1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit.  That's
11 // done by RewriteStatepointsForGC.
12 //
13 // Terminology:
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call.  A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call.  Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable.  The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
24 //
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector.  In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops.  We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites.  This is not
30 // because the poll itself is expensive in the generated code; it's not.  Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
33 //
34 // We also need to make most call sites parseable.  The callee might execute a
35 // poll (or otherwise be inspected by the GC).  If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
37 //
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
43 //
44 // We do not currently support return statepoints, but adding them would not
45 // be hard.  They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them.  Patches welcome.
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/TargetLibraryInfo.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/LegacyPassManager.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 
69 #define DEBUG_TYPE "safepoint-placement"
70 
71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73 
74 STATISTIC(CallInLoop,
75           "Number of loops without safepoints due to calls in loop");
76 STATISTIC(FiniteExecution,
77           "Number of loops without safepoints finite execution");
78 
79 using namespace llvm;
80 
81 // Ignore opportunities to avoid placing safepoints on backedges, useful for
82 // validation
83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
84                                   cl::init(false));
85 
86 /// How narrow does the trip count of a loop have to be to have to be considered
87 /// "counted"?  Counted loops do not get safepoints at backedges.
88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
89                                          cl::Hidden, cl::init(32));
90 
91 // If true, split the backedge of a loop when placing the safepoint, otherwise
92 // split the latch block itself.  Both are useful to support for
93 // experimentation, but in practice, it looks like splitting the backedge
94 // optimizes better.
95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
96                                    cl::init(false));
97 
98 namespace {
99 
100 /// An analysis pass whose purpose is to identify each of the backedges in
101 /// the function which require a safepoint poll to be inserted.
102 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
103   static char ID;
104 
105   /// The output of the pass - gives a list of each backedge (described by
106   /// pointing at the branch) which need a poll inserted.
107   std::vector<Instruction *> PollLocations;
108 
109   /// True unless we're running spp-no-calls in which case we need to disable
110   /// the call-dependent placement opts.
111   bool CallSafepointsEnabled;
112 
113   ScalarEvolution *SE = nullptr;
114   DominatorTree *DT = nullptr;
115   LoopInfo *LI = nullptr;
116   TargetLibraryInfo *TLI = nullptr;
117 
118   PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
119       : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
120     initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
121   }
122 
123   bool runOnLoop(Loop *);
124   void runOnLoopAndSubLoops(Loop *L) {
125     // Visit all the subloops
126     for (Loop *I : *L)
127       runOnLoopAndSubLoops(I);
128     runOnLoop(L);
129   }
130 
131   bool runOnFunction(Function &F) override {
132     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
133     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
134     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
135     TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
136     for (Loop *I : *LI) {
137       runOnLoopAndSubLoops(I);
138     }
139     return false;
140   }
141 
142   void getAnalysisUsage(AnalysisUsage &AU) const override {
143     AU.addRequired<DominatorTreeWrapperPass>();
144     AU.addRequired<ScalarEvolutionWrapperPass>();
145     AU.addRequired<LoopInfoWrapperPass>();
146     AU.addRequired<TargetLibraryInfoWrapperPass>();
147     // We no longer modify the IR at all in this pass.  Thus all
148     // analysis are preserved.
149     AU.setPreservesAll();
150   }
151 };
152 }
153 
154 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
155 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
156 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
157 
158 namespace {
159 struct PlaceSafepoints : public FunctionPass {
160   static char ID; // Pass identification, replacement for typeid
161 
162   PlaceSafepoints() : FunctionPass(ID) {
163     initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
164   }
165   bool runOnFunction(Function &F) override;
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override {
168     // We modify the graph wholesale (inlining, block insertion, etc).  We
169     // preserve nothing at the moment.  We could potentially preserve dom tree
170     // if that was worth doing
171     AU.addRequired<TargetLibraryInfoWrapperPass>();
172   }
173 };
174 }
175 
176 // Insert a safepoint poll immediately before the given instruction.  Does
177 // not handle the parsability of state at the runtime call, that's the
178 // callers job.
179 static void
180 InsertSafepointPoll(Instruction *InsertBefore,
181                     std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
182                     const TargetLibraryInfo &TLI);
183 
184 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
185   if (callsGCLeafFunction(Call, TLI))
186     return false;
187   if (auto *CI = dyn_cast<CallInst>(Call)) {
188     if (CI->isInlineAsm())
189       return false;
190   }
191 
192   return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
193            isa<GCResultInst>(Call));
194 }
195 
196 /// Returns true if this loop is known to contain a call safepoint which
197 /// must unconditionally execute on any iteration of the loop which returns
198 /// to the loop header via an edge from Pred.  Returns a conservative correct
199 /// answer; i.e. false is always valid.
200 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
201                                                BasicBlock *Pred,
202                                                DominatorTree &DT,
203                                                const TargetLibraryInfo &TLI) {
204   // In general, we're looking for any cut of the graph which ensures
205   // there's a call safepoint along every edge between Header and Pred.
206   // For the moment, we look only for the 'cuts' that consist of a single call
207   // instruction in a block which is dominated by the Header and dominates the
208   // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
209   // of such dominating blocks gets substantially more occurrences than just
210   // checking the Pred and Header blocks themselves.  This may be due to the
211   // density of loop exit conditions caused by range and null checks.
212   // TODO: structure this as an analysis pass, cache the result for subloops,
213   // avoid dom tree recalculations
214   assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
215 
216   BasicBlock *Current = Pred;
217   while (true) {
218     for (Instruction &I : *Current) {
219       if (auto *Call = dyn_cast<CallBase>(&I))
220         // Note: Technically, needing a safepoint isn't quite the right
221         // condition here.  We should instead be checking if the target method
222         // has an
223         // unconditional poll. In practice, this is only a theoretical concern
224         // since we don't have any methods with conditional-only safepoint
225         // polls.
226         if (needsStatepoint(Call, TLI))
227           return true;
228     }
229 
230     if (Current == Header)
231       break;
232     Current = DT.getNode(Current)->getIDom()->getBlock();
233   }
234 
235   return false;
236 }
237 
238 /// Returns true if this loop is known to terminate in a finite number of
239 /// iterations.  Note that this function may return false for a loop which
240 /// does actual terminate in a finite constant number of iterations due to
241 /// conservatism in the analysis.
242 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
243                                     BasicBlock *Pred) {
244   // A conservative bound on the loop as a whole.
245   const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
246   if (MaxTrips != SE->getCouldNotCompute() &&
247       SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
248           CountedLoopTripWidth))
249     return true;
250 
251   // If this is a conditional branch to the header with the alternate path
252   // being outside the loop, we can ask questions about the execution frequency
253   // of the exit block.
254   if (L->isLoopExiting(Pred)) {
255     // This returns an exact expression only.  TODO: We really only need an
256     // upper bound here, but SE doesn't expose that.
257     const SCEV *MaxExec = SE->getExitCount(L, Pred);
258     if (MaxExec != SE->getCouldNotCompute() &&
259         SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
260             CountedLoopTripWidth))
261         return true;
262   }
263 
264   return /* not finite */ false;
265 }
266 
267 static void scanOneBB(Instruction *Start, Instruction *End,
268                       std::vector<CallInst *> &Calls,
269                       DenseSet<BasicBlock *> &Seen,
270                       std::vector<BasicBlock *> &Worklist) {
271   for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
272                                         BBE1 = BasicBlock::iterator(End);
273        BBI != BBE0 && BBI != BBE1; BBI++) {
274     if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
275       Calls.push_back(CI);
276 
277     // FIXME: This code does not handle invokes
278     assert(!isa<InvokeInst>(&*BBI) &&
279            "support for invokes in poll code needed");
280 
281     // Only add the successor blocks if we reach the terminator instruction
282     // without encountering end first
283     if (BBI->isTerminator()) {
284       BasicBlock *BB = BBI->getParent();
285       for (BasicBlock *Succ : successors(BB)) {
286         if (Seen.insert(Succ).second) {
287           Worklist.push_back(Succ);
288         }
289       }
290     }
291   }
292 }
293 
294 static void scanInlinedCode(Instruction *Start, Instruction *End,
295                             std::vector<CallInst *> &Calls,
296                             DenseSet<BasicBlock *> &Seen) {
297   Calls.clear();
298   std::vector<BasicBlock *> Worklist;
299   Seen.insert(Start->getParent());
300   scanOneBB(Start, End, Calls, Seen, Worklist);
301   while (!Worklist.empty()) {
302     BasicBlock *BB = Worklist.back();
303     Worklist.pop_back();
304     scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
305   }
306 }
307 
308 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
309   // Loop through all loop latches (branches controlling backedges).  We need
310   // to place a safepoint on every backedge (potentially).
311   // Note: In common usage, there will be only one edge due to LoopSimplify
312   // having run sometime earlier in the pipeline, but this code must be correct
313   // w.r.t. loops with multiple backedges.
314   BasicBlock *Header = L->getHeader();
315   SmallVector<BasicBlock*, 16> LoopLatches;
316   L->getLoopLatches(LoopLatches);
317   for (BasicBlock *Pred : LoopLatches) {
318     assert(L->contains(Pred));
319 
320     // Make a policy decision about whether this loop needs a safepoint or
321     // not.  Note that this is about unburdening the optimizer in loops, not
322     // avoiding the runtime cost of the actual safepoint.
323     if (!AllBackedges) {
324       if (mustBeFiniteCountedLoop(L, SE, Pred)) {
325         LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
326         FiniteExecution++;
327         continue;
328       }
329       if (CallSafepointsEnabled &&
330           containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
331         // Note: This is only semantically legal since we won't do any further
332         // IPO or inlining before the actual call insertion..  If we hadn't, we
333         // might latter loose this call safepoint.
334         LLVM_DEBUG(
335             dbgs()
336             << "skipping safepoint placement due to unconditional call\n");
337         CallInLoop++;
338         continue;
339       }
340     }
341 
342     // TODO: We can create an inner loop which runs a finite number of
343     // iterations with an outer loop which contains a safepoint.  This would
344     // not help runtime performance that much, but it might help our ability to
345     // optimize the inner loop.
346 
347     // Safepoint insertion would involve creating a new basic block (as the
348     // target of the current backedge) which does the safepoint (of all live
349     // variables) and branches to the true header
350     Instruction *Term = Pred->getTerminator();
351 
352     LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
353 
354     PollLocations.push_back(Term);
355   }
356 
357   return false;
358 }
359 
360 /// Returns true if an entry safepoint is not required before this callsite in
361 /// the caller function.
362 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
363   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
364     switch (II->getIntrinsicID()) {
365     case Intrinsic::experimental_gc_statepoint:
366     case Intrinsic::experimental_patchpoint_void:
367     case Intrinsic::experimental_patchpoint_i64:
368       // The can wrap an actual call which may grow the stack by an unbounded
369       // amount or run forever.
370       return false;
371     default:
372       // Most LLVM intrinsics are things which do not expand to actual calls, or
373       // at least if they do, are leaf functions that cause only finite stack
374       // growth.  In particular, the optimizer likes to form things like memsets
375       // out of stores in the original IR.  Another important example is
376       // llvm.localescape which must occur in the entry block.  Inserting a
377       // safepoint before it is not legal since it could push the localescape
378       // out of the entry block.
379       return true;
380     }
381   }
382   return false;
383 }
384 
385 static Instruction *findLocationForEntrySafepoint(Function &F,
386                                                   DominatorTree &DT) {
387 
388   // Conceptually, this poll needs to be on method entry, but in
389   // practice, we place it as late in the entry block as possible.  We
390   // can place it as late as we want as long as it dominates all calls
391   // that can grow the stack.  This, combined with backedge polls,
392   // give us all the progress guarantees we need.
393 
394   // hasNextInstruction and nextInstruction are used to iterate
395   // through a "straight line" execution sequence.
396 
397   auto HasNextInstruction = [](Instruction *I) {
398     if (!I->isTerminator())
399       return true;
400 
401     BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
402     return nextBB && (nextBB->getUniquePredecessor() != nullptr);
403   };
404 
405   auto NextInstruction = [&](Instruction *I) {
406     assert(HasNextInstruction(I) &&
407            "first check if there is a next instruction!");
408 
409     if (I->isTerminator())
410       return &I->getParent()->getUniqueSuccessor()->front();
411     return &*++I->getIterator();
412   };
413 
414   Instruction *Cursor = nullptr;
415   for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
416        Cursor = NextInstruction(Cursor)) {
417 
418     // We need to ensure a safepoint poll occurs before any 'real' call.  The
419     // easiest way to ensure finite execution between safepoints in the face of
420     // recursive and mutually recursive functions is to enforce that each take
421     // a safepoint.  Additionally, we need to ensure a poll before any call
422     // which can grow the stack by an unbounded amount.  This isn't required
423     // for GC semantics per se, but is a common requirement for languages
424     // which detect stack overflow via guard pages and then throw exceptions.
425     if (auto *Call = dyn_cast<CallBase>(Cursor)) {
426       if (doesNotRequireEntrySafepointBefore(Call))
427         continue;
428       break;
429     }
430   }
431 
432   assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
433          "either we stopped because of a call, or because of terminator");
434 
435   return Cursor;
436 }
437 
438 static const char *const GCSafepointPollName = "gc.safepoint_poll";
439 
440 static bool isGCSafepointPoll(Function &F) {
441   return F.getName().equals(GCSafepointPollName);
442 }
443 
444 /// Returns true if this function should be rewritten to include safepoint
445 /// polls and parseable call sites.  The main point of this function is to be
446 /// an extension point for custom logic.
447 static bool shouldRewriteFunction(Function &F) {
448   // TODO: This should check the GCStrategy
449   if (F.hasGC()) {
450     const auto &FunctionGCName = F.getGC();
451     const StringRef StatepointExampleName("statepoint-example");
452     const StringRef CoreCLRName("coreclr");
453     return (StatepointExampleName == FunctionGCName) ||
454            (CoreCLRName == FunctionGCName);
455   } else
456     return false;
457 }
458 
459 // TODO: These should become properties of the GCStrategy, possibly with
460 // command line overrides.
461 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
462 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
463 static bool enableCallSafepoints(Function &F) { return !NoCall; }
464 
465 bool PlaceSafepoints::runOnFunction(Function &F) {
466   if (F.isDeclaration() || F.empty()) {
467     // This is a declaration, nothing to do.  Must exit early to avoid crash in
468     // dom tree calculation
469     return false;
470   }
471 
472   if (isGCSafepointPoll(F)) {
473     // Given we're inlining this inside of safepoint poll insertion, this
474     // doesn't make any sense.  Note that we do make any contained calls
475     // parseable after we inline a poll.
476     return false;
477   }
478 
479   if (!shouldRewriteFunction(F))
480     return false;
481 
482   const TargetLibraryInfo &TLI =
483       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
484 
485   bool Modified = false;
486 
487   // In various bits below, we rely on the fact that uses are reachable from
488   // defs.  When there are basic blocks unreachable from the entry, dominance
489   // and reachablity queries return non-sensical results.  Thus, we preprocess
490   // the function to ensure these properties hold.
491   Modified |= removeUnreachableBlocks(F);
492 
493   // STEP 1 - Insert the safepoint polling locations.  We do not need to
494   // actually insert parse points yet.  That will be done for all polls and
495   // calls in a single pass.
496 
497   DominatorTree DT;
498   DT.recalculate(F);
499 
500   SmallVector<Instruction *, 16> PollsNeeded;
501   std::vector<CallBase *> ParsePointNeeded;
502 
503   if (enableBackedgeSafepoints(F)) {
504     // Construct a pass manager to run the LoopPass backedge logic.  We
505     // need the pass manager to handle scheduling all the loop passes
506     // appropriately.  Doing this by hand is painful and just not worth messing
507     // with for the moment.
508     legacy::FunctionPassManager FPM(F.getParent());
509     bool CanAssumeCallSafepoints = enableCallSafepoints(F);
510     auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
511     FPM.add(PBS);
512     FPM.run(F);
513 
514     // We preserve dominance information when inserting the poll, otherwise
515     // we'd have to recalculate this on every insert
516     DT.recalculate(F);
517 
518     auto &PollLocations = PBS->PollLocations;
519 
520     auto OrderByBBName = [](Instruction *a, Instruction *b) {
521       return a->getParent()->getName() < b->getParent()->getName();
522     };
523     // We need the order of list to be stable so that naming ends up stable
524     // when we split edges.  This makes test cases much easier to write.
525     llvm::sort(PollLocations, OrderByBBName);
526 
527     // We can sometimes end up with duplicate poll locations.  This happens if
528     // a single loop is visited more than once.   The fact this happens seems
529     // wrong, but it does happen for the split-backedge.ll test case.
530     PollLocations.erase(std::unique(PollLocations.begin(),
531                                     PollLocations.end()),
532                         PollLocations.end());
533 
534     // Insert a poll at each point the analysis pass identified
535     // The poll location must be the terminator of a loop latch block.
536     for (Instruction *Term : PollLocations) {
537       // We are inserting a poll, the function is modified
538       Modified = true;
539 
540       if (SplitBackedge) {
541         // Split the backedge of the loop and insert the poll within that new
542         // basic block.  This creates a loop with two latches per original
543         // latch (which is non-ideal), but this appears to be easier to
544         // optimize in practice than inserting the poll immediately before the
545         // latch test.
546 
547         // Since this is a latch, at least one of the successors must dominate
548         // it. Its possible that we have a) duplicate edges to the same header
549         // and b) edges to distinct loop headers.  We need to insert pools on
550         // each.
551         SetVector<BasicBlock *> Headers;
552         for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
553           BasicBlock *Succ = Term->getSuccessor(i);
554           if (DT.dominates(Succ, Term->getParent())) {
555             Headers.insert(Succ);
556           }
557         }
558         assert(!Headers.empty() && "poll location is not a loop latch?");
559 
560         // The split loop structure here is so that we only need to recalculate
561         // the dominator tree once.  Alternatively, we could just keep it up to
562         // date and use a more natural merged loop.
563         SetVector<BasicBlock *> SplitBackedges;
564         for (BasicBlock *Header : Headers) {
565           BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
566           PollsNeeded.push_back(NewBB->getTerminator());
567           NumBackedgeSafepoints++;
568         }
569       } else {
570         // Split the latch block itself, right before the terminator.
571         PollsNeeded.push_back(Term);
572         NumBackedgeSafepoints++;
573       }
574     }
575   }
576 
577   if (enableEntrySafepoints(F)) {
578     if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
579       PollsNeeded.push_back(Location);
580       Modified = true;
581       NumEntrySafepoints++;
582     }
583     // TODO: else we should assert that there was, in fact, a policy choice to
584     // not insert a entry safepoint poll.
585   }
586 
587   // Now that we've identified all the needed safepoint poll locations, insert
588   // safepoint polls themselves.
589   for (Instruction *PollLocation : PollsNeeded) {
590     std::vector<CallBase *> RuntimeCalls;
591     InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
592     ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
593                             RuntimeCalls.end());
594   }
595 
596   return Modified;
597 }
598 
599 char PlaceBackedgeSafepointsImpl::ID = 0;
600 char PlaceSafepoints::ID = 0;
601 
602 FunctionPass *llvm::createPlaceSafepointsPass() {
603   return new PlaceSafepoints();
604 }
605 
606 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
607                       "place-backedge-safepoints-impl",
608                       "Place Backedge Safepoints", false, false)
609 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
610 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
611 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
612 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
613                     "place-backedge-safepoints-impl",
614                     "Place Backedge Safepoints", false, false)
615 
616 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
617                       false, false)
618 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
619                     false, false)
620 
621 static void
622 InsertSafepointPoll(Instruction *InsertBefore,
623                     std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
624                     const TargetLibraryInfo &TLI) {
625   BasicBlock *OrigBB = InsertBefore->getParent();
626   Module *M = InsertBefore->getModule();
627   assert(M && "must be part of a module");
628 
629   // Inline the safepoint poll implementation - this will get all the branch,
630   // control flow, etc..  Most importantly, it will introduce the actual slow
631   // path call - where we need to insert a safepoint (parsepoint).
632 
633   auto *F = M->getFunction(GCSafepointPollName);
634   assert(F && "gc.safepoint_poll function is missing");
635   assert(F->getValueType() ==
636          FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
637          "gc.safepoint_poll declared with wrong type");
638   assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
639   CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
640 
641   // Record some information about the call site we're replacing
642   BasicBlock::iterator Before(PollCall), After(PollCall);
643   bool IsBegin = false;
644   if (Before == OrigBB->begin())
645     IsBegin = true;
646   else
647     Before--;
648 
649   After++;
650   assert(After != OrigBB->end() && "must have successor");
651 
652   // Do the actual inlining
653   InlineFunctionInfo IFI;
654   bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess();
655   assert(InlineStatus && "inline must succeed");
656   (void)InlineStatus; // suppress warning in release-asserts
657 
658   // Check post-conditions
659   assert(IFI.StaticAllocas.empty() && "can't have allocs");
660 
661   std::vector<CallInst *> Calls; // new calls
662   DenseSet<BasicBlock *> BBs;    // new BBs + insertee
663 
664   // Include only the newly inserted instructions, Note: begin may not be valid
665   // if we inserted to the beginning of the basic block
666   BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
667 
668   // If your poll function includes an unreachable at the end, that's not
669   // valid.  Bugpoint likes to create this, so check for it.
670   assert(isPotentiallyReachable(&*Start, &*After) &&
671          "malformed poll function");
672 
673   scanInlinedCode(&*Start, &*After, Calls, BBs);
674   assert(!Calls.empty() && "slow path not found for safepoint poll");
675 
676   // Record the fact we need a parsable state at the runtime call contained in
677   // the poll function.  This is required so that the runtime knows how to
678   // parse the last frame when we actually take  the safepoint (i.e. execute
679   // the slow path)
680   assert(ParsePointsNeeded.empty());
681   for (auto *CI : Calls) {
682     // No safepoint needed or wanted
683     if (!needsStatepoint(CI, TLI))
684       continue;
685 
686     // These are likely runtime calls.  Should we assert that via calling
687     // convention or something?
688     ParsePointsNeeded.push_back(CI);
689   }
690   assert(ParsePointsNeeded.size() <= Calls.size());
691 }
692