1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/GlobalsModRef.h"
52 #include "llvm/Analysis/InstructionSimplify.h"
53 #include "llvm/Analysis/LoopInfo.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
58 #include "llvm/IR/CFG.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/InitializePasses.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/LoopUtils.h"
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-simplify"
75 
76 STATISTIC(NumNested  , "Number of nested loops split out");
77 
78 // If the block isn't already, move the new block to right after some 'outside
79 // block' block.  This prevents the preheader from being placed inside the loop
80 // body, e.g. when the loop hasn't been rotated.
81 static void placeSplitBlockCarefully(BasicBlock *NewBB,
82                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
83                                      Loop *L) {
84   // Check to see if NewBB is already well placed.
85   Function::iterator BBI = --NewBB->getIterator();
86   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
87     if (&*BBI == SplitPreds[i])
88       return;
89   }
90 
91   // If it isn't already after an outside block, move it after one.  This is
92   // always good as it makes the uncond branch from the outside block into a
93   // fall-through.
94 
95   // Figure out *which* outside block to put this after.  Prefer an outside
96   // block that neighbors a BB actually in the loop.
97   BasicBlock *FoundBB = nullptr;
98   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
99     Function::iterator BBI = SplitPreds[i]->getIterator();
100     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
101       FoundBB = SplitPreds[i];
102       break;
103     }
104   }
105 
106   // If our heuristic for a *good* bb to place this after doesn't find
107   // anything, just pick something.  It's likely better than leaving it within
108   // the loop.
109   if (!FoundBB)
110     FoundBB = SplitPreds[0];
111   NewBB->moveAfter(FoundBB);
112 }
113 
114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
115 /// preheader, this method is called to insert one.  This method has two phases:
116 /// preheader insertion and analysis updating.
117 ///
118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
119                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
120                                          bool PreserveLCSSA) {
121   BasicBlock *Header = L->getHeader();
122 
123   // Compute the set of predecessors of the loop that are not in the loop.
124   SmallVector<BasicBlock*, 8> OutsideBlocks;
125   for (BasicBlock *P : predecessors(Header)) {
126     if (!L->contains(P)) {         // Coming in from outside the loop?
127       // If the loop is branched to from an indirect terminator, we won't
128       // be able to fully transform the loop, because it prohibits
129       // edge splitting.
130       if (isa<IndirectBrInst>(P->getTerminator()))
131         return nullptr;
132 
133       // Keep track of it.
134       OutsideBlocks.push_back(P);
135     }
136   }
137 
138   // Split out the loop pre-header.
139   BasicBlock *PreheaderBB;
140   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
141                                        LI, MSSAU, PreserveLCSSA);
142   if (!PreheaderBB)
143     return nullptr;
144 
145   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146                     << PreheaderBB->getName() << "\n");
147 
148   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149   // code layout too horribly.
150   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
151 
152   return PreheaderBB;
153 }
154 
155 /// Add the specified block, and all of its predecessors, to the specified set,
156 /// if it's not already in there.  Stop predecessor traversal when we reach
157 /// StopBlock.
158 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
159                                   SmallPtrSetImpl<BasicBlock *> &Blocks) {
160   SmallVector<BasicBlock *, 8> Worklist;
161   Worklist.push_back(InputBB);
162   do {
163     BasicBlock *BB = Worklist.pop_back_val();
164     if (Blocks.insert(BB).second && BB != StopBlock)
165       // If BB is not already processed and it is not a stop block then
166       // insert its predecessor in the work list
167       append_range(Worklist, predecessors(BB));
168   } while (!Worklist.empty());
169 }
170 
171 /// The first part of loop-nestification is to find a PHI node that tells
172 /// us how to partition the loops.
173 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
174                                         AssumptionCache *AC) {
175   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
176   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
177     PHINode *PN = cast<PHINode>(I);
178     ++I;
179     if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) {
180       // This is a degenerate PHI already, don't modify it!
181       PN->replaceAllUsesWith(V);
182       PN->eraseFromParent();
183       continue;
184     }
185 
186     // Scan this PHI node looking for a use of the PHI node by itself.
187     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
188       if (PN->getIncomingValue(i) == PN &&
189           L->contains(PN->getIncomingBlock(i)))
190         // We found something tasty to remove.
191         return PN;
192   }
193   return nullptr;
194 }
195 
196 /// If this loop has multiple backedges, try to pull one of them out into
197 /// a nested loop.
198 ///
199 /// This is important for code that looks like
200 /// this:
201 ///
202 ///  Loop:
203 ///     ...
204 ///     br cond, Loop, Next
205 ///     ...
206 ///     br cond2, Loop, Out
207 ///
208 /// To identify this common case, we look at the PHI nodes in the header of the
209 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
210 /// that change in the "outer" loop, but not in the "inner" loop.
211 ///
212 /// If we are able to separate out a loop, return the new outer loop that was
213 /// created.
214 ///
215 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
216                                 DominatorTree *DT, LoopInfo *LI,
217                                 ScalarEvolution *SE, bool PreserveLCSSA,
218                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
219   // Don't try to separate loops without a preheader.
220   if (!Preheader)
221     return nullptr;
222 
223   // Treat the presence of convergent functions conservatively. The
224   // transformation is invalid if calls to certain convergent
225   // functions (like an AMDGPU barrier) get included in the resulting
226   // inner loop. But blocks meant for the inner loop will be
227   // identified later at a point where it's too late to abort the
228   // transformation. Also, the convergent attribute is not really
229   // sufficient to express the semantics of functions that are
230   // affected by this transformation. So we choose to back off if such
231   // a function call is present until a better alternative becomes
232   // available. This is similar to the conservative treatment of
233   // convergent function calls in GVNHoist and JumpThreading.
234   for (auto *BB : L->blocks()) {
235     for (auto &II : *BB) {
236       if (auto CI = dyn_cast<CallBase>(&II)) {
237         if (CI->isConvergent()) {
238           return nullptr;
239         }
240       }
241     }
242   }
243 
244   // The header is not a landing pad; preheader insertion should ensure this.
245   BasicBlock *Header = L->getHeader();
246   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
247 
248   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
249   if (!PN) return nullptr;  // No known way to partition.
250 
251   // Pull out all predecessors that have varying values in the loop.  This
252   // handles the case when a PHI node has multiple instances of itself as
253   // arguments.
254   SmallVector<BasicBlock*, 8> OuterLoopPreds;
255   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
256     if (PN->getIncomingValue(i) != PN ||
257         !L->contains(PN->getIncomingBlock(i))) {
258       // We can't split indirect control flow edges.
259       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
260         return nullptr;
261       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
262     }
263   }
264   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
265 
266   // If ScalarEvolution is around and knows anything about values in
267   // this loop, tell it to forget them, because we're about to
268   // substantially change it.
269   if (SE)
270     SE->forgetLoop(L);
271 
272   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
273                                              DT, LI, MSSAU, PreserveLCSSA);
274 
275   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
276   // code layout too horribly.
277   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
278 
279   // Create the new outer loop.
280   Loop *NewOuter = LI->AllocateLoop();
281 
282   // Change the parent loop to use the outer loop as its child now.
283   if (Loop *Parent = L->getParentLoop())
284     Parent->replaceChildLoopWith(L, NewOuter);
285   else
286     LI->changeTopLevelLoop(L, NewOuter);
287 
288   // L is now a subloop of our outer loop.
289   NewOuter->addChildLoop(L);
290 
291   for (BasicBlock *BB : L->blocks())
292     NewOuter->addBlockEntry(BB);
293 
294   // Now reset the header in L, which had been moved by
295   // SplitBlockPredecessors for the outer loop.
296   L->moveToHeader(Header);
297 
298   // Determine which blocks should stay in L and which should be moved out to
299   // the Outer loop now.
300   SmallPtrSet<BasicBlock *, 4> BlocksInL;
301   for (BasicBlock *P : predecessors(Header)) {
302     if (DT->dominates(Header, P))
303       addBlockAndPredsToSet(P, Header, BlocksInL);
304   }
305 
306   // Scan all of the loop children of L, moving them to OuterLoop if they are
307   // not part of the inner loop.
308   const std::vector<Loop*> &SubLoops = L->getSubLoops();
309   for (size_t I = 0; I != SubLoops.size(); )
310     if (BlocksInL.count(SubLoops[I]->getHeader()))
311       ++I;   // Loop remains in L
312     else
313       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
314 
315   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
316   OuterLoopBlocks.push_back(NewBB);
317   // Now that we know which blocks are in L and which need to be moved to
318   // OuterLoop, move any blocks that need it.
319   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
320     BasicBlock *BB = L->getBlocks()[i];
321     if (!BlocksInL.count(BB)) {
322       // Move this block to the parent, updating the exit blocks sets
323       L->removeBlockFromLoop(BB);
324       if ((*LI)[BB] == L) {
325         LI->changeLoopFor(BB, NewOuter);
326         OuterLoopBlocks.push_back(BB);
327       }
328       --i;
329     }
330   }
331 
332   // Split edges to exit blocks from the inner loop, if they emerged in the
333   // process of separating the outer one.
334   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
335 
336   if (PreserveLCSSA) {
337     // Fix LCSSA form for L. Some values, which previously were only used inside
338     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
339     // in corresponding exit blocks.
340     // We don't need to form LCSSA recursively, because there cannot be uses
341     // inside a newly created loop of defs from inner loops as those would
342     // already be a use of an LCSSA phi node.
343     formLCSSA(*L, *DT, LI, SE);
344 
345     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
346            "LCSSA is broken after separating nested loops!");
347   }
348 
349   return NewOuter;
350 }
351 
352 /// This method is called when the specified loop has more than one
353 /// backedge in it.
354 ///
355 /// If this occurs, revector all of these backedges to target a new basic block
356 /// and have that block branch to the loop header.  This ensures that loops
357 /// have exactly one backedge.
358 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
359                                              DominatorTree *DT, LoopInfo *LI,
360                                              MemorySSAUpdater *MSSAU) {
361   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
362 
363   // Get information about the loop
364   BasicBlock *Header = L->getHeader();
365   Function *F = Header->getParent();
366 
367   // Unique backedge insertion currently depends on having a preheader.
368   if (!Preheader)
369     return nullptr;
370 
371   // The header is not an EH pad; preheader insertion should ensure this.
372   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
373 
374   // Figure out which basic blocks contain back-edges to the loop header.
375   std::vector<BasicBlock*> BackedgeBlocks;
376   for (BasicBlock *P : predecessors(Header)) {
377     // Indirect edges cannot be split, so we must fail if we find one.
378     if (isa<IndirectBrInst>(P->getTerminator()))
379       return nullptr;
380 
381     if (P != Preheader) BackedgeBlocks.push_back(P);
382   }
383 
384   // Create and insert the new backedge block...
385   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
386                                            Header->getName() + ".backedge", F);
387   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
388   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
389 
390   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
391                     << BEBlock->getName() << "\n");
392 
393   // Move the new backedge block to right after the last backedge block.
394   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
395   F->splice(InsertPos, F, BEBlock->getIterator());
396 
397   // Now that the block has been inserted into the function, create PHI nodes in
398   // the backedge block which correspond to any PHI nodes in the header block.
399   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
400     PHINode *PN = cast<PHINode>(I);
401     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
402                                      PN->getName()+".be", BETerminator);
403 
404     // Loop over the PHI node, moving all entries except the one for the
405     // preheader over to the new PHI node.
406     unsigned PreheaderIdx = ~0U;
407     bool HasUniqueIncomingValue = true;
408     Value *UniqueValue = nullptr;
409     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
410       BasicBlock *IBB = PN->getIncomingBlock(i);
411       Value *IV = PN->getIncomingValue(i);
412       if (IBB == Preheader) {
413         PreheaderIdx = i;
414       } else {
415         NewPN->addIncoming(IV, IBB);
416         if (HasUniqueIncomingValue) {
417           if (!UniqueValue)
418             UniqueValue = IV;
419           else if (UniqueValue != IV)
420             HasUniqueIncomingValue = false;
421         }
422       }
423     }
424 
425     // Delete all of the incoming values from the old PN except the preheader's
426     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
427     if (PreheaderIdx != 0) {
428       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
429       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
430     }
431     // Nuke all entries except the zero'th.
432     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
433       PN->removeIncomingValue(e-i, false);
434 
435     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
436     PN->addIncoming(NewPN, BEBlock);
437 
438     // As an optimization, if all incoming values in the new PhiNode (which is a
439     // subset of the incoming values of the old PHI node) have the same value,
440     // eliminate the PHI Node.
441     if (HasUniqueIncomingValue) {
442       NewPN->replaceAllUsesWith(UniqueValue);
443       NewPN->eraseFromParent();
444     }
445   }
446 
447   // Now that all of the PHI nodes have been inserted and adjusted, modify the
448   // backedge blocks to jump to the BEBlock instead of the header.
449   // If one of the backedges has llvm.loop metadata attached, we remove
450   // it from the backedge and add it to BEBlock.
451   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
452   MDNode *LoopMD = nullptr;
453   for (BasicBlock *BB : BackedgeBlocks) {
454     Instruction *TI = BB->getTerminator();
455     if (!LoopMD)
456       LoopMD = TI->getMetadata(LoopMDKind);
457     TI->setMetadata(LoopMDKind, nullptr);
458     TI->replaceSuccessorWith(Header, BEBlock);
459   }
460   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
461 
462   //===--- Update all analyses which we must preserve now -----------------===//
463 
464   // Update Loop Information - we know that this block is now in the current
465   // loop and all parent loops.
466   L->addBasicBlockToLoop(BEBlock, *LI);
467 
468   // Update dominator information
469   DT->splitBlock(BEBlock);
470 
471   if (MSSAU)
472     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
473                                                       BEBlock);
474 
475   return BEBlock;
476 }
477 
478 /// Simplify one loop and queue further loops for simplification.
479 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
480                             DominatorTree *DT, LoopInfo *LI,
481                             ScalarEvolution *SE, AssumptionCache *AC,
482                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
483   bool Changed = false;
484   if (MSSAU && VerifyMemorySSA)
485     MSSAU->getMemorySSA()->verifyMemorySSA();
486 
487 ReprocessLoop:
488 
489   // Check to see that no blocks (other than the header) in this loop have
490   // predecessors that are not in the loop.  This is not valid for natural
491   // loops, but can occur if the blocks are unreachable.  Since they are
492   // unreachable we can just shamelessly delete those CFG edges!
493   for (BasicBlock *BB : L->blocks()) {
494     if (BB == L->getHeader())
495       continue;
496 
497     SmallPtrSet<BasicBlock*, 4> BadPreds;
498     for (BasicBlock *P : predecessors(BB))
499       if (!L->contains(P))
500         BadPreds.insert(P);
501 
502     // Delete each unique out-of-loop (and thus dead) predecessor.
503     for (BasicBlock *P : BadPreds) {
504 
505       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
506                         << P->getName() << "\n");
507 
508       // Zap the dead pred's terminator and replace it with unreachable.
509       Instruction *TI = P->getTerminator();
510       changeToUnreachable(TI, PreserveLCSSA,
511                           /*DTU=*/nullptr, MSSAU);
512       Changed = true;
513     }
514   }
515 
516   if (MSSAU && VerifyMemorySSA)
517     MSSAU->getMemorySSA()->verifyMemorySSA();
518 
519   // If there are exiting blocks with branches on undef, resolve the undef in
520   // the direction which will exit the loop. This will help simplify loop
521   // trip count computations.
522   SmallVector<BasicBlock*, 8> ExitingBlocks;
523   L->getExitingBlocks(ExitingBlocks);
524   for (BasicBlock *ExitingBlock : ExitingBlocks)
525     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
526       if (BI->isConditional()) {
527         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
528 
529           LLVM_DEBUG(dbgs()
530                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
531                      << ExitingBlock->getName() << "\n");
532 
533           BI->setCondition(ConstantInt::get(Cond->getType(),
534                                             !L->contains(BI->getSuccessor(0))));
535 
536           Changed = true;
537         }
538       }
539 
540   // Does the loop already have a preheader?  If so, don't insert one.
541   BasicBlock *Preheader = L->getLoopPreheader();
542   if (!Preheader) {
543     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
544     if (Preheader)
545       Changed = true;
546   }
547 
548   // Next, check to make sure that all exit nodes of the loop only have
549   // predecessors that are inside of the loop.  This check guarantees that the
550   // loop preheader/header will dominate the exit blocks.  If the exit block has
551   // predecessors from outside of the loop, split the edge now.
552   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
553     Changed = true;
554 
555   if (MSSAU && VerifyMemorySSA)
556     MSSAU->getMemorySSA()->verifyMemorySSA();
557 
558   // If the header has more than two predecessors at this point (from the
559   // preheader and from multiple backedges), we must adjust the loop.
560   BasicBlock *LoopLatch = L->getLoopLatch();
561   if (!LoopLatch) {
562     // If this is really a nested loop, rip it out into a child loop.  Don't do
563     // this for loops with a giant number of backedges, just factor them into a
564     // common backedge instead.
565     if (L->getNumBackEdges() < 8) {
566       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
567                                             PreserveLCSSA, AC, MSSAU)) {
568         ++NumNested;
569         // Enqueue the outer loop as it should be processed next in our
570         // depth-first nest walk.
571         Worklist.push_back(OuterL);
572 
573         // This is a big restructuring change, reprocess the whole loop.
574         Changed = true;
575         // GCC doesn't tail recursion eliminate this.
576         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
577         goto ReprocessLoop;
578       }
579     }
580 
581     // If we either couldn't, or didn't want to, identify nesting of the loops,
582     // insert a new block that all backedges target, then make it jump to the
583     // loop header.
584     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
585     if (LoopLatch)
586       Changed = true;
587   }
588 
589   if (MSSAU && VerifyMemorySSA)
590     MSSAU->getMemorySSA()->verifyMemorySSA();
591 
592   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
593 
594   // Scan over the PHI nodes in the loop header.  Since they now have only two
595   // incoming values (the loop is canonicalized), we may have simplified the PHI
596   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
597   PHINode *PN;
598   for (BasicBlock::iterator I = L->getHeader()->begin();
599        (PN = dyn_cast<PHINode>(I++)); )
600     if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) {
601       if (SE) SE->forgetValue(PN);
602       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
603         PN->replaceAllUsesWith(V);
604         PN->eraseFromParent();
605         Changed = true;
606       }
607     }
608 
609   // If this loop has multiple exits and the exits all go to the same
610   // block, attempt to merge the exits. This helps several passes, such
611   // as LoopRotation, which do not support loops with multiple exits.
612   // SimplifyCFG also does this (and this code uses the same utility
613   // function), however this code is loop-aware, where SimplifyCFG is
614   // not. That gives it the advantage of being able to hoist
615   // loop-invariant instructions out of the way to open up more
616   // opportunities, and the disadvantage of having the responsibility
617   // to preserve dominator information.
618   auto HasUniqueExitBlock = [&]() {
619     BasicBlock *UniqueExit = nullptr;
620     for (auto *ExitingBB : ExitingBlocks)
621       for (auto *SuccBB : successors(ExitingBB)) {
622         if (L->contains(SuccBB))
623           continue;
624 
625         if (!UniqueExit)
626           UniqueExit = SuccBB;
627         else if (UniqueExit != SuccBB)
628           return false;
629       }
630 
631     return true;
632   };
633   if (HasUniqueExitBlock()) {
634     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
635       BasicBlock *ExitingBlock = ExitingBlocks[i];
636       if (!ExitingBlock->getSinglePredecessor()) continue;
637       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
638       if (!BI || !BI->isConditional()) continue;
639       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
640       if (!CI || CI->getParent() != ExitingBlock) continue;
641 
642       // Attempt to hoist out all instructions except for the
643       // comparison and the branch.
644       bool AllInvariant = true;
645       bool AnyInvariant = false;
646       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
647         Instruction *Inst = &*I++;
648         if (Inst == CI)
649           continue;
650         if (!L->makeLoopInvariant(
651                 Inst, AnyInvariant,
652                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU, SE)) {
653           AllInvariant = false;
654           break;
655         }
656       }
657       if (AnyInvariant)
658         Changed = true;
659       if (!AllInvariant) continue;
660 
661       // The block has now been cleared of all instructions except for
662       // a comparison and a conditional branch. SimplifyCFG may be able
663       // to fold it now.
664       if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
665         continue;
666 
667       // Success. The block is now dead, so remove it from the loop,
668       // update the dominator tree and delete it.
669       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
670                         << ExitingBlock->getName() << "\n");
671 
672       assert(pred_empty(ExitingBlock));
673       Changed = true;
674       LI->removeBlock(ExitingBlock);
675 
676       DomTreeNode *Node = DT->getNode(ExitingBlock);
677       while (!Node->isLeaf()) {
678         DomTreeNode *Child = Node->back();
679         DT->changeImmediateDominator(Child, Node->getIDom());
680       }
681       DT->eraseNode(ExitingBlock);
682       if (MSSAU) {
683         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
684         ExitBlockSet.insert(ExitingBlock);
685         MSSAU->removeBlocks(ExitBlockSet);
686       }
687 
688       BI->getSuccessor(0)->removePredecessor(
689           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
690       BI->getSuccessor(1)->removePredecessor(
691           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
692       ExitingBlock->eraseFromParent();
693     }
694   }
695 
696   // Changing exit conditions for blocks may affect exit counts of this loop and
697   // any of its paretns, so we must invalidate the entire subtree if we've made
698   // any changes.
699   if (Changed && SE)
700     SE->forgetTopmostLoop(L);
701 
702   if (MSSAU && VerifyMemorySSA)
703     MSSAU->getMemorySSA()->verifyMemorySSA();
704 
705   return Changed;
706 }
707 
708 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
709                         ScalarEvolution *SE, AssumptionCache *AC,
710                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
711   bool Changed = false;
712 
713 #ifndef NDEBUG
714   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
715   // form.
716   if (PreserveLCSSA) {
717     assert(DT && "DT not available.");
718     assert(LI && "LI not available.");
719     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
720            "Requested to preserve LCSSA, but it's already broken.");
721   }
722 #endif
723 
724   // Worklist maintains our depth-first queue of loops in this nest to process.
725   SmallVector<Loop *, 4> Worklist;
726   Worklist.push_back(L);
727 
728   // Walk the worklist from front to back, pushing newly found sub loops onto
729   // the back. This will let us process loops from back to front in depth-first
730   // order. We can use this simple process because loops form a tree.
731   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
732     Loop *L2 = Worklist[Idx];
733     Worklist.append(L2->begin(), L2->end());
734   }
735 
736   while (!Worklist.empty())
737     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
738                                AC, MSSAU, PreserveLCSSA);
739 
740   return Changed;
741 }
742 
743 namespace {
744   struct LoopSimplify : public FunctionPass {
745     static char ID; // Pass identification, replacement for typeid
746     LoopSimplify() : FunctionPass(ID) {
747       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
748     }
749 
750     bool runOnFunction(Function &F) override;
751 
752     void getAnalysisUsage(AnalysisUsage &AU) const override {
753       AU.addRequired<AssumptionCacheTracker>();
754 
755       // We need loop information to identify the loops...
756       AU.addRequired<DominatorTreeWrapperPass>();
757       AU.addPreserved<DominatorTreeWrapperPass>();
758 
759       AU.addRequired<LoopInfoWrapperPass>();
760       AU.addPreserved<LoopInfoWrapperPass>();
761 
762       AU.addPreserved<BasicAAWrapperPass>();
763       AU.addPreserved<AAResultsWrapperPass>();
764       AU.addPreserved<GlobalsAAWrapperPass>();
765       AU.addPreserved<ScalarEvolutionWrapperPass>();
766       AU.addPreserved<SCEVAAWrapperPass>();
767       AU.addPreservedID(LCSSAID);
768       AU.addPreserved<DependenceAnalysisWrapperPass>();
769       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
770       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
771       AU.addPreserved<MemorySSAWrapperPass>();
772     }
773 
774     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
775     void verifyAnalysis() const override;
776   };
777 }
778 
779 char LoopSimplify::ID = 0;
780 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
781                 "Canonicalize natural loops", false, false)
782 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
784 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
785 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
786                 "Canonicalize natural loops", false, false)
787 
788 // Publicly exposed interface to pass...
789 char &llvm::LoopSimplifyID = LoopSimplify::ID;
790 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
791 
792 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
793 /// it in any convenient order) inserting preheaders...
794 ///
795 bool LoopSimplify::runOnFunction(Function &F) {
796   bool Changed = false;
797   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
798   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
799   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
800   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
801   AssumptionCache *AC =
802       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
803   MemorySSA *MSSA = nullptr;
804   std::unique_ptr<MemorySSAUpdater> MSSAU;
805   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
806   if (MSSAAnalysis) {
807     MSSA = &MSSAAnalysis->getMSSA();
808     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
809   }
810 
811   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
812 
813   // Simplify each loop nest in the function.
814   for (auto *L : *LI)
815     Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
816 
817 #ifndef NDEBUG
818   if (PreserveLCSSA) {
819     bool InLCSSA = all_of(
820         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
821     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
822   }
823 #endif
824   return Changed;
825 }
826 
827 PreservedAnalyses LoopSimplifyPass::run(Function &F,
828                                         FunctionAnalysisManager &AM) {
829   bool Changed = false;
830   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
831   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
832   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
833   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
834   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
835   std::unique_ptr<MemorySSAUpdater> MSSAU;
836   if (MSSAAnalysis) {
837     auto *MSSA = &MSSAAnalysis->getMSSA();
838     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
839   }
840 
841 
842   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
843   // after simplifying the loops. MemorySSA is preserved if it exists.
844   for (auto *L : *LI)
845     Changed |=
846         simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
847 
848   if (!Changed)
849     return PreservedAnalyses::all();
850 
851   PreservedAnalyses PA;
852   PA.preserve<DominatorTreeAnalysis>();
853   PA.preserve<LoopAnalysis>();
854   PA.preserve<ScalarEvolutionAnalysis>();
855   PA.preserve<DependenceAnalysis>();
856   if (MSSAAnalysis)
857     PA.preserve<MemorySSAAnalysis>();
858   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
859   // blocks, but it does so only by splitting existing blocks and edges. This
860   // results in the interesting property that all new terminators inserted are
861   // unconditional branches which do not appear in BPI. All deletions are
862   // handled via ValueHandle callbacks w/in BPI.
863   PA.preserve<BranchProbabilityAnalysis>();
864   return PA;
865 }
866 
867 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
868 // below.
869 #if 0
870 static void verifyLoop(Loop *L) {
871   // Verify subloops.
872   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
873     verifyLoop(*I);
874 
875   // It used to be possible to just assert L->isLoopSimplifyForm(), however
876   // with the introduction of indirectbr, there are now cases where it's
877   // not possible to transform a loop as necessary. We can at least check
878   // that there is an indirectbr near any time there's trouble.
879 
880   // Indirectbr can interfere with preheader and unique backedge insertion.
881   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
882     bool HasIndBrPred = false;
883     for (BasicBlock *Pred : predecessors(L->getHeader()))
884       if (isa<IndirectBrInst>(Pred->getTerminator())) {
885         HasIndBrPred = true;
886         break;
887       }
888     assert(HasIndBrPred &&
889            "LoopSimplify has no excuse for missing loop header info!");
890     (void)HasIndBrPred;
891   }
892 
893   // Indirectbr can interfere with exit block canonicalization.
894   if (!L->hasDedicatedExits()) {
895     bool HasIndBrExiting = false;
896     SmallVector<BasicBlock*, 8> ExitingBlocks;
897     L->getExitingBlocks(ExitingBlocks);
898     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
899       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
900         HasIndBrExiting = true;
901         break;
902       }
903     }
904 
905     assert(HasIndBrExiting &&
906            "LoopSimplify has no excuse for missing exit block info!");
907     (void)HasIndBrExiting;
908   }
909 }
910 #endif
911 
912 void LoopSimplify::verifyAnalysis() const {
913   // FIXME: This routine is being called mid-way through the loop pass manager
914   // as loop passes destroy this analysis. That's actually fine, but we have no
915   // way of expressing that here. Once all of the passes that destroy this are
916   // hoisted out of the loop pass manager we can add back verification here.
917 #if 0
918   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
919     verifyLoop(*I);
920 #endif
921 }
922