1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "lcssa"
56 
57 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
58 
59 #ifdef EXPENSIVE_CHECKS
60 static bool VerifyLoopLCSSA = true;
61 #else
62 static bool VerifyLoopLCSSA = false;
63 #endif
64 static cl::opt<bool, true>
65     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
66                         cl::Hidden,
67                         cl::desc("Verify loop lcssa form (time consuming)"));
68 
69 /// Return true if the specified block is in the list.
70 static bool isExitBlock(BasicBlock *BB,
71                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
72   return is_contained(ExitBlocks, BB);
73 }
74 
75 /// For every instruction from the worklist, check to see if it has any uses
76 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
77 /// rewrite the uses.
78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
79                                     const DominatorTree &DT, const LoopInfo &LI,
80                                     ScalarEvolution *SE, IRBuilderBase &Builder,
81                                     SmallVectorImpl<PHINode *> *PHIsToRemove) {
82   SmallVector<Use *, 16> UsesToRewrite;
83   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
84   PredIteratorCache PredCache;
85   bool Changed = false;
86 
87   IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
88 
89   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
90   // instructions within the same loops, computing the exit blocks is
91   // expensive, and we're not mutating the loop structure.
92   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
93 
94   while (!Worklist.empty()) {
95     UsesToRewrite.clear();
96 
97     Instruction *I = Worklist.pop_back_val();
98     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
99     BasicBlock *InstBB = I->getParent();
100     Loop *L = LI.getLoopFor(InstBB);
101     assert(L && "Instruction belongs to a BB that's not part of a loop");
102     if (!LoopExitBlocks.count(L))
103       L->getExitBlocks(LoopExitBlocks[L]);
104     assert(LoopExitBlocks.count(L));
105     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
106 
107     if (ExitBlocks.empty())
108       continue;
109 
110     for (Use &U : make_early_inc_range(I->uses())) {
111       Instruction *User = cast<Instruction>(U.getUser());
112       BasicBlock *UserBB = User->getParent();
113 
114       // Skip uses in unreachable blocks.
115       if (!DT.isReachableFromEntry(UserBB)) {
116         U.set(PoisonValue::get(I->getType()));
117         continue;
118       }
119 
120       // For practical purposes, we consider that the use in a PHI
121       // occurs in the respective predecessor block. For more info,
122       // see the `phi` doc in LangRef and the LCSSA doc.
123       if (auto *PN = dyn_cast<PHINode>(User))
124         UserBB = PN->getIncomingBlock(U);
125 
126       if (InstBB != UserBB && !L->contains(UserBB))
127         UsesToRewrite.push_back(&U);
128     }
129 
130     // If there are no uses outside the loop, exit with no change.
131     if (UsesToRewrite.empty())
132       continue;
133 
134     ++NumLCSSA; // We are applying the transformation
135 
136     // Invoke instructions are special in that their result value is not
137     // available along their unwind edge. The code below tests to see whether
138     // DomBB dominates the value, so adjust DomBB to the normal destination
139     // block, which is effectively where the value is first usable.
140     BasicBlock *DomBB = InstBB;
141     if (auto *Inv = dyn_cast<InvokeInst>(I))
142       DomBB = Inv->getNormalDest();
143 
144     const DomTreeNode *DomNode = DT.getNode(DomBB);
145 
146     SmallVector<PHINode *, 16> AddedPHIs;
147     SmallVector<PHINode *, 8> PostProcessPHIs;
148 
149     SmallVector<PHINode *, 4> InsertedPHIs;
150     SSAUpdater SSAUpdate(&InsertedPHIs);
151     SSAUpdate.Initialize(I->getType(), I->getName());
152 
153     // Force re-computation of I, as some users now need to use the new PHI
154     // node.
155     if (SE)
156       SE->forgetValue(I);
157 
158     // Insert the LCSSA phi's into all of the exit blocks dominated by the
159     // value, and add them to the Phi's map.
160     for (BasicBlock *ExitBB : ExitBlocks) {
161       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
162         continue;
163 
164       // If we already inserted something for this BB, don't reprocess it.
165       if (SSAUpdate.HasValueForBlock(ExitBB))
166         continue;
167       Builder.SetInsertPoint(&ExitBB->front());
168       PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
169                                       I->getName() + ".lcssa");
170       // Get the debug location from the original instruction.
171       PN->setDebugLoc(I->getDebugLoc());
172 
173       // Add inputs from inside the loop for this PHI. This is valid
174       // because `I` dominates `ExitBB` (checked above).  This implies
175       // that every incoming block/edge is dominated by `I` as well,
176       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
177       // blocks without violating the SSA dominance property.
178       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
179         PN->addIncoming(I, Pred);
180 
181         // If the exit block has a predecessor not within the loop, arrange for
182         // the incoming value use corresponding to that predecessor to be
183         // rewritten in terms of a different LCSSA PHI.
184         if (!L->contains(Pred))
185           UsesToRewrite.push_back(
186               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
187                   PN->getNumIncomingValues() - 1)));
188       }
189 
190       AddedPHIs.push_back(PN);
191 
192       // Remember that this phi makes the value alive in this block.
193       SSAUpdate.AddAvailableValue(ExitBB, PN);
194 
195       // LoopSimplify might fail to simplify some loops (e.g. when indirect
196       // branches are involved). In such situations, it might happen that an
197       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
198       // create PHIs in such an exit block, we are also inserting PHIs into L2's
199       // header. This could break LCSSA form for L2 because these inserted PHIs
200       // can also have uses outside of L2. Remember all PHIs in such situation
201       // as to revisit than later on. FIXME: Remove this if indirectbr support
202       // into LoopSimplify gets improved.
203       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
204         if (!L->contains(OtherLoop))
205           PostProcessPHIs.push_back(PN);
206     }
207 
208     // Rewrite all uses outside the loop in terms of the new PHIs we just
209     // inserted.
210     for (Use *UseToRewrite : UsesToRewrite) {
211       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
212       BasicBlock *UserBB = User->getParent();
213 
214       // For practical purposes, we consider that the use in a PHI
215       // occurs in the respective predecessor block. For more info,
216       // see the `phi` doc in LangRef and the LCSSA doc.
217       if (auto *PN = dyn_cast<PHINode>(User))
218         UserBB = PN->getIncomingBlock(*UseToRewrite);
219 
220       // If this use is in an exit block, rewrite to use the newly inserted PHI.
221       // This is required for correctness because SSAUpdate doesn't handle uses
222       // in the same block.  It assumes the PHI we inserted is at the end of the
223       // block.
224       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
225         UseToRewrite->set(&UserBB->front());
226         continue;
227       }
228 
229       // If we added a single PHI, it must dominate all uses and we can directly
230       // rename it.
231       if (AddedPHIs.size() == 1) {
232         UseToRewrite->set(AddedPHIs[0]);
233         continue;
234       }
235 
236       // Otherwise, do full PHI insertion.
237       SSAUpdate.RewriteUse(*UseToRewrite);
238     }
239 
240     SmallVector<DbgValueInst *, 4> DbgValues;
241     llvm::findDbgValues(DbgValues, I);
242 
243     // Update pre-existing debug value uses that reside outside the loop.
244     for (auto *DVI : DbgValues) {
245       BasicBlock *UserBB = DVI->getParent();
246       if (InstBB == UserBB || L->contains(UserBB))
247         continue;
248       // We currently only handle debug values residing in blocks that were
249       // traversed while rewriting the uses. If we inserted just a single PHI,
250       // we will handle all relevant debug values.
251       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
252                                        : SSAUpdate.FindValueForBlock(UserBB);
253       if (V)
254         DVI->replaceVariableLocationOp(I, V);
255     }
256 
257     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
258     // to post-process them to keep LCSSA form.
259     for (PHINode *InsertedPN : InsertedPHIs) {
260       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
261         if (!L->contains(OtherLoop))
262           PostProcessPHIs.push_back(InsertedPN);
263     }
264 
265     // Post process PHI instructions that were inserted into another disjoint
266     // loop and update their exits properly.
267     for (auto *PostProcessPN : PostProcessPHIs)
268       if (!PostProcessPN->use_empty())
269         Worklist.push_back(PostProcessPN);
270 
271     // Keep track of PHI nodes that we want to remove because they did not have
272     // any uses rewritten.
273     for (PHINode *PN : AddedPHIs)
274       if (PN->use_empty())
275         LocalPHIsToRemove.insert(PN);
276 
277     Changed = true;
278   }
279 
280   // Remove PHI nodes that did not have any uses rewritten or add them to
281   // PHIsToRemove, so the caller can remove them after some additional cleanup.
282   // We need to redo the use_empty() check here, because even if the PHI node
283   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
284   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
285   // nodes that only are used by each other. Such situations has only been
286   // noticed when the input IR contains unreachable code, and leaving some extra
287   // redundant PHI nodes in such situations is considered a minor problem.
288   if (PHIsToRemove) {
289     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
290   } else {
291     for (PHINode *PN : LocalPHIsToRemove)
292       if (PN->use_empty())
293         PN->eraseFromParent();
294   }
295   return Changed;
296 }
297 
298 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
299 static void computeBlocksDominatingExits(
300     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
301     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
302   // We start from the exit blocks, as every block trivially dominates itself
303   // (not strictly).
304   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
305 
306   while (!BBWorklist.empty()) {
307     BasicBlock *BB = BBWorklist.pop_back_val();
308 
309     // Check if this is a loop header. If this is the case, we're done.
310     if (L.getHeader() == BB)
311       continue;
312 
313     // Otherwise, add its immediate predecessor in the dominator tree to the
314     // worklist, unless we visited it already.
315     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
316 
317     // Exit blocks can have an immediate dominator not belonging to the
318     // loop. For an exit block to be immediately dominated by another block
319     // outside the loop, it implies not all paths from that dominator, to the
320     // exit block, go through the loop.
321     // Example:
322     //
323     // |---- A
324     // |     |
325     // |     B<--
326     // |     |  |
327     // |---> C --
328     //       |
329     //       D
330     //
331     // C is the exit block of the loop and it's immediately dominated by A,
332     // which doesn't belong to the loop.
333     if (!L.contains(IDomBB))
334       continue;
335 
336     if (BlocksDominatingExits.insert(IDomBB))
337       BBWorklist.push_back(IDomBB);
338   }
339 }
340 
341 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
342                      ScalarEvolution *SE) {
343   bool Changed = false;
344 
345 #ifdef EXPENSIVE_CHECKS
346   // Verify all sub-loops are in LCSSA form already.
347   for (Loop *SubLoop: L) {
348     (void)SubLoop; // Silence unused variable warning.
349     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
350   }
351 #endif
352 
353   SmallVector<BasicBlock *, 8> ExitBlocks;
354   L.getExitBlocks(ExitBlocks);
355   if (ExitBlocks.empty())
356     return false;
357 
358   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
359 
360   // We want to avoid use-scanning leveraging dominance informations.
361   // If a block doesn't dominate any of the loop exits, the none of the values
362   // defined in the loop can be used outside.
363   // We compute the set of blocks fullfilling the conditions in advance
364   // walking the dominator tree upwards until we hit a loop header.
365   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
366 
367   SmallVector<Instruction *, 8> Worklist;
368 
369   // Look at all the instructions in the loop, checking to see if they have uses
370   // outside the loop.  If so, put them into the worklist to rewrite those uses.
371   for (BasicBlock *BB : BlocksDominatingExits) {
372     // Skip blocks that are part of any sub-loops, they must be in LCSSA
373     // already.
374     if (LI->getLoopFor(BB) != &L)
375       continue;
376     for (Instruction &I : *BB) {
377       // Reject two common cases fast: instructions with no uses (like stores)
378       // and instructions with one use that is in the same block as this.
379       if (I.use_empty() ||
380           (I.hasOneUse() && I.user_back()->getParent() == BB &&
381            !isa<PHINode>(I.user_back())))
382         continue;
383 
384       // Tokens cannot be used in PHI nodes, so we skip over them.
385       // We can run into tokens which are live out of a loop with catchswitch
386       // instructions in Windows EH if the catchswitch has one catchpad which
387       // is inside the loop and another which is not.
388       if (I.getType()->isTokenTy())
389         continue;
390 
391       Worklist.push_back(&I);
392     }
393   }
394 
395   IRBuilder<> Builder(L.getHeader()->getContext());
396   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
397 
398   // If we modified the code, remove any caches about the loop from SCEV to
399   // avoid dangling entries.
400   // FIXME: This is a big hammer, can we clear the cache more selectively?
401   if (SE && Changed)
402     SE->forgetLoop(&L);
403 
404   assert(L.isLCSSAForm(DT));
405 
406   return Changed;
407 }
408 
409 /// Process a loop nest depth first.
410 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
411                                 const LoopInfo *LI, ScalarEvolution *SE) {
412   bool Changed = false;
413 
414   // Recurse depth-first through inner loops.
415   for (Loop *SubLoop : L.getSubLoops())
416     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
417 
418   Changed |= formLCSSA(L, DT, LI, SE);
419   return Changed;
420 }
421 
422 /// Process all loops in the function, inner-most out.
423 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
424                                 ScalarEvolution *SE) {
425   bool Changed = false;
426   for (const auto &L : *LI)
427     Changed |= formLCSSARecursively(*L, DT, LI, SE);
428   return Changed;
429 }
430 
431 namespace {
432 struct LCSSAWrapperPass : public FunctionPass {
433   static char ID; // Pass identification, replacement for typeid
434   LCSSAWrapperPass() : FunctionPass(ID) {
435     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
436   }
437 
438   // Cached analysis information for the current function.
439   DominatorTree *DT;
440   LoopInfo *LI;
441   ScalarEvolution *SE;
442 
443   bool runOnFunction(Function &F) override;
444   void verifyAnalysis() const override {
445     // This check is very expensive. On the loop intensive compiles it may cause
446     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
447     // always does limited form of the LCSSA verification. Similar reasoning
448     // was used for the LoopInfo verifier.
449     if (VerifyLoopLCSSA) {
450       assert(all_of(*LI,
451                     [&](Loop *L) {
452                       return L->isRecursivelyLCSSAForm(*DT, *LI);
453                     }) &&
454              "LCSSA form is broken!");
455     }
456   };
457 
458   /// This transformation requires natural loop information & requires that
459   /// loop preheaders be inserted into the CFG.  It maintains both of these,
460   /// as well as the CFG.  It also requires dominator information.
461   void getAnalysisUsage(AnalysisUsage &AU) const override {
462     AU.setPreservesCFG();
463 
464     AU.addRequired<DominatorTreeWrapperPass>();
465     AU.addRequired<LoopInfoWrapperPass>();
466     AU.addPreservedID(LoopSimplifyID);
467     AU.addPreserved<AAResultsWrapperPass>();
468     AU.addPreserved<BasicAAWrapperPass>();
469     AU.addPreserved<GlobalsAAWrapperPass>();
470     AU.addPreserved<ScalarEvolutionWrapperPass>();
471     AU.addPreserved<SCEVAAWrapperPass>();
472     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
473     AU.addPreserved<MemorySSAWrapperPass>();
474 
475     // This is needed to perform LCSSA verification inside LPPassManager
476     AU.addRequired<LCSSAVerificationPass>();
477     AU.addPreserved<LCSSAVerificationPass>();
478   }
479 };
480 }
481 
482 char LCSSAWrapperPass::ID = 0;
483 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
484                       false, false)
485 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
486 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
487 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
488 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
489                     false, false)
490 
491 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
492 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
493 
494 /// Transform \p F into loop-closed SSA form.
495 bool LCSSAWrapperPass::runOnFunction(Function &F) {
496   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
497   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
498   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
499   SE = SEWP ? &SEWP->getSE() : nullptr;
500 
501   return formLCSSAOnAllLoops(LI, *DT, SE);
502 }
503 
504 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
505   auto &LI = AM.getResult<LoopAnalysis>(F);
506   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
507   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
508   if (!formLCSSAOnAllLoops(&LI, DT, SE))
509     return PreservedAnalyses::all();
510 
511   PreservedAnalyses PA;
512   PA.preserveSet<CFGAnalyses>();
513   PA.preserve<ScalarEvolutionAnalysis>();
514   // BPI maps terminators to probabilities, since we don't modify the CFG, no
515   // updates are needed to preserve it.
516   PA.preserve<BranchProbabilityAnalysis>();
517   PA.preserve<MemorySSAAnalysis>();
518   return PA;
519 }
520