if (CC->getMemoryLeader() != MA)
708       CC = createMemoryClass(MA);
709     return CC;
710   }
711 
712   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
713     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
714     CClass->insert(Member);
715     ValueToClass[Member] = CClass;
716     return CClass;
717   }
718 
719   void initializeCongruenceClasses(Function &F);
720   const Expression *makePossiblePHIOfOps(Instruction *,
721                                          SmallPtrSetImpl<Value *> &);
722   Value *findLeaderForInst(Instruction *ValueOp,
723                            SmallPtrSetImpl<Value *> &Visited,
724                            MemoryAccess *MemAccess, Instruction *OrigInst,
725                            BasicBlock *PredBB);
726   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
727                                  SmallPtrSetImpl<const Value *> &Visited,
728                                  SmallVectorImpl<Instruction *> &Worklist);
729   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
730                            SmallPtrSetImpl<const Value *> &);
731   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
732   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
733 
734   // Value number an Instruction or MemoryPhi.
735   void valueNumberMemoryPhi(MemoryPhi *);
736   void valueNumberInstruction(Instruction *);
737 
738   // Symbolic evaluation.
739   const Expression *checkSimplificationResults(Expression *, Instruction *,
740                                                Value *) const;
741   const Expression *performSymbolicEvaluation(Value *,
742                                               SmallPtrSetImpl<Value *> &) const;
743   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
744                                                 Instruction *,
745                                                 MemoryAccess *) const;
746   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
747   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
748   const Expression *performSymbolicCallEvaluation(Instruction *) const;
749   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
750   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
751                                                  Instruction *I,
752                                                  BasicBlock *PHIBlock) const;
753   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
754   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
755   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
756 
757   // Congruence finding.
758   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
759   Value *lookupOperandLeader(Value *) const;
760   CongruenceClass *getClassForExpression(const Expression *E) const;
761   void performCongruenceFinding(Instruction *, const Expression *);
762   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
763                                      CongruenceClass *, CongruenceClass *);
764   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
765                                       CongruenceClass *, CongruenceClass *);
766   Value *getNextValueLeader(CongruenceClass *) const;
767   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
768   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
769   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
770   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
771   bool isMemoryAccessTOP(const MemoryAccess *) const;
772 
773   // Ranking
774   unsigned int getRank(const Value *) const;
775   bool shouldSwapOperands(const Value *, const Value *) const;
776 
777   // Reachability handling.
778   void updateReachableEdge(BasicBlock *, BasicBlock *);
779   void processOutgoingEdges(Instruction *, BasicBlock *);
780   Value *findConditionEquivalence(Value *) const;
781 
782   // Elimination.
783   struct ValueDFS;
784   void convertClassToDFSOrdered(const CongruenceClass &,
785                                 SmallVectorImpl<ValueDFS> &,
786                                 DenseMap<const Value *, unsigned int> &,
787                                 SmallPtrSetImpl<Instruction *> &) const;
788   void convertClassToLoadsAndStores(const CongruenceClass &,
789                                     SmallVectorImpl<ValueDFS> &) const;
790 
791   bool eliminateInstructions(Function &);
792   void replaceInstruction(Instruction *, Value *);
793   void markInstructionForDeletion(Instruction *);
794   void deleteInstructionsInBlock(BasicBlock *);
795   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
796                             const BasicBlock *) const;
797 
798   // New instruction creation.
799   void handleNewInstruction(Instruction *) {}
800 
801   // Various instruction touch utilities
802   template <typename Map, typename KeyType, typename Func>
803   void for_each_found(Map &, const KeyType &, Func);
804   template <typename Map, typename KeyType>
805   void touchAndErase(Map &, const KeyType &);
806   void markUsersTouched(Value *);
807   void markMemoryUsersTouched(const MemoryAccess *);
808   void markMemoryDefTouched(const MemoryAccess *);
809   void markPredicateUsersTouched(Instruction *);
810   void markValueLeaderChangeTouched(CongruenceClass *CC);
811   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
812   void markPhiOfOpsChanged(const Expression *E);
813   void addPredicateUsers(const PredicateBase *, Instruction *) const;
814   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
815   void addAdditionalUsers(Value *To, Value *User) const;
816 
817   // Main loop of value numbering
818   void iterateTouchedInstructions();
819 
820   // Utilities.
821   void cleanupTables();
822   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
823   void updateProcessedCount(const Value *V);
824   void verifyMemoryCongruency() const;
825   void verifyIterationSettled(Function &F);
826   void verifyStoreExpressions() const;
827   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
828                               const MemoryAccess *, const MemoryAccess *) const;
829   BasicBlock *getBlockForValue(Value *V) const;
830   void deleteExpression(const Expression *E) const;
831   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
832   MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
833   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
834   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
835 
836   unsigned InstrToDFSNum(const Value *V) const {
837     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
838     return InstrDFS.lookup(V);
839   }
840 
841   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
842     return MemoryToDFSNum(MA);
843   }
844 
845   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
846 
847   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
848   // This deliberately takes a value so it can be used with Use's, which will
849   // auto-convert to Value's but not to MemoryAccess's.
850   unsigned MemoryToDFSNum(const Value *MA) const {
851     assert(isa<MemoryAccess>(MA) &&
852            "This should not be used with instructions");
853     return isa<MemoryUseOrDef>(MA)
854                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
855                : InstrDFS.lookup(MA);
856   }
857 
858   bool isCycleFree(const Instruction *) const;
859   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
860 
861   // Debug counter info.  When verifying, we have to reset the value numbering
862   // debug counter to the same state it started in to get the same results.
863   int64_t StartingVNCounter;
864 };
865 
866 } // end anonymous namespace
867 
868 template <typename T>
869 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
870   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
871     return false;
872   return LHS.MemoryExpression::equals(RHS);
873 }
874 
875 bool LoadExpression::equals(const Expression &Other) const {
876   return equalsLoadStoreHelper(*this, Other);
877 }
878 
879 bool StoreExpression::equals(const Expression &Other) const {
880   if (!equalsLoadStoreHelper(*this, Other))
881     return false;
882   // Make sure that store vs store includes the value operand.
883   if (const auto *S = dyn_cast<StoreExpression>(&Other))
884     if (getStoredValue() != S->getStoredValue())
885       return false;
886   return true;
887 }
888 
889 // Determine if the edge From->To is a backedge
890 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
891   return From == To ||
892          RPOOrdering.lookup(DT->getNode(From)) >=
893              RPOOrdering.lookup(DT->getNode(To));
894 }
895 
896 #ifndef NDEBUG
897 static std::string getBlockName(const BasicBlock *B) {
898   return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
899 }
900 #endif
901 
902 // Get a MemoryAccess for an instruction, fake or real.
903 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
904   auto *Result = MSSA->getMemoryAccess(I);
905   return Result ? Result : TempToMemory.lookup(I);
906 }
907 
908 // Get a MemoryPhi for a basic block. These are all real.
909 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
910   return MSSA->getMemoryAccess(BB);
911 }
912 
913 // Get the basic block from an instruction/memory value.
914 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
915   if (auto *I = dyn_cast<Instruction>(V)) {
916     auto *Parent = I->getParent();
917     if (Parent)
918       return Parent;
919     Parent = TempToBlock.lookup(V);
920     assert(Parent && "Every fake instruction should have a block");
921     return Parent;
922   }
923 
924   auto *MP = dyn_cast<MemoryPhi>(V);
925   assert(MP && "Should have been an instruction or a MemoryPhi");
926   return MP->getBlock();
927 }
928 
929 // Delete a definitely dead expression, so it can be reused by the expression
930 // allocator.  Some of these are not in creation functions, so we have to accept
931 // const versions.
932 void NewGVN::deleteExpression(const Expression *E) const {
933   assert(isa<BasicExpression>(E));
934   auto *BE = cast<BasicExpression>(E);
935   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
936   ExpressionAllocator.Deallocate(E);
937 }
938 
939 // If V is a predicateinfo copy, get the thing it is a copy of.
940 static Value *getCopyOf(const Value *V) {
941   if (auto *II = dyn_cast<IntrinsicInst>(V))
942     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
943       return II->getOperand(0);
944   return nullptr;
945 }
946 
947 // Return true if V is really PN, even accounting for predicateinfo copies.
948 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
949   return V == PN || getCopyOf(V) == PN;
950 }
951 
952 static bool isCopyOfAPHI(const Value *V) {
953   auto *CO = getCopyOf(V);
954   return CO && isa<PHINode>(CO);
955 }
956 
957 // Sort PHI Operands into a canonical order.  What we use here is an RPO
958 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
959 // blocks.
960 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
961   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
962     return BlockInstRange.lookup(P1.second).first <
963            BlockInstRange.lookup(P2.second).first;
964   });
965 }
966 
967 // Return true if V is a value that will always be available (IE can
968 // be placed anywhere) in the function.  We don't do globals here
969 // because they are often worse to put in place.
970 static bool alwaysAvailable(Value *V) {
971   return isa<Constant>(V) || isa<Argument>(V);
972 }
973 
974 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
975 // the original instruction we are creating a PHIExpression for (but may not be
976 // a phi node). We require, as an invariant, that all the PHIOperands in the
977 // same block are sorted the same way. sortPHIOps will sort them into a
978 // canonical order.
979 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
980                                            const Instruction *I,
981                                            BasicBlock *PHIBlock,
982                                            bool &HasBackedge,
983                                            bool &OriginalOpsConstant) const {
984   unsigned NumOps = PHIOperands.size();
985   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
986 
987   E->allocateOperands(ArgRecycler, ExpressionAllocator);
988   E->setType(PHIOperands.begin()->first->getType());
989   E->setOpcode(Instruction::PHI);
990 
991   // Filter out unreachable phi operands.
992   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
993     auto *BB = P.second;
994     if (auto *PHIOp = dyn_cast<PHINode>(I))
995       if (isCopyOfPHI(P.first, PHIOp))
996         return false;
997     if (!ReachableEdges.count({BB, PHIBlock}))
998       return false;
999     // Things in TOPClass are equivalent to everything.
1000     if (ValueToClass.lookup(P.first) == TOPClass)
1001       return false;
1002     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1003     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1004     return lookupOperandLeader(P.first) != I;
1005   });
1006   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1007                  [&](const ValPair &P) -> Value * {
1008                    return lookupOperandLeader(P.first);
1009                  });
1010   return E;
1011 }
1012 
1013 // Set basic expression info (Arguments, type, opcode) for Expression
1014 // E from Instruction I in block B.
1015 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1016   bool AllConstant = true;
1017   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1018     E->setType(GEP->getSourceElementType());
1019   else
1020     E->setType(I->getType());
1021   E->setOpcode(I->getOpcode());
1022   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1023 
1024   // Transform the operand array into an operand leader array, and keep track of
1025   // whether all members are constant.
1026   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1027     auto Operand = lookupOperandLeader(O);
1028     AllConstant = AllConstant && isa<Constant>(Operand);
1029     return Operand;
1030   });
1031 
1032   return AllConstant;
1033 }
1034 
1035 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1036                                                  Value *Arg1, Value *Arg2,
1037                                                  Instruction *I) const {
1038   auto *E = new (ExpressionAllocator) BasicExpression(2);
1039 
1040   E->setType(T);
1041   E->setOpcode(Opcode);
1042   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1043   if (Instruction::isCommutative(Opcode)) {
1044     // Ensure that commutative instructions that only differ by a permutation
1045     // of their operands get the same value number by sorting the operand value
1046     // numbers.  Since all commutative instructions have two operands it is more
1047     // efficient to sort by hand rather than using, say, std::sort.
1048     if (shouldSwapOperands(Arg1, Arg2))
1049       std::swap(Arg1, Arg2);
1050   }
1051   E->op_push_back(lookupOperandLeader(Arg1));
1052   E->op_push_back(lookupOperandLeader(Arg2));
1053 
1054   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1055   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1056     return SimplifiedE;
1057   return E;
1058 }
1059 
1060 // Take a Value returned by simplification of Expression E/Instruction
1061 // I, and see if it resulted in a simpler expression. If so, return
1062 // that expression.
1063 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1064                                                      Instruction *I,
1065                                                      Value *V) const {
1066   if (!V)
1067     return nullptr;
1068   if (auto *C = dyn_cast<Constant>(V)) {
1069     if (I)
1070       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1071                         << " constant " << *C << "\n");
1072     NumGVNOpsSimplified++;
1073     assert(isa<BasicExpression>(E) &&
1074            "We should always have had a basic expression here");
1075     deleteExpression(E);
1076     return createConstantExpression(C);
1077   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1078     if (I)
1079       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1080                         << " variable " << *V << "\n");
1081     deleteExpression(E);
1082     return createVariableExpression(V);
1083   }
1084 
1085   CongruenceClass *CC = ValueToClass.lookup(V);
1086   if (CC) {
1087     if (CC->getLeader() && CC->getLeader() != I) {
1088       // If we simplified to something else, we need to communicate
1089       // that we're users of the value we simplified to.
1090       if (I != V) {
1091         // Don't add temporary instructions to the user lists.
1092         if (!AllTempInstructions.count(I))
1093           addAdditionalUsers(V, I);
1094       }
1095       return createVariableOrConstant(CC->getLeader());
1096     }
1097     if (CC->getDefiningExpr()) {
1098       // If we simplified to something else, we need to communicate
1099       // that we're users of the value we simplified to.
1100       if (I != V) {
1101         // Don't add temporary instructions to the user lists.
1102         if (!AllTempInstructions.count(I))
1103           addAdditionalUsers(V, I);
1104       }
1105 
1106       if (I)
1107         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1108                           << " expression " << *CC->getDefiningExpr() << "\n");
1109       NumGVNOpsSimplified++;
1110       deleteExpression(E);
1111       return CC->getDefiningExpr();
1112     }
1113   }
1114 
1115   return nullptr;
1116 }
1117 
1118 // Create a value expression from the instruction I, replacing operands with
1119 // their leaders.
1120 
1121 const Expression *NewGVN::createExpression(Instruction *I) const {
1122   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1123 
1124   bool AllConstant = setBasicExpressionInfo(I, E);
1125 
1126   if (I->isCommutative()) {
1127     // Ensure that commutative instructions that only differ by a permutation
1128     // of their operands get the same value number by sorting the operand value
1129     // numbers.  Since all commutative instructions have two operands it is more
1130     // efficient to sort by hand rather than using, say, std::sort.
1131     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1132     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1133       E->swapOperands(0, 1);
1134   }
1135   // Perform simplification.
1136   if (auto *CI = dyn_cast<CmpInst>(I)) {
1137     // Sort the operand value numbers so x<y and y>x get the same value
1138     // number.
1139     CmpInst::Predicate Predicate = CI->getPredicate();
1140     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1141       E->swapOperands(0, 1);
1142       Predicate = CmpInst::getSwappedPredicate(Predicate);
1143     }
1144     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1145     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1146     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1147            "Wrong types on cmp instruction");
1148     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1149             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1150     Value *V =
1151         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1152     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1153       return SimplifiedE;
1154   } else if (isa<SelectInst>(I)) {
1155     if (isa<Constant>(E->getOperand(0)) ||
1156         E->getOperand(1) == E->getOperand(2)) {
1157       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1158              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1159       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1160                                     E->getOperand(2), SQ);
1161       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1162         return SimplifiedE;
1163     }
1164   } else if (I->isBinaryOp()) {
1165     Value *V =
1166         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1167     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1168       return SimplifiedE;
1169   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1170     Value *V =
1171         SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1172     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1173       return SimplifiedE;
1174   } else if (isa<GetElementPtrInst>(I)) {
1175     Value *V = SimplifyGEPInst(
1176         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1177     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1178       return SimplifiedE;
1179   } else if (AllConstant) {
1180     // We don't bother trying to simplify unless all of the operands
1181     // were constant.
1182     // TODO: There are a lot of Simplify*'s we could call here, if we
1183     // wanted to.  The original motivating case for this code was a
1184     // zext i1 false to i8, which we don't have an interface to
1185     // simplify (IE there is no SimplifyZExt).
1186 
1187     SmallVector<Constant *, 8> C;
1188     for (Value *Arg : E->operands())
1189       C.emplace_back(cast<Constant>(Arg));
1190 
1191     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1192       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1193         return SimplifiedE;
1194   }
1195   return E;
1196 }
1197 
1198 const AggregateValueExpression *
1199 NewGVN::createAggregateValueExpression(Instruction *I) const {
1200   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1201     auto *E = new (ExpressionAllocator)
1202         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1203     setBasicExpressionInfo(I, E);
1204     E->allocateIntOperands(ExpressionAllocator);
1205     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1206     return E;
1207   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1208     auto *E = new (ExpressionAllocator)
1209         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1210     setBasicExpressionInfo(EI, E);
1211     E->allocateIntOperands(ExpressionAllocator);
1212     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1213     return E;
1214   }
1215   llvm_unreachable("Unhandled type of aggregate value operation");
1216 }
1217 
1218 const DeadExpression *NewGVN::createDeadExpression() const {
1219   // DeadExpression has no arguments and all DeadExpression's are the same,
1220   // so we only need one of them.
1221   return SingletonDeadExpression;
1222 }
1223 
1224 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1225   auto *E = new (ExpressionAllocator) VariableExpression(V);
1226   E->setOpcode(V->getValueID());
1227   return E;
1228 }
1229 
1230 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1231   if (auto *C = dyn_cast<Constant>(V))
1232     return createConstantExpression(C);
1233   return createVariableExpression(V);
1234 }
1235 
1236 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1237   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1238   E->setOpcode(C->getValueID());
1239   return E;
1240 }
1241 
1242 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1243   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1244   E->setOpcode(I->getOpcode());
1245   return E;
1246 }
1247 
1248 const CallExpression *
1249 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1250   // FIXME: Add operand bundles for calls.
1251   auto *E =
1252       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1253   setBasicExpressionInfo(CI, E);
1254   return E;
1255 }
1256 
1257 // Return true if some equivalent of instruction Inst dominates instruction U.
1258 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1259                                      const Instruction *U) const {
1260   auto *CC = ValueToClass.lookup(Inst);
1261    // This must be an instruction because we are only called from phi nodes
1262   // in the case that the value it needs to check against is an instruction.
1263 
1264   // The most likely candidates for dominance are the leader and the next leader.
1265   // The leader or nextleader will dominate in all cases where there is an
1266   // equivalent that is higher up in the dom tree.
1267   // We can't *only* check them, however, because the
1268   // dominator tree could have an infinite number of non-dominating siblings
1269   // with instructions that are in the right congruence class.
1270   //       A
1271   // B C D E F G
1272   // |
1273   // H
1274   // Instruction U could be in H,  with equivalents in every other sibling.
1275   // Depending on the rpo order picked, the leader could be the equivalent in
1276   // any of these siblings.
1277   if (!CC)
1278     return false;
1279   if (alwaysAvailable(CC->getLeader()))
1280     return true;
1281   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1282     return true;
1283   if (CC->getNextLeader().first &&
1284       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1285     return true;
1286   return llvm::any_of(*CC, [&](const Value *Member) {
1287     return Member != CC->getLeader() &&
1288            DT->dominates(cast<Instruction>(Member), U);
1289   });
1290 }
1291 
1292 // See if we have a congruence class and leader for this operand, and if so,
1293 // return it. Otherwise, return the operand itself.
1294 Value *NewGVN::lookupOperandLeader(Value *V) const {
1295   CongruenceClass *CC = ValueToClass.lookup(V);
1296   if (CC) {
1297     // Everything in TOP is represented by undef, as it can be any value.
1298     // We do have to make sure we get the type right though, so we can't set the
1299     // RepLeader to undef.
1300     if (CC == TOPClass)
1301       return UndefValue::get(V->getType());
1302     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1303   }
1304 
1305   return V;
1306 }
1307 
1308 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1309   auto *CC = getMemoryClass(MA);
1310   assert(CC->getMemoryLeader() &&
1311          "Every MemoryAccess should be mapped to a congruence class with a "
1312          "representative memory access");
1313   return CC->getMemoryLeader();
1314 }
1315 
1316 // Return true if the MemoryAccess is really equivalent to everything. This is
1317 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1318 // state of all MemoryAccesses.
1319 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1320   return getMemoryClass(MA) == TOPClass;
1321 }
1322 
1323 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1324                                              LoadInst *LI,
1325                                              const MemoryAccess *MA) const {
1326   auto *E =
1327       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1328   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1329   E->setType(LoadType);
1330 
1331   // Give store and loads same opcode so they value number together.
1332   E->setOpcode(0);
1333   E->op_push_back(PointerOp);
1334   if (LI)
1335     E->setAlignment(LI->getAlignment());
1336 
1337   // TODO: Value number heap versions. We may be able to discover
1338   // things alias analysis can't on it's own (IE that a store and a
1339   // load have the same value, and thus, it isn't clobbering the load).
1340   return E;
1341 }
1342 
1343 const StoreExpression *
1344 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1345   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1346   auto *E = new (ExpressionAllocator)
1347       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1348   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1349   E->setType(SI->getValueOperand()->getType());
1350 
1351   // Give store and loads same opcode so they value number together.
1352   E->setOpcode(0);
1353   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1354 
1355   // TODO: Value number heap versions. We may be able to discover
1356   // things alias analysis can't on it's own (IE that a store and a
1357   // load have the same value, and thus, it isn't clobbering the load).
1358   return E;
1359 }
1360 
1361 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1362   // Unlike loads, we never try to eliminate stores, so we do not check if they
1363   // are simple and avoid value numbering them.
1364   auto *SI = cast<StoreInst>(I);
1365   auto *StoreAccess = getMemoryAccess(SI);
1366   // Get the expression, if any, for the RHS of the MemoryDef.
1367   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1368   if (EnableStoreRefinement)
1369     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1370   // If we bypassed the use-def chains, make sure we add a use.
1371   StoreRHS = lookupMemoryLeader(StoreRHS);
1372   if (StoreRHS != StoreAccess->getDefiningAccess())
1373     addMemoryUsers(StoreRHS, StoreAccess);
1374   // If we are defined by ourselves, use the live on entry def.
1375   if (StoreRHS == StoreAccess)
1376     StoreRHS = MSSA->getLiveOnEntryDef();
1377 
1378   if (SI->isSimple()) {
1379     // See if we are defined by a previous store expression, it already has a
1380     // value, and it's the same value as our current store. FIXME: Right now, we
1381     // only do this for simple stores, we should expand to cover memcpys, etc.
1382     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1383     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1384     // We really want to check whether the expression we matched was a store. No
1385     // easy way to do that. However, we can check that the class we found has a
1386     // store, which, assuming the value numbering state is not corrupt, is
1387     // sufficient, because we must also be equivalent to that store's expression
1388     // for it to be in the same class as the load.
1389     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1390       return LastStore;
1391     // Also check if our value operand is defined by a load of the same memory
1392     // location, and the memory state is the same as it was then (otherwise, it
1393     // could have been overwritten later. See test32 in
1394     // transforms/DeadStoreElimination/simple.ll).
1395     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1396       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1397            LastStore->getOperand(0)) &&
1398           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1399            StoreRHS))
1400         return LastStore;
1401     deleteExpression(LastStore);
1402   }
1403 
1404   // If the store is not equivalent to anything, value number it as a store that
1405   // produces a unique memory state (instead of using it's MemoryUse, we use
1406   // it's MemoryDef).
1407   return createStoreExpression(SI, StoreAccess);
1408 }
1409 
1410 // See if we can extract the value of a loaded pointer from a load, a store, or
1411 // a memory instruction.
1412 const Expression *
1413 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1414                                     LoadInst *LI, Instruction *DepInst,
1415                                     MemoryAccess *DefiningAccess) const {
1416   assert((!LI || LI->isSimple()) && "Not a simple load");
1417   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1418     // Can't forward from non-atomic to atomic without violating memory model.
1419     // Also don't need to coerce if they are the same type, we will just
1420     // propagate.
1421     if (LI->isAtomic() > DepSI->isAtomic() ||
1422         LoadType == DepSI->getValueOperand()->getType())
1423       return nullptr;
1424     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1425     if (Offset >= 0) {
1426       if (auto *C = dyn_cast<Constant>(
1427               lookupOperandLeader(DepSI->getValueOperand()))) {
1428         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1429                           << " to constant " << *C << "\n");
1430         return createConstantExpression(
1431             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1432       }
1433     }
1434   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1435     // Can't forward from non-atomic to atomic without violating memory model.
1436     if (LI->isAtomic() > DepLI->isAtomic())
1437       return nullptr;
1438     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1439     if (Offset >= 0) {
1440       // We can coerce a constant load into a load.
1441       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1442         if (auto *PossibleConstant =
1443                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1444           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1445                             << " to constant " << *PossibleConstant << "\n");
1446           return createConstantExpression(PossibleConstant);
1447         }
1448     }
1449   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1450     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1451     if (Offset >= 0) {
1452       if (auto *PossibleConstant =
1453               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1454         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1455                           << " to constant " << *PossibleConstant << "\n");
1456         return createConstantExpression(PossibleConstant);
1457       }
1458     }
1459   }
1460 
1461   // All of the below are only true if the loaded pointer is produced
1462   // by the dependent instruction.
1463   if (LoadPtr != lookupOperandLeader(DepInst) &&
1464       !AA->isMustAlias(LoadPtr, DepInst))
1465     return nullptr;
1466   // If this load really doesn't depend on anything, then we must be loading an
1467   // undef value.  This can happen when loading for a fresh allocation with no
1468   // intervening stores, for example.  Note that this is only true in the case
1469   // that the result of the allocation is pointer equal to the load ptr.
1470   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1471     return createConstantExpression(UndefValue::get(LoadType));
1472   }
1473   // If this load occurs either right after a lifetime begin,
1474   // then the loaded value is undefined.
1475   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1476     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1477       return createConstantExpression(UndefValue::get(LoadType));
1478   }
1479   // If this load follows a calloc (which zero initializes memory),
1480   // then the loaded value is zero
1481   else if (isCallocLikeFn(DepInst, TLI)) {
1482     return createConstantExpression(Constant::getNullValue(LoadType));
1483   }
1484 
1485   return nullptr;
1486 }
1487 
1488 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1489   auto *LI = cast<LoadInst>(I);
1490 
1491   // We can eliminate in favor of non-simple loads, but we won't be able to
1492   // eliminate the loads themselves.
1493   if (!LI->isSimple())
1494     return nullptr;
1495 
1496   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1497   // Load of undef is undef.
1498   if (isa<UndefValue>(LoadAddressLeader))
1499     return createConstantExpression(UndefValue::get(LI->getType()));
1500   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1501   MemoryAccess *DefiningAccess =
1502       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1503 
1504   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1505     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1506       Instruction *DefiningInst = MD->getMemoryInst();
1507       // If the defining instruction is not reachable, replace with undef.
1508       if (!ReachableBlocks.count(DefiningInst->getParent()))
1509         return createConstantExpression(UndefValue::get(LI->getType()));
1510       // This will handle stores and memory insts.  We only do if it the
1511       // defining access has a different type, or it is a pointer produced by
1512       // certain memory operations that cause the memory to have a fixed value
1513       // (IE things like calloc).
1514       if (const auto *CoercionResult =
1515               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1516                                           DefiningInst, DefiningAccess))
1517         return CoercionResult;
1518     }
1519   }
1520 
1521   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1522                                         DefiningAccess);
1523   // If our MemoryLeader is not our defining access, add a use to the
1524   // MemoryLeader, so that we get reprocessed when it changes.
1525   if (LE->getMemoryLeader() != DefiningAccess)
1526     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1527   return LE;
1528 }
1529 
1530 const Expression *
1531 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1532   auto *PI = PredInfo->getPredicateInfoFor(I);
1533   if (!PI)
1534     return nullptr;
1535 
1536   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1537 
1538   auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1539   if (!PWC)
1540     return nullptr;
1541 
1542   auto *CopyOf = I->getOperand(0);
1543   auto *Cond = PWC->Condition;
1544 
1545   // If this a copy of the condition, it must be either true or false depending
1546   // on the predicate info type and edge.
1547   if (CopyOf == Cond) {
1548     // We should not need to add predicate users because the predicate info is
1549     // already a use of this operand.
1550     if (isa<PredicateAssume>(PI))
1551       return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1552     if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1553       if (PBranch->TrueEdge)
1554         return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1555       return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1556     }
1557     if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1558       return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1559   }
1560 
1561   // Not a copy of the condition, so see what the predicates tell us about this
1562   // value.  First, though, we check to make sure the value is actually a copy
1563   // of one of the condition operands. It's possible, in certain cases, for it
1564   // to be a copy of a predicateinfo copy. In particular, if two branch
1565   // operations use the same condition, and one branch dominates the other, we
1566   // will end up with a copy of a copy.  This is currently a small deficiency in
1567   // predicateinfo.  What will end up happening here is that we will value
1568   // number both copies the same anyway.
1569 
1570   // Everything below relies on the condition being a comparison.
1571   auto *Cmp = dyn_cast<CmpInst>(Cond);
1572   if (!Cmp)
1573     return nullptr;
1574 
1575   if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1576     LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1577     return nullptr;
1578   }
1579   Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1580   Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1581   bool SwappedOps = false;
1582   // Sort the ops.
1583   if (shouldSwapOperands(FirstOp, SecondOp)) {
1584     std::swap(FirstOp, SecondOp);
1585     SwappedOps = true;
1586   }
1587   CmpInst::Predicate Predicate =
1588       SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1589 
1590   if (isa<PredicateAssume>(PI)) {
1591     // If we assume the operands are equal, then they are equal.
1592     if (Predicate == CmpInst::ICMP_EQ) {
1593       addPredicateUsers(PI, I);
1594       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1595                          I);
1596       return createVariableOrConstant(FirstOp);
1597     }
1598   }
1599   if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1600     // If we are *not* a copy of the comparison, we may equal to the other
1601     // operand when the predicate implies something about equality of
1602     // operations.  In particular, if the comparison is true/false when the
1603     // operands are equal, and we are on the right edge, we know this operation
1604     // is equal to something.
1605     if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1606         (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1607       addPredicateUsers(PI, I);
1608       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1609                          I);
1610       return createVariableOrConstant(FirstOp);
1611     }
1612     // Handle the special case of floating point.
1613     if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1614          (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1615         isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1616       addPredicateUsers(PI, I);
1617       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1618                          I);
1619       return createConstantExpression(cast<Constant>(FirstOp));
1620     }
1621   }
1622   return nullptr;
1623 }
1624 
1625 // Evaluate read only and pure calls, and create an expression result.
1626 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1627   auto *CI = cast<CallInst>(I);
1628   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1629     // Intrinsics with the returned attribute are copies of arguments.
1630     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1631       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1632         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1633           return Result;
1634       return createVariableOrConstant(ReturnedValue);
1635     }
1636   }
1637   if (AA->doesNotAccessMemory(CI)) {
1638     return createCallExpression(CI, TOPClass->getMemoryLeader());
1639   } else if (AA->onlyReadsMemory(CI)) {
1640     MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
1641     return createCallExpression(CI, DefiningAccess);
1642   }
1643   return nullptr;
1644 }
1645 
1646 // Retrieve the memory class for a given MemoryAccess.
1647 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1648   auto *Result = MemoryAccessToClass.lookup(MA);
1649   assert(Result && "Should have found memory class");
1650   return Result;
1651 }
1652 
1653 // Update the MemoryAccess equivalence table to say that From is equal to To,
1654 // and return true if this is different from what already existed in the table.
1655 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1656                             CongruenceClass *NewClass) {
1657   assert(NewClass &&
1658          "Every MemoryAccess should be getting mapped to a non-null class");
1659   LLVM_DEBUG(dbgs() << "Setting " << *From);
1660   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1661   LLVM_DEBUG(dbgs() << NewClass->getID()
1662                     << " with current MemoryAccess leader ");
1663   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1664 
1665   auto LookupResult = MemoryAccessToClass.find(From);
1666   bool Changed = false;
1667   // If it's already in the table, see if the value changed.
1668   if (LookupResult != MemoryAccessToClass.end()) {
1669     auto *OldClass = LookupResult->second;
1670     if (OldClass != NewClass) {
1671       // If this is a phi, we have to handle memory member updates.
1672       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1673         OldClass->memory_erase(MP);
1674         NewClass->memory_insert(MP);
1675         // This may have killed the class if it had no non-memory members
1676         if (OldClass->getMemoryLeader() == From) {
1677           if (OldClass->definesNoMemory()) {
1678             OldClass->setMemoryLeader(nullptr);
1679           } else {
1680             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1681             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1682                               << OldClass->getID() << " to "
1683                               << *OldClass->getMemoryLeader()
1684                               << " due to removal of a memory member " << *From
1685                               << "\n");
1686             markMemoryLeaderChangeTouched(OldClass);
1687           }
1688         }
1689       }
1690       // It wasn't equivalent before, and now it is.
1691       LookupResult->second = NewClass;
1692       Changed = true;
1693     }
1694   }
1695 
1696   return Changed;
1697 }
1698 
1699 // Determine if a instruction is cycle-free.  That means the values in the
1700 // instruction don't depend on any expressions that can change value as a result
1701 // of the instruction.  For example, a non-cycle free instruction would be v =
1702 // phi(0, v+1).
1703 bool NewGVN::isCycleFree(const Instruction *I) const {
1704   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1705   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1706   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1707   // other members are all phi nodes (as they do not compute anything, they are
1708   // copies).
1709   auto ICS = InstCycleState.lookup(I);
1710   if (ICS == ICS_Unknown) {
1711     SCCFinder.Start(I);
1712     auto &SCC = SCCFinder.getComponentFor(I);
1713     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1714     if (SCC.size() == 1)
1715       InstCycleState.insert({I, ICS_CycleFree});
1716     else {
1717       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1718         return isa<PHINode>(V) || isCopyOfAPHI(V);
1719       });
1720       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1721       for (auto *Member : SCC)
1722         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1723           InstCycleState.insert({MemberPhi, ICS});
1724     }
1725   }
1726   if (ICS == ICS_Cycle)
1727     return false;
1728   return true;
1729 }
1730 
1731 // Evaluate PHI nodes symbolically and create an expression result.
1732 const Expression *
1733 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1734                                      Instruction *I,
1735                                      BasicBlock *PHIBlock) const {
1736   // True if one of the incoming phi edges is a backedge.
1737   bool HasBackedge = false;
1738   // All constant tracks the state of whether all the *original* phi operands
1739   // This is really shorthand for "this phi cannot cycle due to forward
1740   // change in value of the phi is guaranteed not to later change the value of
1741   // the phi. IE it can't be v = phi(undef, v+1)
1742   bool OriginalOpsConstant = true;
1743   auto *E = cast<PHIExpression>(createPHIExpression(
1744       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1745   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1746   // See if all arguments are the same.
1747   // We track if any were undef because they need special handling.
1748   bool HasUndef = false;
1749   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1750     if (isa<UndefValue>(Arg)) {
1751       HasUndef = true;
1752       return false;
1753     }
1754     return true;
1755   });
1756   // If we are left with no operands, it's dead.
1757   if (empty(Filtered)) {
1758     // If it has undef at this point, it means there are no-non-undef arguments,
1759     // and thus, the value of the phi node must be undef.
1760     if (HasUndef) {
1761       LLVM_DEBUG(
1762           dbgs() << "PHI Node " << *I
1763                  << " has no non-undef arguments, valuing it as undef\n");
1764       return createConstantExpression(UndefValue::get(I->getType()));
1765     }
1766 
1767     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1768     deleteExpression(E);
1769     return createDeadExpression();
1770   }
1771   Value *AllSameValue = *(Filtered.begin());
1772   ++Filtered.begin();
1773   // Can't use std::equal here, sadly, because filter.begin moves.
1774   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1775     // In LLVM's non-standard representation of phi nodes, it's possible to have
1776     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1777     // on the original phi node), especially in weird CFG's where some arguments
1778     // are unreachable, or uninitialized along certain paths.  This can cause
1779     // infinite loops during evaluation. We work around this by not trying to
1780     // really evaluate them independently, but instead using a variable
1781     // expression to say if one is equivalent to the other.
1782     // We also special case undef, so that if we have an undef, we can't use the
1783     // common value unless it dominates the phi block.
1784     if (HasUndef) {
1785       // If we have undef and at least one other value, this is really a
1786       // multivalued phi, and we need to know if it's cycle free in order to
1787       // evaluate whether we can ignore the undef.  The other parts of this are
1788       // just shortcuts.  If there is no backedge, or all operands are
1789       // constants, it also must be cycle free.
1790       if (HasBackedge && !OriginalOpsConstant &&
1791           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1792         return E;
1793 
1794       // Only have to check for instructions
1795       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1796         if (!someEquivalentDominates(AllSameInst, I))
1797           return E;
1798     }
1799     // Can't simplify to something that comes later in the iteration.
1800     // Otherwise, when and if it changes congruence class, we will never catch
1801     // up. We will always be a class behind it.
1802     if (isa<Instruction>(AllSameValue) &&
1803         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1804       return E;
1805     NumGVNPhisAllSame++;
1806     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1807                       << "\n");
1808     deleteExpression(E);
1809     return createVariableOrConstant(AllSameValue);
1810   }
1811   return E;
1812 }
1813 
1814 const Expression *
1815 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1816   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1817     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1818     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1819       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1820       // a semantically equivalent expression instead of an extract value
1821       // expression.
1822       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1823                                     WO->getLHS(), WO->getRHS(), I);
1824   }
1825 
1826   return createAggregateValueExpression(I);
1827 }
1828 
1829 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1830   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1831 
1832   auto *CI = cast<CmpInst>(I);
1833   // See if our operands are equal to those of a previous predicate, and if so,
1834   // if it implies true or false.
1835   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1836   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1837   auto OurPredicate = CI->getPredicate();
1838   if (shouldSwapOperands(Op0, Op1)) {
1839     std::swap(Op0, Op1);
1840     OurPredicate = CI->getSwappedPredicate();
1841   }
1842 
1843   // Avoid processing the same info twice.
1844   const PredicateBase *LastPredInfo = nullptr;
1845   // See if we know something about the comparison itself, like it is the target
1846   // of an assume.
1847   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1848   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1849     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1850 
1851   if (Op0 == Op1) {
1852     // This condition does not depend on predicates, no need to add users
1853     if (CI->isTrueWhenEqual())
1854       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1855     else if (CI->isFalseWhenEqual())
1856       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1857   }
1858 
1859   // NOTE: Because we are comparing both operands here and below, and using
1860   // previous comparisons, we rely on fact that predicateinfo knows to mark
1861   // comparisons that use renamed operands as users of the earlier comparisons.
1862   // It is *not* enough to just mark predicateinfo renamed operands as users of
1863   // the earlier comparisons, because the *other* operand may have changed in a
1864   // previous iteration.
1865   // Example:
1866   // icmp slt %a, %b
1867   // %b.0 = ssa.copy(%b)
1868   // false branch:
1869   // icmp slt %c, %b.0
1870 
1871   // %c and %a may start out equal, and thus, the code below will say the second
1872   // %icmp is false.  c may become equal to something else, and in that case the
1873   // %second icmp *must* be reexamined, but would not if only the renamed
1874   // %operands are considered users of the icmp.
1875 
1876   // *Currently* we only check one level of comparisons back, and only mark one
1877   // level back as touched when changes happen.  If you modify this code to look
1878   // back farther through comparisons, you *must* mark the appropriate
1879   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1880   // we know something just from the operands themselves
1881 
1882   // See if our operands have predicate info, so that we may be able to derive
1883   // something from a previous comparison.
1884   for (const auto &Op : CI->operands()) {
1885     auto *PI = PredInfo->getPredicateInfoFor(Op);
1886     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1887       if (PI == LastPredInfo)
1888         continue;
1889       LastPredInfo = PI;
1890       // In phi of ops cases, we may have predicate info that we are evaluating
1891       // in a different context.
1892       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1893         continue;
1894       // TODO: Along the false edge, we may know more things too, like
1895       // icmp of
1896       // same operands is false.
1897       // TODO: We only handle actual comparison conditions below, not
1898       // and/or.
1899       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1900       if (!BranchCond)
1901         continue;
1902       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1903       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1904       auto BranchPredicate = BranchCond->getPredicate();
1905       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1906         std::swap(BranchOp0, BranchOp1);
1907         BranchPredicate = BranchCond->getSwappedPredicate();
1908       }
1909       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1910         if (PBranch->TrueEdge) {
1911           // If we know the previous predicate is true and we are in the true
1912           // edge then we may be implied true or false.
1913           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1914                                                   OurPredicate)) {
1915             addPredicateUsers(PI, I);
1916             return createConstantExpression(
1917                 ConstantInt::getTrue(CI->getType()));
1918           }
1919 
1920           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1921                                                    OurPredicate)) {
1922             addPredicateUsers(PI, I);
1923             return createConstantExpression(
1924                 ConstantInt::getFalse(CI->getType()));
1925           }
1926         } else {
1927           // Just handle the ne and eq cases, where if we have the same
1928           // operands, we may know something.
1929           if (BranchPredicate == OurPredicate) {
1930             addPredicateUsers(PI, I);
1931             // Same predicate, same ops,we know it was false, so this is false.
1932             return createConstantExpression(
1933                 ConstantInt::getFalse(CI->getType()));
1934           } else if (BranchPredicate ==
1935                      CmpInst::getInversePredicate(OurPredicate)) {
1936             addPredicateUsers(PI, I);
1937             // Inverse predicate, we know the other was false, so this is true.
1938             return createConstantExpression(
1939                 ConstantInt::getTrue(CI->getType()));
1940           }
1941         }
1942       }
1943     }
1944   }
1945   // Create expression will take care of simplifyCmpInst
1946   return createExpression(I);
1947 }
1948 
1949 // Substitute and symbolize the value before value numbering.
1950 const Expression *
1951 NewGVN::performSymbolicEvaluation(Value *V,
1952                                   SmallPtrSetImpl<Value *> &Visited) const {
1953   const Expression *E = nullptr;
1954   if (auto *C = dyn_cast<Constant>(V))
1955     E = createConstantExpression(C);
1956   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1957     E = createVariableExpression(V);
1958   } else {
1959     // TODO: memory intrinsics.
1960     // TODO: Some day, we should do the forward propagation and reassociation
1961     // parts of the algorithm.
1962     auto *I = cast<Instruction>(V);
1963     switch (I->getOpcode()) {
1964     case Instruction::ExtractValue:
1965     case Instruction::InsertValue:
1966       E = performSymbolicAggrValueEvaluation(I);
1967       break;
1968     case Instruction::PHI: {
1969       SmallVector<ValPair, 3> Ops;
1970       auto *PN = cast<PHINode>(I);
1971       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1972         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1973       // Sort to ensure the invariant createPHIExpression requires is met.
1974       sortPHIOps(Ops);
1975       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1976     } break;
1977     case Instruction::Call:
1978       E = performSymbolicCallEvaluation(I);
1979       break;
1980     case Instruction::Store:
1981       E = performSymbolicStoreEvaluation(I);
1982       break;
1983     case Instruction::Load:
1984       E = performSymbolicLoadEvaluation(I);
1985       break;
1986     case Instruction::BitCast:
1987     case Instruction::AddrSpaceCast:
1988       E = createExpression(I);
1989       break;
1990     case Instruction::ICmp:
1991     case Instruction::FCmp:
1992       E = performSymbolicCmpEvaluation(I);
1993       break;
1994     case Instruction::FNeg:
1995     case Instruction::Add:
1996     case Instruction::FAdd:
1997     case Instruction::Sub:
1998     case Instruction::FSub:
1999     case Instruction::Mul:
2000     case Instruction::FMul:
2001     case Instruction::UDiv:
2002     case Instruction::SDiv:
2003     case Instruction::FDiv:
2004     case Instruction::URem:
2005     case Instruction::SRem:
2006     case Instruction::FRem:
2007     case Instruction::Shl:
2008     case Instruction::LShr:
2009     case Instruction::AShr:
2010     case Instruction::And:
2011     case Instruction::Or:
2012     case Instruction::Xor:
2013     case Instruction::Trunc:
2014     case Instruction::ZExt:
2015     case Instruction::SExt:
2016     case Instruction::FPToUI:
2017     case Instruction::FPToSI:
2018     case Instruction::UIToFP:
2019     case Instruction::SIToFP:
2020     case Instruction::FPTrunc:
2021     case Instruction::FPExt:
2022     case Instruction::PtrToInt:
2023     case Instruction::IntToPtr:
2024     case Instruction::Select:
2025     case Instruction::ExtractElement:
2026     case Instruction::InsertElement:
2027     case Instruction::ShuffleVector:
2028     case Instruction::GetElementPtr:
2029       E = createExpression(I);
2030       break;
2031     default:
2032       return nullptr;
2033     }
2034   }
2035   return E;
2036 }
2037 
2038 // Look up a container in a map, and then call a function for each thing in the
2039 // found container.
2040 template <typename Map, typename KeyType, typename Func>
2041 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2042   const auto Result = M.find_as(Key);
2043   if (Result != M.end())
2044     for (typename Map::mapped_type::value_type Mapped : Result->second)
2045       F(Mapped);
2046 }
2047 
2048 // Look up a container of values/instructions in a map, and touch all the
2049 // instructions in the container.  Then erase value from the map.
2050 template <typename Map, typename KeyType>
2051 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2052   const auto Result = M.find_as(Key);
2053   if (Result != M.end()) {
2054     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2055       TouchedInstructions.set(InstrToDFSNum(Mapped));
2056     M.erase(Result);
2057   }
2058 }
2059 
2060 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2061   assert(User && To != User);
2062   if (isa<Instruction>(To))
2063     AdditionalUsers[To].insert(User);
2064 }
2065 
2066 void NewGVN::markUsersTouched(Value *V) {
2067   // Now mark the users as touched.
2068   for (auto *User : V->users()) {
2069     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2070     TouchedInstructions.set(InstrToDFSNum(User));
2071   }
2072   touchAndErase(AdditionalUsers, V);
2073 }
2074 
2075 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2076   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2077   MemoryToUsers[To].insert(U);
2078 }
2079 
2080 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2081   TouchedInstructions.set(MemoryToDFSNum(MA));
2082 }
2083 
2084 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2085   if (isa<MemoryUse>(MA))
2086     return;
2087   for (auto U : MA->users())
2088     TouchedInstructions.set(MemoryToDFSNum(U));
2089   touchAndErase(MemoryToUsers, MA);
2090 }
2091 
2092 // Add I to the set of users of a given predicate.
2093 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2094   // Don't add temporary instructions to the user lists.
2095   if (AllTempInstructions.count(I))
2096     return;
2097 
2098   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2099     PredicateToUsers[PBranch->Condition].insert(I);
2100   else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2101     PredicateToUsers[PAssume->Condition].insert(I);
2102 }
2103 
2104 // Touch all the predicates that depend on this instruction.
2105 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2106   touchAndErase(PredicateToUsers, I);
2107 }
2108 
2109 // Mark users affected by a memory leader change.
2110 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2111   for (auto M : CC->memory())
2112     markMemoryDefTouched(M);
2113 }
2114 
2115 // Touch the instructions that need to be updated after a congruence class has a
2116 // leader change, and mark changed values.
2117 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2118   for (auto M : *CC) {
2119     if (auto *I = dyn_cast<Instruction>(M))
2120       TouchedInstructions.set(InstrToDFSNum(I));
2121     LeaderChanges.insert(M);
2122   }
2123 }
2124 
2125 // Give a range of things that have instruction DFS numbers, this will return
2126 // the member of the range with the smallest dfs number.
2127 template <class T, class Range>
2128 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2129   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2130   for (const auto X : R) {
2131     auto DFSNum = InstrToDFSNum(X);
2132     if (DFSNum < MinDFS.second)
2133       MinDFS = {X, DFSNum};
2134   }
2135   return MinDFS.first;
2136 }
2137 
2138 // This function returns the MemoryAccess that should be the next leader of
2139 // congruence class CC, under the assumption that the current leader is going to
2140 // disappear.
2141 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2142   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2143   // do for regular leaders.
2144   // Make sure there will be a leader to find.
2145   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2146   if (CC->getStoreCount() > 0) {
2147     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2148       return getMemoryAccess(NL);
2149     // Find the store with the minimum DFS number.
2150     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2151         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2152     return getMemoryAccess(cast<StoreInst>(V));
2153   }
2154   assert(CC->getStoreCount() == 0);
2155 
2156   // Given our assertion, hitting this part must mean
2157   // !OldClass->memory_empty()
2158   if (CC->memory_size() == 1)
2159     return *CC->memory_begin();
2160   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2161 }
2162 
2163 // This function returns the next value leader of a congruence class, under the
2164 // assumption that the current leader is going away.  This should end up being
2165 // the next most dominating member.
2166 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2167   // We don't need to sort members if there is only 1, and we don't care about
2168   // sorting the TOP class because everything either gets out of it or is
2169   // unreachable.
2170 
2171   if (CC->size() == 1 || CC == TOPClass) {
2172     return *(CC->begin());
2173   } else if (CC->getNextLeader().first) {
2174     ++NumGVNAvoidedSortedLeaderChanges;
2175     return CC->getNextLeader().first;
2176   } else {
2177     ++NumGVNSortedLeaderChanges;
2178     // NOTE: If this ends up to slow, we can maintain a dual structure for
2179     // member testing/insertion, or keep things mostly sorted, and sort only
2180     // here, or use SparseBitVector or ....
2181     return getMinDFSOfRange<Value>(*CC);
2182   }
2183 }
2184 
2185 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2186 // the memory members, etc for the move.
2187 //
2188 // The invariants of this function are:
2189 //
2190 // - I must be moving to NewClass from OldClass
2191 // - The StoreCount of OldClass and NewClass is expected to have been updated
2192 //   for I already if it is a store.
2193 // - The OldClass memory leader has not been updated yet if I was the leader.
2194 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2195                                             MemoryAccess *InstMA,
2196                                             CongruenceClass *OldClass,
2197                                             CongruenceClass *NewClass) {
2198   // If the leader is I, and we had a representative MemoryAccess, it should
2199   // be the MemoryAccess of OldClass.
2200   assert((!InstMA || !OldClass->getMemoryLeader() ||
2201           OldClass->getLeader() != I ||
2202           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2203               MemoryAccessToClass.lookup(InstMA)) &&
2204          "Representative MemoryAccess mismatch");
2205   // First, see what happens to the new class
2206   if (!NewClass->getMemoryLeader()) {
2207     // Should be a new class, or a store becoming a leader of a new class.
2208     assert(NewClass->size() == 1 ||
2209            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2210     NewClass->setMemoryLeader(InstMA);
2211     // Mark it touched if we didn't just create a singleton
2212     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2213                       << NewClass->getID()
2214                       << " due to new memory instruction becoming leader\n");
2215     markMemoryLeaderChangeTouched(NewClass);
2216   }
2217   setMemoryClass(InstMA, NewClass);
2218   // Now, fixup the old class if necessary
2219   if (OldClass->getMemoryLeader() == InstMA) {
2220     if (!OldClass->definesNoMemory()) {
2221       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2222       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2223                         << OldClass->getID() << " to "
2224                         << *OldClass->getMemoryLeader()
2225                         << " due to removal of old leader " << *InstMA << "\n");
2226       markMemoryLeaderChangeTouched(OldClass);
2227     } else
2228       OldClass->setMemoryLeader(nullptr);
2229   }
2230 }
2231 
2232 // Move a value, currently in OldClass, to be part of NewClass
2233 // Update OldClass and NewClass for the move (including changing leaders, etc).
2234 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2235                                            CongruenceClass *OldClass,
2236                                            CongruenceClass *NewClass) {
2237   if (I == OldClass->getNextLeader().first)
2238     OldClass->resetNextLeader();
2239 
2240   OldClass->erase(I);
2241   NewClass->insert(I);
2242 
2243   if (NewClass->getLeader() != I)
2244     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2245   // Handle our special casing of stores.
2246   if (auto *SI = dyn_cast<StoreInst>(I)) {
2247     OldClass->decStoreCount();
2248     // Okay, so when do we want to make a store a leader of a class?
2249     // If we have a store defined by an earlier load, we want the earlier load
2250     // to lead the class.
2251     // If we have a store defined by something else, we want the store to lead
2252     // the class so everything else gets the "something else" as a value.
2253     // If we have a store as the single member of the class, we want the store
2254     // as the leader
2255     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2256       // If it's a store expression we are using, it means we are not equivalent
2257       // to something earlier.
2258       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2259         NewClass->setStoredValue(SE->getStoredValue());
2260         markValueLeaderChangeTouched(NewClass);
2261         // Shift the new class leader to be the store
2262         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2263                           << NewClass->getID() << " from "
2264                           << *NewClass->getLeader() << " to  " << *SI
2265                           << " because store joined class\n");
2266         // If we changed the leader, we have to mark it changed because we don't
2267         // know what it will do to symbolic evaluation.
2268         NewClass->setLeader(SI);
2269       }
2270       // We rely on the code below handling the MemoryAccess change.
2271     }
2272     NewClass->incStoreCount();
2273   }
2274   // True if there is no memory instructions left in a class that had memory
2275   // instructions before.
2276 
2277   // If it's not a memory use, set the MemoryAccess equivalence
2278   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2279   if (InstMA)
2280     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2281   ValueToClass[I] = NewClass;
2282   // See if we destroyed the class or need to swap leaders.
2283   if (OldClass->empty() && OldClass != TOPClass) {
2284     if (OldClass->getDefiningExpr()) {
2285       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2286                         << " from table\n");
2287       // We erase it as an exact expression to make sure we don't just erase an
2288       // equivalent one.
2289       auto Iter = ExpressionToClass.find_as(
2290           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2291       if (Iter != ExpressionToClass.end())
2292         ExpressionToClass.erase(Iter);
2293 #ifdef EXPENSIVE_CHECKS
2294       assert(
2295           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2296           "We erased the expression we just inserted, which should not happen");
2297 #endif
2298     }
2299   } else if (OldClass->getLeader() == I) {
2300     // When the leader changes, the value numbering of
2301     // everything may change due to symbolization changes, so we need to
2302     // reprocess.
2303     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2304                       << OldClass->getID() << "\n");
2305     ++NumGVNLeaderChanges;
2306     // Destroy the stored value if there are no more stores to represent it.
2307     // Note that this is basically clean up for the expression removal that
2308     // happens below.  If we remove stores from a class, we may leave it as a
2309     // class of equivalent memory phis.
2310     if (OldClass->getStoreCount() == 0) {
2311       if (OldClass->getStoredValue())
2312         OldClass->setStoredValue(nullptr);
2313     }
2314     OldClass->setLeader(getNextValueLeader(OldClass));
2315     OldClass->resetNextLeader();
2316     markValueLeaderChangeTouched(OldClass);
2317   }
2318 }
2319 
2320 // For a given expression, mark the phi of ops instructions that could have
2321 // changed as a result.
2322 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2323   touchAndErase(ExpressionToPhiOfOps, E);
2324 }
2325 
2326 // Perform congruence finding on a given value numbering expression.
2327 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2328   // This is guaranteed to return something, since it will at least find
2329   // TOP.
2330 
2331   CongruenceClass *IClass = ValueToClass.lookup(I);
2332   assert(IClass && "Should have found a IClass");
2333   // Dead classes should have been eliminated from the mapping.
2334   assert(!IClass->isDead() && "Found a dead class");
2335 
2336   CongruenceClass *EClass = nullptr;
2337   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2338     EClass = ValueToClass.lookup(VE->getVariableValue());
2339   } else if (isa<DeadExpression>(E)) {
2340     EClass = TOPClass;
2341   }
2342   if (!EClass) {
2343     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2344 
2345     // If it's not in the value table, create a new congruence class.
2346     if (lookupResult.second) {
2347       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2348       auto place = lookupResult.first;
2349       place->second = NewClass;
2350 
2351       // Constants and variables should always be made the leader.
2352       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2353         NewClass->setLeader(CE->getConstantValue());
2354       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2355         StoreInst *SI = SE->getStoreInst();
2356         NewClass->setLeader(SI);
2357         NewClass->setStoredValue(SE->getStoredValue());
2358         // The RepMemoryAccess field will be filled in properly by the
2359         // moveValueToNewCongruenceClass call.
2360       } else {
2361         NewClass->setLeader(I);
2362       }
2363       assert(!isa<VariableExpression>(E) &&
2364              "VariableExpression should have been handled already");
2365 
2366       EClass = NewClass;
2367       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2368                         << " using expression " << *E << " at "
2369                         << NewClass->getID() << " and leader "
2370                         << *(NewClass->getLeader()));
2371       if (NewClass->getStoredValue())
2372         LLVM_DEBUG(dbgs() << " and stored value "
2373                           << *(NewClass->getStoredValue()));
2374       LLVM_DEBUG(dbgs() << "\n");
2375     } else {
2376       EClass = lookupResult.first->second;
2377       if (isa<ConstantExpression>(E))
2378         assert((isa<Constant>(EClass->getLeader()) ||
2379                 (EClass->getStoredValue() &&
2380                  isa<Constant>(EClass->getStoredValue()))) &&
2381                "Any class with a constant expression should have a "
2382                "constant leader");
2383 
2384       assert(EClass && "Somehow don't have an eclass");
2385 
2386       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2387     }
2388   }
2389   bool ClassChanged = IClass != EClass;
2390   bool LeaderChanged = LeaderChanges.erase(I);
2391   if (ClassChanged || LeaderChanged) {
2392     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2393                       << *E << "\n");
2394     if (ClassChanged) {
2395       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2396       markPhiOfOpsChanged(E);
2397     }
2398 
2399     markUsersTouched(I);
2400     if (MemoryAccess *MA = getMemoryAccess(I))
2401       markMemoryUsersTouched(MA);
2402     if (auto *CI = dyn_cast<CmpInst>(I))
2403       markPredicateUsersTouched(CI);
2404   }
2405   // If we changed the class of the store, we want to ensure nothing finds the
2406   // old store expression.  In particular, loads do not compare against stored
2407   // value, so they will find old store expressions (and associated class
2408   // mappings) if we leave them in the table.
2409   if (ClassChanged && isa<StoreInst>(I)) {
2410     auto *OldE = ValueToExpression.lookup(I);
2411     // It could just be that the old class died. We don't want to erase it if we
2412     // just moved classes.
2413     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2414       // Erase this as an exact expression to ensure we don't erase expressions
2415       // equivalent to it.
2416       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2417       if (Iter != ExpressionToClass.end())
2418         ExpressionToClass.erase(Iter);
2419     }
2420   }
2421   ValueToExpression[I] = E;
2422 }
2423 
2424 // Process the fact that Edge (from, to) is reachable, including marking
2425 // any newly reachable blocks and instructions for processing.
2426 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2427   // Check if the Edge was reachable before.
2428   if (ReachableEdges.insert({From, To}).second) {
2429     // If this block wasn't reachable before, all instructions are touched.
2430     if (ReachableBlocks.insert(To).second) {
2431       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2432                         << " marked reachable\n");
2433       const auto &InstRange = BlockInstRange.lookup(To);
2434       TouchedInstructions.set(InstRange.first, InstRange.second);
2435     } else {
2436       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2437                         << " was reachable, but new edge {"
2438                         << getBlockName(From) << "," << getBlockName(To)
2439                         << "} to it found\n");
2440 
2441       // We've made an edge reachable to an existing block, which may
2442       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2443       // they are the only thing that depend on new edges. Anything using their
2444       // values will get propagated to if necessary.
2445       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2446         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2447 
2448       // FIXME: We should just add a union op on a Bitvector and
2449       // SparseBitVector.  We can do it word by word faster than we are doing it
2450       // here.
2451       for (auto InstNum : RevisitOnReachabilityChange[To])
2452         TouchedInstructions.set(InstNum);
2453     }
2454   }
2455 }
2456 
2457 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2458 // see if we know some constant value for it already.
2459 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2460   auto Result = lookupOperandLeader(Cond);
2461   return isa<Constant>(Result) ? Result : nullptr;
2462 }
2463 
2464 // Process the outgoing edges of a block for reachability.
2465 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2466   // Evaluate reachability of terminator instruction.
2467   BranchInst *BR;
2468   if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2469     Value *Cond = BR->getCondition();
2470     Value *CondEvaluated = findConditionEquivalence(Cond);
2471     if (!CondEvaluated) {
2472       if (auto *I = dyn_cast<Instruction>(Cond)) {
2473         const Expression *E = createExpression(I);
2474         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2475           CondEvaluated = CE->getConstantValue();
2476         }
2477       } else if (isa<ConstantInt>(Cond)) {
2478         CondEvaluated = Cond;
2479       }
2480     }
2481     ConstantInt *CI;
2482     BasicBlock *TrueSucc = BR->getSuccessor(0);
2483     BasicBlock *FalseSucc = BR->getSuccessor(1);
2484     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2485       if (CI->isOne()) {
2486         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2487                           << " evaluated to true\n");
2488         updateReachableEdge(B, TrueSucc);
2489       } else if (CI->isZero()) {
2490         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2491                           << " evaluated to false\n");
2492         updateReachableEdge(B, FalseSucc);
2493       }
2494     } else {
2495       updateReachableEdge(B, TrueSucc);
2496       updateReachableEdge(B, FalseSucc);
2497     }
2498   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2499     // For switches, propagate the case values into the case
2500     // destinations.
2501 
2502     Value *SwitchCond = SI->getCondition();
2503     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2504     // See if we were able to turn this switch statement into a constant.
2505     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2506       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2507       // We should be able to get case value for this.
2508       auto Case = *SI->findCaseValue(CondVal);
2509       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2510         // We proved the value is outside of the range of the case.
2511         // We can't do anything other than mark the default dest as reachable,
2512         // and go home.
2513         updateReachableEdge(B, SI->getDefaultDest());
2514         return;
2515       }
2516       // Now get where it goes and mark it reachable.
2517       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2518       updateReachableEdge(B, TargetBlock);
2519     } else {
2520       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2521         BasicBlock *TargetBlock = SI->getSuccessor(i);
2522         updateReachableEdge(B, TargetBlock);
2523       }
2524     }
2525   } else {
2526     // Otherwise this is either unconditional, or a type we have no
2527     // idea about. Just mark successors as reachable.
2528     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2529       BasicBlock *TargetBlock = TI->getSuccessor(i);
2530       updateReachableEdge(B, TargetBlock);
2531     }
2532 
2533     // This also may be a memory defining terminator, in which case, set it
2534     // equivalent only to itself.
2535     //
2536     auto *MA = getMemoryAccess(TI);
2537     if (MA && !isa<MemoryUse>(MA)) {
2538       auto *CC = ensureLeaderOfMemoryClass(MA);
2539       if (setMemoryClass(MA, CC))
2540         markMemoryUsersTouched(MA);
2541     }
2542   }
2543 }
2544 
2545 // Remove the PHI of Ops PHI for I
2546 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2547   InstrDFS.erase(PHITemp);
2548   // It's still a temp instruction. We keep it in the array so it gets erased.
2549   // However, it's no longer used by I, or in the block
2550   TempToBlock.erase(PHITemp);
2551   RealToTemp.erase(I);
2552   // We don't remove the users from the phi node uses. This wastes a little
2553   // time, but such is life.  We could use two sets to track which were there
2554   // are the start of NewGVN, and which were added, but right nowt he cost of
2555   // tracking is more than the cost of checking for more phi of ops.
2556 }
2557 
2558 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2559 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2560                          Instruction *ExistingValue) {
2561   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2562   AllTempInstructions.insert(Op);
2563   TempToBlock[Op] = BB;
2564   RealToTemp[ExistingValue] = Op;
2565   // Add all users to phi node use, as they are now uses of the phi of ops phis
2566   // and may themselves be phi of ops.
2567   for (auto *U : ExistingValue->users())
2568     if (auto *UI = dyn_cast<Instruction>(U))
2569       PHINodeUses.insert(UI);
2570 }
2571 
2572 static bool okayForPHIOfOps(const Instruction *I) {
2573   if (!EnablePhiOfOps)
2574     return false;
2575   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2576          isa<LoadInst>(I);
2577 }
2578 
2579 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2580     Value *V, const BasicBlock *PHIBlock,
2581     SmallPtrSetImpl<const Value *> &Visited,
2582     SmallVectorImpl<Instruction *> &Worklist) {
2583 
2584   if (!isa<Instruction>(V))
2585     return true;
2586   auto OISIt = OpSafeForPHIOfOps.find(V);
2587   if (OISIt != OpSafeForPHIOfOps.end())
2588     return OISIt->second;
2589 
2590   // Keep walking until we either dominate the phi block, or hit a phi, or run
2591   // out of things to check.
2592   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2593     OpSafeForPHIOfOps.insert({V, true});
2594     return true;
2595   }
2596   // PHI in the same block.
2597   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2598     OpSafeForPHIOfOps.insert({V, false});
2599     return false;
2600   }
2601 
2602   auto *OrigI = cast<Instruction>(V);
2603   for (auto *Op : OrigI->operand_values()) {
2604     if (!isa<Instruction>(Op))
2605       continue;
2606     // Stop now if we find an unsafe operand.
2607     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2608     if (OISIt != OpSafeForPHIOfOps.end()) {
2609       if (!OISIt->second) {
2610         OpSafeForPHIOfOps.insert({V, false});
2611         return false;
2612       }
2613       continue;
2614     }
2615     if (!Visited.insert(Op).second)
2616       continue;
2617     Worklist.push_back(cast<Instruction>(Op));
2618   }
2619   return true;
2620 }
2621 
2622 // Return true if this operand will be safe to use for phi of ops.
2623 //
2624 // The reason some operands are unsafe is that we are not trying to recursively
2625 // translate everything back through phi nodes.  We actually expect some lookups
2626 // of expressions to fail.  In particular, a lookup where the expression cannot
2627 // exist in the predecessor.  This is true even if the expression, as shown, can
2628 // be determined to be constant.
2629 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2630                                  SmallPtrSetImpl<const Value *> &Visited) {
2631   SmallVector<Instruction *, 4> Worklist;
2632   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2633     return false;
2634   while (!Worklist.empty()) {
2635     auto *I = Worklist.pop_back_val();
2636     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2637       return false;
2638   }
2639   OpSafeForPHIOfOps.insert({V, true});
2640   return true;
2641 }
2642 
2643 // Try to find a leader for instruction TransInst, which is a phi translated
2644 // version of something in our original program.  Visited is used to ensure we
2645 // don't infinite loop during translations of cycles.  OrigInst is the
2646 // instruction in the original program, and PredBB is the predecessor we
2647 // translated it through.
2648 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2649                                  SmallPtrSetImpl<Value *> &Visited,
2650                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2651                                  BasicBlock *PredBB) {
2652   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2653   // Make sure it's marked as a temporary instruction.
2654   AllTempInstructions.insert(TransInst);
2655   // and make sure anything that tries to add it's DFS number is
2656   // redirected to the instruction we are making a phi of ops
2657   // for.
2658   TempToBlock.insert({TransInst, PredBB});
2659   InstrDFS.insert({TransInst, IDFSNum});
2660 
2661   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2662   InstrDFS.erase(TransInst);
2663   AllTempInstructions.erase(TransInst);
2664   TempToBlock.erase(TransInst);
2665   if (MemAccess)
2666     TempToMemory.erase(TransInst);
2667   if (!E)
2668     return nullptr;
2669   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2670   if (!FoundVal) {
2671     ExpressionToPhiOfOps[E].insert(OrigInst);
2672     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2673                       << " in block " << getBlockName(PredBB) << "\n");
2674     return nullptr;
2675   }
2676   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2677     FoundVal = SI->getValueOperand();
2678   return FoundVal;
2679 }
2680 
2681 // When we see an instruction that is an op of phis, generate the equivalent phi
2682 // of ops form.
2683 const Expression *
2684 NewGVN::makePossiblePHIOfOps(Instruction *I,
2685                              SmallPtrSetImpl<Value *> &Visited) {
2686   if (!okayForPHIOfOps(I))
2687     return nullptr;
2688 
2689   if (!Visited.insert(I).second)
2690     return nullptr;
2691   // For now, we require the instruction be cycle free because we don't
2692   // *always* create a phi of ops for instructions that could be done as phi
2693   // of ops, we only do it if we think it is useful.  If we did do it all the
2694   // time, we could remove the cycle free check.
2695   if (!isCycleFree(I))
2696     return nullptr;
2697 
2698   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2699   // TODO: We don't do phi translation on memory accesses because it's
2700   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2701   // which we don't have a good way of doing ATM.
2702   auto *MemAccess = getMemoryAccess(I);
2703   // If the memory operation is defined by a memory operation this block that
2704   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2705   // can't help, as it would still be killed by that memory operation.
2706   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2707       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2708     return nullptr;
2709 
2710   // Convert op of phis to phi of ops
2711   SmallPtrSet<const Value *, 10> VisitedOps;
2712   SmallVector<Value *, 4> Ops(I->operand_values());
2713   BasicBlock *SamePHIBlock = nullptr;
2714   PHINode *OpPHI = nullptr;
2715   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2716     return nullptr;
2717   for (auto *Op : Ops) {
2718     if (!isa<PHINode>(Op)) {
2719       auto *ValuePHI = RealToTemp.lookup(Op);
2720       if (!ValuePHI)
2721         continue;
2722       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2723       Op = ValuePHI;
2724     }
2725     OpPHI = cast<PHINode>(Op);
2726     if (!SamePHIBlock) {
2727       SamePHIBlock = getBlockForValue(OpPHI);
2728     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2729       LLVM_DEBUG(
2730           dbgs()
2731           << "PHIs for operands are not all in the same block, aborting\n");
2732       return nullptr;
2733     }
2734     // No point in doing this for one-operand phis.
2735     if (OpPHI->getNumOperands() == 1) {
2736       OpPHI = nullptr;
2737       continue;
2738     }
2739   }
2740 
2741   if (!OpPHI)
2742     return nullptr;
2743 
2744   SmallVector<ValPair, 4> PHIOps;
2745   SmallPtrSet<Value *, 4> Deps;
2746   auto *PHIBlock = getBlockForValue(OpPHI);
2747   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2748   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2749     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2750     Value *FoundVal = nullptr;
2751     SmallPtrSet<Value *, 4> CurrentDeps;
2752     // We could just skip unreachable edges entirely but it's tricky to do
2753     // with rewriting existing phi nodes.
2754     if (ReachableEdges.count({PredBB, PHIBlock})) {
2755       // Clone the instruction, create an expression from it that is
2756       // translated back into the predecessor, and see if we have a leader.
2757       Instruction *ValueOp = I->clone();
2758       if (MemAccess)
2759         TempToMemory.insert({ValueOp, MemAccess});
2760       bool SafeForPHIOfOps = true;
2761       VisitedOps.clear();
2762       for (auto &Op : ValueOp->operands()) {
2763         auto *OrigOp = &*Op;
2764         // When these operand changes, it could change whether there is a
2765         // leader for us or not, so we have to add additional users.
2766         if (isa<PHINode>(Op)) {
2767           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2768           if (Op != OrigOp && Op != I)
2769             CurrentDeps.insert(Op);
2770         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2771           if (getBlockForValue(ValuePHI) == PHIBlock)
2772             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2773         }
2774         // If we phi-translated the op, it must be safe.
2775         SafeForPHIOfOps =
2776             SafeForPHIOfOps &&
2777             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2778       }
2779       // FIXME: For those things that are not safe we could generate
2780       // expressions all the way down, and see if this comes out to a
2781       // constant.  For anything where that is true, and unsafe, we should
2782       // have made a phi-of-ops (or value numbered it equivalent to something)
2783       // for the pieces already.
2784       FoundVal = !SafeForPHIOfOps ? nullptr
2785                                   : findLeaderForInst(ValueOp, Visited,
2786                                                       MemAccess, I, PredBB);
2787       ValueOp->deleteValue();
2788       if (!FoundVal) {
2789         // We failed to find a leader for the current ValueOp, but this might
2790         // change in case of the translated operands change.
2791         if (SafeForPHIOfOps)
2792           for (auto Dep : CurrentDeps)
2793             addAdditionalUsers(Dep, I);
2794 
2795         return nullptr;
2796       }
2797       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2798     } else {
2799       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2800                         << getBlockName(PredBB)
2801                         << " because the block is unreachable\n");
2802       FoundVal = UndefValue::get(I->getType());
2803       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2804     }
2805 
2806     PHIOps.push_back({FoundVal, PredBB});
2807     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2808                       << getBlockName(PredBB) << "\n");
2809   }
2810   for (auto Dep : Deps)
2811     addAdditionalUsers(Dep, I);
2812   sortPHIOps(PHIOps);
2813   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2814   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2815     LLVM_DEBUG(
2816         dbgs()
2817         << "Not creating real PHI of ops because it simplified to existing "
2818            "value or constant\n");
2819     return E;
2820   }
2821   auto *ValuePHI = RealToTemp.lookup(I);
2822   bool NewPHI = false;
2823   if (!ValuePHI) {
2824     ValuePHI =
2825         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2826     addPhiOfOps(ValuePHI, PHIBlock, I);
2827     NewPHI = true;
2828     NumGVNPHIOfOpsCreated++;
2829   }
2830   if (NewPHI) {
2831     for (auto PHIOp : PHIOps)
2832       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2833   } else {
2834     TempToBlock[ValuePHI] = PHIBlock;
2835     unsigned int i = 0;
2836     for (auto PHIOp : PHIOps) {
2837       ValuePHI->setIncomingValue(i, PHIOp.first);
2838       ValuePHI->setIncomingBlock(i, PHIOp.second);
2839       ++i;
2840     }
2841   }
2842   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2843   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2844                     << "\n");
2845 
2846   return E;
2847 }
2848 
2849 // The algorithm initially places the values of the routine in the TOP
2850 // congruence class. The leader of TOP is the undetermined value `undef`.
2851 // When the algorithm has finished, values still in TOP are unreachable.
2852 void NewGVN::initializeCongruenceClasses(Function &F) {
2853   NextCongruenceNum = 0;
2854 
2855   // Note that even though we use the live on entry def as a representative
2856   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2857   // have no real equivalemnt to undef for MemoryAccesses, and so we really
2858   // should be checking whether the MemoryAccess is top if we want to know if it
2859   // is equivalent to everything.  Otherwise, what this really signifies is that
2860   // the access "it reaches all the way back to the beginning of the function"
2861 
2862   // Initialize all other instructions to be in TOP class.
2863   TOPClass = createCongruenceClass(nullptr, nullptr);
2864   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2865   //  The live on entry def gets put into it's own class
2866   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2867       createMemoryClass(MSSA->getLiveOnEntryDef());
2868 
2869   for (auto DTN : nodes(DT)) {
2870     BasicBlock *BB = DTN->getBlock();
2871     // All MemoryAccesses are equivalent to live on entry to start. They must
2872     // be initialized to something so that initial changes are noticed. For
2873     // the maximal answer, we initialize them all to be the same as
2874     // liveOnEntry.
2875     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2876     if (MemoryBlockDefs)
2877       for (const auto &Def : *MemoryBlockDefs) {
2878         MemoryAccessToClass[&Def] = TOPClass;
2879         auto *MD = dyn_cast<MemoryDef>(&Def);
2880         // Insert the memory phis into the member list.
2881         if (!MD) {
2882           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2883           TOPClass->memory_insert(MP);
2884           MemoryPhiState.insert({MP, MPS_TOP});
2885         }
2886 
2887         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2888           TOPClass->incStoreCount();
2889       }
2890 
2891     // FIXME: This is trying to discover which instructions are uses of phi
2892     // nodes.  We should move this into one of the myriad of places that walk
2893     // all the operands already.
2894     for (auto &I : *BB) {
2895       if (isa<PHINode>(&I))
2896         for (auto *U : I.users())
2897           if (auto *UInst = dyn_cast<Instruction>(U))
2898             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2899               PHINodeUses.insert(UInst);
2900       // Don't insert void terminators into the class. We don't value number
2901       // them, and they just end up sitting in TOP.
2902       if (I.isTerminator() && I.getType()->isVoidTy())
2903         continue;
2904       TOPClass->insert(&I);
2905       ValueToClass[&I] = TOPClass;
2906     }
2907   }
2908 
2909   // Initialize arguments to be in their own unique congruence classes
2910   for (auto &FA : F.args())
2911     createSingletonCongruenceClass(&FA);
2912 }
2913 
2914 void NewGVN::cleanupTables() {
2915   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2916     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2917                       << " has " << CongruenceClasses[i]->size()
2918                       << " members\n");
2919     // Make sure we delete the congruence class (probably worth switching to
2920     // a unique_ptr at some point.
2921     delete CongruenceClasses[i];
2922     CongruenceClasses[i] = nullptr;
2923   }
2924 
2925   // Destroy the value expressions
2926   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2927                                          AllTempInstructions.end());
2928   AllTempInstructions.clear();
2929 
2930   // We have to drop all references for everything first, so there are no uses
2931   // left as we delete them.
2932   for (auto *I : TempInst) {
2933     I->dropAllReferences();
2934   }
2935 
2936   while (!TempInst.empty()) {
2937     auto *I = TempInst.back();
2938     TempInst.pop_back();
2939     I->deleteValue();
2940   }
2941 
2942   ValueToClass.clear();
2943   ArgRecycler.clear(ExpressionAllocator);
2944   ExpressionAllocator.Reset();
2945   CongruenceClasses.clear();
2946   ExpressionToClass.clear();
2947   ValueToExpression.clear();
2948   RealToTemp.clear();
2949   AdditionalUsers.clear();
2950   ExpressionToPhiOfOps.clear();
2951   TempToBlock.clear();
2952   TempToMemory.clear();
2953   PHINodeUses.clear();
2954   OpSafeForPHIOfOps.clear();
2955   ReachableBlocks.clear();
2956   ReachableEdges.clear();
2957 #ifndef NDEBUG
2958   ProcessedCount.clear();
2959 #endif
2960   InstrDFS.clear();
2961   InstructionsToErase.clear();
2962   DFSToInstr.clear();
2963   BlockInstRange.clear();
2964   TouchedInstructions.clear();
2965   MemoryAccessToClass.clear();
2966   PredicateToUsers.clear();
2967   MemoryToUsers.clear();
2968   RevisitOnReachabilityChange.clear();
2969 }
2970 
2971 // Assign local DFS number mapping to instructions, and leave space for Value
2972 // PHI's.
2973 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2974                                                        unsigned Start) {
2975   unsigned End = Start;
2976   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2977     InstrDFS[MemPhi] = End++;
2978     DFSToInstr.emplace_back(MemPhi);
2979   }
2980 
2981   // Then the real block goes next.
2982   for (auto &I : *B) {
2983     // There's no need to call isInstructionTriviallyDead more than once on
2984     // an instruction. Therefore, once we know that an instruction is dead
2985     // we change its DFS number so that it doesn't get value numbered.
2986     if (isInstructionTriviallyDead(&I, TLI)) {
2987       InstrDFS[&I] = 0;
2988       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2989       markInstructionForDeletion(&I);
2990       continue;
2991     }
2992     if (isa<PHINode>(&I))
2993       RevisitOnReachabilityChange[B].set(End);
2994     InstrDFS[&I] = End++;
2995     DFSToInstr.emplace_back(&I);
2996   }
2997 
2998   // All of the range functions taken half-open ranges (open on the end side).
2999   // So we do not subtract one from count, because at this point it is one
3000   // greater than the last instruction.
3001   return std::make_pair(Start, End);
3002 }
3003 
3004 void NewGVN::updateProcessedCount(const Value *V) {
3005 #ifndef NDEBUG
3006   if (ProcessedCount.count(V) == 0) {
3007     ProcessedCount.insert({V, 1});
3008   } else {
3009     ++ProcessedCount[V];
3010     assert(ProcessedCount[V] < 100 &&
3011            "Seem to have processed the same Value a lot");
3012   }
3013 #endif
3014 }
3015 
3016 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3017 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3018   // If all the arguments are the same, the MemoryPhi has the same value as the
3019   // argument.  Filter out unreachable blocks and self phis from our operands.
3020   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3021   // self-phi checking.
3022   const BasicBlock *PHIBlock = MP->getBlock();
3023   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3024     return cast<MemoryAccess>(U) != MP &&
3025            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3026            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3027   });
3028   // If all that is left is nothing, our memoryphi is undef. We keep it as
3029   // InitialClass.  Note: The only case this should happen is if we have at
3030   // least one self-argument.
3031   if (Filtered.begin() == Filtered.end()) {
3032     if (setMemoryClass(MP, TOPClass))
3033       markMemoryUsersTouched(MP);
3034     return;
3035   }
3036 
3037   // Transform the remaining operands into operand leaders.
3038   // FIXME: mapped_iterator should have a range version.
3039   auto LookupFunc = [&](const Use &U) {
3040     return lookupMemoryLeader(cast<MemoryAccess>(U));
3041   };
3042   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3043   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3044 
3045   // and now check if all the elements are equal.
3046   // Sadly, we can't use std::equals since these are random access iterators.
3047   const auto *AllSameValue = *MappedBegin;
3048   ++MappedBegin;
3049   bool AllEqual = std::all_of(
3050       MappedBegin, MappedEnd,
3051       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3052 
3053   if (AllEqual)
3054     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3055                       << "\n");
3056   else
3057     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3058   // If it's equal to something, it's in that class. Otherwise, it has to be in
3059   // a class where it is the leader (other things may be equivalent to it, but
3060   // it needs to start off in its own class, which means it must have been the
3061   // leader, and it can't have stopped being the leader because it was never
3062   // removed).
3063   CongruenceClass *CC =
3064       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3065   auto OldState = MemoryPhiState.lookup(MP);
3066   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3067   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3068   MemoryPhiState[MP] = NewState;
3069   if (setMemoryClass(MP, CC) || OldState != NewState)
3070     markMemoryUsersTouched(MP);
3071 }
3072 
3073 // Value number a single instruction, symbolically evaluating, performing
3074 // congruence finding, and updating mappings.
3075 void NewGVN::valueNumberInstruction(Instruction *I) {
3076   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3077   if (!I->isTerminator()) {
3078     const Expression *Symbolized = nullptr;
3079     SmallPtrSet<Value *, 2> Visited;
3080     if (DebugCounter::shouldExecute(VNCounter)) {
3081       Symbolized = performSymbolicEvaluation(I, Visited);
3082       // Make a phi of ops if necessary
3083       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3084           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3085         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3086         // If we created a phi of ops, use it.
3087         // If we couldn't create one, make sure we don't leave one lying around
3088         if (PHIE) {
3089           Symbolized = PHIE;
3090         } else if (auto *Op = RealToTemp.lookup(I)) {
3091           removePhiOfOps(I, Op);
3092         }
3093       }
3094     } else {
3095       // Mark the instruction as unused so we don't value number it again.
3096       InstrDFS[I] = 0;
3097     }
3098     // If we couldn't come up with a symbolic expression, use the unknown
3099     // expression
3100     if (Symbolized == nullptr)
3101       Symbolized = createUnknownExpression(I);
3102     performCongruenceFinding(I, Symbolized);
3103   } else {
3104     // Handle terminators that return values. All of them produce values we
3105     // don't currently understand.  We don't place non-value producing
3106     // terminators in a class.
3107     if (!I->getType()->isVoidTy()) {
3108       auto *Symbolized = createUnknownExpression(I);
3109       performCongruenceFinding(I, Symbolized);
3110     }
3111     processOutgoingEdges(I, I->getParent());
3112   }
3113 }
3114 
3115 // Check if there is a path, using single or equal argument phi nodes, from
3116 // First to Second.
3117 bool NewGVN::singleReachablePHIPath(
3118     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3119     const MemoryAccess *Second) const {
3120   if (First == Second)
3121     return true;
3122   if (MSSA->isLiveOnEntryDef(First))
3123     return false;
3124 
3125   // This is not perfect, but as we're just verifying here, we can live with
3126   // the loss of precision. The real solution would be that of doing strongly
3127   // connected component finding in this routine, and it's probably not worth
3128   // the complexity for the time being. So, we just keep a set of visited
3129   // MemoryAccess and return true when we hit a cycle.
3130   if (Visited.count(First))
3131     return true;
3132   Visited.insert(First);
3133 
3134   const auto *EndDef = First;
3135   for (auto *ChainDef : optimized_def_chain(First)) {
3136     if (ChainDef == Second)
3137       return true;
3138     if (MSSA->isLiveOnEntryDef(ChainDef))
3139       return false;
3140     EndDef = ChainDef;
3141   }
3142   auto *MP = cast<MemoryPhi>(EndDef);
3143   auto ReachableOperandPred = [&](const Use &U) {
3144     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3145   };
3146   auto FilteredPhiArgs =
3147       make_filter_range(MP->operands(), ReachableOperandPred);
3148   SmallVector<const Value *, 32> OperandList;
3149   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3150   bool Okay = is_splat(OperandList);
3151   if (Okay)
3152     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3153                                   Second);
3154   return false;
3155 }
3156 
3157 // Verify the that the memory equivalence table makes sense relative to the
3158 // congruence classes.  Note that this checking is not perfect, and is currently
3159 // subject to very rare false negatives. It is only useful for
3160 // testing/debugging.
3161 void NewGVN::verifyMemoryCongruency() const {
3162 #ifndef NDEBUG
3163   // Verify that the memory table equivalence and memory member set match
3164   for (const auto *CC : CongruenceClasses) {
3165     if (CC == TOPClass || CC->isDead())
3166       continue;
3167     if (CC->getStoreCount() != 0) {
3168       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3169              "Any class with a store as a leader should have a "
3170              "representative stored value");
3171       assert(CC->getMemoryLeader() &&
3172              "Any congruence class with a store should have a "
3173              "representative access");
3174     }
3175 
3176     if (CC->getMemoryLeader())
3177       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3178              "Representative MemoryAccess does not appear to be reverse "
3179              "mapped properly");
3180     for (auto M : CC->memory())
3181       assert(MemoryAccessToClass.lookup(M) == CC &&
3182              "Memory member does not appear to be reverse mapped properly");
3183   }
3184 
3185   // Anything equivalent in the MemoryAccess table should be in the same
3186   // congruence class.
3187 
3188   // Filter out the unreachable and trivially dead entries, because they may
3189   // never have been updated if the instructions were not processed.
3190   auto ReachableAccessPred =
3191       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3192         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3193         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3194             MemoryToDFSNum(Pair.first) == 0)
3195           return false;
3196         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3197           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3198 
3199         // We could have phi nodes which operands are all trivially dead,
3200         // so we don't process them.
3201         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3202           for (auto &U : MemPHI->incoming_values()) {
3203             if (auto *I = dyn_cast<Instruction>(&*U)) {
3204               if (!isInstructionTriviallyDead(I))
3205                 return true;
3206             }
3207           }
3208           return false;
3209         }
3210 
3211         return true;
3212       };
3213 
3214   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3215   for (auto KV : Filtered) {
3216     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3217       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3218       if (FirstMUD && SecondMUD) {
3219         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3220         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3221                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3222                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3223                "The instructions for these memory operations should have "
3224                "been in the same congruence class or reachable through"
3225                "a single argument phi");
3226       }
3227     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3228       // We can only sanely verify that MemoryDefs in the operand list all have
3229       // the same class.
3230       auto ReachableOperandPred = [&](const Use &U) {
3231         return ReachableEdges.count(
3232                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3233                isa<MemoryDef>(U);
3234 
3235       };
3236       // All arguments should in the same class, ignoring unreachable arguments
3237       auto FilteredPhiArgs =
3238           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3239       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3240       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3241                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3242                        const MemoryDef *MD = cast<MemoryDef>(U);
3243                        return ValueToClass.lookup(MD->getMemoryInst());
3244                      });
3245       assert(is_splat(PhiOpClasses) &&
3246              "All MemoryPhi arguments should be in the same class");
3247     }
3248   }
3249 #endif
3250 }
3251 
3252 // Verify that the sparse propagation we did actually found the maximal fixpoint
3253 // We do this by storing the value to class mapping, touching all instructions,
3254 // and redoing the iteration to see if anything changed.
3255 void NewGVN::verifyIterationSettled(Function &F) {
3256 #ifndef NDEBUG
3257   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3258   if (DebugCounter::isCounterSet(VNCounter))
3259     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3260 
3261   // Note that we have to store the actual classes, as we may change existing
3262   // classes during iteration.  This is because our memory iteration propagation
3263   // is not perfect, and so may waste a little work.  But it should generate
3264   // exactly the same congruence classes we have now, with different IDs.
3265   std::map<const Value *, CongruenceClass> BeforeIteration;
3266 
3267   for (auto &KV : ValueToClass) {
3268     if (auto *I = dyn_cast<Instruction>(KV.first))
3269       // Skip unused/dead instructions.
3270       if (InstrToDFSNum(I) == 0)
3271         continue;
3272     BeforeIteration.insert({KV.first, *KV.second});
3273   }
3274 
3275   TouchedInstructions.set();
3276   TouchedInstructions.reset(0);
3277   iterateTouchedInstructions();
3278   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3279       EqualClasses;
3280   for (const auto &KV : ValueToClass) {
3281     if (auto *I = dyn_cast<Instruction>(KV.first))
3282       // Skip unused/dead instructions.
3283       if (InstrToDFSNum(I) == 0)
3284         continue;
3285     // We could sink these uses, but i think this adds a bit of clarity here as
3286     // to what we are comparing.
3287     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3288     auto *AfterCC = KV.second;
3289     // Note that the classes can't change at this point, so we memoize the set
3290     // that are equal.
3291     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3292       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3293              "Value number changed after main loop completed!");
3294       EqualClasses.insert({BeforeCC, AfterCC});
3295     }
3296   }
3297 #endif
3298 }
3299 
3300 // Verify that for each store expression in the expression to class mapping,
3301 // only the latest appears, and multiple ones do not appear.
3302 // Because loads do not use the stored value when doing equality with stores,
3303 // if we don't erase the old store expressions from the table, a load can find
3304 // a no-longer valid StoreExpression.
3305 void NewGVN::verifyStoreExpressions() const {
3306 #ifndef NDEBUG
3307   // This is the only use of this, and it's not worth defining a complicated
3308   // densemapinfo hash/equality function for it.
3309   std::set<
3310       std::pair<const Value *,
3311                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3312       StoreExpressionSet;
3313   for (const auto &KV : ExpressionToClass) {
3314     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3315       // Make sure a version that will conflict with loads is not already there
3316       auto Res = StoreExpressionSet.insert(
3317           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3318                                               SE->getStoredValue())});
3319       bool Okay = Res.second;
3320       // It's okay to have the same expression already in there if it is
3321       // identical in nature.
3322       // This can happen when the leader of the stored value changes over time.
3323       if (!Okay)
3324         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3325                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3326                 lookupOperandLeader(SE->getStoredValue()));
3327       assert(Okay && "Stored expression conflict exists in expression table");
3328       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3329       assert(ValueExpr && ValueExpr->equals(*SE) &&
3330              "StoreExpression in ExpressionToClass is not latest "
3331              "StoreExpression for value");
3332     }
3333   }
3334 #endif
3335 }
3336 
3337 // This is the main value numbering loop, it iterates over the initial touched
3338 // instruction set, propagating value numbers, marking things touched, etc,
3339 // until the set of touched instructions is completely empty.
3340 void NewGVN::iterateTouchedInstructions() {
3341   unsigned int Iterations = 0;
3342   // Figure out where touchedinstructions starts
3343   int FirstInstr = TouchedInstructions.find_first();
3344   // Nothing set, nothing to iterate, just return.
3345   if (FirstInstr == -1)
3346     return;
3347   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3348   while (TouchedInstructions.any()) {
3349     ++Iterations;
3350     // Walk through all the instructions in all the blocks in RPO.
3351     // TODO: As we hit a new block, we should push and pop equalities into a
3352     // table lookupOperandLeader can use, to catch things PredicateInfo
3353     // might miss, like edge-only equivalences.
3354     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3355 
3356       // This instruction was found to be dead. We don't bother looking
3357       // at it again.
3358       if (InstrNum == 0) {
3359         TouchedInstructions.reset(InstrNum);
3360         continue;
3361       }
3362 
3363       Value *V = InstrFromDFSNum(InstrNum);
3364       const BasicBlock *CurrBlock = getBlockForValue(V);
3365 
3366       // If we hit a new block, do reachability processing.
3367       if (CurrBlock != LastBlock) {
3368         LastBlock = CurrBlock;
3369         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3370         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3371 
3372         // If it's not reachable, erase any touched instructions and move on.
3373         if (!BlockReachable) {
3374           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3375           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3376                             << getBlockName(CurrBlock)
3377                             << " because it is unreachable\n");
3378           continue;
3379         }
3380         updateProcessedCount(CurrBlock);
3381       }
3382       // Reset after processing (because we may mark ourselves as touched when
3383       // we propagate equalities).
3384       TouchedInstructions.reset(InstrNum);
3385 
3386       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3387         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3388         valueNumberMemoryPhi(MP);
3389       } else if (auto *I = dyn_cast<Instruction>(V)) {
3390         valueNumberInstruction(I);
3391       } else {
3392         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3393       }
3394       updateProcessedCount(V);
3395     }
3396   }
3397   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3398 }
3399 
3400 // This is the main transformation entry point.
3401 bool NewGVN::runGVN() {
3402   if (DebugCounter::isCounterSet(VNCounter))
3403     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3404   bool Changed = false;
3405   NumFuncArgs = F.arg_size();
3406   MSSAWalker = MSSA->getWalker();
3407   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3408 
3409   // Count number of instructions for sizing of hash tables, and come
3410   // up with a global dfs numbering for instructions.
3411   unsigned ICount = 1;
3412   // Add an empty instruction to account for the fact that we start at 1
3413   DFSToInstr.emplace_back(nullptr);
3414   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3415   // same as dominator tree order, particularly with regard whether backedges
3416   // get visited first or second, given a block with multiple successors.
3417   // If we visit in the wrong order, we will end up performing N times as many
3418   // iterations.
3419   // The dominator tree does guarantee that, for a given dom tree node, it's
3420   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3421   // the siblings.
3422   ReversePostOrderTraversal<Function *> RPOT(&F);
3423   unsigned Counter = 0;
3424   for (auto &B : RPOT) {
3425     auto *Node = DT->getNode(B);
3426     assert(Node && "RPO and Dominator tree should have same reachability");
3427     RPOOrdering[Node] = ++Counter;
3428   }
3429   // Sort dominator tree children arrays into RPO.
3430   for (auto &B : RPOT) {
3431     auto *Node = DT->getNode(B);
3432     if (Node->getChildren().size() > 1)
3433       llvm::sort(Node->begin(), Node->end(),
3434                  [&](const DomTreeNode *A, const DomTreeNode *B) {
3435                    return RPOOrdering[A] < RPOOrdering[B];
3436                  });
3437   }
3438 
3439   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3440   for (auto DTN : depth_first(DT->getRootNode())) {
3441     BasicBlock *B = DTN->getBlock();
3442     const auto &BlockRange = assignDFSNumbers(B, ICount);
3443     BlockInstRange.insert({B, BlockRange});
3444     ICount += BlockRange.second - BlockRange.first;
3445   }
3446   initializeCongruenceClasses(F);
3447 
3448   TouchedInstructions.resize(ICount);
3449   // Ensure we don't end up resizing the expressionToClass map, as
3450   // that can be quite expensive. At most, we have one expression per
3451   // instruction.
3452   ExpressionToClass.reserve(ICount);
3453 
3454   // Initialize the touched instructions to include the entry block.
3455   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3456   TouchedInstructions.set(InstRange.first, InstRange.second);
3457   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3458                     << " marked reachable\n");
3459   ReachableBlocks.insert(&F.getEntryBlock());
3460 
3461   iterateTouchedInstructions();
3462   verifyMemoryCongruency();
3463   verifyIterationSettled(F);
3464   verifyStoreExpressions();
3465 
3466   Changed |= eliminateInstructions(F);
3467 
3468   // Delete all instructions marked for deletion.
3469   for (Instruction *ToErase : InstructionsToErase) {
3470     if (!ToErase->use_empty())
3471       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3472 
3473     assert(ToErase->getParent() &&
3474            "BB containing ToErase deleted unexpectedly!");
3475     ToErase->eraseFromParent();
3476   }
3477   Changed |= !InstructionsToErase.empty();
3478 
3479   // Delete all unreachable blocks.
3480   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3481     return !ReachableBlocks.count(&BB);
3482   };
3483 
3484   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3485     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3486                       << " is unreachable\n");
3487     deleteInstructionsInBlock(&BB);
3488     Changed = true;
3489   }
3490 
3491   cleanupTables();
3492   return Changed;
3493 }
3494 
3495 struct NewGVN::ValueDFS {
3496   int DFSIn = 0;
3497   int DFSOut = 0;
3498   int LocalNum = 0;
3499 
3500   // Only one of Def and U will be set.
3501   // The bool in the Def tells us whether the Def is the stored value of a
3502   // store.
3503   PointerIntPair<Value *, 1, bool> Def;
3504   Use *U = nullptr;
3505 
3506   bool operator<(const ValueDFS &Other) const {
3507     // It's not enough that any given field be less than - we have sets
3508     // of fields that need to be evaluated together to give a proper ordering.
3509     // For example, if you have;
3510     // DFS (1, 3)
3511     // Val 0
3512     // DFS (1, 2)
3513     // Val 50
3514     // We want the second to be less than the first, but if we just go field
3515     // by field, we will get to Val 0 < Val 50 and say the first is less than
3516     // the second. We only want it to be less than if the DFS orders are equal.
3517     //
3518     // Each LLVM instruction only produces one value, and thus the lowest-level
3519     // differentiator that really matters for the stack (and what we use as as a
3520     // replacement) is the local dfs number.
3521     // Everything else in the structure is instruction level, and only affects
3522     // the order in which we will replace operands of a given instruction.
3523     //
3524     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3525     // the order of replacement of uses does not matter.
3526     // IE given,
3527     //  a = 5
3528     //  b = a + a
3529     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3530     // localnum.
3531     // The .val will be the same as well.
3532     // The .u's will be different.
3533     // You will replace both, and it does not matter what order you replace them
3534     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3535     // operand 2).
3536     // Similarly for the case of same dfsin, dfsout, localnum, but different
3537     // .val's
3538     //  a = 5
3539     //  b  = 6
3540     //  c = a + b
3541     // in c, we will a valuedfs for a, and one for b,with everything the same
3542     // but .val  and .u.
3543     // It does not matter what order we replace these operands in.
3544     // You will always end up with the same IR, and this is guaranteed.
3545     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3546            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3547                     Other.U);
3548   }
3549 };
3550 
3551 // This function converts the set of members for a congruence class from values,
3552 // to sets of defs and uses with associated DFS info.  The total number of
3553 // reachable uses for each value is stored in UseCount, and instructions that
3554 // seem
3555 // dead (have no non-dead uses) are stored in ProbablyDead.
3556 void NewGVN::convertClassToDFSOrdered(
3557     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3558     DenseMap<const Value *, unsigned int> &UseCounts,
3559     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3560   for (auto D : Dense) {
3561     // First add the value.
3562     BasicBlock *BB = getBlockForValue(D);
3563     // Constants are handled prior to ever calling this function, so
3564     // we should only be left with instructions as members.
3565     assert(BB && "Should have figured out a basic block for value");
3566     ValueDFS VDDef;
3567     DomTreeNode *DomNode = DT->getNode(BB);
3568     VDDef.DFSIn = DomNode->getDFSNumIn();
3569     VDDef.DFSOut = DomNode->getDFSNumOut();
3570     // If it's a store, use the leader of the value operand, if it's always
3571     // available, or the value operand.  TODO: We could do dominance checks to
3572     // find a dominating leader, but not worth it ATM.
3573     if (auto *SI = dyn_cast<StoreInst>(D)) {
3574       auto Leader = lookupOperandLeader(SI->getValueOperand());
3575       if (alwaysAvailable(Leader)) {
3576         VDDef.Def.setPointer(Leader);
3577       } else {
3578         VDDef.Def.setPointer(SI->getValueOperand());
3579         VDDef.Def.setInt(true);
3580       }
3581     } else {
3582       VDDef.Def.setPointer(D);
3583     }
3584     assert(isa<Instruction>(D) &&
3585            "The dense set member should always be an instruction");
3586     Instruction *Def = cast<Instruction>(D);
3587     VDDef.LocalNum = InstrToDFSNum(D);
3588     DFSOrderedSet.push_back(VDDef);
3589     // If there is a phi node equivalent, add it
3590     if (auto *PN = RealToTemp.lookup(Def)) {
3591       auto *PHIE =
3592           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3593       if (PHIE) {
3594         VDDef.Def.setInt(false);
3595         VDDef.Def.setPointer(PN);
3596         VDDef.LocalNum = 0;
3597         DFSOrderedSet.push_back(VDDef);
3598       }
3599     }
3600 
3601     unsigned int UseCount = 0;
3602     // Now add the uses.
3603     for (auto &U : Def->uses()) {
3604       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3605         // Don't try to replace into dead uses
3606         if (InstructionsToErase.count(I))
3607           continue;
3608         ValueDFS VDUse;
3609         // Put the phi node uses in the incoming block.
3610         BasicBlock *IBlock;
3611         if (auto *P = dyn_cast<PHINode>(I)) {
3612           IBlock = P->getIncomingBlock(U);
3613           // Make phi node users appear last in the incoming block
3614           // they are from.
3615           VDUse.LocalNum = InstrDFS.size() + 1;
3616         } else {
3617           IBlock = getBlockForValue(I);
3618           VDUse.LocalNum = InstrToDFSNum(I);
3619         }
3620 
3621         // Skip uses in unreachable blocks, as we're going
3622         // to delete them.
3623         if (ReachableBlocks.count(IBlock) == 0)
3624           continue;
3625 
3626         DomTreeNode *DomNode = DT->getNode(IBlock);
3627         VDUse.DFSIn = DomNode->getDFSNumIn();
3628         VDUse.DFSOut = DomNode->getDFSNumOut();
3629         VDUse.U = &U;
3630         ++UseCount;
3631         DFSOrderedSet.emplace_back(VDUse);
3632       }
3633     }
3634 
3635     // If there are no uses, it's probably dead (but it may have side-effects,
3636     // so not definitely dead. Otherwise, store the number of uses so we can
3637     // track if it becomes dead later).
3638     if (UseCount == 0)
3639       ProbablyDead.insert(Def);
3640     else
3641       UseCounts[Def] = UseCount;
3642   }
3643 }
3644 
3645 // This function converts the set of members for a congruence class from values,
3646 // to the set of defs for loads and stores, with associated DFS info.
3647 void NewGVN::convertClassToLoadsAndStores(
3648     const CongruenceClass &Dense,
3649     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3650   for (auto D : Dense) {
3651     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3652       continue;
3653 
3654     BasicBlock *BB = getBlockForValue(D);
3655     ValueDFS VD;
3656     DomTreeNode *DomNode = DT->getNode(BB);
3657     VD.DFSIn = DomNode->getDFSNumIn();
3658     VD.DFSOut = DomNode->getDFSNumOut();
3659     VD.Def.setPointer(D);
3660 
3661     // If it's an instruction, use the real local dfs number.
3662     if (auto *I = dyn_cast<Instruction>(D))
3663       VD.LocalNum = InstrToDFSNum(I);
3664     else
3665       llvm_unreachable("Should have been an instruction");
3666 
3667     LoadsAndStores.emplace_back(VD);
3668   }
3669 }
3670 
3671 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3672   patchReplacementInstruction(I, Repl);
3673   I->replaceAllUsesWith(Repl);
3674 }
3675 
3676 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3677   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3678   ++NumGVNBlocksDeleted;
3679 
3680   // Delete the instructions backwards, as it has a reduced likelihood of having
3681   // to update as many def-use and use-def chains. Start after the terminator.
3682   auto StartPoint = BB->rbegin();
3683   ++StartPoint;
3684   // Note that we explicitly recalculate BB->rend() on each iteration,
3685   // as it may change when we remove the first instruction.
3686   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3687     Instruction &Inst = *I++;
3688     if (!Inst.use_empty())
3689       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3690     if (isa<LandingPadInst>(Inst))
3691       continue;
3692 
3693     Inst.eraseFromParent();
3694     ++NumGVNInstrDeleted;
3695   }
3696   // Now insert something that simplifycfg will turn into an unreachable.
3697   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3698   new StoreInst(UndefValue::get(Int8Ty),
3699                 Constant::getNullValue(Int8Ty->getPointerTo()),
3700                 BB->getTerminator());
3701 }
3702 
3703 void NewGVN::markInstructionForDeletion(Instruction *I) {
3704   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3705   InstructionsToErase.insert(I);
3706 }
3707 
3708 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3709   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3710   patchAndReplaceAllUsesWith(I, V);
3711   // We save the actual erasing to avoid invalidating memory
3712   // dependencies until we are done with everything.
3713   markInstructionForDeletion(I);
3714 }
3715 
3716 namespace {
3717 
3718 // This is a stack that contains both the value and dfs info of where
3719 // that value is valid.
3720 class ValueDFSStack {
3721 public:
3722   Value *back() const { return ValueStack.back(); }
3723   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3724 
3725   void push_back(Value *V, int DFSIn, int DFSOut) {
3726     ValueStack.emplace_back(V);
3727     DFSStack.emplace_back(DFSIn, DFSOut);
3728   }
3729 
3730   bool empty() const { return DFSStack.empty(); }
3731 
3732   bool isInScope(int DFSIn, int DFSOut) const {
3733     if (empty())
3734       return false;
3735     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3736   }
3737 
3738   void popUntilDFSScope(int DFSIn, int DFSOut) {
3739 
3740     // These two should always be in sync at this point.
3741     assert(ValueStack.size() == DFSStack.size() &&
3742            "Mismatch between ValueStack and DFSStack");
3743     while (
3744         !DFSStack.empty() &&
3745         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3746       DFSStack.pop_back();
3747       ValueStack.pop_back();
3748     }
3749   }
3750 
3751 private:
3752   SmallVector<Value *, 8> ValueStack;
3753   SmallVector<std::pair<int, int>, 8> DFSStack;
3754 };
3755 
3756 } // end anonymous namespace
3757 
3758 // Given an expression, get the congruence class for it.
3759 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3760   if (auto *VE = dyn_cast<VariableExpression>(E))
3761     return ValueToClass.lookup(VE->getVariableValue());
3762   else if (isa<DeadExpression>(E))
3763     return TOPClass;
3764   return ExpressionToClass.lookup(E);
3765 }
3766 
3767 // Given a value and a basic block we are trying to see if it is available in,
3768 // see if the value has a leader available in that block.
3769 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3770                                   const Instruction *OrigInst,
3771                                   const BasicBlock *BB) const {
3772   // It would already be constant if we could make it constant
3773   if (auto *CE = dyn_cast<ConstantExpression>(E))
3774     return CE->getConstantValue();
3775   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3776     auto *V = VE->getVariableValue();
3777     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3778       return VE->getVariableValue();
3779   }
3780 
3781   auto *CC = getClassForExpression(E);
3782   if (!CC)
3783     return nullptr;
3784   if (alwaysAvailable(CC->getLeader()))
3785     return CC->getLeader();
3786 
3787   for (auto Member : *CC) {
3788     auto *MemberInst = dyn_cast<Instruction>(Member);
3789     if (MemberInst == OrigInst)
3790       continue;
3791     // Anything that isn't an instruction is always available.
3792     if (!MemberInst)
3793       return Member;
3794     if (DT->dominates(getBlockForValue(MemberInst), BB))
3795       return Member;
3796   }
3797   return nullptr;
3798 }
3799 
3800 bool NewGVN::eliminateInstructions(Function &F) {
3801   // This is a non-standard eliminator. The normal way to eliminate is
3802   // to walk the dominator tree in order, keeping track of available
3803   // values, and eliminating them.  However, this is mildly
3804   // pointless. It requires doing lookups on every instruction,
3805   // regardless of whether we will ever eliminate it.  For
3806   // instructions part of most singleton congruence classes, we know we
3807   // will never eliminate them.
3808 
3809   // Instead, this eliminator looks at the congruence classes directly, sorts
3810   // them into a DFS ordering of the dominator tree, and then we just
3811   // perform elimination straight on the sets by walking the congruence
3812   // class member uses in order, and eliminate the ones dominated by the
3813   // last member.   This is worst case O(E log E) where E = number of
3814   // instructions in a single congruence class.  In theory, this is all
3815   // instructions.   In practice, it is much faster, as most instructions are
3816   // either in singleton congruence classes or can't possibly be eliminated
3817   // anyway (if there are no overlapping DFS ranges in class).
3818   // When we find something not dominated, it becomes the new leader
3819   // for elimination purposes.
3820   // TODO: If we wanted to be faster, We could remove any members with no
3821   // overlapping ranges while sorting, as we will never eliminate anything
3822   // with those members, as they don't dominate anything else in our set.
3823 
3824   bool AnythingReplaced = false;
3825 
3826   // Since we are going to walk the domtree anyway, and we can't guarantee the
3827   // DFS numbers are updated, we compute some ourselves.
3828   DT->updateDFSNumbers();
3829 
3830   // Go through all of our phi nodes, and kill the arguments associated with
3831   // unreachable edges.
3832   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3833     for (auto &Operand : PHI->incoming_values())
3834       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3835         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3836                           << " for block "
3837                           << getBlockName(PHI->getIncomingBlock(Operand))
3838                           << " with undef due to it being unreachable\n");
3839         Operand.set(UndefValue::get(PHI->getType()));
3840       }
3841   };
3842   // Replace unreachable phi arguments.
3843   // At this point, RevisitOnReachabilityChange only contains:
3844   //
3845   // 1. PHIs
3846   // 2. Temporaries that will convert to PHIs
3847   // 3. Operations that are affected by an unreachable edge but do not fit into
3848   // 1 or 2 (rare).
3849   // So it is a slight overshoot of what we want. We could make it exact by
3850   // using two SparseBitVectors per block.
3851   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3852   for (auto &KV : ReachableEdges)
3853     ReachablePredCount[KV.getEnd()]++;
3854   for (auto &BBPair : RevisitOnReachabilityChange) {
3855     for (auto InstNum : BBPair.second) {
3856       auto *Inst = InstrFromDFSNum(InstNum);
3857       auto *PHI = dyn_cast<PHINode>(Inst);
3858       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3859       if (!PHI)
3860         continue;
3861       auto *BB = BBPair.first;
3862       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3863         ReplaceUnreachablePHIArgs(PHI, BB);
3864     }
3865   }
3866 
3867   // Map to store the use counts
3868   DenseMap<const Value *, unsigned int> UseCounts;
3869   for (auto *CC : reverse(CongruenceClasses)) {
3870     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3871                       << "\n");
3872     // Track the equivalent store info so we can decide whether to try
3873     // dead store elimination.
3874     SmallVector<ValueDFS, 8> PossibleDeadStores;
3875     SmallPtrSet<Instruction *, 8> ProbablyDead;
3876     if (CC->isDead() || CC->empty())
3877       continue;
3878     // Everything still in the TOP class is unreachable or dead.
3879     if (CC == TOPClass) {
3880       for (auto M : *CC) {
3881         auto *VTE = ValueToExpression.lookup(M);
3882         if (VTE && isa<DeadExpression>(VTE))
3883           markInstructionForDeletion(cast<Instruction>(M));
3884         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3885                 InstructionsToErase.count(cast<Instruction>(M))) &&
3886                "Everything in TOP should be unreachable or dead at this "
3887                "point");
3888       }
3889       continue;
3890     }
3891 
3892     assert(CC->getLeader() && "We should have had a leader");
3893     // If this is a leader that is always available, and it's a
3894     // constant or has no equivalences, just replace everything with
3895     // it. We then update the congruence class with whatever members
3896     // are left.
3897     Value *Leader =
3898         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3899     if (alwaysAvailable(Leader)) {
3900       CongruenceClass::MemberSet MembersLeft;
3901       for (auto M : *CC) {
3902         Value *Member = M;
3903         // Void things have no uses we can replace.
3904         if (Member == Leader || !isa<Instruction>(Member) ||
3905             Member->getType()->isVoidTy()) {
3906           MembersLeft.insert(Member);
3907           continue;
3908         }
3909         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3910                           << *Member << "\n");
3911         auto *I = cast<Instruction>(Member);
3912         assert(Leader != I && "About to accidentally remove our leader");
3913         replaceInstruction(I, Leader);
3914         AnythingReplaced = true;
3915       }
3916       CC->swap(MembersLeft);
3917     } else {
3918       // If this is a singleton, we can skip it.
3919       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3920         // This is a stack because equality replacement/etc may place
3921         // constants in the middle of the member list, and we want to use
3922         // those constant values in preference to the current leader, over
3923         // the scope of those constants.
3924         ValueDFSStack EliminationStack;
3925 
3926         // Convert the members to DFS ordered sets and then merge them.
3927         SmallVector<ValueDFS, 8> DFSOrderedSet;
3928         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3929 
3930         // Sort the whole thing.
3931         llvm::sort(DFSOrderedSet);
3932         for (auto &VD : DFSOrderedSet) {
3933           int MemberDFSIn = VD.DFSIn;
3934           int MemberDFSOut = VD.DFSOut;
3935           Value *Def = VD.Def.getPointer();
3936           bool FromStore = VD.Def.getInt();
3937           Use *U = VD.U;
3938           // We ignore void things because we can't get a value from them.
3939           if (Def && Def->getType()->isVoidTy())
3940             continue;
3941           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3942           if (DefInst && AllTempInstructions.count(DefInst)) {
3943             auto *PN = cast<PHINode>(DefInst);
3944 
3945             // If this is a value phi and that's the expression we used, insert
3946             // it into the program
3947             // remove from temp instruction list.
3948             AllTempInstructions.erase(PN);
3949             auto *DefBlock = getBlockForValue(Def);
3950             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3951                               << " into block "
3952                               << getBlockName(getBlockForValue(Def)) << "\n");
3953             PN->insertBefore(&DefBlock->front());
3954             Def = PN;
3955             NumGVNPHIOfOpsEliminations++;
3956           }
3957 
3958           if (EliminationStack.empty()) {
3959             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3960           } else {
3961             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3962                               << EliminationStack.dfs_back().first << ","
3963                               << EliminationStack.dfs_back().second << ")\n");
3964           }
3965 
3966           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3967                             << MemberDFSOut << ")\n");
3968           // First, we see if we are out of scope or empty.  If so,
3969           // and there equivalences, we try to replace the top of
3970           // stack with equivalences (if it's on the stack, it must
3971           // not have been eliminated yet).
3972           // Then we synchronize to our current scope, by
3973           // popping until we are back within a DFS scope that
3974           // dominates the current member.
3975           // Then, what happens depends on a few factors
3976           // If the stack is now empty, we need to push
3977           // If we have a constant or a local equivalence we want to
3978           // start using, we also push.
3979           // Otherwise, we walk along, processing members who are
3980           // dominated by this scope, and eliminate them.
3981           bool ShouldPush = Def && EliminationStack.empty();
3982           bool OutOfScope =
3983               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3984 
3985           if (OutOfScope || ShouldPush) {
3986             // Sync to our current scope.
3987             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3988             bool ShouldPush = Def && EliminationStack.empty();
3989             if (ShouldPush) {
3990               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3991             }
3992           }
3993 
3994           // Skip the Def's, we only want to eliminate on their uses.  But mark
3995           // dominated defs as dead.
3996           if (Def) {
3997             // For anything in this case, what and how we value number
3998             // guarantees that any side-effets that would have occurred (ie
3999             // throwing, etc) can be proven to either still occur (because it's
4000             // dominated by something that has the same side-effects), or never
4001             // occur.  Otherwise, we would not have been able to prove it value
4002             // equivalent to something else. For these things, we can just mark
4003             // it all dead.  Note that this is different from the "ProbablyDead"
4004             // set, which may not be dominated by anything, and thus, are only
4005             // easy to prove dead if they are also side-effect free. Note that
4006             // because stores are put in terms of the stored value, we skip
4007             // stored values here. If the stored value is really dead, it will
4008             // still be marked for deletion when we process it in its own class.
4009             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4010                 isa<Instruction>(Def) && !FromStore)
4011               markInstructionForDeletion(cast<Instruction>(Def));
4012             continue;
4013           }
4014           // At this point, we know it is a Use we are trying to possibly
4015           // replace.
4016 
4017           assert(isa<Instruction>(U->get()) &&
4018                  "Current def should have been an instruction");
4019           assert(isa<Instruction>(U->getUser()) &&
4020                  "Current user should have been an instruction");
4021 
4022           // If the thing we are replacing into is already marked to be dead,
4023           // this use is dead.  Note that this is true regardless of whether
4024           // we have anything dominating the use or not.  We do this here
4025           // because we are already walking all the uses anyway.
4026           Instruction *InstUse = cast<Instruction>(U->getUser());
4027           if (InstructionsToErase.count(InstUse)) {
4028             auto &UseCount = UseCounts[U->get()];
4029             if (--UseCount == 0) {
4030               ProbablyDead.insert(cast<Instruction>(U->get()));
4031             }
4032           }
4033 
4034           // If we get to this point, and the stack is empty we must have a use
4035           // with nothing we can use to eliminate this use, so just skip it.
4036           if (EliminationStack.empty())
4037             continue;
4038 
4039           Value *DominatingLeader = EliminationStack.back();
4040 
4041           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4042           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4043           if (isSSACopy)
4044             DominatingLeader = II->getOperand(0);
4045 
4046           // Don't replace our existing users with ourselves.
4047           if (U->get() == DominatingLeader)
4048             continue;
4049           LLVM_DEBUG(dbgs()
4050                      << "Found replacement " << *DominatingLeader << " for "
4051                      << *U->get() << " in " << *(U->getUser()) << "\n");
4052 
4053           // If we replaced something in an instruction, handle the patching of
4054           // metadata.  Skip this if we are replacing predicateinfo with its
4055           // original operand, as we already know we can just drop it.
4056           auto *ReplacedInst = cast<Instruction>(U->get());
4057           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4058           if (!PI || DominatingLeader != PI->OriginalOp)
4059             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4060           U->set(DominatingLeader);
4061           // This is now a use of the dominating leader, which means if the
4062           // dominating leader was dead, it's now live!
4063           auto &LeaderUseCount = UseCounts[DominatingLeader];
4064           // It's about to be alive again.
4065           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4066             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4067           // For copy instructions, we use their operand as a leader,
4068           // which means we remove a user of the copy and it may become dead.
4069           if (isSSACopy) {
4070             unsigned &IIUseCount = UseCounts[II];
4071             if (--IIUseCount == 0)
4072               ProbablyDead.insert(II);
4073           }
4074           ++LeaderUseCount;
4075           AnythingReplaced = true;
4076         }
4077       }
4078     }
4079 
4080     // At this point, anything still in the ProbablyDead set is actually dead if
4081     // would be trivially dead.
4082     for (auto *I : ProbablyDead)
4083       if (wouldInstructionBeTriviallyDead(I))
4084         markInstructionForDeletion(I);
4085 
4086     // Cleanup the congruence class.
4087     CongruenceClass::MemberSet MembersLeft;
4088     for (auto *Member : *CC)
4089       if (!isa<Instruction>(Member) ||
4090           !InstructionsToErase.count(cast<Instruction>(Member)))
4091         MembersLeft.insert(Member);
4092     CC->swap(MembersLeft);
4093 
4094     // If we have possible dead stores to look at, try to eliminate them.
4095     if (CC->getStoreCount() > 0) {
4096       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4097       llvm::sort(PossibleDeadStores);
4098       ValueDFSStack EliminationStack;
4099       for (auto &VD : PossibleDeadStores) {
4100         int MemberDFSIn = VD.DFSIn;
4101         int MemberDFSOut = VD.DFSOut;
4102         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4103         if (EliminationStack.empty() ||
4104             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4105           // Sync to our current scope.
4106           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4107           if (EliminationStack.empty()) {
4108             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4109             continue;
4110           }
4111         }
4112         // We already did load elimination, so nothing to do here.
4113         if (isa<LoadInst>(Member))
4114           continue;
4115         assert(!EliminationStack.empty());
4116         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4117         (void)Leader;
4118         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4119         // Member is dominater by Leader, and thus dead
4120         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4121                           << " that is dominated by " << *Leader << "\n");
4122         markInstructionForDeletion(Member);
4123         CC->erase(Member);
4124         ++NumGVNDeadStores;
4125       }
4126     }
4127   }
4128   return AnythingReplaced;
4129 }
4130 
4131 // This function provides global ranking of operations so that we can place them
4132 // in a canonical order.  Note that rank alone is not necessarily enough for a
4133 // complete ordering, as constants all have the same rank.  However, generally,
4134 // we will simplify an operation with all constants so that it doesn't matter
4135 // what order they appear in.
4136 unsigned int NewGVN::getRank(const Value *V) const {
4137   // Prefer constants to undef to anything else
4138   // Undef is a constant, have to check it first.
4139   // Prefer smaller constants to constantexprs
4140   if (isa<ConstantExpr>(V))
4141     return 2;
4142   if (isa<UndefValue>(V))
4143     return 1;
4144   if (isa<Constant>(V))
4145     return 0;
4146   else if (auto *A = dyn_cast<Argument>(V))
4147     return 3 + A->getArgNo();
4148 
4149   // Need to shift the instruction DFS by number of arguments + 3 to account for
4150   // the constant and argument ranking above.
4151   unsigned Result = InstrToDFSNum(V);
4152   if (Result > 0)
4153     return 4 + NumFuncArgs + Result;
4154   // Unreachable or something else, just return a really large number.
4155   return ~0;
4156 }
4157 
4158 // This is a function that says whether two commutative operations should
4159 // have their order swapped when canonicalizing.
4160 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4161   // Because we only care about a total ordering, and don't rewrite expressions
4162   // in this order, we order by rank, which will give a strict weak ordering to
4163   // everything but constants, and then we order by pointer address.
4164   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4165 }
4166 
4167 namespace {
4168 
4169 class NewGVNLegacyPass : public FunctionPass {
4170 public:
4171   // Pass identification, replacement for typeid.
4172   static char ID;
4173 
4174   NewGVNLegacyPass() : FunctionPass(ID) {
4175     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4176   }
4177 
4178   bool runOnFunction(Function &F) override;
4179 
4180 private:
4181   void getAnalysisUsage(AnalysisUsage &AU) const override {
4182     AU.addRequired<AssumptionCacheTracker>();
4183     AU.addRequired<DominatorTreeWrapperPass>();
4184     AU.addRequired<TargetLibraryInfoWrapperPass>();
4185     AU.addRequired<MemorySSAWrapperPass>();
4186     AU.addRequired<AAResultsWrapperPass>();
4187     AU.addPreserved<DominatorTreeWrapperPass>();
4188     AU.addPreserved<GlobalsAAWrapperPass>();
4189   }
4190 };
4191 
4192 } // end anonymous namespace
4193 
4194 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4195   if (skipFunction(F))
4196     return false;
4197   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4198                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4199                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
4200                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4201                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4202                 F.getParent()->getDataLayout())
4203       .runGVN();
4204 }
4205 
4206 char NewGVNLegacyPass::ID = 0;
4207 
4208 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4209                       false, false)
4210 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4211 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4213 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4215 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4216 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4217                     false)
4218 
4219 // createGVNPass - The public interface to this file.
4220 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4221 
4222 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4223   // Apparently the order in which we get these results matter for
4224   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4225   // the same order here, just in case.
4226   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4227   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4228   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4229   auto &AA = AM.getResult<AAManager>(F);
4230   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4231   bool Changed =
4232       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4233           .runGVN();
4234   if (!Changed)
4235     return PreservedAnalyses::all();
4236   PreservedAnalyses PA;
4237   PA.preserve<DominatorTreeAnalysis>();
4238   PA.preserve<GlobalsAA>();
4239   return PA;
4240 }
4241