1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/Utils/Local.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ValueMapper.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <numeric>
56 #include <utility>
57 
58 #define DEBUG_TYPE "simple-loop-unswitch"
59 
60 using namespace llvm;
61 
62 STATISTIC(NumBranches, "Number of branches unswitched");
63 STATISTIC(NumSwitches, "Number of switches unswitched");
64 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
65 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
66 STATISTIC(
67     NumCostMultiplierSkipped,
68     "Number of unswitch candidates that had their cost multiplier skipped");
69 
70 static cl::opt<bool> EnableNonTrivialUnswitch(
71     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
72     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
73              "following the configuration passed into the pass."));
74 
75 static cl::opt<int>
76     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
77                       cl::desc("The cost threshold for unswitching a loop."));
78 
79 static cl::opt<bool> EnableUnswitchCostMultiplier(
80     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
81     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
82              "explosion in nontrivial unswitch."));
83 static cl::opt<int> UnswitchSiblingsToplevelDiv(
84     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
85     cl::desc("Toplevel siblings divisor for cost multiplier."));
86 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
87     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
88     cl::desc("Number of unswitch candidates that are ignored when calculating "
89              "cost multiplier."));
90 static cl::opt<bool> UnswitchGuards(
91     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
92     cl::desc("If enabled, simple loop unswitching will also consider "
93              "llvm.experimental.guard intrinsics as unswitch candidates."));
94 
95 /// Collect all of the loop invariant input values transitively used by the
96 /// homogeneous instruction graph from a given root.
97 ///
98 /// This essentially walks from a root recursively through loop variant operands
99 /// which have the exact same opcode and finds all inputs which are loop
100 /// invariant. For some operations these can be re-associated and unswitched out
101 /// of the loop entirely.
102 static TinyPtrVector<Value *>
103 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
104                                          LoopInfo &LI) {
105   assert(!L.isLoopInvariant(&Root) &&
106          "Only need to walk the graph if root itself is not invariant.");
107   TinyPtrVector<Value *> Invariants;
108 
109   // Build a worklist and recurse through operators collecting invariants.
110   SmallVector<Instruction *, 4> Worklist;
111   SmallPtrSet<Instruction *, 8> Visited;
112   Worklist.push_back(&Root);
113   Visited.insert(&Root);
114   do {
115     Instruction &I = *Worklist.pop_back_val();
116     for (Value *OpV : I.operand_values()) {
117       // Skip constants as unswitching isn't interesting for them.
118       if (isa<Constant>(OpV))
119         continue;
120 
121       // Add it to our result if loop invariant.
122       if (L.isLoopInvariant(OpV)) {
123         Invariants.push_back(OpV);
124         continue;
125       }
126 
127       // If not an instruction with the same opcode, nothing we can do.
128       Instruction *OpI = dyn_cast<Instruction>(OpV);
129       if (!OpI || OpI->getOpcode() != Root.getOpcode())
130         continue;
131 
132       // Visit this operand.
133       if (Visited.insert(OpI).second)
134         Worklist.push_back(OpI);
135     }
136   } while (!Worklist.empty());
137 
138   return Invariants;
139 }
140 
141 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
142                                      Constant &Replacement) {
143   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
144 
145   // Replace uses of LIC in the loop with the given constant.
146   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
147     // Grab the use and walk past it so we can clobber it in the use list.
148     Use *U = &*UI++;
149     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
150 
151     // Replace this use within the loop body.
152     if (UserI && L.contains(UserI))
153       U->set(&Replacement);
154   }
155 }
156 
157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
158 /// incoming values along this edge.
159 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
160                                          BasicBlock &ExitBB) {
161   for (Instruction &I : ExitBB) {
162     auto *PN = dyn_cast<PHINode>(&I);
163     if (!PN)
164       // No more PHIs to check.
165       return true;
166 
167     // If the incoming value for this edge isn't loop invariant the unswitch
168     // won't be trivial.
169     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
170       return false;
171   }
172   llvm_unreachable("Basic blocks should never be empty!");
173 }
174 
175 /// Insert code to test a set of loop invariant values, and conditionally branch
176 /// on them.
177 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
178                                                   ArrayRef<Value *> Invariants,
179                                                   bool Direction,
180                                                   BasicBlock &UnswitchedSucc,
181                                                   BasicBlock &NormalSucc) {
182   IRBuilder<> IRB(&BB);
183 
184   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
185     IRB.CreateAnd(Invariants);
186   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
187                    Direction ? &NormalSucc : &UnswitchedSucc);
188 }
189 
190 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
191 ///
192 /// Requires that the loop exit and unswitched basic block are the same, and
193 /// that the exiting block was a unique predecessor of that block. Rewrites the
194 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
195 /// PHI nodes from the old preheader that now contains the unswitched
196 /// terminator.
197 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
198                                                   BasicBlock &OldExitingBB,
199                                                   BasicBlock &OldPH) {
200   for (PHINode &PN : UnswitchedBB.phis()) {
201     // When the loop exit is directly unswitched we just need to update the
202     // incoming basic block. We loop to handle weird cases with repeated
203     // incoming blocks, but expect to typically only have one operand here.
204     for (auto i : seq<int>(0, PN.getNumOperands())) {
205       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
206              "Found incoming block different from unique predecessor!");
207       PN.setIncomingBlock(i, &OldPH);
208     }
209   }
210 }
211 
212 /// Rewrite the PHI nodes in the loop exit basic block and the split off
213 /// unswitched block.
214 ///
215 /// Because the exit block remains an exit from the loop, this rewrites the
216 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
217 /// nodes into the unswitched basic block to select between the value in the
218 /// old preheader and the loop exit.
219 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
220                                                       BasicBlock &UnswitchedBB,
221                                                       BasicBlock &OldExitingBB,
222                                                       BasicBlock &OldPH,
223                                                       bool FullUnswitch) {
224   assert(&ExitBB != &UnswitchedBB &&
225          "Must have different loop exit and unswitched blocks!");
226   Instruction *InsertPt = &*UnswitchedBB.begin();
227   for (PHINode &PN : ExitBB.phis()) {
228     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
229                                   PN.getName() + ".split", InsertPt);
230 
231     // Walk backwards over the old PHI node's inputs to minimize the cost of
232     // removing each one. We have to do this weird loop manually so that we
233     // create the same number of new incoming edges in the new PHI as we expect
234     // each case-based edge to be included in the unswitched switch in some
235     // cases.
236     // FIXME: This is really, really gross. It would be much cleaner if LLVM
237     // allowed us to create a single entry for a predecessor block without
238     // having separate entries for each "edge" even though these edges are
239     // required to produce identical results.
240     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
241       if (PN.getIncomingBlock(i) != &OldExitingBB)
242         continue;
243 
244       Value *Incoming = PN.getIncomingValue(i);
245       if (FullUnswitch)
246         // No more edge from the old exiting block to the exit block.
247         PN.removeIncomingValue(i);
248 
249       NewPN->addIncoming(Incoming, &OldPH);
250     }
251 
252     // Now replace the old PHI with the new one and wire the old one in as an
253     // input to the new one.
254     PN.replaceAllUsesWith(NewPN);
255     NewPN->addIncoming(&PN, &ExitBB);
256   }
257 }
258 
259 /// Hoist the current loop up to the innermost loop containing a remaining exit.
260 ///
261 /// Because we've removed an exit from the loop, we may have changed the set of
262 /// loops reachable and need to move the current loop up the loop nest or even
263 /// to an entirely separate nest.
264 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
265                                  DominatorTree &DT, LoopInfo &LI,
266                                  MemorySSAUpdater *MSSAU) {
267   // If the loop is already at the top level, we can't hoist it anywhere.
268   Loop *OldParentL = L.getParentLoop();
269   if (!OldParentL)
270     return;
271 
272   SmallVector<BasicBlock *, 4> Exits;
273   L.getExitBlocks(Exits);
274   Loop *NewParentL = nullptr;
275   for (auto *ExitBB : Exits)
276     if (Loop *ExitL = LI.getLoopFor(ExitBB))
277       if (!NewParentL || NewParentL->contains(ExitL))
278         NewParentL = ExitL;
279 
280   if (NewParentL == OldParentL)
281     return;
282 
283   // The new parent loop (if different) should always contain the old one.
284   if (NewParentL)
285     assert(NewParentL->contains(OldParentL) &&
286            "Can only hoist this loop up the nest!");
287 
288   // The preheader will need to move with the body of this loop. However,
289   // because it isn't in this loop we also need to update the primary loop map.
290   assert(OldParentL == LI.getLoopFor(&Preheader) &&
291          "Parent loop of this loop should contain this loop's preheader!");
292   LI.changeLoopFor(&Preheader, NewParentL);
293 
294   // Remove this loop from its old parent.
295   OldParentL->removeChildLoop(&L);
296 
297   // Add the loop either to the new parent or as a top-level loop.
298   if (NewParentL)
299     NewParentL->addChildLoop(&L);
300   else
301     LI.addTopLevelLoop(&L);
302 
303   // Remove this loops blocks from the old parent and every other loop up the
304   // nest until reaching the new parent. Also update all of these
305   // no-longer-containing loops to reflect the nesting change.
306   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
307        OldContainingL = OldContainingL->getParentLoop()) {
308     llvm::erase_if(OldContainingL->getBlocksVector(),
309                    [&](const BasicBlock *BB) {
310                      return BB == &Preheader || L.contains(BB);
311                    });
312 
313     OldContainingL->getBlocksSet().erase(&Preheader);
314     for (BasicBlock *BB : L.blocks())
315       OldContainingL->getBlocksSet().erase(BB);
316 
317     // Because we just hoisted a loop out of this one, we have essentially
318     // created new exit paths from it. That means we need to form LCSSA PHI
319     // nodes for values used in the no-longer-nested loop.
320     formLCSSA(*OldContainingL, DT, &LI, nullptr);
321 
322     // We shouldn't need to form dedicated exits because the exit introduced
323     // here is the (just split by unswitching) preheader. However, after trivial
324     // unswitching it is possible to get new non-dedicated exits out of parent
325     // loop so let's conservatively form dedicated exit blocks and figure out
326     // if we can optimize later.
327     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
328                             /*PreserveLCSSA*/ true);
329   }
330 }
331 
332 /// Unswitch a trivial branch if the condition is loop invariant.
333 ///
334 /// This routine should only be called when loop code leading to the branch has
335 /// been validated as trivial (no side effects). This routine checks if the
336 /// condition is invariant and one of the successors is a loop exit. This
337 /// allows us to unswitch without duplicating the loop, making it trivial.
338 ///
339 /// If this routine fails to unswitch the branch it returns false.
340 ///
341 /// If the branch can be unswitched, this routine splits the preheader and
342 /// hoists the branch above that split. Preserves loop simplified form
343 /// (splitting the exit block as necessary). It simplifies the branch within
344 /// the loop to an unconditional branch but doesn't remove it entirely. Further
345 /// cleanup can be done with some simplify-cfg like pass.
346 ///
347 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
348 /// invalidated by this.
349 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
350                                   LoopInfo &LI, ScalarEvolution *SE,
351                                   MemorySSAUpdater *MSSAU) {
352   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
353   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
354 
355   // The loop invariant values that we want to unswitch.
356   TinyPtrVector<Value *> Invariants;
357 
358   // When true, we're fully unswitching the branch rather than just unswitching
359   // some input conditions to the branch.
360   bool FullUnswitch = false;
361 
362   if (L.isLoopInvariant(BI.getCondition())) {
363     Invariants.push_back(BI.getCondition());
364     FullUnswitch = true;
365   } else {
366     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
367       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
368     if (Invariants.empty())
369       // Couldn't find invariant inputs!
370       return false;
371   }
372 
373   // Check that one of the branch's successors exits, and which one.
374   bool ExitDirection = true;
375   int LoopExitSuccIdx = 0;
376   auto *LoopExitBB = BI.getSuccessor(0);
377   if (L.contains(LoopExitBB)) {
378     ExitDirection = false;
379     LoopExitSuccIdx = 1;
380     LoopExitBB = BI.getSuccessor(1);
381     if (L.contains(LoopExitBB))
382       return false;
383   }
384   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
385   auto *ParentBB = BI.getParent();
386   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
387     return false;
388 
389   // When unswitching only part of the branch's condition, we need the exit
390   // block to be reached directly from the partially unswitched input. This can
391   // be done when the exit block is along the true edge and the branch condition
392   // is a graph of `or` operations, or the exit block is along the false edge
393   // and the condition is a graph of `and` operations.
394   if (!FullUnswitch) {
395     if (ExitDirection) {
396       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
397         return false;
398     } else {
399       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
400         return false;
401     }
402   }
403 
404   LLVM_DEBUG({
405     dbgs() << "    unswitching trivial invariant conditions for: " << BI
406            << "\n";
407     for (Value *Invariant : Invariants) {
408       dbgs() << "      " << *Invariant << " == true";
409       if (Invariant != Invariants.back())
410         dbgs() << " ||";
411       dbgs() << "\n";
412     }
413   });
414 
415   // If we have scalar evolutions, we need to invalidate them including this
416   // loop and the loop containing the exit block.
417   if (SE) {
418     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
419       SE->forgetLoop(ExitL);
420     else
421       // Forget the entire nest as this exits the entire nest.
422       SE->forgetTopmostLoop(&L);
423   }
424 
425   if (MSSAU && VerifyMemorySSA)
426     MSSAU->getMemorySSA()->verifyMemorySSA();
427 
428   // Split the preheader, so that we know that there is a safe place to insert
429   // the conditional branch. We will change the preheader to have a conditional
430   // branch on LoopCond.
431   BasicBlock *OldPH = L.getLoopPreheader();
432   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
433 
434   // Now that we have a place to insert the conditional branch, create a place
435   // to branch to: this is the exit block out of the loop that we are
436   // unswitching. We need to split this if there are other loop predecessors.
437   // Because the loop is in simplified form, *any* other predecessor is enough.
438   BasicBlock *UnswitchedBB;
439   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
440     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
441            "A branch's parent isn't a predecessor!");
442     UnswitchedBB = LoopExitBB;
443   } else {
444     UnswitchedBB =
445         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
446   }
447 
448   if (MSSAU && VerifyMemorySSA)
449     MSSAU->getMemorySSA()->verifyMemorySSA();
450 
451   // Actually move the invariant uses into the unswitched position. If possible,
452   // we do this by moving the instructions, but when doing partial unswitching
453   // we do it by building a new merge of the values in the unswitched position.
454   OldPH->getTerminator()->eraseFromParent();
455   if (FullUnswitch) {
456     // If fully unswitching, we can use the existing branch instruction.
457     // Splice it into the old PH to gate reaching the new preheader and re-point
458     // its successors.
459     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
460                                 BI);
461     if (MSSAU) {
462       // Temporarily clone the terminator, to make MSSA update cheaper by
463       // separating "insert edge" updates from "remove edge" ones.
464       ParentBB->getInstList().push_back(BI.clone());
465     } else {
466       // Create a new unconditional branch that will continue the loop as a new
467       // terminator.
468       BranchInst::Create(ContinueBB, ParentBB);
469     }
470     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
471     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
472   } else {
473     // Only unswitching a subset of inputs to the condition, so we will need to
474     // build a new branch that merges the invariant inputs.
475     if (ExitDirection)
476       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
477                  Instruction::Or &&
478              "Must have an `or` of `i1`s for the condition!");
479     else
480       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
481                  Instruction::And &&
482              "Must have an `and` of `i1`s for the condition!");
483     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
484                                           *UnswitchedBB, *NewPH);
485   }
486 
487   // Update the dominator tree with the added edge.
488   DT.insertEdge(OldPH, UnswitchedBB);
489 
490   // After the dominator tree was updated with the added edge, update MemorySSA
491   // if available.
492   if (MSSAU) {
493     SmallVector<CFGUpdate, 1> Updates;
494     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
495     MSSAU->applyInsertUpdates(Updates, DT);
496   }
497 
498   // Finish updating dominator tree and memory ssa for full unswitch.
499   if (FullUnswitch) {
500     if (MSSAU) {
501       // Remove the cloned branch instruction.
502       ParentBB->getTerminator()->eraseFromParent();
503       // Create unconditional branch now.
504       BranchInst::Create(ContinueBB, ParentBB);
505       MSSAU->removeEdge(ParentBB, LoopExitBB);
506     }
507     DT.deleteEdge(ParentBB, LoopExitBB);
508   }
509 
510   if (MSSAU && VerifyMemorySSA)
511     MSSAU->getMemorySSA()->verifyMemorySSA();
512 
513   // Rewrite the relevant PHI nodes.
514   if (UnswitchedBB == LoopExitBB)
515     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
516   else
517     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
518                                               *ParentBB, *OldPH, FullUnswitch);
519 
520   // The constant we can replace all of our invariants with inside the loop
521   // body. If any of the invariants have a value other than this the loop won't
522   // be entered.
523   ConstantInt *Replacement = ExitDirection
524                                  ? ConstantInt::getFalse(BI.getContext())
525                                  : ConstantInt::getTrue(BI.getContext());
526 
527   // Since this is an i1 condition we can also trivially replace uses of it
528   // within the loop with a constant.
529   for (Value *Invariant : Invariants)
530     replaceLoopInvariantUses(L, Invariant, *Replacement);
531 
532   // If this was full unswitching, we may have changed the nesting relationship
533   // for this loop so hoist it to its correct parent if needed.
534   if (FullUnswitch)
535     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
536 
537   if (MSSAU && VerifyMemorySSA)
538     MSSAU->getMemorySSA()->verifyMemorySSA();
539 
540   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
541   ++NumTrivial;
542   ++NumBranches;
543   return true;
544 }
545 
546 /// Unswitch a trivial switch if the condition is loop invariant.
547 ///
548 /// This routine should only be called when loop code leading to the switch has
549 /// been validated as trivial (no side effects). This routine checks if the
550 /// condition is invariant and that at least one of the successors is a loop
551 /// exit. This allows us to unswitch without duplicating the loop, making it
552 /// trivial.
553 ///
554 /// If this routine fails to unswitch the switch it returns false.
555 ///
556 /// If the switch can be unswitched, this routine splits the preheader and
557 /// copies the switch above that split. If the default case is one of the
558 /// exiting cases, it copies the non-exiting cases and points them at the new
559 /// preheader. If the default case is not exiting, it copies the exiting cases
560 /// and points the default at the preheader. It preserves loop simplified form
561 /// (splitting the exit blocks as necessary). It simplifies the switch within
562 /// the loop by removing now-dead cases. If the default case is one of those
563 /// unswitched, it replaces its destination with a new basic block containing
564 /// only unreachable. Such basic blocks, while technically loop exits, are not
565 /// considered for unswitching so this is a stable transform and the same
566 /// switch will not be revisited. If after unswitching there is only a single
567 /// in-loop successor, the switch is further simplified to an unconditional
568 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
569 ///
570 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
571 /// invalidated by this.
572 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
573                                   LoopInfo &LI, ScalarEvolution *SE,
574                                   MemorySSAUpdater *MSSAU) {
575   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
576   Value *LoopCond = SI.getCondition();
577 
578   // If this isn't switching on an invariant condition, we can't unswitch it.
579   if (!L.isLoopInvariant(LoopCond))
580     return false;
581 
582   auto *ParentBB = SI.getParent();
583 
584   SmallVector<int, 4> ExitCaseIndices;
585   for (auto Case : SI.cases()) {
586     auto *SuccBB = Case.getCaseSuccessor();
587     if (!L.contains(SuccBB) &&
588         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
589       ExitCaseIndices.push_back(Case.getCaseIndex());
590   }
591   BasicBlock *DefaultExitBB = nullptr;
592   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
593       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
594   if (!L.contains(SI.getDefaultDest()) &&
595       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
596       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
597     DefaultExitBB = SI.getDefaultDest();
598   } else if (ExitCaseIndices.empty())
599     return false;
600 
601   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
602 
603   if (MSSAU && VerifyMemorySSA)
604     MSSAU->getMemorySSA()->verifyMemorySSA();
605 
606   // We may need to invalidate SCEVs for the outermost loop reached by any of
607   // the exits.
608   Loop *OuterL = &L;
609 
610   if (DefaultExitBB) {
611     // Clear out the default destination temporarily to allow accurate
612     // predecessor lists to be examined below.
613     SI.setDefaultDest(nullptr);
614     // Check the loop containing this exit.
615     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
616     if (!ExitL || ExitL->contains(OuterL))
617       OuterL = ExitL;
618   }
619 
620   // Store the exit cases into a separate data structure and remove them from
621   // the switch.
622   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
623                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
624               4> ExitCases;
625   ExitCases.reserve(ExitCaseIndices.size());
626   SwitchInstProfUpdateWrapper SIW(SI);
627   // We walk the case indices backwards so that we remove the last case first
628   // and don't disrupt the earlier indices.
629   for (unsigned Index : reverse(ExitCaseIndices)) {
630     auto CaseI = SI.case_begin() + Index;
631     // Compute the outer loop from this exit.
632     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
633     if (!ExitL || ExitL->contains(OuterL))
634       OuterL = ExitL;
635     // Save the value of this case.
636     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
637     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
638     // Delete the unswitched cases.
639     SIW.removeCase(CaseI);
640   }
641 
642   if (SE) {
643     if (OuterL)
644       SE->forgetLoop(OuterL);
645     else
646       SE->forgetTopmostLoop(&L);
647   }
648 
649   // Check if after this all of the remaining cases point at the same
650   // successor.
651   BasicBlock *CommonSuccBB = nullptr;
652   if (SI.getNumCases() > 0 &&
653       std::all_of(std::next(SI.case_begin()), SI.case_end(),
654                   [&SI](const SwitchInst::CaseHandle &Case) {
655                     return Case.getCaseSuccessor() ==
656                            SI.case_begin()->getCaseSuccessor();
657                   }))
658     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
659   if (!DefaultExitBB) {
660     // If we're not unswitching the default, we need it to match any cases to
661     // have a common successor or if we have no cases it is the common
662     // successor.
663     if (SI.getNumCases() == 0)
664       CommonSuccBB = SI.getDefaultDest();
665     else if (SI.getDefaultDest() != CommonSuccBB)
666       CommonSuccBB = nullptr;
667   }
668 
669   // Split the preheader, so that we know that there is a safe place to insert
670   // the switch.
671   BasicBlock *OldPH = L.getLoopPreheader();
672   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
673   OldPH->getTerminator()->eraseFromParent();
674 
675   // Now add the unswitched switch.
676   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
677   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
678 
679   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
680   // First, we split any exit blocks with remaining in-loop predecessors. Then
681   // we update the PHIs in one of two ways depending on if there was a split.
682   // We walk in reverse so that we split in the same order as the cases
683   // appeared. This is purely for convenience of reading the resulting IR, but
684   // it doesn't cost anything really.
685   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
686   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
687   // Handle the default exit if necessary.
688   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
689   // ranges aren't quite powerful enough yet.
690   if (DefaultExitBB) {
691     if (pred_empty(DefaultExitBB)) {
692       UnswitchedExitBBs.insert(DefaultExitBB);
693       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
694     } else {
695       auto *SplitBB =
696           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
697       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
698                                                 *ParentBB, *OldPH,
699                                                 /*FullUnswitch*/ true);
700       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
701     }
702   }
703   // Note that we must use a reference in the for loop so that we update the
704   // container.
705   for (auto &ExitCase : reverse(ExitCases)) {
706     // Grab a reference to the exit block in the pair so that we can update it.
707     BasicBlock *ExitBB = std::get<1>(ExitCase);
708 
709     // If this case is the last edge into the exit block, we can simply reuse it
710     // as it will no longer be a loop exit. No mapping necessary.
711     if (pred_empty(ExitBB)) {
712       // Only rewrite once.
713       if (UnswitchedExitBBs.insert(ExitBB).second)
714         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
715       continue;
716     }
717 
718     // Otherwise we need to split the exit block so that we retain an exit
719     // block from the loop and a target for the unswitched condition.
720     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
721     if (!SplitExitBB) {
722       // If this is the first time we see this, do the split and remember it.
723       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
724       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
725                                                 *ParentBB, *OldPH,
726                                                 /*FullUnswitch*/ true);
727     }
728     // Update the case pair to point to the split block.
729     std::get<1>(ExitCase) = SplitExitBB;
730   }
731 
732   // Now add the unswitched cases. We do this in reverse order as we built them
733   // in reverse order.
734   for (auto &ExitCase : reverse(ExitCases)) {
735     ConstantInt *CaseVal = std::get<0>(ExitCase);
736     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
737 
738     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
739   }
740 
741   // If the default was unswitched, re-point it and add explicit cases for
742   // entering the loop.
743   if (DefaultExitBB) {
744     NewSIW->setDefaultDest(DefaultExitBB);
745     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
746 
747     // We removed all the exit cases, so we just copy the cases to the
748     // unswitched switch.
749     for (const auto &Case : SI.cases())
750       NewSIW.addCase(Case.getCaseValue(), NewPH,
751                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
752   } else if (DefaultCaseWeight) {
753     // We have to set branch weight of the default case.
754     uint64_t SW = *DefaultCaseWeight;
755     for (const auto &Case : SI.cases()) {
756       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
757       assert(W &&
758              "case weight must be defined as default case weight is defined");
759       SW += *W;
760     }
761     NewSIW.setSuccessorWeight(0, SW);
762   }
763 
764   // If we ended up with a common successor for every path through the switch
765   // after unswitching, rewrite it to an unconditional branch to make it easy
766   // to recognize. Otherwise we potentially have to recognize the default case
767   // pointing at unreachable and other complexity.
768   if (CommonSuccBB) {
769     BasicBlock *BB = SI.getParent();
770     // We may have had multiple edges to this common successor block, so remove
771     // them as predecessors. We skip the first one, either the default or the
772     // actual first case.
773     bool SkippedFirst = DefaultExitBB == nullptr;
774     for (auto Case : SI.cases()) {
775       assert(Case.getCaseSuccessor() == CommonSuccBB &&
776              "Non-common successor!");
777       (void)Case;
778       if (!SkippedFirst) {
779         SkippedFirst = true;
780         continue;
781       }
782       CommonSuccBB->removePredecessor(BB,
783                                       /*KeepOneInputPHIs*/ true);
784     }
785     // Now nuke the switch and replace it with a direct branch.
786     SIW.eraseFromParent();
787     BranchInst::Create(CommonSuccBB, BB);
788   } else if (DefaultExitBB) {
789     assert(SI.getNumCases() > 0 &&
790            "If we had no cases we'd have a common successor!");
791     // Move the last case to the default successor. This is valid as if the
792     // default got unswitched it cannot be reached. This has the advantage of
793     // being simple and keeping the number of edges from this switch to
794     // successors the same, and avoiding any PHI update complexity.
795     auto LastCaseI = std::prev(SI.case_end());
796 
797     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
798     SIW.setSuccessorWeight(
799         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
800     SIW.removeCase(LastCaseI);
801   }
802 
803   // Walk the unswitched exit blocks and the unswitched split blocks and update
804   // the dominator tree based on the CFG edits. While we are walking unordered
805   // containers here, the API for applyUpdates takes an unordered list of
806   // updates and requires them to not contain duplicates.
807   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
808   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
809     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
810     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
811   }
812   for (auto SplitUnswitchedPair : SplitExitBBMap) {
813     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
814     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
815   }
816   DT.applyUpdates(DTUpdates);
817 
818   if (MSSAU) {
819     MSSAU->applyUpdates(DTUpdates, DT);
820     if (VerifyMemorySSA)
821       MSSAU->getMemorySSA()->verifyMemorySSA();
822   }
823 
824   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
825 
826   // We may have changed the nesting relationship for this loop so hoist it to
827   // its correct parent if needed.
828   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
829 
830   if (MSSAU && VerifyMemorySSA)
831     MSSAU->getMemorySSA()->verifyMemorySSA();
832 
833   ++NumTrivial;
834   ++NumSwitches;
835   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
836   return true;
837 }
838 
839 /// This routine scans the loop to find a branch or switch which occurs before
840 /// any side effects occur. These can potentially be unswitched without
841 /// duplicating the loop. If a branch or switch is successfully unswitched the
842 /// scanning continues to see if subsequent branches or switches have become
843 /// trivial. Once all trivial candidates have been unswitched, this routine
844 /// returns.
845 ///
846 /// The return value indicates whether anything was unswitched (and therefore
847 /// changed).
848 ///
849 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
850 /// invalidated by this.
851 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
852                                          LoopInfo &LI, ScalarEvolution *SE,
853                                          MemorySSAUpdater *MSSAU) {
854   bool Changed = false;
855 
856   // If loop header has only one reachable successor we should keep looking for
857   // trivial condition candidates in the successor as well. An alternative is
858   // to constant fold conditions and merge successors into loop header (then we
859   // only need to check header's terminator). The reason for not doing this in
860   // LoopUnswitch pass is that it could potentially break LoopPassManager's
861   // invariants. Folding dead branches could either eliminate the current loop
862   // or make other loops unreachable. LCSSA form might also not be preserved
863   // after deleting branches. The following code keeps traversing loop header's
864   // successors until it finds the trivial condition candidate (condition that
865   // is not a constant). Since unswitching generates branches with constant
866   // conditions, this scenario could be very common in practice.
867   BasicBlock *CurrentBB = L.getHeader();
868   SmallPtrSet<BasicBlock *, 8> Visited;
869   Visited.insert(CurrentBB);
870   do {
871     // Check if there are any side-effecting instructions (e.g. stores, calls,
872     // volatile loads) in the part of the loop that the code *would* execute
873     // without unswitching.
874     if (MSSAU) // Possible early exit with MSSA
875       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
876         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
877           return Changed;
878     if (llvm::any_of(*CurrentBB,
879                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
880       return Changed;
881 
882     Instruction *CurrentTerm = CurrentBB->getTerminator();
883 
884     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
885       // Don't bother trying to unswitch past a switch with a constant
886       // condition. This should be removed prior to running this pass by
887       // simplify-cfg.
888       if (isa<Constant>(SI->getCondition()))
889         return Changed;
890 
891       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
892         // Couldn't unswitch this one so we're done.
893         return Changed;
894 
895       // Mark that we managed to unswitch something.
896       Changed = true;
897 
898       // If unswitching turned the terminator into an unconditional branch then
899       // we can continue. The unswitching logic specifically works to fold any
900       // cases it can into an unconditional branch to make it easier to
901       // recognize here.
902       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
903       if (!BI || BI->isConditional())
904         return Changed;
905 
906       CurrentBB = BI->getSuccessor(0);
907       continue;
908     }
909 
910     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
911     if (!BI)
912       // We do not understand other terminator instructions.
913       return Changed;
914 
915     // Don't bother trying to unswitch past an unconditional branch or a branch
916     // with a constant value. These should be removed by simplify-cfg prior to
917     // running this pass.
918     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
919       return Changed;
920 
921     // Found a trivial condition candidate: non-foldable conditional branch. If
922     // we fail to unswitch this, we can't do anything else that is trivial.
923     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
924       return Changed;
925 
926     // Mark that we managed to unswitch something.
927     Changed = true;
928 
929     // If we only unswitched some of the conditions feeding the branch, we won't
930     // have collapsed it to a single successor.
931     BI = cast<BranchInst>(CurrentBB->getTerminator());
932     if (BI->isConditional())
933       return Changed;
934 
935     // Follow the newly unconditional branch into its successor.
936     CurrentBB = BI->getSuccessor(0);
937 
938     // When continuing, if we exit the loop or reach a previous visited block,
939     // then we can not reach any trivial condition candidates (unfoldable
940     // branch instructions or switch instructions) and no unswitch can happen.
941   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
942 
943   return Changed;
944 }
945 
946 /// Build the cloned blocks for an unswitched copy of the given loop.
947 ///
948 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
949 /// after the split block (`SplitBB`) that will be used to select between the
950 /// cloned and original loop.
951 ///
952 /// This routine handles cloning all of the necessary loop blocks and exit
953 /// blocks including rewriting their instructions and the relevant PHI nodes.
954 /// Any loop blocks or exit blocks which are dominated by a different successor
955 /// than the one for this clone of the loop blocks can be trivially skipped. We
956 /// use the `DominatingSucc` map to determine whether a block satisfies that
957 /// property with a simple map lookup.
958 ///
959 /// It also correctly creates the unconditional branch in the cloned
960 /// unswitched parent block to only point at the unswitched successor.
961 ///
962 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
963 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
964 /// the cloned blocks (and their loops) are left without full `LoopInfo`
965 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
966 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
967 /// instead the caller must recompute an accurate DT. It *does* correctly
968 /// update the `AssumptionCache` provided in `AC`.
969 static BasicBlock *buildClonedLoopBlocks(
970     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
971     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
972     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
973     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
974     ValueToValueMapTy &VMap,
975     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
976     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
977   SmallVector<BasicBlock *, 4> NewBlocks;
978   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
979 
980   // We will need to clone a bunch of blocks, wrap up the clone operation in
981   // a helper.
982   auto CloneBlock = [&](BasicBlock *OldBB) {
983     // Clone the basic block and insert it before the new preheader.
984     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
985     NewBB->moveBefore(LoopPH);
986 
987     // Record this block and the mapping.
988     NewBlocks.push_back(NewBB);
989     VMap[OldBB] = NewBB;
990 
991     return NewBB;
992   };
993 
994   // We skip cloning blocks when they have a dominating succ that is not the
995   // succ we are cloning for.
996   auto SkipBlock = [&](BasicBlock *BB) {
997     auto It = DominatingSucc.find(BB);
998     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
999   };
1000 
1001   // First, clone the preheader.
1002   auto *ClonedPH = CloneBlock(LoopPH);
1003 
1004   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1005   for (auto *LoopBB : L.blocks())
1006     if (!SkipBlock(LoopBB))
1007       CloneBlock(LoopBB);
1008 
1009   // Split all the loop exit edges so that when we clone the exit blocks, if
1010   // any of the exit blocks are *also* a preheader for some other loop, we
1011   // don't create multiple predecessors entering the loop header.
1012   for (auto *ExitBB : ExitBlocks) {
1013     if (SkipBlock(ExitBB))
1014       continue;
1015 
1016     // When we are going to clone an exit, we don't need to clone all the
1017     // instructions in the exit block and we want to ensure we have an easy
1018     // place to merge the CFG, so split the exit first. This is always safe to
1019     // do because there cannot be any non-loop predecessors of a loop exit in
1020     // loop simplified form.
1021     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1022 
1023     // Rearrange the names to make it easier to write test cases by having the
1024     // exit block carry the suffix rather than the merge block carrying the
1025     // suffix.
1026     MergeBB->takeName(ExitBB);
1027     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1028 
1029     // Now clone the original exit block.
1030     auto *ClonedExitBB = CloneBlock(ExitBB);
1031     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1032            "Exit block should have been split to have one successor!");
1033     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1034            "Cloned exit block has the wrong successor!");
1035 
1036     // Remap any cloned instructions and create a merge phi node for them.
1037     for (auto ZippedInsts : llvm::zip_first(
1038              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1039              llvm::make_range(ClonedExitBB->begin(),
1040                               std::prev(ClonedExitBB->end())))) {
1041       Instruction &I = std::get<0>(ZippedInsts);
1042       Instruction &ClonedI = std::get<1>(ZippedInsts);
1043 
1044       // The only instructions in the exit block should be PHI nodes and
1045       // potentially a landing pad.
1046       assert(
1047           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1048           "Bad instruction in exit block!");
1049       // We should have a value map between the instruction and its clone.
1050       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1051 
1052       auto *MergePN =
1053           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1054                           &*MergeBB->getFirstInsertionPt());
1055       I.replaceAllUsesWith(MergePN);
1056       MergePN->addIncoming(&I, ExitBB);
1057       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1058     }
1059   }
1060 
1061   // Rewrite the instructions in the cloned blocks to refer to the instructions
1062   // in the cloned blocks. We have to do this as a second pass so that we have
1063   // everything available. Also, we have inserted new instructions which may
1064   // include assume intrinsics, so we update the assumption cache while
1065   // processing this.
1066   for (auto *ClonedBB : NewBlocks)
1067     for (Instruction &I : *ClonedBB) {
1068       RemapInstruction(&I, VMap,
1069                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1070       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1071         if (II->getIntrinsicID() == Intrinsic::assume)
1072           AC.registerAssumption(II);
1073     }
1074 
1075   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1076   // have spurious incoming values.
1077   for (auto *LoopBB : L.blocks())
1078     if (SkipBlock(LoopBB))
1079       for (auto *SuccBB : successors(LoopBB))
1080         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1081           for (PHINode &PN : ClonedSuccBB->phis())
1082             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1083 
1084   // Remove the cloned parent as a predecessor of any successor we ended up
1085   // cloning other than the unswitched one.
1086   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1087   for (auto *SuccBB : successors(ParentBB)) {
1088     if (SuccBB == UnswitchedSuccBB)
1089       continue;
1090 
1091     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1092     if (!ClonedSuccBB)
1093       continue;
1094 
1095     ClonedSuccBB->removePredecessor(ClonedParentBB,
1096                                     /*KeepOneInputPHIs*/ true);
1097   }
1098 
1099   // Replace the cloned branch with an unconditional branch to the cloned
1100   // unswitched successor.
1101   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1102   ClonedParentBB->getTerminator()->eraseFromParent();
1103   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1104 
1105   // If there are duplicate entries in the PHI nodes because of multiple edges
1106   // to the unswitched successor, we need to nuke all but one as we replaced it
1107   // with a direct branch.
1108   for (PHINode &PN : ClonedSuccBB->phis()) {
1109     bool Found = false;
1110     // Loop over the incoming operands backwards so we can easily delete as we
1111     // go without invalidating the index.
1112     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1113       if (PN.getIncomingBlock(i) != ClonedParentBB)
1114         continue;
1115       if (!Found) {
1116         Found = true;
1117         continue;
1118       }
1119       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1120     }
1121   }
1122 
1123   // Record the domtree updates for the new blocks.
1124   SmallPtrSet<BasicBlock *, 4> SuccSet;
1125   for (auto *ClonedBB : NewBlocks) {
1126     for (auto *SuccBB : successors(ClonedBB))
1127       if (SuccSet.insert(SuccBB).second)
1128         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1129     SuccSet.clear();
1130   }
1131 
1132   return ClonedPH;
1133 }
1134 
1135 /// Recursively clone the specified loop and all of its children.
1136 ///
1137 /// The target parent loop for the clone should be provided, or can be null if
1138 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1139 /// with the provided value map. The entire original loop must be present in
1140 /// the value map. The cloned loop is returned.
1141 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1142                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1143   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1144     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1145     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1146     for (auto *BB : OrigL.blocks()) {
1147       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1148       ClonedL.addBlockEntry(ClonedBB);
1149       if (LI.getLoopFor(BB) == &OrigL)
1150         LI.changeLoopFor(ClonedBB, &ClonedL);
1151     }
1152   };
1153 
1154   // We specially handle the first loop because it may get cloned into
1155   // a different parent and because we most commonly are cloning leaf loops.
1156   Loop *ClonedRootL = LI.AllocateLoop();
1157   if (RootParentL)
1158     RootParentL->addChildLoop(ClonedRootL);
1159   else
1160     LI.addTopLevelLoop(ClonedRootL);
1161   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1162 
1163   if (OrigRootL.empty())
1164     return ClonedRootL;
1165 
1166   // If we have a nest, we can quickly clone the entire loop nest using an
1167   // iterative approach because it is a tree. We keep the cloned parent in the
1168   // data structure to avoid repeatedly querying through a map to find it.
1169   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1170   // Build up the loops to clone in reverse order as we'll clone them from the
1171   // back.
1172   for (Loop *ChildL : llvm::reverse(OrigRootL))
1173     LoopsToClone.push_back({ClonedRootL, ChildL});
1174   do {
1175     Loop *ClonedParentL, *L;
1176     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1177     Loop *ClonedL = LI.AllocateLoop();
1178     ClonedParentL->addChildLoop(ClonedL);
1179     AddClonedBlocksToLoop(*L, *ClonedL);
1180     for (Loop *ChildL : llvm::reverse(*L))
1181       LoopsToClone.push_back({ClonedL, ChildL});
1182   } while (!LoopsToClone.empty());
1183 
1184   return ClonedRootL;
1185 }
1186 
1187 /// Build the cloned loops of an original loop from unswitching.
1188 ///
1189 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1190 /// operation. We need to re-verify that there even is a loop (as the backedge
1191 /// may not have been cloned), and even if there are remaining backedges the
1192 /// backedge set may be different. However, we know that each child loop is
1193 /// undisturbed, we only need to find where to place each child loop within
1194 /// either any parent loop or within a cloned version of the original loop.
1195 ///
1196 /// Because child loops may end up cloned outside of any cloned version of the
1197 /// original loop, multiple cloned sibling loops may be created. All of them
1198 /// are returned so that the newly introduced loop nest roots can be
1199 /// identified.
1200 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1201                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1202                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1203   Loop *ClonedL = nullptr;
1204 
1205   auto *OrigPH = OrigL.getLoopPreheader();
1206   auto *OrigHeader = OrigL.getHeader();
1207 
1208   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1209   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1210 
1211   // We need to know the loops of the cloned exit blocks to even compute the
1212   // accurate parent loop. If we only clone exits to some parent of the
1213   // original parent, we want to clone into that outer loop. We also keep track
1214   // of the loops that our cloned exit blocks participate in.
1215   Loop *ParentL = nullptr;
1216   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1217   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1218   ClonedExitsInLoops.reserve(ExitBlocks.size());
1219   for (auto *ExitBB : ExitBlocks)
1220     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1221       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1222         ExitLoopMap[ClonedExitBB] = ExitL;
1223         ClonedExitsInLoops.push_back(ClonedExitBB);
1224         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1225           ParentL = ExitL;
1226       }
1227   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1228           ParentL->contains(OrigL.getParentLoop())) &&
1229          "The computed parent loop should always contain (or be) the parent of "
1230          "the original loop.");
1231 
1232   // We build the set of blocks dominated by the cloned header from the set of
1233   // cloned blocks out of the original loop. While not all of these will
1234   // necessarily be in the cloned loop, it is enough to establish that they
1235   // aren't in unreachable cycles, etc.
1236   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1237   for (auto *BB : OrigL.blocks())
1238     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1239       ClonedLoopBlocks.insert(ClonedBB);
1240 
1241   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1242   // skipped cloning some region of this loop which can in turn skip some of
1243   // the backedges so we have to rebuild the blocks in the loop based on the
1244   // backedges that remain after cloning.
1245   SmallVector<BasicBlock *, 16> Worklist;
1246   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1247   for (auto *Pred : predecessors(ClonedHeader)) {
1248     // The only possible non-loop header predecessor is the preheader because
1249     // we know we cloned the loop in simplified form.
1250     if (Pred == ClonedPH)
1251       continue;
1252 
1253     // Because the loop was in simplified form, the only non-loop predecessor
1254     // should be the preheader.
1255     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1256                                            "header other than the preheader "
1257                                            "that is not part of the loop!");
1258 
1259     // Insert this block into the loop set and on the first visit (and if it
1260     // isn't the header we're currently walking) put it into the worklist to
1261     // recurse through.
1262     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1263       Worklist.push_back(Pred);
1264   }
1265 
1266   // If we had any backedges then there *is* a cloned loop. Put the header into
1267   // the loop set and then walk the worklist backwards to find all the blocks
1268   // that remain within the loop after cloning.
1269   if (!BlocksInClonedLoop.empty()) {
1270     BlocksInClonedLoop.insert(ClonedHeader);
1271 
1272     while (!Worklist.empty()) {
1273       BasicBlock *BB = Worklist.pop_back_val();
1274       assert(BlocksInClonedLoop.count(BB) &&
1275              "Didn't put block into the loop set!");
1276 
1277       // Insert any predecessors that are in the possible set into the cloned
1278       // set, and if the insert is successful, add them to the worklist. Note
1279       // that we filter on the blocks that are definitely reachable via the
1280       // backedge to the loop header so we may prune out dead code within the
1281       // cloned loop.
1282       for (auto *Pred : predecessors(BB))
1283         if (ClonedLoopBlocks.count(Pred) &&
1284             BlocksInClonedLoop.insert(Pred).second)
1285           Worklist.push_back(Pred);
1286     }
1287 
1288     ClonedL = LI.AllocateLoop();
1289     if (ParentL) {
1290       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1291       ParentL->addChildLoop(ClonedL);
1292     } else {
1293       LI.addTopLevelLoop(ClonedL);
1294     }
1295     NonChildClonedLoops.push_back(ClonedL);
1296 
1297     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1298     // We don't want to just add the cloned loop blocks based on how we
1299     // discovered them. The original order of blocks was carefully built in
1300     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1301     // that logic, we just re-walk the original blocks (and those of the child
1302     // loops) and filter them as we add them into the cloned loop.
1303     for (auto *BB : OrigL.blocks()) {
1304       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1305       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1306         continue;
1307 
1308       // Directly add the blocks that are only in this loop.
1309       if (LI.getLoopFor(BB) == &OrigL) {
1310         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1311         continue;
1312       }
1313 
1314       // We want to manually add it to this loop and parents.
1315       // Registering it with LoopInfo will happen when we clone the top
1316       // loop for this block.
1317       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1318         PL->addBlockEntry(ClonedBB);
1319     }
1320 
1321     // Now add each child loop whose header remains within the cloned loop. All
1322     // of the blocks within the loop must satisfy the same constraints as the
1323     // header so once we pass the header checks we can just clone the entire
1324     // child loop nest.
1325     for (Loop *ChildL : OrigL) {
1326       auto *ClonedChildHeader =
1327           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1328       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1329         continue;
1330 
1331 #ifndef NDEBUG
1332       // We should never have a cloned child loop header but fail to have
1333       // all of the blocks for that child loop.
1334       for (auto *ChildLoopBB : ChildL->blocks())
1335         assert(BlocksInClonedLoop.count(
1336                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1337                "Child cloned loop has a header within the cloned outer "
1338                "loop but not all of its blocks!");
1339 #endif
1340 
1341       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1342     }
1343   }
1344 
1345   // Now that we've handled all the components of the original loop that were
1346   // cloned into a new loop, we still need to handle anything from the original
1347   // loop that wasn't in a cloned loop.
1348 
1349   // Figure out what blocks are left to place within any loop nest containing
1350   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1351   // them.
1352   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1353   if (BlocksInClonedLoop.empty())
1354     UnloopedBlockSet.insert(ClonedPH);
1355   for (auto *ClonedBB : ClonedLoopBlocks)
1356     if (!BlocksInClonedLoop.count(ClonedBB))
1357       UnloopedBlockSet.insert(ClonedBB);
1358 
1359   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1360   // backwards across these to process them inside out. The order shouldn't
1361   // matter as we're just trying to build up the map from inside-out; we use
1362   // the map in a more stably ordered way below.
1363   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1364   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1365     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1366            ExitLoopMap.lookup(RHS)->getLoopDepth();
1367   });
1368 
1369   // Populate the existing ExitLoopMap with everything reachable from each
1370   // exit, starting from the inner most exit.
1371   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1372     assert(Worklist.empty() && "Didn't clear worklist!");
1373 
1374     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1375     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1376 
1377     // Walk the CFG back until we hit the cloned PH adding everything reachable
1378     // and in the unlooped set to this exit block's loop.
1379     Worklist.push_back(ExitBB);
1380     do {
1381       BasicBlock *BB = Worklist.pop_back_val();
1382       // We can stop recursing at the cloned preheader (if we get there).
1383       if (BB == ClonedPH)
1384         continue;
1385 
1386       for (BasicBlock *PredBB : predecessors(BB)) {
1387         // If this pred has already been moved to our set or is part of some
1388         // (inner) loop, no update needed.
1389         if (!UnloopedBlockSet.erase(PredBB)) {
1390           assert(
1391               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1392               "Predecessor not mapped to a loop!");
1393           continue;
1394         }
1395 
1396         // We just insert into the loop set here. We'll add these blocks to the
1397         // exit loop after we build up the set in an order that doesn't rely on
1398         // predecessor order (which in turn relies on use list order).
1399         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1400         (void)Inserted;
1401         assert(Inserted && "Should only visit an unlooped block once!");
1402 
1403         // And recurse through to its predecessors.
1404         Worklist.push_back(PredBB);
1405       }
1406     } while (!Worklist.empty());
1407   }
1408 
1409   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1410   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1411   // in their original order adding them to the correct loop.
1412 
1413   // We need a stable insertion order. We use the order of the original loop
1414   // order and map into the correct parent loop.
1415   for (auto *BB : llvm::concat<BasicBlock *const>(
1416            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1417     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1418       OuterL->addBasicBlockToLoop(BB, LI);
1419 
1420 #ifndef NDEBUG
1421   for (auto &BBAndL : ExitLoopMap) {
1422     auto *BB = BBAndL.first;
1423     auto *OuterL = BBAndL.second;
1424     assert(LI.getLoopFor(BB) == OuterL &&
1425            "Failed to put all blocks into outer loops!");
1426   }
1427 #endif
1428 
1429   // Now that all the blocks are placed into the correct containing loop in the
1430   // absence of child loops, find all the potentially cloned child loops and
1431   // clone them into whatever outer loop we placed their header into.
1432   for (Loop *ChildL : OrigL) {
1433     auto *ClonedChildHeader =
1434         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1435     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1436       continue;
1437 
1438 #ifndef NDEBUG
1439     for (auto *ChildLoopBB : ChildL->blocks())
1440       assert(VMap.count(ChildLoopBB) &&
1441              "Cloned a child loop header but not all of that loops blocks!");
1442 #endif
1443 
1444     NonChildClonedLoops.push_back(cloneLoopNest(
1445         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1446   }
1447 }
1448 
1449 static void
1450 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1451                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1452                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1453   // Find all the dead clones, and remove them from their successors.
1454   SmallVector<BasicBlock *, 16> DeadBlocks;
1455   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1456     for (auto &VMap : VMaps)
1457       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1458         if (!DT.isReachableFromEntry(ClonedBB)) {
1459           for (BasicBlock *SuccBB : successors(ClonedBB))
1460             SuccBB->removePredecessor(ClonedBB);
1461           DeadBlocks.push_back(ClonedBB);
1462         }
1463 
1464   // Remove all MemorySSA in the dead blocks
1465   if (MSSAU) {
1466     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1467                                                  DeadBlocks.end());
1468     MSSAU->removeBlocks(DeadBlockSet);
1469   }
1470 
1471   // Drop any remaining references to break cycles.
1472   for (BasicBlock *BB : DeadBlocks)
1473     BB->dropAllReferences();
1474   // Erase them from the IR.
1475   for (BasicBlock *BB : DeadBlocks)
1476     BB->eraseFromParent();
1477 }
1478 
1479 static void deleteDeadBlocksFromLoop(Loop &L,
1480                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1481                                      DominatorTree &DT, LoopInfo &LI,
1482                                      MemorySSAUpdater *MSSAU) {
1483   // Find all the dead blocks tied to this loop, and remove them from their
1484   // successors.
1485   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1486 
1487   // Start with loop/exit blocks and get a transitive closure of reachable dead
1488   // blocks.
1489   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1490                                                 ExitBlocks.end());
1491   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1492   while (!DeathCandidates.empty()) {
1493     auto *BB = DeathCandidates.pop_back_val();
1494     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1495       for (BasicBlock *SuccBB : successors(BB)) {
1496         SuccBB->removePredecessor(BB);
1497         DeathCandidates.push_back(SuccBB);
1498       }
1499       DeadBlockSet.insert(BB);
1500     }
1501   }
1502 
1503   // Remove all MemorySSA in the dead blocks
1504   if (MSSAU)
1505     MSSAU->removeBlocks(DeadBlockSet);
1506 
1507   // Filter out the dead blocks from the exit blocks list so that it can be
1508   // used in the caller.
1509   llvm::erase_if(ExitBlocks,
1510                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1511 
1512   // Walk from this loop up through its parents removing all of the dead blocks.
1513   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1514     for (auto *BB : DeadBlockSet)
1515       ParentL->getBlocksSet().erase(BB);
1516     llvm::erase_if(ParentL->getBlocksVector(),
1517                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1518   }
1519 
1520   // Now delete the dead child loops. This raw delete will clear them
1521   // recursively.
1522   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1523     if (!DeadBlockSet.count(ChildL->getHeader()))
1524       return false;
1525 
1526     assert(llvm::all_of(ChildL->blocks(),
1527                         [&](BasicBlock *ChildBB) {
1528                           return DeadBlockSet.count(ChildBB);
1529                         }) &&
1530            "If the child loop header is dead all blocks in the child loop must "
1531            "be dead as well!");
1532     LI.destroy(ChildL);
1533     return true;
1534   });
1535 
1536   // Remove the loop mappings for the dead blocks and drop all the references
1537   // from these blocks to others to handle cyclic references as we start
1538   // deleting the blocks themselves.
1539   for (auto *BB : DeadBlockSet) {
1540     // Check that the dominator tree has already been updated.
1541     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1542     LI.changeLoopFor(BB, nullptr);
1543     BB->dropAllReferences();
1544   }
1545 
1546   // Actually delete the blocks now that they've been fully unhooked from the
1547   // IR.
1548   for (auto *BB : DeadBlockSet)
1549     BB->eraseFromParent();
1550 }
1551 
1552 /// Recompute the set of blocks in a loop after unswitching.
1553 ///
1554 /// This walks from the original headers predecessors to rebuild the loop. We
1555 /// take advantage of the fact that new blocks can't have been added, and so we
1556 /// filter by the original loop's blocks. This also handles potentially
1557 /// unreachable code that we don't want to explore but might be found examining
1558 /// the predecessors of the header.
1559 ///
1560 /// If the original loop is no longer a loop, this will return an empty set. If
1561 /// it remains a loop, all the blocks within it will be added to the set
1562 /// (including those blocks in inner loops).
1563 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1564                                                                  LoopInfo &LI) {
1565   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1566 
1567   auto *PH = L.getLoopPreheader();
1568   auto *Header = L.getHeader();
1569 
1570   // A worklist to use while walking backwards from the header.
1571   SmallVector<BasicBlock *, 16> Worklist;
1572 
1573   // First walk the predecessors of the header to find the backedges. This will
1574   // form the basis of our walk.
1575   for (auto *Pred : predecessors(Header)) {
1576     // Skip the preheader.
1577     if (Pred == PH)
1578       continue;
1579 
1580     // Because the loop was in simplified form, the only non-loop predecessor
1581     // is the preheader.
1582     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1583                                "than the preheader that is not part of the "
1584                                "loop!");
1585 
1586     // Insert this block into the loop set and on the first visit and, if it
1587     // isn't the header we're currently walking, put it into the worklist to
1588     // recurse through.
1589     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1590       Worklist.push_back(Pred);
1591   }
1592 
1593   // If no backedges were found, we're done.
1594   if (LoopBlockSet.empty())
1595     return LoopBlockSet;
1596 
1597   // We found backedges, recurse through them to identify the loop blocks.
1598   while (!Worklist.empty()) {
1599     BasicBlock *BB = Worklist.pop_back_val();
1600     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1601 
1602     // No need to walk past the header.
1603     if (BB == Header)
1604       continue;
1605 
1606     // Because we know the inner loop structure remains valid we can use the
1607     // loop structure to jump immediately across the entire nested loop.
1608     // Further, because it is in loop simplified form, we can directly jump
1609     // to its preheader afterward.
1610     if (Loop *InnerL = LI.getLoopFor(BB))
1611       if (InnerL != &L) {
1612         assert(L.contains(InnerL) &&
1613                "Should not reach a loop *outside* this loop!");
1614         // The preheader is the only possible predecessor of the loop so
1615         // insert it into the set and check whether it was already handled.
1616         auto *InnerPH = InnerL->getLoopPreheader();
1617         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1618                                       "but not contain the inner loop "
1619                                       "preheader!");
1620         if (!LoopBlockSet.insert(InnerPH).second)
1621           // The only way to reach the preheader is through the loop body
1622           // itself so if it has been visited the loop is already handled.
1623           continue;
1624 
1625         // Insert all of the blocks (other than those already present) into
1626         // the loop set. We expect at least the block that led us to find the
1627         // inner loop to be in the block set, but we may also have other loop
1628         // blocks if they were already enqueued as predecessors of some other
1629         // outer loop block.
1630         for (auto *InnerBB : InnerL->blocks()) {
1631           if (InnerBB == BB) {
1632             assert(LoopBlockSet.count(InnerBB) &&
1633                    "Block should already be in the set!");
1634             continue;
1635           }
1636 
1637           LoopBlockSet.insert(InnerBB);
1638         }
1639 
1640         // Add the preheader to the worklist so we will continue past the
1641         // loop body.
1642         Worklist.push_back(InnerPH);
1643         continue;
1644       }
1645 
1646     // Insert any predecessors that were in the original loop into the new
1647     // set, and if the insert is successful, add them to the worklist.
1648     for (auto *Pred : predecessors(BB))
1649       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1650         Worklist.push_back(Pred);
1651   }
1652 
1653   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1654 
1655   // We've found all the blocks participating in the loop, return our completed
1656   // set.
1657   return LoopBlockSet;
1658 }
1659 
1660 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1661 ///
1662 /// The removal may have removed some child loops entirely but cannot have
1663 /// disturbed any remaining child loops. However, they may need to be hoisted
1664 /// to the parent loop (or to be top-level loops). The original loop may be
1665 /// completely removed.
1666 ///
1667 /// The sibling loops resulting from this update are returned. If the original
1668 /// loop remains a valid loop, it will be the first entry in this list with all
1669 /// of the newly sibling loops following it.
1670 ///
1671 /// Returns true if the loop remains a loop after unswitching, and false if it
1672 /// is no longer a loop after unswitching (and should not continue to be
1673 /// referenced).
1674 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1675                                      LoopInfo &LI,
1676                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1677   auto *PH = L.getLoopPreheader();
1678 
1679   // Compute the actual parent loop from the exit blocks. Because we may have
1680   // pruned some exits the loop may be different from the original parent.
1681   Loop *ParentL = nullptr;
1682   SmallVector<Loop *, 4> ExitLoops;
1683   SmallVector<BasicBlock *, 4> ExitsInLoops;
1684   ExitsInLoops.reserve(ExitBlocks.size());
1685   for (auto *ExitBB : ExitBlocks)
1686     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1687       ExitLoops.push_back(ExitL);
1688       ExitsInLoops.push_back(ExitBB);
1689       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1690         ParentL = ExitL;
1691     }
1692 
1693   // Recompute the blocks participating in this loop. This may be empty if it
1694   // is no longer a loop.
1695   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1696 
1697   // If we still have a loop, we need to re-set the loop's parent as the exit
1698   // block set changing may have moved it within the loop nest. Note that this
1699   // can only happen when this loop has a parent as it can only hoist the loop
1700   // *up* the nest.
1701   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1702     // Remove this loop's (original) blocks from all of the intervening loops.
1703     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1704          IL = IL->getParentLoop()) {
1705       IL->getBlocksSet().erase(PH);
1706       for (auto *BB : L.blocks())
1707         IL->getBlocksSet().erase(BB);
1708       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1709         return BB == PH || L.contains(BB);
1710       });
1711     }
1712 
1713     LI.changeLoopFor(PH, ParentL);
1714     L.getParentLoop()->removeChildLoop(&L);
1715     if (ParentL)
1716       ParentL->addChildLoop(&L);
1717     else
1718       LI.addTopLevelLoop(&L);
1719   }
1720 
1721   // Now we update all the blocks which are no longer within the loop.
1722   auto &Blocks = L.getBlocksVector();
1723   auto BlocksSplitI =
1724       LoopBlockSet.empty()
1725           ? Blocks.begin()
1726           : std::stable_partition(
1727                 Blocks.begin(), Blocks.end(),
1728                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1729 
1730   // Before we erase the list of unlooped blocks, build a set of them.
1731   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1732   if (LoopBlockSet.empty())
1733     UnloopedBlocks.insert(PH);
1734 
1735   // Now erase these blocks from the loop.
1736   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1737     L.getBlocksSet().erase(BB);
1738   Blocks.erase(BlocksSplitI, Blocks.end());
1739 
1740   // Sort the exits in ascending loop depth, we'll work backwards across these
1741   // to process them inside out.
1742   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1743     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1744   });
1745 
1746   // We'll build up a set for each exit loop.
1747   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1748   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1749 
1750   auto RemoveUnloopedBlocksFromLoop =
1751       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1752         for (auto *BB : UnloopedBlocks)
1753           L.getBlocksSet().erase(BB);
1754         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1755           return UnloopedBlocks.count(BB);
1756         });
1757       };
1758 
1759   SmallVector<BasicBlock *, 16> Worklist;
1760   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1761     assert(Worklist.empty() && "Didn't clear worklist!");
1762     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1763 
1764     // Grab the next exit block, in decreasing loop depth order.
1765     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1766     Loop &ExitL = *LI.getLoopFor(ExitBB);
1767     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1768 
1769     // Erase all of the unlooped blocks from the loops between the previous
1770     // exit loop and this exit loop. This works because the ExitInLoops list is
1771     // sorted in increasing order of loop depth and thus we visit loops in
1772     // decreasing order of loop depth.
1773     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1774       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1775 
1776     // Walk the CFG back until we hit the cloned PH adding everything reachable
1777     // and in the unlooped set to this exit block's loop.
1778     Worklist.push_back(ExitBB);
1779     do {
1780       BasicBlock *BB = Worklist.pop_back_val();
1781       // We can stop recursing at the cloned preheader (if we get there).
1782       if (BB == PH)
1783         continue;
1784 
1785       for (BasicBlock *PredBB : predecessors(BB)) {
1786         // If this pred has already been moved to our set or is part of some
1787         // (inner) loop, no update needed.
1788         if (!UnloopedBlocks.erase(PredBB)) {
1789           assert((NewExitLoopBlocks.count(PredBB) ||
1790                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1791                  "Predecessor not in a nested loop (or already visited)!");
1792           continue;
1793         }
1794 
1795         // We just insert into the loop set here. We'll add these blocks to the
1796         // exit loop after we build up the set in a deterministic order rather
1797         // than the predecessor-influenced visit order.
1798         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1799         (void)Inserted;
1800         assert(Inserted && "Should only visit an unlooped block once!");
1801 
1802         // And recurse through to its predecessors.
1803         Worklist.push_back(PredBB);
1804       }
1805     } while (!Worklist.empty());
1806 
1807     // If blocks in this exit loop were directly part of the original loop (as
1808     // opposed to a child loop) update the map to point to this exit loop. This
1809     // just updates a map and so the fact that the order is unstable is fine.
1810     for (auto *BB : NewExitLoopBlocks)
1811       if (Loop *BBL = LI.getLoopFor(BB))
1812         if (BBL == &L || !L.contains(BBL))
1813           LI.changeLoopFor(BB, &ExitL);
1814 
1815     // We will remove the remaining unlooped blocks from this loop in the next
1816     // iteration or below.
1817     NewExitLoopBlocks.clear();
1818   }
1819 
1820   // Any remaining unlooped blocks are no longer part of any loop unless they
1821   // are part of some child loop.
1822   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1823     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1824   for (auto *BB : UnloopedBlocks)
1825     if (Loop *BBL = LI.getLoopFor(BB))
1826       if (BBL == &L || !L.contains(BBL))
1827         LI.changeLoopFor(BB, nullptr);
1828 
1829   // Sink all the child loops whose headers are no longer in the loop set to
1830   // the parent (or to be top level loops). We reach into the loop and directly
1831   // update its subloop vector to make this batch update efficient.
1832   auto &SubLoops = L.getSubLoopsVector();
1833   auto SubLoopsSplitI =
1834       LoopBlockSet.empty()
1835           ? SubLoops.begin()
1836           : std::stable_partition(
1837                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1838                   return LoopBlockSet.count(SubL->getHeader());
1839                 });
1840   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1841     HoistedLoops.push_back(HoistedL);
1842     HoistedL->setParentLoop(nullptr);
1843 
1844     // To compute the new parent of this hoisted loop we look at where we
1845     // placed the preheader above. We can't lookup the header itself because we
1846     // retained the mapping from the header to the hoisted loop. But the
1847     // preheader and header should have the exact same new parent computed
1848     // based on the set of exit blocks from the original loop as the preheader
1849     // is a predecessor of the header and so reached in the reverse walk. And
1850     // because the loops were all in simplified form the preheader of the
1851     // hoisted loop can't be part of some *other* loop.
1852     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1853       NewParentL->addChildLoop(HoistedL);
1854     else
1855       LI.addTopLevelLoop(HoistedL);
1856   }
1857   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1858 
1859   // Actually delete the loop if nothing remained within it.
1860   if (Blocks.empty()) {
1861     assert(SubLoops.empty() &&
1862            "Failed to remove all subloops from the original loop!");
1863     if (Loop *ParentL = L.getParentLoop())
1864       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1865     else
1866       LI.removeLoop(llvm::find(LI, &L));
1867     LI.destroy(&L);
1868     return false;
1869   }
1870 
1871   return true;
1872 }
1873 
1874 /// Helper to visit a dominator subtree, invoking a callable on each node.
1875 ///
1876 /// Returning false at any point will stop walking past that node of the tree.
1877 template <typename CallableT>
1878 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1879   SmallVector<DomTreeNode *, 4> DomWorklist;
1880   DomWorklist.push_back(DT[BB]);
1881 #ifndef NDEBUG
1882   SmallPtrSet<DomTreeNode *, 4> Visited;
1883   Visited.insert(DT[BB]);
1884 #endif
1885   do {
1886     DomTreeNode *N = DomWorklist.pop_back_val();
1887 
1888     // Visit this node.
1889     if (!Callable(N->getBlock()))
1890       continue;
1891 
1892     // Accumulate the child nodes.
1893     for (DomTreeNode *ChildN : *N) {
1894       assert(Visited.insert(ChildN).second &&
1895              "Cannot visit a node twice when walking a tree!");
1896       DomWorklist.push_back(ChildN);
1897     }
1898   } while (!DomWorklist.empty());
1899 }
1900 
1901 static void unswitchNontrivialInvariants(
1902     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1903     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1904     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1905     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1906   auto *ParentBB = TI.getParent();
1907   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1908   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1909 
1910   // We can only unswitch switches, conditional branches with an invariant
1911   // condition, or combining invariant conditions with an instruction.
1912   assert((SI || BI->isConditional()) &&
1913          "Can only unswitch switches and conditional branch!");
1914   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1915   if (FullUnswitch)
1916     assert(Invariants.size() == 1 &&
1917            "Cannot have other invariants with full unswitching!");
1918   else
1919     assert(isa<Instruction>(BI->getCondition()) &&
1920            "Partial unswitching requires an instruction as the condition!");
1921 
1922   if (MSSAU && VerifyMemorySSA)
1923     MSSAU->getMemorySSA()->verifyMemorySSA();
1924 
1925   // Constant and BBs tracking the cloned and continuing successor. When we are
1926   // unswitching the entire condition, this can just be trivially chosen to
1927   // unswitch towards `true`. However, when we are unswitching a set of
1928   // invariants combined with `and` or `or`, the combining operation determines
1929   // the best direction to unswitch: we want to unswitch the direction that will
1930   // collapse the branch.
1931   bool Direction = true;
1932   int ClonedSucc = 0;
1933   if (!FullUnswitch) {
1934     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1935       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1936                  Instruction::And &&
1937              "Only `or` and `and` instructions can combine invariants being "
1938              "unswitched.");
1939       Direction = false;
1940       ClonedSucc = 1;
1941     }
1942   }
1943 
1944   BasicBlock *RetainedSuccBB =
1945       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1946   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1947   if (BI)
1948     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1949   else
1950     for (auto Case : SI->cases())
1951       if (Case.getCaseSuccessor() != RetainedSuccBB)
1952         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1953 
1954   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1955          "Should not unswitch the same successor we are retaining!");
1956 
1957   // The branch should be in this exact loop. Any inner loop's invariant branch
1958   // should be handled by unswitching that inner loop. The caller of this
1959   // routine should filter out any candidates that remain (but were skipped for
1960   // whatever reason).
1961   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1962 
1963   // Compute the parent loop now before we start hacking on things.
1964   Loop *ParentL = L.getParentLoop();
1965   // Get blocks in RPO order for MSSA update, before changing the CFG.
1966   LoopBlocksRPO LBRPO(&L);
1967   if (MSSAU)
1968     LBRPO.perform(&LI);
1969 
1970   // Compute the outer-most loop containing one of our exit blocks. This is the
1971   // furthest up our loopnest which can be mutated, which we will use below to
1972   // update things.
1973   Loop *OuterExitL = &L;
1974   for (auto *ExitBB : ExitBlocks) {
1975     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1976     if (!NewOuterExitL) {
1977       // We exited the entire nest with this block, so we're done.
1978       OuterExitL = nullptr;
1979       break;
1980     }
1981     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1982       OuterExitL = NewOuterExitL;
1983   }
1984 
1985   // At this point, we're definitely going to unswitch something so invalidate
1986   // any cached information in ScalarEvolution for the outer most loop
1987   // containing an exit block and all nested loops.
1988   if (SE) {
1989     if (OuterExitL)
1990       SE->forgetLoop(OuterExitL);
1991     else
1992       SE->forgetTopmostLoop(&L);
1993   }
1994 
1995   // If the edge from this terminator to a successor dominates that successor,
1996   // store a map from each block in its dominator subtree to it. This lets us
1997   // tell when cloning for a particular successor if a block is dominated by
1998   // some *other* successor with a single data structure. We use this to
1999   // significantly reduce cloning.
2000   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2001   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2002            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2003     if (SuccBB->getUniquePredecessor() ||
2004         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2005           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2006         }))
2007       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2008         DominatingSucc[BB] = SuccBB;
2009         return true;
2010       });
2011 
2012   // Split the preheader, so that we know that there is a safe place to insert
2013   // the conditional branch. We will change the preheader to have a conditional
2014   // branch on LoopCond. The original preheader will become the split point
2015   // between the unswitched versions, and we will have a new preheader for the
2016   // original loop.
2017   BasicBlock *SplitBB = L.getLoopPreheader();
2018   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2019 
2020   // Keep track of the dominator tree updates needed.
2021   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2022 
2023   // Clone the loop for each unswitched successor.
2024   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2025   VMaps.reserve(UnswitchedSuccBBs.size());
2026   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2027   for (auto *SuccBB : UnswitchedSuccBBs) {
2028     VMaps.emplace_back(new ValueToValueMapTy());
2029     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2030         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2031         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2032   }
2033 
2034   // The stitching of the branched code back together depends on whether we're
2035   // doing full unswitching or not with the exception that we always want to
2036   // nuke the initial terminator placed in the split block.
2037   SplitBB->getTerminator()->eraseFromParent();
2038   if (FullUnswitch) {
2039     // Splice the terminator from the original loop and rewrite its
2040     // successors.
2041     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2042 
2043     // Keep a clone of the terminator for MSSA updates.
2044     Instruction *NewTI = TI.clone();
2045     ParentBB->getInstList().push_back(NewTI);
2046 
2047     // First wire up the moved terminator to the preheaders.
2048     if (BI) {
2049       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2050       BI->setSuccessor(ClonedSucc, ClonedPH);
2051       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2052       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2053     } else {
2054       assert(SI && "Must either be a branch or switch!");
2055 
2056       // Walk the cases and directly update their successors.
2057       assert(SI->getDefaultDest() == RetainedSuccBB &&
2058              "Not retaining default successor!");
2059       SI->setDefaultDest(LoopPH);
2060       for (auto &Case : SI->cases())
2061         if (Case.getCaseSuccessor() == RetainedSuccBB)
2062           Case.setSuccessor(LoopPH);
2063         else
2064           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2065 
2066       // We need to use the set to populate domtree updates as even when there
2067       // are multiple cases pointing at the same successor we only want to
2068       // remove and insert one edge in the domtree.
2069       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2070         DTUpdates.push_back(
2071             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2072     }
2073 
2074     if (MSSAU) {
2075       DT.applyUpdates(DTUpdates);
2076       DTUpdates.clear();
2077 
2078       // Remove all but one edge to the retained block and all unswitched
2079       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2080       // when we know we only keep a single edge for each case.
2081       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2082       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2083         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2084 
2085       for (auto &VMap : VMaps)
2086         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2087                                    /*IgnoreIncomingWithNoClones=*/true);
2088       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2089 
2090       // Remove all edges to unswitched blocks.
2091       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2092         MSSAU->removeEdge(ParentBB, SuccBB);
2093     }
2094 
2095     // Now unhook the successor relationship as we'll be replacing
2096     // the terminator with a direct branch. This is much simpler for branches
2097     // than switches so we handle those first.
2098     if (BI) {
2099       // Remove the parent as a predecessor of the unswitched successor.
2100       assert(UnswitchedSuccBBs.size() == 1 &&
2101              "Only one possible unswitched block for a branch!");
2102       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2103       UnswitchedSuccBB->removePredecessor(ParentBB,
2104                                           /*KeepOneInputPHIs*/ true);
2105       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2106     } else {
2107       // Note that we actually want to remove the parent block as a predecessor
2108       // of *every* case successor. The case successor is either unswitched,
2109       // completely eliminating an edge from the parent to that successor, or it
2110       // is a duplicate edge to the retained successor as the retained successor
2111       // is always the default successor and as we'll replace this with a direct
2112       // branch we no longer need the duplicate entries in the PHI nodes.
2113       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2114       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2115              "Not retaining default successor!");
2116       for (auto &Case : NewSI->cases())
2117         Case.getCaseSuccessor()->removePredecessor(
2118             ParentBB,
2119             /*KeepOneInputPHIs*/ true);
2120 
2121       // We need to use the set to populate domtree updates as even when there
2122       // are multiple cases pointing at the same successor we only want to
2123       // remove and insert one edge in the domtree.
2124       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2125         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2126     }
2127 
2128     // After MSSAU update, remove the cloned terminator instruction NewTI.
2129     ParentBB->getTerminator()->eraseFromParent();
2130 
2131     // Create a new unconditional branch to the continuing block (as opposed to
2132     // the one cloned).
2133     BranchInst::Create(RetainedSuccBB, ParentBB);
2134   } else {
2135     assert(BI && "Only branches have partial unswitching.");
2136     assert(UnswitchedSuccBBs.size() == 1 &&
2137            "Only one possible unswitched block for a branch!");
2138     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2139     // When doing a partial unswitch, we have to do a bit more work to build up
2140     // the branch in the split block.
2141     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2142                                           *ClonedPH, *LoopPH);
2143     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2144   }
2145 
2146   // Apply the updates accumulated above to get an up-to-date dominator tree.
2147   DT.applyUpdates(DTUpdates);
2148   if (!FullUnswitch && MSSAU) {
2149     // Update MSSA for partial unswitch, after DT update.
2150     SmallVector<CFGUpdate, 1> Updates;
2151     Updates.push_back(
2152         {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second});
2153     MSSAU->applyInsertUpdates(Updates, DT);
2154   }
2155 
2156   // Now that we have an accurate dominator tree, first delete the dead cloned
2157   // blocks so that we can accurately build any cloned loops. It is important to
2158   // not delete the blocks from the original loop yet because we still want to
2159   // reference the original loop to understand the cloned loop's structure.
2160   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2161 
2162   // Build the cloned loop structure itself. This may be substantially
2163   // different from the original structure due to the simplified CFG. This also
2164   // handles inserting all the cloned blocks into the correct loops.
2165   SmallVector<Loop *, 4> NonChildClonedLoops;
2166   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2167     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2168 
2169   // Now that our cloned loops have been built, we can update the original loop.
2170   // First we delete the dead blocks from it and then we rebuild the loop
2171   // structure taking these deletions into account.
2172   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2173 
2174   if (MSSAU && VerifyMemorySSA)
2175     MSSAU->getMemorySSA()->verifyMemorySSA();
2176 
2177   SmallVector<Loop *, 4> HoistedLoops;
2178   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2179 
2180   if (MSSAU && VerifyMemorySSA)
2181     MSSAU->getMemorySSA()->verifyMemorySSA();
2182 
2183   // This transformation has a high risk of corrupting the dominator tree, and
2184   // the below steps to rebuild loop structures will result in hard to debug
2185   // errors in that case so verify that the dominator tree is sane first.
2186   // FIXME: Remove this when the bugs stop showing up and rely on existing
2187   // verification steps.
2188   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2189 
2190   if (BI) {
2191     // If we unswitched a branch which collapses the condition to a known
2192     // constant we want to replace all the uses of the invariants within both
2193     // the original and cloned blocks. We do this here so that we can use the
2194     // now updated dominator tree to identify which side the users are on.
2195     assert(UnswitchedSuccBBs.size() == 1 &&
2196            "Only one possible unswitched block for a branch!");
2197     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2198 
2199     // When considering multiple partially-unswitched invariants
2200     // we cant just go replace them with constants in both branches.
2201     //
2202     // For 'AND' we infer that true branch ("continue") means true
2203     // for each invariant operand.
2204     // For 'OR' we can infer that false branch ("continue") means false
2205     // for each invariant operand.
2206     // So it happens that for multiple-partial case we dont replace
2207     // in the unswitched branch.
2208     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2209 
2210     ConstantInt *UnswitchedReplacement =
2211         Direction ? ConstantInt::getTrue(BI->getContext())
2212                   : ConstantInt::getFalse(BI->getContext());
2213     ConstantInt *ContinueReplacement =
2214         Direction ? ConstantInt::getFalse(BI->getContext())
2215                   : ConstantInt::getTrue(BI->getContext());
2216     for (Value *Invariant : Invariants)
2217       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2218            UI != UE;) {
2219         // Grab the use and walk past it so we can clobber it in the use list.
2220         Use *U = &*UI++;
2221         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2222         if (!UserI)
2223           continue;
2224 
2225         // Replace it with the 'continue' side if in the main loop body, and the
2226         // unswitched if in the cloned blocks.
2227         if (DT.dominates(LoopPH, UserI->getParent()))
2228           U->set(ContinueReplacement);
2229         else if (ReplaceUnswitched &&
2230                  DT.dominates(ClonedPH, UserI->getParent()))
2231           U->set(UnswitchedReplacement);
2232       }
2233   }
2234 
2235   // We can change which blocks are exit blocks of all the cloned sibling
2236   // loops, the current loop, and any parent loops which shared exit blocks
2237   // with the current loop. As a consequence, we need to re-form LCSSA for
2238   // them. But we shouldn't need to re-form LCSSA for any child loops.
2239   // FIXME: This could be made more efficient by tracking which exit blocks are
2240   // new, and focusing on them, but that isn't likely to be necessary.
2241   //
2242   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2243   // loop nest and update every loop that could have had its exits changed. We
2244   // also need to cover any intervening loops. We add all of these loops to
2245   // a list and sort them by loop depth to achieve this without updating
2246   // unnecessary loops.
2247   auto UpdateLoop = [&](Loop &UpdateL) {
2248 #ifndef NDEBUG
2249     UpdateL.verifyLoop();
2250     for (Loop *ChildL : UpdateL) {
2251       ChildL->verifyLoop();
2252       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2253              "Perturbed a child loop's LCSSA form!");
2254     }
2255 #endif
2256     // First build LCSSA for this loop so that we can preserve it when
2257     // forming dedicated exits. We don't want to perturb some other loop's
2258     // LCSSA while doing that CFG edit.
2259     formLCSSA(UpdateL, DT, &LI, nullptr);
2260 
2261     // For loops reached by this loop's original exit blocks we may
2262     // introduced new, non-dedicated exits. At least try to re-form dedicated
2263     // exits for these loops. This may fail if they couldn't have dedicated
2264     // exits to start with.
2265     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2266   };
2267 
2268   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2269   // and we can do it in any order as they don't nest relative to each other.
2270   //
2271   // Also check if any of the loops we have updated have become top-level loops
2272   // as that will necessitate widening the outer loop scope.
2273   for (Loop *UpdatedL :
2274        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2275     UpdateLoop(*UpdatedL);
2276     if (!UpdatedL->getParentLoop())
2277       OuterExitL = nullptr;
2278   }
2279   if (IsStillLoop) {
2280     UpdateLoop(L);
2281     if (!L.getParentLoop())
2282       OuterExitL = nullptr;
2283   }
2284 
2285   // If the original loop had exit blocks, walk up through the outer most loop
2286   // of those exit blocks to update LCSSA and form updated dedicated exits.
2287   if (OuterExitL != &L)
2288     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2289          OuterL = OuterL->getParentLoop())
2290       UpdateLoop(*OuterL);
2291 
2292 #ifndef NDEBUG
2293   // Verify the entire loop structure to catch any incorrect updates before we
2294   // progress in the pass pipeline.
2295   LI.verify(DT);
2296 #endif
2297 
2298   // Now that we've unswitched something, make callbacks to report the changes.
2299   // For that we need to merge together the updated loops and the cloned loops
2300   // and check whether the original loop survived.
2301   SmallVector<Loop *, 4> SibLoops;
2302   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2303     if (UpdatedL->getParentLoop() == ParentL)
2304       SibLoops.push_back(UpdatedL);
2305   UnswitchCB(IsStillLoop, SibLoops);
2306 
2307   if (MSSAU && VerifyMemorySSA)
2308     MSSAU->getMemorySSA()->verifyMemorySSA();
2309 
2310   if (BI)
2311     ++NumBranches;
2312   else
2313     ++NumSwitches;
2314 }
2315 
2316 /// Recursively compute the cost of a dominator subtree based on the per-block
2317 /// cost map provided.
2318 ///
2319 /// The recursive computation is memozied into the provided DT-indexed cost map
2320 /// to allow querying it for most nodes in the domtree without it becoming
2321 /// quadratic.
2322 static int
2323 computeDomSubtreeCost(DomTreeNode &N,
2324                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2325                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2326   // Don't accumulate cost (or recurse through) blocks not in our block cost
2327   // map and thus not part of the duplication cost being considered.
2328   auto BBCostIt = BBCostMap.find(N.getBlock());
2329   if (BBCostIt == BBCostMap.end())
2330     return 0;
2331 
2332   // Lookup this node to see if we already computed its cost.
2333   auto DTCostIt = DTCostMap.find(&N);
2334   if (DTCostIt != DTCostMap.end())
2335     return DTCostIt->second;
2336 
2337   // If not, we have to compute it. We can't use insert above and update
2338   // because computing the cost may insert more things into the map.
2339   int Cost = std::accumulate(
2340       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2341         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2342       });
2343   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2344   (void)Inserted;
2345   assert(Inserted && "Should not insert a node while visiting children!");
2346   return Cost;
2347 }
2348 
2349 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2350 /// making the following replacement:
2351 ///
2352 ///   --code before guard--
2353 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2354 ///   --code after guard--
2355 ///
2356 /// into
2357 ///
2358 ///   --code before guard--
2359 ///   br i1 %cond, label %guarded, label %deopt
2360 ///
2361 /// guarded:
2362 ///   --code after guard--
2363 ///
2364 /// deopt:
2365 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2366 ///   unreachable
2367 ///
2368 /// It also makes all relevant DT and LI updates, so that all structures are in
2369 /// valid state after this transform.
2370 static BranchInst *
2371 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2372                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2373                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2374   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2375   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2376   BasicBlock *CheckBB = GI->getParent();
2377 
2378   if (MSSAU && VerifyMemorySSA)
2379      MSSAU->getMemorySSA()->verifyMemorySSA();
2380 
2381   // Remove all CheckBB's successors from DomTree. A block can be seen among
2382   // successors more than once, but for DomTree it should be added only once.
2383   SmallPtrSet<BasicBlock *, 4> Successors;
2384   for (auto *Succ : successors(CheckBB))
2385     if (Successors.insert(Succ).second)
2386       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2387 
2388   Instruction *DeoptBlockTerm =
2389       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2390   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2391   // SplitBlockAndInsertIfThen inserts control flow that branches to
2392   // DeoptBlockTerm if the condition is true.  We want the opposite.
2393   CheckBI->swapSuccessors();
2394 
2395   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2396   GuardedBlock->setName("guarded");
2397   CheckBI->getSuccessor(1)->setName("deopt");
2398   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2399 
2400   // We now have a new exit block.
2401   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2402 
2403   if (MSSAU)
2404     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2405 
2406   GI->moveBefore(DeoptBlockTerm);
2407   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2408 
2409   // Add new successors of CheckBB into DomTree.
2410   for (auto *Succ : successors(CheckBB))
2411     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2412 
2413   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2414   // successors.
2415   for (auto *Succ : Successors)
2416     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2417 
2418   // Make proper changes to DT.
2419   DT.applyUpdates(DTUpdates);
2420   // Inform LI of a new loop block.
2421   L.addBasicBlockToLoop(GuardedBlock, LI);
2422 
2423   if (MSSAU) {
2424     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2425     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
2426     if (VerifyMemorySSA)
2427       MSSAU->getMemorySSA()->verifyMemorySSA();
2428   }
2429 
2430   ++NumGuards;
2431   return CheckBI;
2432 }
2433 
2434 /// Cost multiplier is a way to limit potentially exponential behavior
2435 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2436 /// candidates available. Also accounting for the number of "sibling" loops with
2437 /// the idea to account for previous unswitches that already happened on this
2438 /// cluster of loops. There was an attempt to keep this formula simple,
2439 /// just enough to limit the worst case behavior. Even if it is not that simple
2440 /// now it is still not an attempt to provide a detailed heuristic size
2441 /// prediction.
2442 ///
2443 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2444 /// unswitch candidates, making adequate predictions instead of wild guesses.
2445 /// That requires knowing not just the number of "remaining" candidates but
2446 /// also costs of unswitching for each of these candidates.
2447 static int calculateUnswitchCostMultiplier(
2448     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2449     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2450         UnswitchCandidates) {
2451 
2452   // Guards and other exiting conditions do not contribute to exponential
2453   // explosion as soon as they dominate the latch (otherwise there might be
2454   // another path to the latch remaining that does not allow to eliminate the
2455   // loop copy on unswitch).
2456   BasicBlock *Latch = L.getLoopLatch();
2457   BasicBlock *CondBlock = TI.getParent();
2458   if (DT.dominates(CondBlock, Latch) &&
2459       (isGuard(&TI) ||
2460        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2461          return L.contains(SuccBB);
2462        }) <= 1)) {
2463     NumCostMultiplierSkipped++;
2464     return 1;
2465   }
2466 
2467   auto *ParentL = L.getParentLoop();
2468   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2469                                : std::distance(LI.begin(), LI.end()));
2470   // Count amount of clones that all the candidates might cause during
2471   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2472   int UnswitchedClones = 0;
2473   for (auto Candidate : UnswitchCandidates) {
2474     Instruction *CI = Candidate.first;
2475     BasicBlock *CondBlock = CI->getParent();
2476     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2477     if (isGuard(CI)) {
2478       if (!SkipExitingSuccessors)
2479         UnswitchedClones++;
2480       continue;
2481     }
2482     int NonExitingSuccessors = llvm::count_if(
2483         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2484           return !SkipExitingSuccessors || L.contains(SuccBB);
2485         });
2486     UnswitchedClones += Log2_32(NonExitingSuccessors);
2487   }
2488 
2489   // Ignore up to the "unscaled candidates" number of unswitch candidates
2490   // when calculating the power-of-two scaling of the cost. The main idea
2491   // with this control is to allow a small number of unswitches to happen
2492   // and rely more on siblings multiplier (see below) when the number
2493   // of candidates is small.
2494   unsigned ClonesPower =
2495       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2496 
2497   // Allowing top-level loops to spread a bit more than nested ones.
2498   int SiblingsMultiplier =
2499       std::max((ParentL ? SiblingsCount
2500                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2501                1);
2502   // Compute the cost multiplier in a way that won't overflow by saturating
2503   // at an upper bound.
2504   int CostMultiplier;
2505   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2506       SiblingsMultiplier > UnswitchThreshold)
2507     CostMultiplier = UnswitchThreshold;
2508   else
2509     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2510                               (int)UnswitchThreshold);
2511 
2512   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2513                     << " (siblings " << SiblingsMultiplier << " * clones "
2514                     << (1 << ClonesPower) << ")"
2515                     << " for unswitch candidate: " << TI << "\n");
2516   return CostMultiplier;
2517 }
2518 
2519 static bool
2520 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2521                       AssumptionCache &AC, TargetTransformInfo &TTI,
2522                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2523                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2524   // Collect all invariant conditions within this loop (as opposed to an inner
2525   // loop which would be handled when visiting that inner loop).
2526   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2527       UnswitchCandidates;
2528 
2529   // Whether or not we should also collect guards in the loop.
2530   bool CollectGuards = false;
2531   if (UnswitchGuards) {
2532     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2533         Intrinsic::getName(Intrinsic::experimental_guard));
2534     if (GuardDecl && !GuardDecl->use_empty())
2535       CollectGuards = true;
2536   }
2537 
2538   for (auto *BB : L.blocks()) {
2539     if (LI.getLoopFor(BB) != &L)
2540       continue;
2541 
2542     if (CollectGuards)
2543       for (auto &I : *BB)
2544         if (isGuard(&I)) {
2545           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2546           // TODO: Support AND, OR conditions and partial unswitching.
2547           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2548             UnswitchCandidates.push_back({&I, {Cond}});
2549         }
2550 
2551     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2552       // We can only consider fully loop-invariant switch conditions as we need
2553       // to completely eliminate the switch after unswitching.
2554       if (!isa<Constant>(SI->getCondition()) &&
2555           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2556         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2557       continue;
2558     }
2559 
2560     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2561     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2562         BI->getSuccessor(0) == BI->getSuccessor(1))
2563       continue;
2564 
2565     if (L.isLoopInvariant(BI->getCondition())) {
2566       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2567       continue;
2568     }
2569 
2570     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2571     if (CondI.getOpcode() != Instruction::And &&
2572       CondI.getOpcode() != Instruction::Or)
2573       continue;
2574 
2575     TinyPtrVector<Value *> Invariants =
2576         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2577     if (Invariants.empty())
2578       continue;
2579 
2580     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2581   }
2582 
2583   // If we didn't find any candidates, we're done.
2584   if (UnswitchCandidates.empty())
2585     return false;
2586 
2587   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2588   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2589   // irreducible control flow into reducible control flow and introduce new
2590   // loops "out of thin air". If we ever discover important use cases for doing
2591   // this, we can add support to loop unswitch, but it is a lot of complexity
2592   // for what seems little or no real world benefit.
2593   LoopBlocksRPO RPOT(&L);
2594   RPOT.perform(&LI);
2595   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2596     return false;
2597 
2598   SmallVector<BasicBlock *, 4> ExitBlocks;
2599   L.getUniqueExitBlocks(ExitBlocks);
2600 
2601   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2602   // don't know how to split those exit blocks.
2603   // FIXME: We should teach SplitBlock to handle this and remove this
2604   // restriction.
2605   for (auto *ExitBB : ExitBlocks)
2606     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2607       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2608       return false;
2609     }
2610 
2611   LLVM_DEBUG(
2612       dbgs() << "Considering " << UnswitchCandidates.size()
2613              << " non-trivial loop invariant conditions for unswitching.\n");
2614 
2615   // Given that unswitching these terminators will require duplicating parts of
2616   // the loop, so we need to be able to model that cost. Compute the ephemeral
2617   // values and set up a data structure to hold per-BB costs. We cache each
2618   // block's cost so that we don't recompute this when considering different
2619   // subsets of the loop for duplication during unswitching.
2620   SmallPtrSet<const Value *, 4> EphValues;
2621   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2622   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2623 
2624   // Compute the cost of each block, as well as the total loop cost. Also, bail
2625   // out if we see instructions which are incompatible with loop unswitching
2626   // (convergent, noduplicate, or cross-basic-block tokens).
2627   // FIXME: We might be able to safely handle some of these in non-duplicated
2628   // regions.
2629   int LoopCost = 0;
2630   for (auto *BB : L.blocks()) {
2631     int Cost = 0;
2632     for (auto &I : *BB) {
2633       if (EphValues.count(&I))
2634         continue;
2635 
2636       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2637         return false;
2638       if (auto CS = CallSite(&I))
2639         if (CS.isConvergent() || CS.cannotDuplicate())
2640           return false;
2641 
2642       Cost += TTI.getUserCost(&I);
2643     }
2644     assert(Cost >= 0 && "Must not have negative costs!");
2645     LoopCost += Cost;
2646     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2647     BBCostMap[BB] = Cost;
2648   }
2649   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2650 
2651   // Now we find the best candidate by searching for the one with the following
2652   // properties in order:
2653   //
2654   // 1) An unswitching cost below the threshold
2655   // 2) The smallest number of duplicated unswitch candidates (to avoid
2656   //    creating redundant subsequent unswitching)
2657   // 3) The smallest cost after unswitching.
2658   //
2659   // We prioritize reducing fanout of unswitch candidates provided the cost
2660   // remains below the threshold because this has a multiplicative effect.
2661   //
2662   // This requires memoizing each dominator subtree to avoid redundant work.
2663   //
2664   // FIXME: Need to actually do the number of candidates part above.
2665   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2666   // Given a terminator which might be unswitched, computes the non-duplicated
2667   // cost for that terminator.
2668   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2669     BasicBlock &BB = *TI.getParent();
2670     SmallPtrSet<BasicBlock *, 4> Visited;
2671 
2672     int Cost = LoopCost;
2673     for (BasicBlock *SuccBB : successors(&BB)) {
2674       // Don't count successors more than once.
2675       if (!Visited.insert(SuccBB).second)
2676         continue;
2677 
2678       // If this is a partial unswitch candidate, then it must be a conditional
2679       // branch with a condition of either `or` or `and`. In that case, one of
2680       // the successors is necessarily duplicated, so don't even try to remove
2681       // its cost.
2682       if (!FullUnswitch) {
2683         auto &BI = cast<BranchInst>(TI);
2684         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2685             Instruction::And) {
2686           if (SuccBB == BI.getSuccessor(1))
2687             continue;
2688         } else {
2689           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2690                      Instruction::Or &&
2691                  "Only `and` and `or` conditions can result in a partial "
2692                  "unswitch!");
2693           if (SuccBB == BI.getSuccessor(0))
2694             continue;
2695         }
2696       }
2697 
2698       // This successor's domtree will not need to be duplicated after
2699       // unswitching if the edge to the successor dominates it (and thus the
2700       // entire tree). This essentially means there is no other path into this
2701       // subtree and so it will end up live in only one clone of the loop.
2702       if (SuccBB->getUniquePredecessor() ||
2703           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2704             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2705           })) {
2706         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2707         assert(Cost >= 0 &&
2708                "Non-duplicated cost should never exceed total loop cost!");
2709       }
2710     }
2711 
2712     // Now scale the cost by the number of unique successors minus one. We
2713     // subtract one because there is already at least one copy of the entire
2714     // loop. This is computing the new cost of unswitching a condition.
2715     // Note that guards always have 2 unique successors that are implicit and
2716     // will be materialized if we decide to unswitch it.
2717     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2718     assert(SuccessorsCount > 1 &&
2719            "Cannot unswitch a condition without multiple distinct successors!");
2720     return Cost * (SuccessorsCount - 1);
2721   };
2722   Instruction *BestUnswitchTI = nullptr;
2723   int BestUnswitchCost;
2724   ArrayRef<Value *> BestUnswitchInvariants;
2725   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2726     Instruction &TI = *TerminatorAndInvariants.first;
2727     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2728     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2729     int CandidateCost = ComputeUnswitchedCost(
2730         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2731                                      Invariants[0] == BI->getCondition()));
2732     // Calculate cost multiplier which is a tool to limit potentially
2733     // exponential behavior of loop-unswitch.
2734     if (EnableUnswitchCostMultiplier) {
2735       int CostMultiplier =
2736           calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2737       assert(
2738           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2739           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2740       CandidateCost *= CostMultiplier;
2741       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2742                         << " (multiplier: " << CostMultiplier << ")"
2743                         << " for unswitch candidate: " << TI << "\n");
2744     } else {
2745       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2746                         << " for unswitch candidate: " << TI << "\n");
2747     }
2748 
2749     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2750       BestUnswitchTI = &TI;
2751       BestUnswitchCost = CandidateCost;
2752       BestUnswitchInvariants = Invariants;
2753     }
2754   }
2755 
2756   if (BestUnswitchCost >= UnswitchThreshold) {
2757     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2758                       << BestUnswitchCost << "\n");
2759     return false;
2760   }
2761 
2762   // If the best candidate is a guard, turn it into a branch.
2763   if (isGuard(BestUnswitchTI))
2764     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2765                                          ExitBlocks, DT, LI, MSSAU);
2766 
2767   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2768                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2769                     << "\n");
2770   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2771                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2772   return true;
2773 }
2774 
2775 /// Unswitch control flow predicated on loop invariant conditions.
2776 ///
2777 /// This first hoists all branches or switches which are trivial (IE, do not
2778 /// require duplicating any part of the loop) out of the loop body. It then
2779 /// looks at other loop invariant control flows and tries to unswitch those as
2780 /// well by cloning the loop if the result is small enough.
2781 ///
2782 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2783 /// updated based on the unswitch.
2784 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2785 ///
2786 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2787 /// true, we will attempt to do non-trivial unswitching as well as trivial
2788 /// unswitching.
2789 ///
2790 /// The `UnswitchCB` callback provided will be run after unswitching is
2791 /// complete, with the first parameter set to `true` if the provided loop
2792 /// remains a loop, and a list of new sibling loops created.
2793 ///
2794 /// If `SE` is non-null, we will update that analysis based on the unswitching
2795 /// done.
2796 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2797                          AssumptionCache &AC, TargetTransformInfo &TTI,
2798                          bool NonTrivial,
2799                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2800                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2801   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2802          "Loops must be in LCSSA form before unswitching.");
2803   bool Changed = false;
2804 
2805   // Must be in loop simplified form: we need a preheader and dedicated exits.
2806   if (!L.isLoopSimplifyForm())
2807     return false;
2808 
2809   // Try trivial unswitch first before loop over other basic blocks in the loop.
2810   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2811     // If we unswitched successfully we will want to clean up the loop before
2812     // processing it further so just mark it as unswitched and return.
2813     UnswitchCB(/*CurrentLoopValid*/ true, {});
2814     return true;
2815   }
2816 
2817   // If we're not doing non-trivial unswitching, we're done. We both accept
2818   // a parameter but also check a local flag that can be used for testing
2819   // a debugging.
2820   if (!NonTrivial && !EnableNonTrivialUnswitch)
2821     return false;
2822 
2823   // For non-trivial unswitching, because it often creates new loops, we rely on
2824   // the pass manager to iterate on the loops rather than trying to immediately
2825   // reach a fixed point. There is no substantial advantage to iterating
2826   // internally, and if any of the new loops are simplified enough to contain
2827   // trivial unswitching we want to prefer those.
2828 
2829   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2830   // a partial unswitch when possible below the threshold.
2831   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2832     return true;
2833 
2834   // No other opportunities to unswitch.
2835   return Changed;
2836 }
2837 
2838 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2839                                               LoopStandardAnalysisResults &AR,
2840                                               LPMUpdater &U) {
2841   Function &F = *L.getHeader()->getParent();
2842   (void)F;
2843 
2844   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2845                     << "\n");
2846 
2847   // Save the current loop name in a variable so that we can report it even
2848   // after it has been deleted.
2849   std::string LoopName = L.getName();
2850 
2851   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2852                                         ArrayRef<Loop *> NewLoops) {
2853     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2854     if (!NewLoops.empty())
2855       U.addSiblingLoops(NewLoops);
2856 
2857     // If the current loop remains valid, we should revisit it to catch any
2858     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2859     if (CurrentLoopValid)
2860       U.revisitCurrentLoop();
2861     else
2862       U.markLoopAsDeleted(L, LoopName);
2863   };
2864 
2865   Optional<MemorySSAUpdater> MSSAU;
2866   if (AR.MSSA) {
2867     MSSAU = MemorySSAUpdater(AR.MSSA);
2868     if (VerifyMemorySSA)
2869       AR.MSSA->verifyMemorySSA();
2870   }
2871   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2872                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2873     return PreservedAnalyses::all();
2874 
2875   if (AR.MSSA && VerifyMemorySSA)
2876     AR.MSSA->verifyMemorySSA();
2877 
2878   // Historically this pass has had issues with the dominator tree so verify it
2879   // in asserts builds.
2880   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2881 
2882   auto PA = getLoopPassPreservedAnalyses();
2883   if (EnableMSSALoopDependency)
2884     PA.preserve<MemorySSAAnalysis>();
2885   return PA;
2886 }
2887 
2888 namespace {
2889 
2890 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2891   bool NonTrivial;
2892 
2893 public:
2894   static char ID; // Pass ID, replacement for typeid
2895 
2896   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2897       : LoopPass(ID), NonTrivial(NonTrivial) {
2898     initializeSimpleLoopUnswitchLegacyPassPass(
2899         *PassRegistry::getPassRegistry());
2900   }
2901 
2902   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2903 
2904   void getAnalysisUsage(AnalysisUsage &AU) const override {
2905     AU.addRequired<AssumptionCacheTracker>();
2906     AU.addRequired<TargetTransformInfoWrapperPass>();
2907     if (EnableMSSALoopDependency) {
2908       AU.addRequired<MemorySSAWrapperPass>();
2909       AU.addPreserved<MemorySSAWrapperPass>();
2910     }
2911     getLoopAnalysisUsage(AU);
2912   }
2913 };
2914 
2915 } // end anonymous namespace
2916 
2917 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2918   if (skipLoop(L))
2919     return false;
2920 
2921   Function &F = *L->getHeader()->getParent();
2922 
2923   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2924                     << "\n");
2925 
2926   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2927   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2928   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2929   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2930   MemorySSA *MSSA = nullptr;
2931   Optional<MemorySSAUpdater> MSSAU;
2932   if (EnableMSSALoopDependency) {
2933     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2934     MSSAU = MemorySSAUpdater(MSSA);
2935   }
2936 
2937   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2938   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2939 
2940   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2941                                ArrayRef<Loop *> NewLoops) {
2942     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2943     for (auto *NewL : NewLoops)
2944       LPM.addLoop(*NewL);
2945 
2946     // If the current loop remains valid, re-add it to the queue. This is
2947     // a little wasteful as we'll finish processing the current loop as well,
2948     // but it is the best we can do in the old PM.
2949     if (CurrentLoopValid)
2950       LPM.addLoop(*L);
2951     else
2952       LPM.markLoopAsDeleted(*L);
2953   };
2954 
2955   if (MSSA && VerifyMemorySSA)
2956     MSSA->verifyMemorySSA();
2957 
2958   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2959                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2960 
2961   if (MSSA && VerifyMemorySSA)
2962     MSSA->verifyMemorySSA();
2963 
2964   // If anything was unswitched, also clear any cached information about this
2965   // loop.
2966   LPM.deleteSimpleAnalysisLoop(L);
2967 
2968   // Historically this pass has had issues with the dominator tree so verify it
2969   // in asserts builds.
2970   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2971 
2972   return Changed;
2973 }
2974 
2975 char SimpleLoopUnswitchLegacyPass::ID = 0;
2976 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2977                       "Simple unswitch loops", false, false)
2978 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2979 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2980 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2981 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2982 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2983 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2984 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2985                     "Simple unswitch loops", false, false)
2986 
2987 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2988   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2989 }
2990