1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
164     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
165     cl::init(2),
166     cl::desc("Multiplier to apply to threshold when determining whether or not "
167              "to fold branch to common destination when vector operations are "
168              "present"));
169 
170 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
171 STATISTIC(NumLinearMaps,
172           "Number of switch instructions turned into linear mapping");
173 STATISTIC(NumLookupTables,
174           "Number of switch instructions turned into lookup tables");
175 STATISTIC(
176     NumLookupTablesHoles,
177     "Number of switch instructions turned into lookup tables (holes checked)");
178 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
179 STATISTIC(NumFoldValueComparisonIntoPredecessors,
180           "Number of value comparisons folded into predecessor basic blocks");
181 STATISTIC(NumFoldBranchToCommonDest,
182           "Number of branches folded into predecessor basic block");
183 STATISTIC(
184     NumHoistCommonCode,
185     "Number of common instruction 'blocks' hoisted up to the begin block");
186 STATISTIC(NumHoistCommonInstrs,
187           "Number of common instructions hoisted up to the begin block");
188 STATISTIC(NumSinkCommonCode,
189           "Number of common instruction 'blocks' sunk down to the end block");
190 STATISTIC(NumSinkCommonInstrs,
191           "Number of common instructions sunk down to the end block");
192 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
193 STATISTIC(NumInvokes,
194           "Number of invokes with empty resume blocks simplified into calls");
195 
196 namespace {
197 
198 // The first field contains the value that the switch produces when a certain
199 // case group is selected, and the second field is a vector containing the
200 // cases composing the case group.
201 using SwitchCaseResultVectorTy =
202     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
203 
204 // The first field contains the phi node that generates a result of the switch
205 // and the second field contains the value generated for a certain case in the
206 // switch for that PHI.
207 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
208 
209 /// ValueEqualityComparisonCase - Represents a case of a switch.
210 struct ValueEqualityComparisonCase {
211   ConstantInt *Value;
212   BasicBlock *Dest;
213 
214   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
215       : Value(Value), Dest(Dest) {}
216 
217   bool operator<(ValueEqualityComparisonCase RHS) const {
218     // Comparing pointers is ok as we only rely on the order for uniquing.
219     return Value < RHS.Value;
220   }
221 
222   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
223 };
224 
225 class SimplifyCFGOpt {
226   const TargetTransformInfo &TTI;
227   DomTreeUpdater *DTU;
228   const DataLayout &DL;
229   ArrayRef<WeakVH> LoopHeaders;
230   const SimplifyCFGOptions &Options;
231   bool Resimplify;
232 
233   Value *isValueEqualityComparison(Instruction *TI);
234   BasicBlock *GetValueEqualityComparisonCases(
235       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
236   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
237                                                      BasicBlock *Pred,
238                                                      IRBuilder<> &Builder);
239   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
240                                                     Instruction *PTI,
241                                                     IRBuilder<> &Builder);
242   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
243                                            IRBuilder<> &Builder);
244 
245   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
246   bool simplifySingleResume(ResumeInst *RI);
247   bool simplifyCommonResume(ResumeInst *RI);
248   bool simplifyCleanupReturn(CleanupReturnInst *RI);
249   bool simplifyUnreachable(UnreachableInst *UI);
250   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
251   bool simplifyIndirectBr(IndirectBrInst *IBI);
252   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
253   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
254   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
255 
256   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
257                                              IRBuilder<> &Builder);
258 
259   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
260                              bool EqTermsOnly);
261   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
262                               const TargetTransformInfo &TTI);
263   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
264                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
265                                   uint32_t TrueWeight, uint32_t FalseWeight);
266   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
267                                  const DataLayout &DL);
268   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
269   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
270   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
271 
272 public:
273   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
274                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
275                  const SimplifyCFGOptions &Opts)
276       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
277     assert((!DTU || !DTU->hasPostDomTree()) &&
278            "SimplifyCFG is not yet capable of maintaining validity of a "
279            "PostDomTree, so don't ask for it.");
280   }
281 
282   bool simplifyOnce(BasicBlock *BB);
283   bool run(BasicBlock *BB);
284 
285   // Helper to set Resimplify and return change indication.
286   bool requestResimplify() {
287     Resimplify = true;
288     return true;
289   }
290 };
291 
292 } // end anonymous namespace
293 
294 /// Return true if it is safe to merge these two
295 /// terminator instructions together.
296 static bool
297 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
298                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
299   if (SI1 == SI2)
300     return false; // Can't merge with self!
301 
302   // It is not safe to merge these two switch instructions if they have a common
303   // successor, and if that successor has a PHI node, and if *that* PHI node has
304   // conflicting incoming values from the two switch blocks.
305   BasicBlock *SI1BB = SI1->getParent();
306   BasicBlock *SI2BB = SI2->getParent();
307 
308   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
309   bool Fail = false;
310   for (BasicBlock *Succ : successors(SI2BB))
311     if (SI1Succs.count(Succ))
312       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
313         PHINode *PN = cast<PHINode>(BBI);
314         if (PN->getIncomingValueForBlock(SI1BB) !=
315             PN->getIncomingValueForBlock(SI2BB)) {
316           if (FailBlocks)
317             FailBlocks->insert(Succ);
318           Fail = true;
319         }
320       }
321 
322   return !Fail;
323 }
324 
325 /// Update PHI nodes in Succ to indicate that there will now be entries in it
326 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
327 /// will be the same as those coming in from ExistPred, an existing predecessor
328 /// of Succ.
329 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
330                                   BasicBlock *ExistPred,
331                                   MemorySSAUpdater *MSSAU = nullptr) {
332   for (PHINode &PN : Succ->phis())
333     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
334   if (MSSAU)
335     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
336       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
337 }
338 
339 /// Compute an abstract "cost" of speculating the given instruction,
340 /// which is assumed to be safe to speculate. TCC_Free means cheap,
341 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
342 /// expensive.
343 static InstructionCost computeSpeculationCost(const User *I,
344                                               const TargetTransformInfo &TTI) {
345   assert(isSafeToSpeculativelyExecute(I) &&
346          "Instruction is not safe to speculatively execute!");
347   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
348 }
349 
350 /// If we have a merge point of an "if condition" as accepted above,
351 /// return true if the specified value dominates the block.  We
352 /// don't handle the true generality of domination here, just a special case
353 /// which works well enough for us.
354 ///
355 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
356 /// see if V (which must be an instruction) and its recursive operands
357 /// that do not dominate BB have a combined cost lower than Budget and
358 /// are non-trapping.  If both are true, the instruction is inserted into the
359 /// set and true is returned.
360 ///
361 /// The cost for most non-trapping instructions is defined as 1 except for
362 /// Select whose cost is 2.
363 ///
364 /// After this function returns, Cost is increased by the cost of
365 /// V plus its non-dominating operands.  If that cost is greater than
366 /// Budget, false is returned and Cost is undefined.
367 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
368                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
369                                 InstructionCost &Cost,
370                                 InstructionCost Budget,
371                                 const TargetTransformInfo &TTI,
372                                 unsigned Depth = 0) {
373   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
374   // so limit the recursion depth.
375   // TODO: While this recursion limit does prevent pathological behavior, it
376   // would be better to track visited instructions to avoid cycles.
377   if (Depth == MaxSpeculationDepth)
378     return false;
379 
380   Instruction *I = dyn_cast<Instruction>(V);
381   if (!I) {
382     // Non-instructions all dominate instructions, but not all constantexprs
383     // can be executed unconditionally.
384     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
385       if (C->canTrap())
386         return false;
387     return true;
388   }
389   BasicBlock *PBB = I->getParent();
390 
391   // We don't want to allow weird loops that might have the "if condition" in
392   // the bottom of this block.
393   if (PBB == BB)
394     return false;
395 
396   // If this instruction is defined in a block that contains an unconditional
397   // branch to BB, then it must be in the 'conditional' part of the "if
398   // statement".  If not, it definitely dominates the region.
399   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
400   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
401     return true;
402 
403   // If we have seen this instruction before, don't count it again.
404   if (AggressiveInsts.count(I))
405     return true;
406 
407   // Okay, it looks like the instruction IS in the "condition".  Check to
408   // see if it's a cheap instruction to unconditionally compute, and if it
409   // only uses stuff defined outside of the condition.  If so, hoist it out.
410   if (!isSafeToSpeculativelyExecute(I))
411     return false;
412 
413   Cost += computeSpeculationCost(I, TTI);
414 
415   // Allow exactly one instruction to be speculated regardless of its cost
416   // (as long as it is safe to do so).
417   // This is intended to flatten the CFG even if the instruction is a division
418   // or other expensive operation. The speculation of an expensive instruction
419   // is expected to be undone in CodeGenPrepare if the speculation has not
420   // enabled further IR optimizations.
421   if (Cost > Budget &&
422       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
423        !Cost.isValid()))
424     return false;
425 
426   // Okay, we can only really hoist these out if their operands do
427   // not take us over the cost threshold.
428   for (Use &Op : I->operands())
429     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
430                              Depth + 1))
431       return false;
432   // Okay, it's safe to do this!  Remember this instruction.
433   AggressiveInsts.insert(I);
434   return true;
435 }
436 
437 /// Extract ConstantInt from value, looking through IntToPtr
438 /// and PointerNullValue. Return NULL if value is not a constant int.
439 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
440   // Normal constant int.
441   ConstantInt *CI = dyn_cast<ConstantInt>(V);
442   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
443     return CI;
444 
445   // This is some kind of pointer constant. Turn it into a pointer-sized
446   // ConstantInt if possible.
447   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
448 
449   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
450   if (isa<ConstantPointerNull>(V))
451     return ConstantInt::get(PtrTy, 0);
452 
453   // IntToPtr const int.
454   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
455     if (CE->getOpcode() == Instruction::IntToPtr)
456       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
457         // The constant is very likely to have the right type already.
458         if (CI->getType() == PtrTy)
459           return CI;
460         else
461           return cast<ConstantInt>(
462               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
463       }
464   return nullptr;
465 }
466 
467 namespace {
468 
469 /// Given a chain of or (||) or and (&&) comparison of a value against a
470 /// constant, this will try to recover the information required for a switch
471 /// structure.
472 /// It will depth-first traverse the chain of comparison, seeking for patterns
473 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
474 /// representing the different cases for the switch.
475 /// Note that if the chain is composed of '||' it will build the set of elements
476 /// that matches the comparisons (i.e. any of this value validate the chain)
477 /// while for a chain of '&&' it will build the set elements that make the test
478 /// fail.
479 struct ConstantComparesGatherer {
480   const DataLayout &DL;
481 
482   /// Value found for the switch comparison
483   Value *CompValue = nullptr;
484 
485   /// Extra clause to be checked before the switch
486   Value *Extra = nullptr;
487 
488   /// Set of integers to match in switch
489   SmallVector<ConstantInt *, 8> Vals;
490 
491   /// Number of comparisons matched in the and/or chain
492   unsigned UsedICmps = 0;
493 
494   /// Construct and compute the result for the comparison instruction Cond
495   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
496     gather(Cond);
497   }
498 
499   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
500   ConstantComparesGatherer &
501   operator=(const ConstantComparesGatherer &) = delete;
502 
503 private:
504   /// Try to set the current value used for the comparison, it succeeds only if
505   /// it wasn't set before or if the new value is the same as the old one
506   bool setValueOnce(Value *NewVal) {
507     if (CompValue && CompValue != NewVal)
508       return false;
509     CompValue = NewVal;
510     return (CompValue != nullptr);
511   }
512 
513   /// Try to match Instruction "I" as a comparison against a constant and
514   /// populates the array Vals with the set of values that match (or do not
515   /// match depending on isEQ).
516   /// Return false on failure. On success, the Value the comparison matched
517   /// against is placed in CompValue.
518   /// If CompValue is already set, the function is expected to fail if a match
519   /// is found but the value compared to is different.
520   bool matchInstruction(Instruction *I, bool isEQ) {
521     // If this is an icmp against a constant, handle this as one of the cases.
522     ICmpInst *ICI;
523     ConstantInt *C;
524     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
525           (C = GetConstantInt(I->getOperand(1), DL)))) {
526       return false;
527     }
528 
529     Value *RHSVal;
530     const APInt *RHSC;
531 
532     // Pattern match a special case
533     // (x & ~2^z) == y --> x == y || x == y|2^z
534     // This undoes a transformation done by instcombine to fuse 2 compares.
535     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
536       // It's a little bit hard to see why the following transformations are
537       // correct. Here is a CVC3 program to verify them for 64-bit values:
538 
539       /*
540          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
541          x    : BITVECTOR(64);
542          y    : BITVECTOR(64);
543          z    : BITVECTOR(64);
544          mask : BITVECTOR(64) = BVSHL(ONE, z);
545          QUERY( (y & ~mask = y) =>
546                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
547          );
548          QUERY( (y |  mask = y) =>
549                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
550          );
551       */
552 
553       // Please note that each pattern must be a dual implication (<--> or
554       // iff). One directional implication can create spurious matches. If the
555       // implication is only one-way, an unsatisfiable condition on the left
556       // side can imply a satisfiable condition on the right side. Dual
557       // implication ensures that satisfiable conditions are transformed to
558       // other satisfiable conditions and unsatisfiable conditions are
559       // transformed to other unsatisfiable conditions.
560 
561       // Here is a concrete example of a unsatisfiable condition on the left
562       // implying a satisfiable condition on the right:
563       //
564       // mask = (1 << z)
565       // (x & ~mask) == y  --> (x == y || x == (y | mask))
566       //
567       // Substituting y = 3, z = 0 yields:
568       // (x & -2) == 3 --> (x == 3 || x == 2)
569 
570       // Pattern match a special case:
571       /*
572         QUERY( (y & ~mask = y) =>
573                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
574         );
575       */
576       if (match(ICI->getOperand(0),
577                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
578         APInt Mask = ~*RHSC;
579         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
580           // If we already have a value for the switch, it has to match!
581           if (!setValueOnce(RHSVal))
582             return false;
583 
584           Vals.push_back(C);
585           Vals.push_back(
586               ConstantInt::get(C->getContext(),
587                                C->getValue() | Mask));
588           UsedICmps++;
589           return true;
590         }
591       }
592 
593       // Pattern match a special case:
594       /*
595         QUERY( (y |  mask = y) =>
596                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
597         );
598       */
599       if (match(ICI->getOperand(0),
600                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
601         APInt Mask = *RHSC;
602         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
603           // If we already have a value for the switch, it has to match!
604           if (!setValueOnce(RHSVal))
605             return false;
606 
607           Vals.push_back(C);
608           Vals.push_back(ConstantInt::get(C->getContext(),
609                                           C->getValue() & ~Mask));
610           UsedICmps++;
611           return true;
612         }
613       }
614 
615       // If we already have a value for the switch, it has to match!
616       if (!setValueOnce(ICI->getOperand(0)))
617         return false;
618 
619       UsedICmps++;
620       Vals.push_back(C);
621       return ICI->getOperand(0);
622     }
623 
624     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
625     ConstantRange Span =
626         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
627 
628     // Shift the range if the compare is fed by an add. This is the range
629     // compare idiom as emitted by instcombine.
630     Value *CandidateVal = I->getOperand(0);
631     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
632       Span = Span.subtract(*RHSC);
633       CandidateVal = RHSVal;
634     }
635 
636     // If this is an and/!= check, then we are looking to build the set of
637     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
638     // x != 0 && x != 1.
639     if (!isEQ)
640       Span = Span.inverse();
641 
642     // If there are a ton of values, we don't want to make a ginormous switch.
643     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
644       return false;
645     }
646 
647     // If we already have a value for the switch, it has to match!
648     if (!setValueOnce(CandidateVal))
649       return false;
650 
651     // Add all values from the range to the set
652     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
653       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
654 
655     UsedICmps++;
656     return true;
657   }
658 
659   /// Given a potentially 'or'd or 'and'd together collection of icmp
660   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
661   /// the value being compared, and stick the list constants into the Vals
662   /// vector.
663   /// One "Extra" case is allowed to differ from the other.
664   void gather(Value *V) {
665     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
666 
667     // Keep a stack (SmallVector for efficiency) for depth-first traversal
668     SmallVector<Value *, 8> DFT;
669     SmallPtrSet<Value *, 8> Visited;
670 
671     // Initialize
672     Visited.insert(V);
673     DFT.push_back(V);
674 
675     while (!DFT.empty()) {
676       V = DFT.pop_back_val();
677 
678       if (Instruction *I = dyn_cast<Instruction>(V)) {
679         // If it is a || (or && depending on isEQ), process the operands.
680         Value *Op0, *Op1;
681         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
682                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
683           if (Visited.insert(Op1).second)
684             DFT.push_back(Op1);
685           if (Visited.insert(Op0).second)
686             DFT.push_back(Op0);
687 
688           continue;
689         }
690 
691         // Try to match the current instruction
692         if (matchInstruction(I, isEQ))
693           // Match succeed, continue the loop
694           continue;
695       }
696 
697       // One element of the sequence of || (or &&) could not be match as a
698       // comparison against the same value as the others.
699       // We allow only one "Extra" case to be checked before the switch
700       if (!Extra) {
701         Extra = V;
702         continue;
703       }
704       // Failed to parse a proper sequence, abort now
705       CompValue = nullptr;
706       break;
707     }
708   }
709 };
710 
711 } // end anonymous namespace
712 
713 static void EraseTerminatorAndDCECond(Instruction *TI,
714                                       MemorySSAUpdater *MSSAU = nullptr) {
715   Instruction *Cond = nullptr;
716   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
717     Cond = dyn_cast<Instruction>(SI->getCondition());
718   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
719     if (BI->isConditional())
720       Cond = dyn_cast<Instruction>(BI->getCondition());
721   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
722     Cond = dyn_cast<Instruction>(IBI->getAddress());
723   }
724 
725   TI->eraseFromParent();
726   if (Cond)
727     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
728 }
729 
730 /// Return true if the specified terminator checks
731 /// to see if a value is equal to constant integer value.
732 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
733   Value *CV = nullptr;
734   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
735     // Do not permit merging of large switch instructions into their
736     // predecessors unless there is only one predecessor.
737     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
738       CV = SI->getCondition();
739   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
740     if (BI->isConditional() && BI->getCondition()->hasOneUse())
741       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
742         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
743           CV = ICI->getOperand(0);
744       }
745 
746   // Unwrap any lossless ptrtoint cast.
747   if (CV) {
748     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
749       Value *Ptr = PTII->getPointerOperand();
750       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
751         CV = Ptr;
752     }
753   }
754   return CV;
755 }
756 
757 /// Given a value comparison instruction,
758 /// decode all of the 'cases' that it represents and return the 'default' block.
759 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
760     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
761   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
762     Cases.reserve(SI->getNumCases());
763     for (auto Case : SI->cases())
764       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
765                                                   Case.getCaseSuccessor()));
766     return SI->getDefaultDest();
767   }
768 
769   BranchInst *BI = cast<BranchInst>(TI);
770   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
771   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
772   Cases.push_back(ValueEqualityComparisonCase(
773       GetConstantInt(ICI->getOperand(1), DL), Succ));
774   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
775 }
776 
777 /// Given a vector of bb/value pairs, remove any entries
778 /// in the list that match the specified block.
779 static void
780 EliminateBlockCases(BasicBlock *BB,
781                     std::vector<ValueEqualityComparisonCase> &Cases) {
782   llvm::erase_value(Cases, BB);
783 }
784 
785 /// Return true if there are any keys in C1 that exist in C2 as well.
786 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
787                           std::vector<ValueEqualityComparisonCase> &C2) {
788   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
789 
790   // Make V1 be smaller than V2.
791   if (V1->size() > V2->size())
792     std::swap(V1, V2);
793 
794   if (V1->empty())
795     return false;
796   if (V1->size() == 1) {
797     // Just scan V2.
798     ConstantInt *TheVal = (*V1)[0].Value;
799     for (unsigned i = 0, e = V2->size(); i != e; ++i)
800       if (TheVal == (*V2)[i].Value)
801         return true;
802   }
803 
804   // Otherwise, just sort both lists and compare element by element.
805   array_pod_sort(V1->begin(), V1->end());
806   array_pod_sort(V2->begin(), V2->end());
807   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
808   while (i1 != e1 && i2 != e2) {
809     if ((*V1)[i1].Value == (*V2)[i2].Value)
810       return true;
811     if ((*V1)[i1].Value < (*V2)[i2].Value)
812       ++i1;
813     else
814       ++i2;
815   }
816   return false;
817 }
818 
819 // Set branch weights on SwitchInst. This sets the metadata if there is at
820 // least one non-zero weight.
821 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
822   // Check that there is at least one non-zero weight. Otherwise, pass
823   // nullptr to setMetadata which will erase the existing metadata.
824   MDNode *N = nullptr;
825   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
826     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
827   SI->setMetadata(LLVMContext::MD_prof, N);
828 }
829 
830 // Similar to the above, but for branch and select instructions that take
831 // exactly 2 weights.
832 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
833                              uint32_t FalseWeight) {
834   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
835   // Check that there is at least one non-zero weight. Otherwise, pass
836   // nullptr to setMetadata which will erase the existing metadata.
837   MDNode *N = nullptr;
838   if (TrueWeight || FalseWeight)
839     N = MDBuilder(I->getParent()->getContext())
840             .createBranchWeights(TrueWeight, FalseWeight);
841   I->setMetadata(LLVMContext::MD_prof, N);
842 }
843 
844 /// If TI is known to be a terminator instruction and its block is known to
845 /// only have a single predecessor block, check to see if that predecessor is
846 /// also a value comparison with the same value, and if that comparison
847 /// determines the outcome of this comparison. If so, simplify TI. This does a
848 /// very limited form of jump threading.
849 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
850     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
851   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
852   if (!PredVal)
853     return false; // Not a value comparison in predecessor.
854 
855   Value *ThisVal = isValueEqualityComparison(TI);
856   assert(ThisVal && "This isn't a value comparison!!");
857   if (ThisVal != PredVal)
858     return false; // Different predicates.
859 
860   // TODO: Preserve branch weight metadata, similarly to how
861   // FoldValueComparisonIntoPredecessors preserves it.
862 
863   // Find out information about when control will move from Pred to TI's block.
864   std::vector<ValueEqualityComparisonCase> PredCases;
865   BasicBlock *PredDef =
866       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
867   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
868 
869   // Find information about how control leaves this block.
870   std::vector<ValueEqualityComparisonCase> ThisCases;
871   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
872   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
873 
874   // If TI's block is the default block from Pred's comparison, potentially
875   // simplify TI based on this knowledge.
876   if (PredDef == TI->getParent()) {
877     // If we are here, we know that the value is none of those cases listed in
878     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
879     // can simplify TI.
880     if (!ValuesOverlap(PredCases, ThisCases))
881       return false;
882 
883     if (isa<BranchInst>(TI)) {
884       // Okay, one of the successors of this condbr is dead.  Convert it to a
885       // uncond br.
886       assert(ThisCases.size() == 1 && "Branch can only have one case!");
887       // Insert the new branch.
888       Instruction *NI = Builder.CreateBr(ThisDef);
889       (void)NI;
890 
891       // Remove PHI node entries for the dead edge.
892       ThisCases[0].Dest->removePredecessor(PredDef);
893 
894       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
895                         << "Through successor TI: " << *TI << "Leaving: " << *NI
896                         << "\n");
897 
898       EraseTerminatorAndDCECond(TI);
899 
900       if (DTU)
901         DTU->applyUpdates(
902             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
903 
904       return true;
905     }
906 
907     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
908     // Okay, TI has cases that are statically dead, prune them away.
909     SmallPtrSet<Constant *, 16> DeadCases;
910     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
911       DeadCases.insert(PredCases[i].Value);
912 
913     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
914                       << "Through successor TI: " << *TI);
915 
916     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
917     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
918       --i;
919       auto *Successor = i->getCaseSuccessor();
920       if (DTU)
921         ++NumPerSuccessorCases[Successor];
922       if (DeadCases.count(i->getCaseValue())) {
923         Successor->removePredecessor(PredDef);
924         SI.removeCase(i);
925         if (DTU)
926           --NumPerSuccessorCases[Successor];
927       }
928     }
929 
930     if (DTU) {
931       std::vector<DominatorTree::UpdateType> Updates;
932       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
933         if (I.second == 0)
934           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
935       DTU->applyUpdates(Updates);
936     }
937 
938     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
939     return true;
940   }
941 
942   // Otherwise, TI's block must correspond to some matched value.  Find out
943   // which value (or set of values) this is.
944   ConstantInt *TIV = nullptr;
945   BasicBlock *TIBB = TI->getParent();
946   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
947     if (PredCases[i].Dest == TIBB) {
948       if (TIV)
949         return false; // Cannot handle multiple values coming to this block.
950       TIV = PredCases[i].Value;
951     }
952   assert(TIV && "No edge from pred to succ?");
953 
954   // Okay, we found the one constant that our value can be if we get into TI's
955   // BB.  Find out which successor will unconditionally be branched to.
956   BasicBlock *TheRealDest = nullptr;
957   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
958     if (ThisCases[i].Value == TIV) {
959       TheRealDest = ThisCases[i].Dest;
960       break;
961     }
962 
963   // If not handled by any explicit cases, it is handled by the default case.
964   if (!TheRealDest)
965     TheRealDest = ThisDef;
966 
967   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
968 
969   // Remove PHI node entries for dead edges.
970   BasicBlock *CheckEdge = TheRealDest;
971   for (BasicBlock *Succ : successors(TIBB))
972     if (Succ != CheckEdge) {
973       if (Succ != TheRealDest)
974         RemovedSuccs.insert(Succ);
975       Succ->removePredecessor(TIBB);
976     } else
977       CheckEdge = nullptr;
978 
979   // Insert the new branch.
980   Instruction *NI = Builder.CreateBr(TheRealDest);
981   (void)NI;
982 
983   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
984                     << "Through successor TI: " << *TI << "Leaving: " << *NI
985                     << "\n");
986 
987   EraseTerminatorAndDCECond(TI);
988   if (DTU) {
989     SmallVector<DominatorTree::UpdateType, 2> Updates;
990     Updates.reserve(RemovedSuccs.size());
991     for (auto *RemovedSucc : RemovedSuccs)
992       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
993     DTU->applyUpdates(Updates);
994   }
995   return true;
996 }
997 
998 namespace {
999 
1000 /// This class implements a stable ordering of constant
1001 /// integers that does not depend on their address.  This is important for
1002 /// applications that sort ConstantInt's to ensure uniqueness.
1003 struct ConstantIntOrdering {
1004   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1005     return LHS->getValue().ult(RHS->getValue());
1006   }
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1012                                     ConstantInt *const *P2) {
1013   const ConstantInt *LHS = *P1;
1014   const ConstantInt *RHS = *P2;
1015   if (LHS == RHS)
1016     return 0;
1017   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1018 }
1019 
1020 static inline bool HasBranchWeights(const Instruction *I) {
1021   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1022   if (ProfMD && ProfMD->getOperand(0))
1023     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1024       return MDS->getString().equals("branch_weights");
1025 
1026   return false;
1027 }
1028 
1029 /// Get Weights of a given terminator, the default weight is at the front
1030 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1031 /// metadata.
1032 static void GetBranchWeights(Instruction *TI,
1033                              SmallVectorImpl<uint64_t> &Weights) {
1034   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1035   assert(MD);
1036   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1037     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1038     Weights.push_back(CI->getValue().getZExtValue());
1039   }
1040 
1041   // If TI is a conditional eq, the default case is the false case,
1042   // and the corresponding branch-weight data is at index 2. We swap the
1043   // default weight to be the first entry.
1044   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1045     assert(Weights.size() == 2);
1046     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1047     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1048       std::swap(Weights.front(), Weights.back());
1049   }
1050 }
1051 
1052 /// Keep halving the weights until all can fit in uint32_t.
1053 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1054   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1055   if (Max > UINT_MAX) {
1056     unsigned Offset = 32 - countLeadingZeros(Max);
1057     for (uint64_t &I : Weights)
1058       I >>= Offset;
1059   }
1060 }
1061 
1062 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1063     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1064   Instruction *PTI = PredBlock->getTerminator();
1065 
1066   // If we have bonus instructions, clone them into the predecessor block.
1067   // Note that there may be multiple predecessor blocks, so we cannot move
1068   // bonus instructions to a predecessor block.
1069   for (Instruction &BonusInst : *BB) {
1070     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1071       continue;
1072 
1073     Instruction *NewBonusInst = BonusInst.clone();
1074 
1075     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1076       // Unless the instruction has the same !dbg location as the original
1077       // branch, drop it. When we fold the bonus instructions we want to make
1078       // sure we reset their debug locations in order to avoid stepping on
1079       // dead code caused by folding dead branches.
1080       NewBonusInst->setDebugLoc(DebugLoc());
1081     }
1082 
1083     RemapInstruction(NewBonusInst, VMap,
1084                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1085     VMap[&BonusInst] = NewBonusInst;
1086 
1087     // If we moved a load, we cannot any longer claim any knowledge about
1088     // its potential value. The previous information might have been valid
1089     // only given the branch precondition.
1090     // For an analogous reason, we must also drop all the metadata whose
1091     // semantics we don't understand. We *can* preserve !annotation, because
1092     // it is tied to the instruction itself, not the value or position.
1093     // Similarly strip attributes on call parameters that may cause UB in
1094     // location the call is moved to.
1095     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1096         LLVMContext::MD_annotation);
1097 
1098     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1099     NewBonusInst->takeName(&BonusInst);
1100     BonusInst.setName(NewBonusInst->getName() + ".old");
1101 
1102     // Update (liveout) uses of bonus instructions,
1103     // now that the bonus instruction has been cloned into predecessor.
1104     // Note that we expect to be in a block-closed SSA form for this to work!
1105     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1106       auto *UI = cast<Instruction>(U.getUser());
1107       auto *PN = dyn_cast<PHINode>(UI);
1108       if (!PN) {
1109         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1110                "If the user is not a PHI node, then it should be in the same "
1111                "block as, and come after, the original bonus instruction.");
1112         continue; // Keep using the original bonus instruction.
1113       }
1114       // Is this the block-closed SSA form PHI node?
1115       if (PN->getIncomingBlock(U) == BB)
1116         continue; // Great, keep using the original bonus instruction.
1117       // The only other alternative is an "use" when coming from
1118       // the predecessor block - here we should refer to the cloned bonus instr.
1119       assert(PN->getIncomingBlock(U) == PredBlock &&
1120              "Not in block-closed SSA form?");
1121       U.set(NewBonusInst);
1122     }
1123   }
1124 }
1125 
1126 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1127     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1128   BasicBlock *BB = TI->getParent();
1129   BasicBlock *Pred = PTI->getParent();
1130 
1131   SmallVector<DominatorTree::UpdateType, 32> Updates;
1132 
1133   // Figure out which 'cases' to copy from SI to PSI.
1134   std::vector<ValueEqualityComparisonCase> BBCases;
1135   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1136 
1137   std::vector<ValueEqualityComparisonCase> PredCases;
1138   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1139 
1140   // Based on whether the default edge from PTI goes to BB or not, fill in
1141   // PredCases and PredDefault with the new switch cases we would like to
1142   // build.
1143   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1144 
1145   // Update the branch weight metadata along the way
1146   SmallVector<uint64_t, 8> Weights;
1147   bool PredHasWeights = HasBranchWeights(PTI);
1148   bool SuccHasWeights = HasBranchWeights(TI);
1149 
1150   if (PredHasWeights) {
1151     GetBranchWeights(PTI, Weights);
1152     // branch-weight metadata is inconsistent here.
1153     if (Weights.size() != 1 + PredCases.size())
1154       PredHasWeights = SuccHasWeights = false;
1155   } else if (SuccHasWeights)
1156     // If there are no predecessor weights but there are successor weights,
1157     // populate Weights with 1, which will later be scaled to the sum of
1158     // successor's weights
1159     Weights.assign(1 + PredCases.size(), 1);
1160 
1161   SmallVector<uint64_t, 8> SuccWeights;
1162   if (SuccHasWeights) {
1163     GetBranchWeights(TI, SuccWeights);
1164     // branch-weight metadata is inconsistent here.
1165     if (SuccWeights.size() != 1 + BBCases.size())
1166       PredHasWeights = SuccHasWeights = false;
1167   } else if (PredHasWeights)
1168     SuccWeights.assign(1 + BBCases.size(), 1);
1169 
1170   if (PredDefault == BB) {
1171     // If this is the default destination from PTI, only the edges in TI
1172     // that don't occur in PTI, or that branch to BB will be activated.
1173     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1174     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1175       if (PredCases[i].Dest != BB)
1176         PTIHandled.insert(PredCases[i].Value);
1177       else {
1178         // The default destination is BB, we don't need explicit targets.
1179         std::swap(PredCases[i], PredCases.back());
1180 
1181         if (PredHasWeights || SuccHasWeights) {
1182           // Increase weight for the default case.
1183           Weights[0] += Weights[i + 1];
1184           std::swap(Weights[i + 1], Weights.back());
1185           Weights.pop_back();
1186         }
1187 
1188         PredCases.pop_back();
1189         --i;
1190         --e;
1191       }
1192 
1193     // Reconstruct the new switch statement we will be building.
1194     if (PredDefault != BBDefault) {
1195       PredDefault->removePredecessor(Pred);
1196       if (DTU && PredDefault != BB)
1197         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1198       PredDefault = BBDefault;
1199       ++NewSuccessors[BBDefault];
1200     }
1201 
1202     unsigned CasesFromPred = Weights.size();
1203     uint64_t ValidTotalSuccWeight = 0;
1204     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1205       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1206         PredCases.push_back(BBCases[i]);
1207         ++NewSuccessors[BBCases[i].Dest];
1208         if (SuccHasWeights || PredHasWeights) {
1209           // The default weight is at index 0, so weight for the ith case
1210           // should be at index i+1. Scale the cases from successor by
1211           // PredDefaultWeight (Weights[0]).
1212           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1213           ValidTotalSuccWeight += SuccWeights[i + 1];
1214         }
1215       }
1216 
1217     if (SuccHasWeights || PredHasWeights) {
1218       ValidTotalSuccWeight += SuccWeights[0];
1219       // Scale the cases from predecessor by ValidTotalSuccWeight.
1220       for (unsigned i = 1; i < CasesFromPred; ++i)
1221         Weights[i] *= ValidTotalSuccWeight;
1222       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1223       Weights[0] *= SuccWeights[0];
1224     }
1225   } else {
1226     // If this is not the default destination from PSI, only the edges
1227     // in SI that occur in PSI with a destination of BB will be
1228     // activated.
1229     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1230     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1231     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1232       if (PredCases[i].Dest == BB) {
1233         PTIHandled.insert(PredCases[i].Value);
1234 
1235         if (PredHasWeights || SuccHasWeights) {
1236           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1237           std::swap(Weights[i + 1], Weights.back());
1238           Weights.pop_back();
1239         }
1240 
1241         std::swap(PredCases[i], PredCases.back());
1242         PredCases.pop_back();
1243         --i;
1244         --e;
1245       }
1246 
1247     // Okay, now we know which constants were sent to BB from the
1248     // predecessor.  Figure out where they will all go now.
1249     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1250       if (PTIHandled.count(BBCases[i].Value)) {
1251         // If this is one we are capable of getting...
1252         if (PredHasWeights || SuccHasWeights)
1253           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1254         PredCases.push_back(BBCases[i]);
1255         ++NewSuccessors[BBCases[i].Dest];
1256         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1257       }
1258 
1259     // If there are any constants vectored to BB that TI doesn't handle,
1260     // they must go to the default destination of TI.
1261     for (ConstantInt *I : PTIHandled) {
1262       if (PredHasWeights || SuccHasWeights)
1263         Weights.push_back(WeightsForHandled[I]);
1264       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1265       ++NewSuccessors[BBDefault];
1266     }
1267   }
1268 
1269   // Okay, at this point, we know which new successor Pred will get.  Make
1270   // sure we update the number of entries in the PHI nodes for these
1271   // successors.
1272   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1273   if (DTU) {
1274     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1275     Updates.reserve(Updates.size() + NewSuccessors.size());
1276   }
1277   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1278        NewSuccessors) {
1279     for (auto I : seq(0, NewSuccessor.second)) {
1280       (void)I;
1281       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1282     }
1283     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1284       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1285   }
1286 
1287   Builder.SetInsertPoint(PTI);
1288   // Convert pointer to int before we switch.
1289   if (CV->getType()->isPointerTy()) {
1290     CV =
1291         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1292   }
1293 
1294   // Now that the successors are updated, create the new Switch instruction.
1295   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1296   NewSI->setDebugLoc(PTI->getDebugLoc());
1297   for (ValueEqualityComparisonCase &V : PredCases)
1298     NewSI->addCase(V.Value, V.Dest);
1299 
1300   if (PredHasWeights || SuccHasWeights) {
1301     // Halve the weights if any of them cannot fit in an uint32_t
1302     FitWeights(Weights);
1303 
1304     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1305 
1306     setBranchWeights(NewSI, MDWeights);
1307   }
1308 
1309   EraseTerminatorAndDCECond(PTI);
1310 
1311   // Okay, last check.  If BB is still a successor of PSI, then we must
1312   // have an infinite loop case.  If so, add an infinitely looping block
1313   // to handle the case to preserve the behavior of the code.
1314   BasicBlock *InfLoopBlock = nullptr;
1315   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1316     if (NewSI->getSuccessor(i) == BB) {
1317       if (!InfLoopBlock) {
1318         // Insert it at the end of the function, because it's either code,
1319         // or it won't matter if it's hot. :)
1320         InfLoopBlock =
1321             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1322         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1323         if (DTU)
1324           Updates.push_back(
1325               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1326       }
1327       NewSI->setSuccessor(i, InfLoopBlock);
1328     }
1329 
1330   if (DTU) {
1331     if (InfLoopBlock)
1332       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1333 
1334     Updates.push_back({DominatorTree::Delete, Pred, BB});
1335 
1336     DTU->applyUpdates(Updates);
1337   }
1338 
1339   ++NumFoldValueComparisonIntoPredecessors;
1340   return true;
1341 }
1342 
1343 /// The specified terminator is a value equality comparison instruction
1344 /// (either a switch or a branch on "X == c").
1345 /// See if any of the predecessors of the terminator block are value comparisons
1346 /// on the same value.  If so, and if safe to do so, fold them together.
1347 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1348                                                          IRBuilder<> &Builder) {
1349   BasicBlock *BB = TI->getParent();
1350   Value *CV = isValueEqualityComparison(TI); // CondVal
1351   assert(CV && "Not a comparison?");
1352 
1353   bool Changed = false;
1354 
1355   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1356   while (!Preds.empty()) {
1357     BasicBlock *Pred = Preds.pop_back_val();
1358     Instruction *PTI = Pred->getTerminator();
1359 
1360     // Don't try to fold into itself.
1361     if (Pred == BB)
1362       continue;
1363 
1364     // See if the predecessor is a comparison with the same value.
1365     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1366     if (PCV != CV)
1367       continue;
1368 
1369     SmallSetVector<BasicBlock *, 4> FailBlocks;
1370     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1371       for (auto *Succ : FailBlocks) {
1372         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1373           return false;
1374       }
1375     }
1376 
1377     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1378     Changed = true;
1379   }
1380   return Changed;
1381 }
1382 
1383 // If we would need to insert a select that uses the value of this invoke
1384 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1385 // can't hoist the invoke, as there is nowhere to put the select in this case.
1386 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1387                                 Instruction *I1, Instruction *I2) {
1388   for (BasicBlock *Succ : successors(BB1)) {
1389     for (const PHINode &PN : Succ->phis()) {
1390       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1391       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1392       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1393         return false;
1394       }
1395     }
1396   }
1397   return true;
1398 }
1399 
1400 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1401 
1402 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1403 /// in the two blocks up into the branch block. The caller of this function
1404 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1405 /// only perform hoisting in case both blocks only contain a terminator. In that
1406 /// case, only the original BI will be replaced and selects for PHIs are added.
1407 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1408                                            const TargetTransformInfo &TTI,
1409                                            bool EqTermsOnly) {
1410   // This does very trivial matching, with limited scanning, to find identical
1411   // instructions in the two blocks.  In particular, we don't want to get into
1412   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1413   // such, we currently just scan for obviously identical instructions in an
1414   // identical order.
1415   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1416   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1417 
1418   // If either of the blocks has it's address taken, then we can't do this fold,
1419   // because the code we'd hoist would no longer run when we jump into the block
1420   // by it's address.
1421   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1422     return false;
1423 
1424   BasicBlock::iterator BB1_Itr = BB1->begin();
1425   BasicBlock::iterator BB2_Itr = BB2->begin();
1426 
1427   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1428   // Skip debug info if it is not identical.
1429   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1430   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1431   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1432     while (isa<DbgInfoIntrinsic>(I1))
1433       I1 = &*BB1_Itr++;
1434     while (isa<DbgInfoIntrinsic>(I2))
1435       I2 = &*BB2_Itr++;
1436   }
1437   // FIXME: Can we define a safety predicate for CallBr?
1438   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1439       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1440       isa<CallBrInst>(I1))
1441     return false;
1442 
1443   BasicBlock *BIParent = BI->getParent();
1444 
1445   bool Changed = false;
1446 
1447   auto _ = make_scope_exit([&]() {
1448     if (Changed)
1449       ++NumHoistCommonCode;
1450   });
1451 
1452   // Check if only hoisting terminators is allowed. This does not add new
1453   // instructions to the hoist location.
1454   if (EqTermsOnly) {
1455     // Skip any debug intrinsics, as they are free to hoist.
1456     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1457     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1458     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1459       return false;
1460     if (!I1NonDbg->isTerminator())
1461       return false;
1462     // Now we know that we only need to hoist debug instrinsics and the
1463     // terminator. Let the loop below handle those 2 cases.
1464   }
1465 
1466   do {
1467     // If we are hoisting the terminator instruction, don't move one (making a
1468     // broken BB), instead clone it, and remove BI.
1469     if (I1->isTerminator())
1470       goto HoistTerminator;
1471 
1472     // If we're going to hoist a call, make sure that the two instructions we're
1473     // commoning/hoisting are both marked with musttail, or neither of them is
1474     // marked as such. Otherwise, we might end up in a situation where we hoist
1475     // from a block where the terminator is a `ret` to a block where the terminator
1476     // is a `br`, and `musttail` calls expect to be followed by a return.
1477     auto *C1 = dyn_cast<CallInst>(I1);
1478     auto *C2 = dyn_cast<CallInst>(I2);
1479     if (C1 && C2)
1480       if (C1->isMustTailCall() != C2->isMustTailCall())
1481         return Changed;
1482 
1483     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1484       return Changed;
1485 
1486     // If any of the two call sites has nomerge attribute, stop hoisting.
1487     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1488       if (CB1->cannotMerge())
1489         return Changed;
1490     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1491       if (CB2->cannotMerge())
1492         return Changed;
1493 
1494     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1495       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1496       // The debug location is an integral part of a debug info intrinsic
1497       // and can't be separated from it or replaced.  Instead of attempting
1498       // to merge locations, simply hoist both copies of the intrinsic.
1499       BIParent->getInstList().splice(BI->getIterator(),
1500                                      BB1->getInstList(), I1);
1501       BIParent->getInstList().splice(BI->getIterator(),
1502                                      BB2->getInstList(), I2);
1503       Changed = true;
1504     } else {
1505       // For a normal instruction, we just move one to right before the branch,
1506       // then replace all uses of the other with the first.  Finally, we remove
1507       // the now redundant second instruction.
1508       BIParent->getInstList().splice(BI->getIterator(),
1509                                      BB1->getInstList(), I1);
1510       if (!I2->use_empty())
1511         I2->replaceAllUsesWith(I1);
1512       I1->andIRFlags(I2);
1513       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1514                              LLVMContext::MD_range,
1515                              LLVMContext::MD_fpmath,
1516                              LLVMContext::MD_invariant_load,
1517                              LLVMContext::MD_nonnull,
1518                              LLVMContext::MD_invariant_group,
1519                              LLVMContext::MD_align,
1520                              LLVMContext::MD_dereferenceable,
1521                              LLVMContext::MD_dereferenceable_or_null,
1522                              LLVMContext::MD_mem_parallel_loop_access,
1523                              LLVMContext::MD_access_group,
1524                              LLVMContext::MD_preserve_access_index};
1525       combineMetadata(I1, I2, KnownIDs, true);
1526 
1527       // I1 and I2 are being combined into a single instruction.  Its debug
1528       // location is the merged locations of the original instructions.
1529       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1530 
1531       I2->eraseFromParent();
1532       Changed = true;
1533     }
1534     ++NumHoistCommonInstrs;
1535 
1536     I1 = &*BB1_Itr++;
1537     I2 = &*BB2_Itr++;
1538     // Skip debug info if it is not identical.
1539     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1540     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1541     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1542       while (isa<DbgInfoIntrinsic>(I1))
1543         I1 = &*BB1_Itr++;
1544       while (isa<DbgInfoIntrinsic>(I2))
1545         I2 = &*BB2_Itr++;
1546     }
1547   } while (I1->isIdenticalToWhenDefined(I2));
1548 
1549   return true;
1550 
1551 HoistTerminator:
1552   // It may not be possible to hoist an invoke.
1553   // FIXME: Can we define a safety predicate for CallBr?
1554   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1555     return Changed;
1556 
1557   // TODO: callbr hoisting currently disabled pending further study.
1558   if (isa<CallBrInst>(I1))
1559     return Changed;
1560 
1561   for (BasicBlock *Succ : successors(BB1)) {
1562     for (PHINode &PN : Succ->phis()) {
1563       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1564       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1565       if (BB1V == BB2V)
1566         continue;
1567 
1568       // Check for passingValueIsAlwaysUndefined here because we would rather
1569       // eliminate undefined control flow then converting it to a select.
1570       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1571           passingValueIsAlwaysUndefined(BB2V, &PN))
1572         return Changed;
1573 
1574       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1575         return Changed;
1576       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1577         return Changed;
1578     }
1579   }
1580 
1581   // Okay, it is safe to hoist the terminator.
1582   Instruction *NT = I1->clone();
1583   BIParent->getInstList().insert(BI->getIterator(), NT);
1584   if (!NT->getType()->isVoidTy()) {
1585     I1->replaceAllUsesWith(NT);
1586     I2->replaceAllUsesWith(NT);
1587     NT->takeName(I1);
1588   }
1589   Changed = true;
1590   ++NumHoistCommonInstrs;
1591 
1592   // Ensure terminator gets a debug location, even an unknown one, in case
1593   // it involves inlinable calls.
1594   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1595 
1596   // PHIs created below will adopt NT's merged DebugLoc.
1597   IRBuilder<NoFolder> Builder(NT);
1598 
1599   // Hoisting one of the terminators from our successor is a great thing.
1600   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1601   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1602   // nodes, so we insert select instruction to compute the final result.
1603   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1604   for (BasicBlock *Succ : successors(BB1)) {
1605     for (PHINode &PN : Succ->phis()) {
1606       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1607       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1608       if (BB1V == BB2V)
1609         continue;
1610 
1611       // These values do not agree.  Insert a select instruction before NT
1612       // that determines the right value.
1613       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1614       if (!SI) {
1615         // Propagate fast-math-flags from phi node to its replacement select.
1616         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1617         if (isa<FPMathOperator>(PN))
1618           Builder.setFastMathFlags(PN.getFastMathFlags());
1619 
1620         SI = cast<SelectInst>(
1621             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1622                                  BB1V->getName() + "." + BB2V->getName(), BI));
1623       }
1624 
1625       // Make the PHI node use the select for all incoming values for BB1/BB2
1626       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1627         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1628           PN.setIncomingValue(i, SI);
1629     }
1630   }
1631 
1632   SmallVector<DominatorTree::UpdateType, 4> Updates;
1633 
1634   // Update any PHI nodes in our new successors.
1635   for (BasicBlock *Succ : successors(BB1)) {
1636     AddPredecessorToBlock(Succ, BIParent, BB1);
1637     if (DTU)
1638       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1639   }
1640 
1641   if (DTU)
1642     for (BasicBlock *Succ : successors(BI))
1643       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1644 
1645   EraseTerminatorAndDCECond(BI);
1646   if (DTU)
1647     DTU->applyUpdates(Updates);
1648   return Changed;
1649 }
1650 
1651 // Check lifetime markers.
1652 static bool isLifeTimeMarker(const Instruction *I) {
1653   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1654     switch (II->getIntrinsicID()) {
1655     default:
1656       break;
1657     case Intrinsic::lifetime_start:
1658     case Intrinsic::lifetime_end:
1659       return true;
1660     }
1661   }
1662   return false;
1663 }
1664 
1665 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1666 // into variables.
1667 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1668                                                 int OpIdx) {
1669   return !isa<IntrinsicInst>(I);
1670 }
1671 
1672 // All instructions in Insts belong to different blocks that all unconditionally
1673 // branch to a common successor. Analyze each instruction and return true if it
1674 // would be possible to sink them into their successor, creating one common
1675 // instruction instead. For every value that would be required to be provided by
1676 // PHI node (because an operand varies in each input block), add to PHIOperands.
1677 static bool canSinkInstructions(
1678     ArrayRef<Instruction *> Insts,
1679     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1680   // Prune out obviously bad instructions to move. Each instruction must have
1681   // exactly zero or one use, and we check later that use is by a single, common
1682   // PHI instruction in the successor.
1683   bool HasUse = !Insts.front()->user_empty();
1684   for (auto *I : Insts) {
1685     // These instructions may change or break semantics if moved.
1686     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1687         I->getType()->isTokenTy())
1688       return false;
1689 
1690     // Do not try to sink an instruction in an infinite loop - it can cause
1691     // this algorithm to infinite loop.
1692     if (I->getParent()->getSingleSuccessor() == I->getParent())
1693       return false;
1694 
1695     // Conservatively return false if I is an inline-asm instruction. Sinking
1696     // and merging inline-asm instructions can potentially create arguments
1697     // that cannot satisfy the inline-asm constraints.
1698     // If the instruction has nomerge attribute, return false.
1699     if (const auto *C = dyn_cast<CallBase>(I))
1700       if (C->isInlineAsm() || C->cannotMerge())
1701         return false;
1702 
1703     // Each instruction must have zero or one use.
1704     if (HasUse && !I->hasOneUse())
1705       return false;
1706     if (!HasUse && !I->user_empty())
1707       return false;
1708   }
1709 
1710   const Instruction *I0 = Insts.front();
1711   for (auto *I : Insts)
1712     if (!I->isSameOperationAs(I0))
1713       return false;
1714 
1715   // All instructions in Insts are known to be the same opcode. If they have a
1716   // use, check that the only user is a PHI or in the same block as the
1717   // instruction, because if a user is in the same block as an instruction we're
1718   // contemplating sinking, it must already be determined to be sinkable.
1719   if (HasUse) {
1720     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1721     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1722     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1723           auto *U = cast<Instruction>(*I->user_begin());
1724           return (PNUse &&
1725                   PNUse->getParent() == Succ &&
1726                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1727                  U->getParent() == I->getParent();
1728         }))
1729       return false;
1730   }
1731 
1732   // Because SROA can't handle speculating stores of selects, try not to sink
1733   // loads, stores or lifetime markers of allocas when we'd have to create a
1734   // PHI for the address operand. Also, because it is likely that loads or
1735   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1736   // them.
1737   // This can cause code churn which can have unintended consequences down
1738   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1739   // FIXME: This is a workaround for a deficiency in SROA - see
1740   // https://llvm.org/bugs/show_bug.cgi?id=30188
1741   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1742         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1743       }))
1744     return false;
1745   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1746         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1747       }))
1748     return false;
1749   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1750         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1751       }))
1752     return false;
1753 
1754   // For calls to be sinkable, they must all be indirect, or have same callee.
1755   // I.e. if we have two direct calls to different callees, we don't want to
1756   // turn that into an indirect call. Likewise, if we have an indirect call,
1757   // and a direct call, we don't actually want to have a single indirect call.
1758   if (isa<CallBase>(I0)) {
1759     auto IsIndirectCall = [](const Instruction *I) {
1760       return cast<CallBase>(I)->isIndirectCall();
1761     };
1762     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1763     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1764     if (HaveIndirectCalls) {
1765       if (!AllCallsAreIndirect)
1766         return false;
1767     } else {
1768       // All callees must be identical.
1769       Value *Callee = nullptr;
1770       for (const Instruction *I : Insts) {
1771         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1772         if (!Callee)
1773           Callee = CurrCallee;
1774         else if (Callee != CurrCallee)
1775           return false;
1776       }
1777     }
1778   }
1779 
1780   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1781     Value *Op = I0->getOperand(OI);
1782     if (Op->getType()->isTokenTy())
1783       // Don't touch any operand of token type.
1784       return false;
1785 
1786     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1787       assert(I->getNumOperands() == I0->getNumOperands());
1788       return I->getOperand(OI) == I0->getOperand(OI);
1789     };
1790     if (!all_of(Insts, SameAsI0)) {
1791       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1792           !canReplaceOperandWithVariable(I0, OI))
1793         // We can't create a PHI from this GEP.
1794         return false;
1795       for (auto *I : Insts)
1796         PHIOperands[I].push_back(I->getOperand(OI));
1797     }
1798   }
1799   return true;
1800 }
1801 
1802 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1803 // instruction of every block in Blocks to their common successor, commoning
1804 // into one instruction.
1805 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1806   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1807 
1808   // canSinkInstructions returning true guarantees that every block has at
1809   // least one non-terminator instruction.
1810   SmallVector<Instruction*,4> Insts;
1811   for (auto *BB : Blocks) {
1812     Instruction *I = BB->getTerminator();
1813     do {
1814       I = I->getPrevNode();
1815     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1816     if (!isa<DbgInfoIntrinsic>(I))
1817       Insts.push_back(I);
1818   }
1819 
1820   // The only checking we need to do now is that all users of all instructions
1821   // are the same PHI node. canSinkInstructions should have checked this but
1822   // it is slightly over-aggressive - it gets confused by commutative
1823   // instructions so double-check it here.
1824   Instruction *I0 = Insts.front();
1825   if (!I0->user_empty()) {
1826     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1827     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1828           auto *U = cast<Instruction>(*I->user_begin());
1829           return U == PNUse;
1830         }))
1831       return false;
1832   }
1833 
1834   // We don't need to do any more checking here; canSinkInstructions should
1835   // have done it all for us.
1836   SmallVector<Value*, 4> NewOperands;
1837   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1838     // This check is different to that in canSinkInstructions. There, we
1839     // cared about the global view once simplifycfg (and instcombine) have
1840     // completed - it takes into account PHIs that become trivially
1841     // simplifiable.  However here we need a more local view; if an operand
1842     // differs we create a PHI and rely on instcombine to clean up the very
1843     // small mess we may make.
1844     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1845       return I->getOperand(O) != I0->getOperand(O);
1846     });
1847     if (!NeedPHI) {
1848       NewOperands.push_back(I0->getOperand(O));
1849       continue;
1850     }
1851 
1852     // Create a new PHI in the successor block and populate it.
1853     auto *Op = I0->getOperand(O);
1854     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1855     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1856                                Op->getName() + ".sink", &BBEnd->front());
1857     for (auto *I : Insts)
1858       PN->addIncoming(I->getOperand(O), I->getParent());
1859     NewOperands.push_back(PN);
1860   }
1861 
1862   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1863   // and move it to the start of the successor block.
1864   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1865     I0->getOperandUse(O).set(NewOperands[O]);
1866   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1867 
1868   // Update metadata and IR flags, and merge debug locations.
1869   for (auto *I : Insts)
1870     if (I != I0) {
1871       // The debug location for the "common" instruction is the merged locations
1872       // of all the commoned instructions.  We start with the original location
1873       // of the "common" instruction and iteratively merge each location in the
1874       // loop below.
1875       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1876       // However, as N-way merge for CallInst is rare, so we use simplified API
1877       // instead of using complex API for N-way merge.
1878       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1879       combineMetadataForCSE(I0, I, true);
1880       I0->andIRFlags(I);
1881     }
1882 
1883   if (!I0->user_empty()) {
1884     // canSinkLastInstruction checked that all instructions were used by
1885     // one and only one PHI node. Find that now, RAUW it to our common
1886     // instruction and nuke it.
1887     auto *PN = cast<PHINode>(*I0->user_begin());
1888     PN->replaceAllUsesWith(I0);
1889     PN->eraseFromParent();
1890   }
1891 
1892   // Finally nuke all instructions apart from the common instruction.
1893   for (auto *I : Insts)
1894     if (I != I0)
1895       I->eraseFromParent();
1896 
1897   return true;
1898 }
1899 
1900 namespace {
1901 
1902   // LockstepReverseIterator - Iterates through instructions
1903   // in a set of blocks in reverse order from the first non-terminator.
1904   // For example (assume all blocks have size n):
1905   //   LockstepReverseIterator I([B1, B2, B3]);
1906   //   *I-- = [B1[n], B2[n], B3[n]];
1907   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1908   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1909   //   ...
1910   class LockstepReverseIterator {
1911     ArrayRef<BasicBlock*> Blocks;
1912     SmallVector<Instruction*,4> Insts;
1913     bool Fail;
1914 
1915   public:
1916     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1917       reset();
1918     }
1919 
1920     void reset() {
1921       Fail = false;
1922       Insts.clear();
1923       for (auto *BB : Blocks) {
1924         Instruction *Inst = BB->getTerminator();
1925         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1926           Inst = Inst->getPrevNode();
1927         if (!Inst) {
1928           // Block wasn't big enough.
1929           Fail = true;
1930           return;
1931         }
1932         Insts.push_back(Inst);
1933       }
1934     }
1935 
1936     bool isValid() const {
1937       return !Fail;
1938     }
1939 
1940     void operator--() {
1941       if (Fail)
1942         return;
1943       for (auto *&Inst : Insts) {
1944         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1945           Inst = Inst->getPrevNode();
1946         // Already at beginning of block.
1947         if (!Inst) {
1948           Fail = true;
1949           return;
1950         }
1951       }
1952     }
1953 
1954     void operator++() {
1955       if (Fail)
1956         return;
1957       for (auto *&Inst : Insts) {
1958         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1959           Inst = Inst->getNextNode();
1960         // Already at end of block.
1961         if (!Inst) {
1962           Fail = true;
1963           return;
1964         }
1965       }
1966     }
1967 
1968     ArrayRef<Instruction*> operator * () const {
1969       return Insts;
1970     }
1971   };
1972 
1973 } // end anonymous namespace
1974 
1975 /// Check whether BB's predecessors end with unconditional branches. If it is
1976 /// true, sink any common code from the predecessors to BB.
1977 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1978                                            DomTreeUpdater *DTU) {
1979   // We support two situations:
1980   //   (1) all incoming arcs are unconditional
1981   //   (2) there are non-unconditional incoming arcs
1982   //
1983   // (2) is very common in switch defaults and
1984   // else-if patterns;
1985   //
1986   //   if (a) f(1);
1987   //   else if (b) f(2);
1988   //
1989   // produces:
1990   //
1991   //       [if]
1992   //      /    \
1993   //    [f(1)] [if]
1994   //      |     | \
1995   //      |     |  |
1996   //      |  [f(2)]|
1997   //       \    | /
1998   //        [ end ]
1999   //
2000   // [end] has two unconditional predecessor arcs and one conditional. The
2001   // conditional refers to the implicit empty 'else' arc. This conditional
2002   // arc can also be caused by an empty default block in a switch.
2003   //
2004   // In this case, we attempt to sink code from all *unconditional* arcs.
2005   // If we can sink instructions from these arcs (determined during the scan
2006   // phase below) we insert a common successor for all unconditional arcs and
2007   // connect that to [end], to enable sinking:
2008   //
2009   //       [if]
2010   //      /    \
2011   //    [x(1)] [if]
2012   //      |     | \
2013   //      |     |  \
2014   //      |  [x(2)] |
2015   //       \   /    |
2016   //   [sink.split] |
2017   //         \     /
2018   //         [ end ]
2019   //
2020   SmallVector<BasicBlock*,4> UnconditionalPreds;
2021   bool HaveNonUnconditionalPredecessors = false;
2022   for (auto *PredBB : predecessors(BB)) {
2023     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2024     if (PredBr && PredBr->isUnconditional())
2025       UnconditionalPreds.push_back(PredBB);
2026     else
2027       HaveNonUnconditionalPredecessors = true;
2028   }
2029   if (UnconditionalPreds.size() < 2)
2030     return false;
2031 
2032   // We take a two-step approach to tail sinking. First we scan from the end of
2033   // each block upwards in lockstep. If the n'th instruction from the end of each
2034   // block can be sunk, those instructions are added to ValuesToSink and we
2035   // carry on. If we can sink an instruction but need to PHI-merge some operands
2036   // (because they're not identical in each instruction) we add these to
2037   // PHIOperands.
2038   int ScanIdx = 0;
2039   SmallPtrSet<Value*,4> InstructionsToSink;
2040   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2041   LockstepReverseIterator LRI(UnconditionalPreds);
2042   while (LRI.isValid() &&
2043          canSinkInstructions(*LRI, PHIOperands)) {
2044     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2045                       << "\n");
2046     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2047     ++ScanIdx;
2048     --LRI;
2049   }
2050 
2051   // If no instructions can be sunk, early-return.
2052   if (ScanIdx == 0)
2053     return false;
2054 
2055   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2056 
2057   if (!followedByDeoptOrUnreachable) {
2058     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2059     // actually sink before encountering instruction that is unprofitable to
2060     // sink?
2061     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2062       unsigned NumPHIdValues = 0;
2063       for (auto *I : *LRI)
2064         for (auto *V : PHIOperands[I]) {
2065           if (!InstructionsToSink.contains(V))
2066             ++NumPHIdValues;
2067           // FIXME: this check is overly optimistic. We may end up not sinking
2068           // said instruction, due to the very same profitability check.
2069           // See @creating_too_many_phis in sink-common-code.ll.
2070         }
2071       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2072       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2073       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2074         NumPHIInsts++;
2075 
2076       return NumPHIInsts <= 1;
2077     };
2078 
2079     // We've determined that we are going to sink last ScanIdx instructions,
2080     // and recorded them in InstructionsToSink. Now, some instructions may be
2081     // unprofitable to sink. But that determination depends on the instructions
2082     // that we are going to sink.
2083 
2084     // First, forward scan: find the first instruction unprofitable to sink,
2085     // recording all the ones that are profitable to sink.
2086     // FIXME: would it be better, after we detect that not all are profitable.
2087     // to either record the profitable ones, or erase the unprofitable ones?
2088     // Maybe we need to choose (at runtime) the one that will touch least
2089     // instrs?
2090     LRI.reset();
2091     int Idx = 0;
2092     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2093     while (Idx < ScanIdx) {
2094       if (!ProfitableToSinkInstruction(LRI)) {
2095         // Too many PHIs would be created.
2096         LLVM_DEBUG(
2097             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2098         break;
2099       }
2100       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2101       --LRI;
2102       ++Idx;
2103     }
2104 
2105     // If no instructions can be sunk, early-return.
2106     if (Idx == 0)
2107       return false;
2108 
2109     // Did we determine that (only) some instructions are unprofitable to sink?
2110     if (Idx < ScanIdx) {
2111       // Okay, some instructions are unprofitable.
2112       ScanIdx = Idx;
2113       InstructionsToSink = InstructionsProfitableToSink;
2114 
2115       // But, that may make other instructions unprofitable, too.
2116       // So, do a backward scan, do any earlier instructions become
2117       // unprofitable?
2118       assert(
2119           !ProfitableToSinkInstruction(LRI) &&
2120           "We already know that the last instruction is unprofitable to sink");
2121       ++LRI;
2122       --Idx;
2123       while (Idx >= 0) {
2124         // If we detect that an instruction becomes unprofitable to sink,
2125         // all earlier instructions won't be sunk either,
2126         // so preemptively keep InstructionsProfitableToSink in sync.
2127         // FIXME: is this the most performant approach?
2128         for (auto *I : *LRI)
2129           InstructionsProfitableToSink.erase(I);
2130         if (!ProfitableToSinkInstruction(LRI)) {
2131           // Everything starting with this instruction won't be sunk.
2132           ScanIdx = Idx;
2133           InstructionsToSink = InstructionsProfitableToSink;
2134         }
2135         ++LRI;
2136         --Idx;
2137       }
2138     }
2139 
2140     // If no instructions can be sunk, early-return.
2141     if (ScanIdx == 0)
2142       return false;
2143   }
2144 
2145   bool Changed = false;
2146 
2147   if (HaveNonUnconditionalPredecessors) {
2148     if (!followedByDeoptOrUnreachable) {
2149       // It is always legal to sink common instructions from unconditional
2150       // predecessors. However, if not all predecessors are unconditional,
2151       // this transformation might be pessimizing. So as a rule of thumb,
2152       // don't do it unless we'd sink at least one non-speculatable instruction.
2153       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2154       LRI.reset();
2155       int Idx = 0;
2156       bool Profitable = false;
2157       while (Idx < ScanIdx) {
2158         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2159           Profitable = true;
2160           break;
2161         }
2162         --LRI;
2163         ++Idx;
2164       }
2165       if (!Profitable)
2166         return false;
2167     }
2168 
2169     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2170     // We have a conditional edge and we're going to sink some instructions.
2171     // Insert a new block postdominating all blocks we're going to sink from.
2172     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2173       // Edges couldn't be split.
2174       return false;
2175     Changed = true;
2176   }
2177 
2178   // Now that we've analyzed all potential sinking candidates, perform the
2179   // actual sink. We iteratively sink the last non-terminator of the source
2180   // blocks into their common successor unless doing so would require too
2181   // many PHI instructions to be generated (currently only one PHI is allowed
2182   // per sunk instruction).
2183   //
2184   // We can use InstructionsToSink to discount values needing PHI-merging that will
2185   // actually be sunk in a later iteration. This allows us to be more
2186   // aggressive in what we sink. This does allow a false positive where we
2187   // sink presuming a later value will also be sunk, but stop half way through
2188   // and never actually sink it which means we produce more PHIs than intended.
2189   // This is unlikely in practice though.
2190   int SinkIdx = 0;
2191   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2192     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2193                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2194                       << "\n");
2195 
2196     // Because we've sunk every instruction in turn, the current instruction to
2197     // sink is always at index 0.
2198     LRI.reset();
2199 
2200     if (!sinkLastInstruction(UnconditionalPreds)) {
2201       LLVM_DEBUG(
2202           dbgs()
2203           << "SINK: stopping here, failed to actually sink instruction!\n");
2204       break;
2205     }
2206 
2207     NumSinkCommonInstrs++;
2208     Changed = true;
2209   }
2210   if (SinkIdx != 0)
2211     ++NumSinkCommonCode;
2212   return Changed;
2213 }
2214 
2215 /// Determine if we can hoist sink a sole store instruction out of a
2216 /// conditional block.
2217 ///
2218 /// We are looking for code like the following:
2219 ///   BrBB:
2220 ///     store i32 %add, i32* %arrayidx2
2221 ///     ... // No other stores or function calls (we could be calling a memory
2222 ///     ... // function).
2223 ///     %cmp = icmp ult %x, %y
2224 ///     br i1 %cmp, label %EndBB, label %ThenBB
2225 ///   ThenBB:
2226 ///     store i32 %add5, i32* %arrayidx2
2227 ///     br label EndBB
2228 ///   EndBB:
2229 ///     ...
2230 ///   We are going to transform this into:
2231 ///   BrBB:
2232 ///     store i32 %add, i32* %arrayidx2
2233 ///     ... //
2234 ///     %cmp = icmp ult %x, %y
2235 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2236 ///     store i32 %add.add5, i32* %arrayidx2
2237 ///     ...
2238 ///
2239 /// \return The pointer to the value of the previous store if the store can be
2240 ///         hoisted into the predecessor block. 0 otherwise.
2241 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2242                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2243   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2244   if (!StoreToHoist)
2245     return nullptr;
2246 
2247   // Volatile or atomic.
2248   if (!StoreToHoist->isSimple())
2249     return nullptr;
2250 
2251   Value *StorePtr = StoreToHoist->getPointerOperand();
2252   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2253 
2254   // Look for a store to the same pointer in BrBB.
2255   unsigned MaxNumInstToLookAt = 9;
2256   // Skip pseudo probe intrinsic calls which are not really killing any memory
2257   // accesses.
2258   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2259     if (!MaxNumInstToLookAt)
2260       break;
2261     --MaxNumInstToLookAt;
2262 
2263     // Could be calling an instruction that affects memory like free().
2264     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2265       return nullptr;
2266 
2267     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2268       // Found the previous store to same location and type. Make sure it is
2269       // simple, to avoid introducing a spurious non-atomic write after an
2270       // atomic write.
2271       if (SI->getPointerOperand() == StorePtr &&
2272           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2273         // Found the previous store, return its value operand.
2274         return SI->getValueOperand();
2275       return nullptr; // Unknown store.
2276     }
2277 
2278     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2279       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2280           LI->isSimple()) {
2281         // Local objects (created by an `alloca` instruction) are always
2282         // writable, so once we are past a read from a location it is valid to
2283         // also write to that same location.
2284         // If the address of the local object never escapes the function, that
2285         // means it's never concurrently read or written, hence moving the store
2286         // from under the condition will not introduce a data race.
2287         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2288         if (AI && !PointerMayBeCaptured(AI, false, true))
2289           // Found a previous load, return it.
2290           return LI;
2291       }
2292       // The load didn't work out, but we may still find a store.
2293     }
2294   }
2295 
2296   return nullptr;
2297 }
2298 
2299 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2300 /// converted to selects.
2301 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2302                                            BasicBlock *EndBB,
2303                                            unsigned &SpeculatedInstructions,
2304                                            InstructionCost &Cost,
2305                                            const TargetTransformInfo &TTI) {
2306   TargetTransformInfo::TargetCostKind CostKind =
2307     BB->getParent()->hasMinSize()
2308     ? TargetTransformInfo::TCK_CodeSize
2309     : TargetTransformInfo::TCK_SizeAndLatency;
2310 
2311   bool HaveRewritablePHIs = false;
2312   for (PHINode &PN : EndBB->phis()) {
2313     Value *OrigV = PN.getIncomingValueForBlock(BB);
2314     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2315 
2316     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2317     // Skip PHIs which are trivial.
2318     if (ThenV == OrigV)
2319       continue;
2320 
2321     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2322                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2323 
2324     // Don't convert to selects if we could remove undefined behavior instead.
2325     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2326         passingValueIsAlwaysUndefined(ThenV, &PN))
2327       return false;
2328 
2329     HaveRewritablePHIs = true;
2330     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2331     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2332     if (!OrigCE && !ThenCE)
2333       continue; // Known safe and cheap.
2334 
2335     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2336         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2337       return false;
2338     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2339     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2340     InstructionCost MaxCost =
2341         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2342     if (OrigCost + ThenCost > MaxCost)
2343       return false;
2344 
2345     // Account for the cost of an unfolded ConstantExpr which could end up
2346     // getting expanded into Instructions.
2347     // FIXME: This doesn't account for how many operations are combined in the
2348     // constant expression.
2349     ++SpeculatedInstructions;
2350     if (SpeculatedInstructions > 1)
2351       return false;
2352   }
2353 
2354   return HaveRewritablePHIs;
2355 }
2356 
2357 /// Speculate a conditional basic block flattening the CFG.
2358 ///
2359 /// Note that this is a very risky transform currently. Speculating
2360 /// instructions like this is most often not desirable. Instead, there is an MI
2361 /// pass which can do it with full awareness of the resource constraints.
2362 /// However, some cases are "obvious" and we should do directly. An example of
2363 /// this is speculating a single, reasonably cheap instruction.
2364 ///
2365 /// There is only one distinct advantage to flattening the CFG at the IR level:
2366 /// it makes very common but simplistic optimizations such as are common in
2367 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2368 /// modeling their effects with easier to reason about SSA value graphs.
2369 ///
2370 ///
2371 /// An illustration of this transform is turning this IR:
2372 /// \code
2373 ///   BB:
2374 ///     %cmp = icmp ult %x, %y
2375 ///     br i1 %cmp, label %EndBB, label %ThenBB
2376 ///   ThenBB:
2377 ///     %sub = sub %x, %y
2378 ///     br label BB2
2379 ///   EndBB:
2380 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2381 ///     ...
2382 /// \endcode
2383 ///
2384 /// Into this IR:
2385 /// \code
2386 ///   BB:
2387 ///     %cmp = icmp ult %x, %y
2388 ///     %sub = sub %x, %y
2389 ///     %cond = select i1 %cmp, 0, %sub
2390 ///     ...
2391 /// \endcode
2392 ///
2393 /// \returns true if the conditional block is removed.
2394 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2395                                             const TargetTransformInfo &TTI) {
2396   // Be conservative for now. FP select instruction can often be expensive.
2397   Value *BrCond = BI->getCondition();
2398   if (isa<FCmpInst>(BrCond))
2399     return false;
2400 
2401   BasicBlock *BB = BI->getParent();
2402   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2403   InstructionCost Budget =
2404       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2405 
2406   // If ThenBB is actually on the false edge of the conditional branch, remember
2407   // to swap the select operands later.
2408   bool Invert = false;
2409   if (ThenBB != BI->getSuccessor(0)) {
2410     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2411     Invert = true;
2412   }
2413   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2414 
2415   // If the branch is non-unpredictable, and is predicted to *not* branch to
2416   // the `then` block, then avoid speculating it.
2417   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2418     uint64_t TWeight, FWeight;
2419     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2420       uint64_t EndWeight = Invert ? TWeight : FWeight;
2421       BranchProbability BIEndProb =
2422           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2423       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2424       if (BIEndProb >= Likely)
2425         return false;
2426     }
2427   }
2428 
2429   // Keep a count of how many times instructions are used within ThenBB when
2430   // they are candidates for sinking into ThenBB. Specifically:
2431   // - They are defined in BB, and
2432   // - They have no side effects, and
2433   // - All of their uses are in ThenBB.
2434   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2435 
2436   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2437 
2438   unsigned SpeculatedInstructions = 0;
2439   Value *SpeculatedStoreValue = nullptr;
2440   StoreInst *SpeculatedStore = nullptr;
2441   for (BasicBlock::iterator BBI = ThenBB->begin(),
2442                             BBE = std::prev(ThenBB->end());
2443        BBI != BBE; ++BBI) {
2444     Instruction *I = &*BBI;
2445     // Skip debug info.
2446     if (isa<DbgInfoIntrinsic>(I)) {
2447       SpeculatedDbgIntrinsics.push_back(I);
2448       continue;
2449     }
2450 
2451     // Skip pseudo probes. The consequence is we lose track of the branch
2452     // probability for ThenBB, which is fine since the optimization here takes
2453     // place regardless of the branch probability.
2454     if (isa<PseudoProbeInst>(I)) {
2455       // The probe should be deleted so that it will not be over-counted when
2456       // the samples collected on the non-conditional path are counted towards
2457       // the conditional path. We leave it for the counts inference algorithm to
2458       // figure out a proper count for an unknown probe.
2459       SpeculatedDbgIntrinsics.push_back(I);
2460       continue;
2461     }
2462 
2463     // Only speculatively execute a single instruction (not counting the
2464     // terminator) for now.
2465     ++SpeculatedInstructions;
2466     if (SpeculatedInstructions > 1)
2467       return false;
2468 
2469     // Don't hoist the instruction if it's unsafe or expensive.
2470     if (!isSafeToSpeculativelyExecute(I) &&
2471         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2472                                   I, BB, ThenBB, EndBB))))
2473       return false;
2474     if (!SpeculatedStoreValue &&
2475         computeSpeculationCost(I, TTI) >
2476             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2477       return false;
2478 
2479     // Store the store speculation candidate.
2480     if (SpeculatedStoreValue)
2481       SpeculatedStore = cast<StoreInst>(I);
2482 
2483     // Do not hoist the instruction if any of its operands are defined but not
2484     // used in BB. The transformation will prevent the operand from
2485     // being sunk into the use block.
2486     for (Use &Op : I->operands()) {
2487       Instruction *OpI = dyn_cast<Instruction>(Op);
2488       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2489         continue; // Not a candidate for sinking.
2490 
2491       ++SinkCandidateUseCounts[OpI];
2492     }
2493   }
2494 
2495   // Consider any sink candidates which are only used in ThenBB as costs for
2496   // speculation. Note, while we iterate over a DenseMap here, we are summing
2497   // and so iteration order isn't significant.
2498   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2499            I = SinkCandidateUseCounts.begin(),
2500            E = SinkCandidateUseCounts.end();
2501        I != E; ++I)
2502     if (I->first->hasNUses(I->second)) {
2503       ++SpeculatedInstructions;
2504       if (SpeculatedInstructions > 1)
2505         return false;
2506     }
2507 
2508   // Check that we can insert the selects and that it's not too expensive to do
2509   // so.
2510   bool Convert = SpeculatedStore != nullptr;
2511   InstructionCost Cost = 0;
2512   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2513                                             SpeculatedInstructions,
2514                                             Cost, TTI);
2515   if (!Convert || Cost > Budget)
2516     return false;
2517 
2518   // If we get here, we can hoist the instruction and if-convert.
2519   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2520 
2521   // Insert a select of the value of the speculated store.
2522   if (SpeculatedStoreValue) {
2523     IRBuilder<NoFolder> Builder(BI);
2524     Value *TrueV = SpeculatedStore->getValueOperand();
2525     Value *FalseV = SpeculatedStoreValue;
2526     if (Invert)
2527       std::swap(TrueV, FalseV);
2528     Value *S = Builder.CreateSelect(
2529         BrCond, TrueV, FalseV, "spec.store.select", BI);
2530     SpeculatedStore->setOperand(0, S);
2531     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2532                                          SpeculatedStore->getDebugLoc());
2533   }
2534 
2535   // Metadata can be dependent on the condition we are hoisting above.
2536   // Conservatively strip all metadata on the instruction. Drop the debug loc
2537   // to avoid making it appear as if the condition is a constant, which would
2538   // be misleading while debugging.
2539   // Similarly strip attributes that maybe dependent on condition we are
2540   // hoisting above.
2541   for (auto &I : *ThenBB) {
2542     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2543       I.setDebugLoc(DebugLoc());
2544     I.dropUndefImplyingAttrsAndUnknownMetadata();
2545   }
2546 
2547   // Hoist the instructions.
2548   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2549                            ThenBB->begin(), std::prev(ThenBB->end()));
2550 
2551   // Insert selects and rewrite the PHI operands.
2552   IRBuilder<NoFolder> Builder(BI);
2553   for (PHINode &PN : EndBB->phis()) {
2554     unsigned OrigI = PN.getBasicBlockIndex(BB);
2555     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2556     Value *OrigV = PN.getIncomingValue(OrigI);
2557     Value *ThenV = PN.getIncomingValue(ThenI);
2558 
2559     // Skip PHIs which are trivial.
2560     if (OrigV == ThenV)
2561       continue;
2562 
2563     // Create a select whose true value is the speculatively executed value and
2564     // false value is the pre-existing value. Swap them if the branch
2565     // destinations were inverted.
2566     Value *TrueV = ThenV, *FalseV = OrigV;
2567     if (Invert)
2568       std::swap(TrueV, FalseV);
2569     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2570     PN.setIncomingValue(OrigI, V);
2571     PN.setIncomingValue(ThenI, V);
2572   }
2573 
2574   // Remove speculated dbg intrinsics.
2575   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2576   // dbg value for the different flows and inserting it after the select.
2577   for (Instruction *I : SpeculatedDbgIntrinsics)
2578     I->eraseFromParent();
2579 
2580   ++NumSpeculations;
2581   return true;
2582 }
2583 
2584 /// Return true if we can thread a branch across this block.
2585 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2586   int Size = 0;
2587 
2588   SmallPtrSet<const Value *, 32> EphValues;
2589   auto IsEphemeral = [&](const Instruction *I) {
2590     if (isa<AssumeInst>(I))
2591       return true;
2592     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2593            all_of(I->users(),
2594                   [&](const User *U) { return EphValues.count(U); });
2595   };
2596 
2597   // Walk the loop in reverse so that we can identify ephemeral values properly
2598   // (values only feeding assumes).
2599   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2600     // Can't fold blocks that contain noduplicate or convergent calls.
2601     if (CallInst *CI = dyn_cast<CallInst>(&I))
2602       if (CI->cannotDuplicate() || CI->isConvergent())
2603         return false;
2604 
2605     // Ignore ephemeral values which are deleted during codegen.
2606     if (IsEphemeral(&I))
2607       EphValues.insert(&I);
2608     // We will delete Phis while threading, so Phis should not be accounted in
2609     // block's size.
2610     else if (!isa<PHINode>(I)) {
2611       if (Size++ > MaxSmallBlockSize)
2612         return false; // Don't clone large BB's.
2613     }
2614 
2615     // We can only support instructions that do not define values that are
2616     // live outside of the current basic block.
2617     for (User *U : I.users()) {
2618       Instruction *UI = cast<Instruction>(U);
2619       if (UI->getParent() != BB || isa<PHINode>(UI))
2620         return false;
2621     }
2622 
2623     // Looks ok, continue checking.
2624   }
2625 
2626   return true;
2627 }
2628 
2629 /// If we have a conditional branch on a PHI node value that is defined in the
2630 /// same block as the branch and if any PHI entries are constants, thread edges
2631 /// corresponding to that entry to be branches to their ultimate destination.
2632 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
2633                                               DomTreeUpdater *DTU,
2634                                               const DataLayout &DL,
2635                                               AssumptionCache *AC) {
2636   BasicBlock *BB = BI->getParent();
2637   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2638   // NOTE: we currently cannot transform this case if the PHI node is used
2639   // outside of the block.
2640   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2641     return false;
2642 
2643   // Degenerate case of a single entry PHI.
2644   if (PN->getNumIncomingValues() == 1) {
2645     FoldSingleEntryPHINodes(PN->getParent());
2646     return true;
2647   }
2648 
2649   // Now we know that this block has multiple preds and two succs.
2650   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2651     return false;
2652 
2653   // Okay, this is a simple enough basic block.  See if any phi values are
2654   // constants.
2655   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2656     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2657     if (!CB || !CB->getType()->isIntegerTy(1))
2658       continue;
2659 
2660     // Okay, we now know that all edges from PredBB should be revectored to
2661     // branch to RealDest.
2662     BasicBlock *PredBB = PN->getIncomingBlock(i);
2663     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2664 
2665     if (RealDest == BB)
2666       continue; // Skip self loops.
2667     // Skip if the predecessor's terminator is an indirect branch.
2668     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2669       continue;
2670 
2671     SmallVector<DominatorTree::UpdateType, 3> Updates;
2672 
2673     // The dest block might have PHI nodes, other predecessors and other
2674     // difficult cases.  Instead of being smart about this, just insert a new
2675     // block that jumps to the destination block, effectively splitting
2676     // the edge we are about to create.
2677     BasicBlock *EdgeBB =
2678         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2679                            RealDest->getParent(), RealDest);
2680     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2681     if (DTU)
2682       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2683     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2684 
2685     // Update PHI nodes.
2686     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2687 
2688     // BB may have instructions that are being threaded over.  Clone these
2689     // instructions into EdgeBB.  We know that there will be no uses of the
2690     // cloned instructions outside of EdgeBB.
2691     BasicBlock::iterator InsertPt = EdgeBB->begin();
2692     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2693     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2694       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2695         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2696         continue;
2697       }
2698       // Clone the instruction.
2699       Instruction *N = BBI->clone();
2700       if (BBI->hasName())
2701         N->setName(BBI->getName() + ".c");
2702 
2703       // Update operands due to translation.
2704       for (Use &Op : N->operands()) {
2705         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2706         if (PI != TranslateMap.end())
2707           Op = PI->second;
2708       }
2709 
2710       // Check for trivial simplification.
2711       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2712         if (!BBI->use_empty())
2713           TranslateMap[&*BBI] = V;
2714         if (!N->mayHaveSideEffects()) {
2715           N->deleteValue(); // Instruction folded away, don't need actual inst
2716           N = nullptr;
2717         }
2718       } else {
2719         if (!BBI->use_empty())
2720           TranslateMap[&*BBI] = N;
2721       }
2722       if (N) {
2723         // Insert the new instruction into its new home.
2724         EdgeBB->getInstList().insert(InsertPt, N);
2725 
2726         // Register the new instruction with the assumption cache if necessary.
2727         if (auto *Assume = dyn_cast<AssumeInst>(N))
2728           if (AC)
2729             AC->registerAssumption(Assume);
2730       }
2731     }
2732 
2733     // Loop over all of the edges from PredBB to BB, changing them to branch
2734     // to EdgeBB instead.
2735     Instruction *PredBBTI = PredBB->getTerminator();
2736     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2737       if (PredBBTI->getSuccessor(i) == BB) {
2738         BB->removePredecessor(PredBB);
2739         PredBBTI->setSuccessor(i, EdgeBB);
2740       }
2741 
2742     if (DTU) {
2743       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2744       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2745 
2746       DTU->applyUpdates(Updates);
2747     }
2748 
2749     // Signal repeat, simplifying any other constants.
2750     return None;
2751   }
2752 
2753   return false;
2754 }
2755 
2756 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2757                                 const DataLayout &DL, AssumptionCache *AC) {
2758   Optional<bool> Result;
2759   bool EverChanged = false;
2760   do {
2761     // Note that None means "we changed things, but recurse further."
2762     Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
2763     EverChanged |= Result == None || *Result;
2764   } while (Result == None);
2765   return EverChanged;
2766 }
2767 
2768 /// Given a BB that starts with the specified two-entry PHI node,
2769 /// see if we can eliminate it.
2770 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2771                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2772   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2773   // statement", which has a very simple dominance structure.  Basically, we
2774   // are trying to find the condition that is being branched on, which
2775   // subsequently causes this merge to happen.  We really want control
2776   // dependence information for this check, but simplifycfg can't keep it up
2777   // to date, and this catches most of the cases we care about anyway.
2778   BasicBlock *BB = PN->getParent();
2779 
2780   BasicBlock *IfTrue, *IfFalse;
2781   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2782   if (!DomBI)
2783     return false;
2784   Value *IfCond = DomBI->getCondition();
2785   // Don't bother if the branch will be constant folded trivially.
2786   if (isa<ConstantInt>(IfCond))
2787     return false;
2788 
2789   BasicBlock *DomBlock = DomBI->getParent();
2790   SmallVector<BasicBlock *, 2> IfBlocks;
2791   llvm::copy_if(
2792       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2793         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2794       });
2795   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2796          "Will have either one or two blocks to speculate.");
2797 
2798   // If the branch is non-unpredictable, see if we either predictably jump to
2799   // the merge bb (if we have only a single 'then' block), or if we predictably
2800   // jump to one specific 'then' block (if we have two of them).
2801   // It isn't beneficial to speculatively execute the code
2802   // from the block that we know is predictably not entered.
2803   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2804     uint64_t TWeight, FWeight;
2805     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2806         (TWeight + FWeight) != 0) {
2807       BranchProbability BITrueProb =
2808           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2809       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2810       BranchProbability BIFalseProb = BITrueProb.getCompl();
2811       if (IfBlocks.size() == 1) {
2812         BranchProbability BIBBProb =
2813             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2814         if (BIBBProb >= Likely)
2815           return false;
2816       } else {
2817         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2818           return false;
2819       }
2820     }
2821   }
2822 
2823   // Don't try to fold an unreachable block. For example, the phi node itself
2824   // can't be the candidate if-condition for a select that we want to form.
2825   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2826     if (IfCondPhiInst->getParent() == BB)
2827       return false;
2828 
2829   // Okay, we found that we can merge this two-entry phi node into a select.
2830   // Doing so would require us to fold *all* two entry phi nodes in this block.
2831   // At some point this becomes non-profitable (particularly if the target
2832   // doesn't support cmov's).  Only do this transformation if there are two or
2833   // fewer PHI nodes in this block.
2834   unsigned NumPhis = 0;
2835   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2836     if (NumPhis > 2)
2837       return false;
2838 
2839   // Loop over the PHI's seeing if we can promote them all to select
2840   // instructions.  While we are at it, keep track of the instructions
2841   // that need to be moved to the dominating block.
2842   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2843   InstructionCost Cost = 0;
2844   InstructionCost Budget =
2845       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2846 
2847   bool Changed = false;
2848   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2849     PHINode *PN = cast<PHINode>(II++);
2850     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2851       PN->replaceAllUsesWith(V);
2852       PN->eraseFromParent();
2853       Changed = true;
2854       continue;
2855     }
2856 
2857     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2858                              Cost, Budget, TTI) ||
2859         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2860                              Cost, Budget, TTI))
2861       return Changed;
2862   }
2863 
2864   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2865   // we ran out of PHIs then we simplified them all.
2866   PN = dyn_cast<PHINode>(BB->begin());
2867   if (!PN)
2868     return true;
2869 
2870   // Return true if at least one of these is a 'not', and another is either
2871   // a 'not' too, or a constant.
2872   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2873     if (!match(V0, m_Not(m_Value())))
2874       std::swap(V0, V1);
2875     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2876     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2877   };
2878 
2879   // Don't fold i1 branches on PHIs which contain binary operators or
2880   // (possibly inverted) select form of or/ands,  unless one of
2881   // the incoming values is an 'not' and another one is freely invertible.
2882   // These can often be turned into switches and other things.
2883   auto IsBinOpOrAnd = [](Value *V) {
2884     return match(
2885         V, m_CombineOr(
2886                m_BinOp(),
2887                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2888                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2889   };
2890   if (PN->getType()->isIntegerTy(1) &&
2891       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2892        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2893       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2894                                  PN->getIncomingValue(1)))
2895     return Changed;
2896 
2897   // If all PHI nodes are promotable, check to make sure that all instructions
2898   // in the predecessor blocks can be promoted as well. If not, we won't be able
2899   // to get rid of the control flow, so it's not worth promoting to select
2900   // instructions.
2901   for (BasicBlock *IfBlock : IfBlocks)
2902     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2903       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
2904         // This is not an aggressive instruction that we can promote.
2905         // Because of this, we won't be able to get rid of the control flow, so
2906         // the xform is not worth it.
2907         return Changed;
2908       }
2909 
2910   // If either of the blocks has it's address taken, we can't do this fold.
2911   if (any_of(IfBlocks,
2912              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2913     return Changed;
2914 
2915   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2916                     << "  T: " << IfTrue->getName()
2917                     << "  F: " << IfFalse->getName() << "\n");
2918 
2919   // If we can still promote the PHI nodes after this gauntlet of tests,
2920   // do all of the PHI's now.
2921 
2922   // Move all 'aggressive' instructions, which are defined in the
2923   // conditional parts of the if's up to the dominating block.
2924   for (BasicBlock *IfBlock : IfBlocks)
2925       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2926 
2927   IRBuilder<NoFolder> Builder(DomBI);
2928   // Propagate fast-math-flags from phi nodes to replacement selects.
2929   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2930   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2931     if (isa<FPMathOperator>(PN))
2932       Builder.setFastMathFlags(PN->getFastMathFlags());
2933 
2934     // Change the PHI node into a select instruction.
2935     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2936     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2937 
2938     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2939     PN->replaceAllUsesWith(Sel);
2940     Sel->takeName(PN);
2941     PN->eraseFromParent();
2942   }
2943 
2944   // At this point, all IfBlocks are empty, so our if statement
2945   // has been flattened.  Change DomBlock to jump directly to our new block to
2946   // avoid other simplifycfg's kicking in on the diamond.
2947   Builder.CreateBr(BB);
2948 
2949   SmallVector<DominatorTree::UpdateType, 3> Updates;
2950   if (DTU) {
2951     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2952     for (auto *Successor : successors(DomBlock))
2953       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2954   }
2955 
2956   DomBI->eraseFromParent();
2957   if (DTU)
2958     DTU->applyUpdates(Updates);
2959 
2960   return true;
2961 }
2962 
2963 static Value *createLogicalOp(IRBuilderBase &Builder,
2964                               Instruction::BinaryOps Opc, Value *LHS,
2965                               Value *RHS, const Twine &Name = "") {
2966   // Try to relax logical op to binary op.
2967   if (impliesPoison(RHS, LHS))
2968     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2969   if (Opc == Instruction::And)
2970     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2971   if (Opc == Instruction::Or)
2972     return Builder.CreateLogicalOr(LHS, RHS, Name);
2973   llvm_unreachable("Invalid logical opcode");
2974 }
2975 
2976 /// Return true if either PBI or BI has branch weight available, and store
2977 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2978 /// not have branch weight, use 1:1 as its weight.
2979 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2980                                    uint64_t &PredTrueWeight,
2981                                    uint64_t &PredFalseWeight,
2982                                    uint64_t &SuccTrueWeight,
2983                                    uint64_t &SuccFalseWeight) {
2984   bool PredHasWeights =
2985       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2986   bool SuccHasWeights =
2987       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2988   if (PredHasWeights || SuccHasWeights) {
2989     if (!PredHasWeights)
2990       PredTrueWeight = PredFalseWeight = 1;
2991     if (!SuccHasWeights)
2992       SuccTrueWeight = SuccFalseWeight = 1;
2993     return true;
2994   } else {
2995     return false;
2996   }
2997 }
2998 
2999 /// Determine if the two branches share a common destination and deduce a glue
3000 /// that joins the branches' conditions to arrive at the common destination if
3001 /// that would be profitable.
3002 static Optional<std::pair<Instruction::BinaryOps, bool>>
3003 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3004                                           const TargetTransformInfo *TTI) {
3005   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3006          "Both blocks must end with a conditional branches.");
3007   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3008          "PredBB must be a predecessor of BB.");
3009 
3010   // We have the potential to fold the conditions together, but if the
3011   // predecessor branch is predictable, we may not want to merge them.
3012   uint64_t PTWeight, PFWeight;
3013   BranchProbability PBITrueProb, Likely;
3014   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3015       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3016       (PTWeight + PFWeight) != 0) {
3017     PBITrueProb =
3018         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3019     Likely = TTI->getPredictableBranchThreshold();
3020   }
3021 
3022   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3023     // Speculate the 2nd condition unless the 1st is probably true.
3024     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3025       return {{Instruction::Or, false}};
3026   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3027     // Speculate the 2nd condition unless the 1st is probably false.
3028     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3029       return {{Instruction::And, false}};
3030   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3031     // Speculate the 2nd condition unless the 1st is probably true.
3032     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3033       return {{Instruction::And, true}};
3034   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3035     // Speculate the 2nd condition unless the 1st is probably false.
3036     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3037       return {{Instruction::Or, true}};
3038   }
3039   return None;
3040 }
3041 
3042 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3043                                              DomTreeUpdater *DTU,
3044                                              MemorySSAUpdater *MSSAU,
3045                                              const TargetTransformInfo *TTI) {
3046   BasicBlock *BB = BI->getParent();
3047   BasicBlock *PredBlock = PBI->getParent();
3048 
3049   // Determine if the two branches share a common destination.
3050   Instruction::BinaryOps Opc;
3051   bool InvertPredCond;
3052   std::tie(Opc, InvertPredCond) =
3053       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3054 
3055   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3056 
3057   IRBuilder<> Builder(PBI);
3058   // The builder is used to create instructions to eliminate the branch in BB.
3059   // If BB's terminator has !annotation metadata, add it to the new
3060   // instructions.
3061   Builder.CollectMetadataToCopy(BB->getTerminator(),
3062                                 {LLVMContext::MD_annotation});
3063 
3064   // If we need to invert the condition in the pred block to match, do so now.
3065   if (InvertPredCond) {
3066     Value *NewCond = PBI->getCondition();
3067     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3068       CmpInst *CI = cast<CmpInst>(NewCond);
3069       CI->setPredicate(CI->getInversePredicate());
3070     } else {
3071       NewCond =
3072           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3073     }
3074 
3075     PBI->setCondition(NewCond);
3076     PBI->swapSuccessors();
3077   }
3078 
3079   BasicBlock *UniqueSucc =
3080       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3081 
3082   // Before cloning instructions, notify the successor basic block that it
3083   // is about to have a new predecessor. This will update PHI nodes,
3084   // which will allow us to update live-out uses of bonus instructions.
3085   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3086 
3087   // Try to update branch weights.
3088   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3089   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3090                              SuccTrueWeight, SuccFalseWeight)) {
3091     SmallVector<uint64_t, 8> NewWeights;
3092 
3093     if (PBI->getSuccessor(0) == BB) {
3094       // PBI: br i1 %x, BB, FalseDest
3095       // BI:  br i1 %y, UniqueSucc, FalseDest
3096       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3097       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3098       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3099       //               TrueWeight for PBI * FalseWeight for BI.
3100       // We assume that total weights of a BranchInst can fit into 32 bits.
3101       // Therefore, we will not have overflow using 64-bit arithmetic.
3102       NewWeights.push_back(PredFalseWeight *
3103                                (SuccFalseWeight + SuccTrueWeight) +
3104                            PredTrueWeight * SuccFalseWeight);
3105     } else {
3106       // PBI: br i1 %x, TrueDest, BB
3107       // BI:  br i1 %y, TrueDest, UniqueSucc
3108       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3109       //              FalseWeight for PBI * TrueWeight for BI.
3110       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3111                            PredFalseWeight * SuccTrueWeight);
3112       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3113       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3114     }
3115 
3116     // Halve the weights if any of them cannot fit in an uint32_t
3117     FitWeights(NewWeights);
3118 
3119     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3120     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3121 
3122     // TODO: If BB is reachable from all paths through PredBlock, then we
3123     // could replace PBI's branch probabilities with BI's.
3124   } else
3125     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3126 
3127   // Now, update the CFG.
3128   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3129 
3130   if (DTU)
3131     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3132                        {DominatorTree::Delete, PredBlock, BB}});
3133 
3134   // If BI was a loop latch, it may have had associated loop metadata.
3135   // We need to copy it to the new latch, that is, PBI.
3136   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3137     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3138 
3139   ValueToValueMapTy VMap; // maps original values to cloned values
3140   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3141 
3142   // Now that the Cond was cloned into the predecessor basic block,
3143   // or/and the two conditions together.
3144   Value *BICond = VMap[BI->getCondition()];
3145   PBI->setCondition(
3146       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3147 
3148   // Copy any debug value intrinsics into the end of PredBlock.
3149   for (Instruction &I : *BB) {
3150     if (isa<DbgInfoIntrinsic>(I)) {
3151       Instruction *NewI = I.clone();
3152       RemapInstruction(NewI, VMap,
3153                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3154       NewI->insertBefore(PBI);
3155     }
3156   }
3157 
3158   ++NumFoldBranchToCommonDest;
3159   return true;
3160 }
3161 
3162 /// Return if an instruction's type or any of its operands' types are a vector
3163 /// type.
3164 static bool isVectorOp(Instruction &I) {
3165   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3166            return U->getType()->isVectorTy();
3167          });
3168 }
3169 
3170 /// If this basic block is simple enough, and if a predecessor branches to us
3171 /// and one of our successors, fold the block into the predecessor and use
3172 /// logical operations to pick the right destination.
3173 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3174                                   MemorySSAUpdater *MSSAU,
3175                                   const TargetTransformInfo *TTI,
3176                                   unsigned BonusInstThreshold) {
3177   // If this block ends with an unconditional branch,
3178   // let SpeculativelyExecuteBB() deal with it.
3179   if (!BI->isConditional())
3180     return false;
3181 
3182   BasicBlock *BB = BI->getParent();
3183   TargetTransformInfo::TargetCostKind CostKind =
3184     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3185                                   : TargetTransformInfo::TCK_SizeAndLatency;
3186 
3187   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3188 
3189   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3190       Cond->getParent() != BB || !Cond->hasOneUse())
3191     return false;
3192 
3193   // Cond is known to be a compare or binary operator.  Check to make sure that
3194   // neither operand is a potentially-trapping constant expression.
3195   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3196     if (CE->canTrap())
3197       return false;
3198   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3199     if (CE->canTrap())
3200       return false;
3201 
3202   // Finally, don't infinitely unroll conditional loops.
3203   if (is_contained(successors(BB), BB))
3204     return false;
3205 
3206   // With which predecessors will we want to deal with?
3207   SmallVector<BasicBlock *, 8> Preds;
3208   for (BasicBlock *PredBlock : predecessors(BB)) {
3209     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3210 
3211     // Check that we have two conditional branches.  If there is a PHI node in
3212     // the common successor, verify that the same value flows in from both
3213     // blocks.
3214     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3215       continue;
3216 
3217     // Determine if the two branches share a common destination.
3218     Instruction::BinaryOps Opc;
3219     bool InvertPredCond;
3220     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3221       std::tie(Opc, InvertPredCond) = *Recipe;
3222     else
3223       continue;
3224 
3225     // Check the cost of inserting the necessary logic before performing the
3226     // transformation.
3227     if (TTI) {
3228       Type *Ty = BI->getCondition()->getType();
3229       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3230       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3231           !isa<CmpInst>(PBI->getCondition())))
3232         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3233 
3234       if (Cost > BranchFoldThreshold)
3235         continue;
3236     }
3237 
3238     // Ok, we do want to deal with this predecessor. Record it.
3239     Preds.emplace_back(PredBlock);
3240   }
3241 
3242   // If there aren't any predecessors into which we can fold,
3243   // don't bother checking the cost.
3244   if (Preds.empty())
3245     return false;
3246 
3247   // Only allow this transformation if computing the condition doesn't involve
3248   // too many instructions and these involved instructions can be executed
3249   // unconditionally. We denote all involved instructions except the condition
3250   // as "bonus instructions", and only allow this transformation when the
3251   // number of the bonus instructions we'll need to create when cloning into
3252   // each predecessor does not exceed a certain threshold.
3253   unsigned NumBonusInsts = 0;
3254   bool SawVectorOp = false;
3255   const unsigned PredCount = Preds.size();
3256   for (Instruction &I : *BB) {
3257     // Don't check the branch condition comparison itself.
3258     if (&I == Cond)
3259       continue;
3260     // Ignore dbg intrinsics, and the terminator.
3261     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3262       continue;
3263     // I must be safe to execute unconditionally.
3264     if (!isSafeToSpeculativelyExecute(&I))
3265       return false;
3266     SawVectorOp |= isVectorOp(I);
3267 
3268     // Account for the cost of duplicating this instruction into each
3269     // predecessor. Ignore free instructions.
3270     if (!TTI ||
3271         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3272       NumBonusInsts += PredCount;
3273 
3274       // Early exits once we reach the limit.
3275       if (NumBonusInsts >
3276           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3277         return false;
3278     }
3279 
3280     auto IsBCSSAUse = [BB, &I](Use &U) {
3281       auto *UI = cast<Instruction>(U.getUser());
3282       if (auto *PN = dyn_cast<PHINode>(UI))
3283         return PN->getIncomingBlock(U) == BB;
3284       return UI->getParent() == BB && I.comesBefore(UI);
3285     };
3286 
3287     // Does this instruction require rewriting of uses?
3288     if (!all_of(I.uses(), IsBCSSAUse))
3289       return false;
3290   }
3291   if (NumBonusInsts >
3292       BonusInstThreshold *
3293           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3294     return false;
3295 
3296   // Ok, we have the budget. Perform the transformation.
3297   for (BasicBlock *PredBlock : Preds) {
3298     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3299     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3300   }
3301   return false;
3302 }
3303 
3304 // If there is only one store in BB1 and BB2, return it, otherwise return
3305 // nullptr.
3306 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3307   StoreInst *S = nullptr;
3308   for (auto *BB : {BB1, BB2}) {
3309     if (!BB)
3310       continue;
3311     for (auto &I : *BB)
3312       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3313         if (S)
3314           // Multiple stores seen.
3315           return nullptr;
3316         else
3317           S = SI;
3318       }
3319   }
3320   return S;
3321 }
3322 
3323 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3324                                               Value *AlternativeV = nullptr) {
3325   // PHI is going to be a PHI node that allows the value V that is defined in
3326   // BB to be referenced in BB's only successor.
3327   //
3328   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3329   // doesn't matter to us what the other operand is (it'll never get used). We
3330   // could just create a new PHI with an undef incoming value, but that could
3331   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3332   // other PHI. So here we directly look for some PHI in BB's successor with V
3333   // as an incoming operand. If we find one, we use it, else we create a new
3334   // one.
3335   //
3336   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3337   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3338   // where OtherBB is the single other predecessor of BB's only successor.
3339   PHINode *PHI = nullptr;
3340   BasicBlock *Succ = BB->getSingleSuccessor();
3341 
3342   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3343     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3344       PHI = cast<PHINode>(I);
3345       if (!AlternativeV)
3346         break;
3347 
3348       assert(Succ->hasNPredecessors(2));
3349       auto PredI = pred_begin(Succ);
3350       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3351       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3352         break;
3353       PHI = nullptr;
3354     }
3355   if (PHI)
3356     return PHI;
3357 
3358   // If V is not an instruction defined in BB, just return it.
3359   if (!AlternativeV &&
3360       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3361     return V;
3362 
3363   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3364   PHI->addIncoming(V, BB);
3365   for (BasicBlock *PredBB : predecessors(Succ))
3366     if (PredBB != BB)
3367       PHI->addIncoming(
3368           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3369   return PHI;
3370 }
3371 
3372 static bool mergeConditionalStoreToAddress(
3373     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3374     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3375     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3376   // For every pointer, there must be exactly two stores, one coming from
3377   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3378   // store (to any address) in PTB,PFB or QTB,QFB.
3379   // FIXME: We could relax this restriction with a bit more work and performance
3380   // testing.
3381   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3382   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3383   if (!PStore || !QStore)
3384     return false;
3385 
3386   // Now check the stores are compatible.
3387   if (!QStore->isUnordered() || !PStore->isUnordered())
3388     return false;
3389 
3390   // Check that sinking the store won't cause program behavior changes. Sinking
3391   // the store out of the Q blocks won't change any behavior as we're sinking
3392   // from a block to its unconditional successor. But we're moving a store from
3393   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3394   // So we need to check that there are no aliasing loads or stores in
3395   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3396   // operations between PStore and the end of its parent block.
3397   //
3398   // The ideal way to do this is to query AliasAnalysis, but we don't
3399   // preserve AA currently so that is dangerous. Be super safe and just
3400   // check there are no other memory operations at all.
3401   for (auto &I : *QFB->getSinglePredecessor())
3402     if (I.mayReadOrWriteMemory())
3403       return false;
3404   for (auto &I : *QFB)
3405     if (&I != QStore && I.mayReadOrWriteMemory())
3406       return false;
3407   if (QTB)
3408     for (auto &I : *QTB)
3409       if (&I != QStore && I.mayReadOrWriteMemory())
3410         return false;
3411   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3412        I != E; ++I)
3413     if (&*I != PStore && I->mayReadOrWriteMemory())
3414       return false;
3415 
3416   // If we're not in aggressive mode, we only optimize if we have some
3417   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3418   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3419     if (!BB)
3420       return true;
3421     // Heuristic: if the block can be if-converted/phi-folded and the
3422     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3423     // thread this store.
3424     InstructionCost Cost = 0;
3425     InstructionCost Budget =
3426         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3427     for (auto &I : BB->instructionsWithoutDebug(false)) {
3428       // Consider terminator instruction to be free.
3429       if (I.isTerminator())
3430         continue;
3431       // If this is one the stores that we want to speculate out of this BB,
3432       // then don't count it's cost, consider it to be free.
3433       if (auto *S = dyn_cast<StoreInst>(&I))
3434         if (llvm::find(FreeStores, S))
3435           continue;
3436       // Else, we have a white-list of instructions that we are ak speculating.
3437       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3438         return false; // Not in white-list - not worthwhile folding.
3439       // And finally, if this is a non-free instruction that we are okay
3440       // speculating, ensure that we consider the speculation budget.
3441       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3442       if (Cost > Budget)
3443         return false; // Eagerly refuse to fold as soon as we're out of budget.
3444     }
3445     assert(Cost <= Budget &&
3446            "When we run out of budget we will eagerly return from within the "
3447            "per-instruction loop.");
3448     return true;
3449   };
3450 
3451   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3452   if (!MergeCondStoresAggressively &&
3453       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3454        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3455     return false;
3456 
3457   // If PostBB has more than two predecessors, we need to split it so we can
3458   // sink the store.
3459   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3460     // We know that QFB's only successor is PostBB. And QFB has a single
3461     // predecessor. If QTB exists, then its only successor is also PostBB.
3462     // If QTB does not exist, then QFB's only predecessor has a conditional
3463     // branch to QFB and PostBB.
3464     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3465     BasicBlock *NewBB =
3466         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3467     if (!NewBB)
3468       return false;
3469     PostBB = NewBB;
3470   }
3471 
3472   // OK, we're going to sink the stores to PostBB. The store has to be
3473   // conditional though, so first create the predicate.
3474   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3475                      ->getCondition();
3476   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3477                      ->getCondition();
3478 
3479   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3480                                                 PStore->getParent());
3481   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3482                                                 QStore->getParent(), PPHI);
3483 
3484   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3485 
3486   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3487   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3488 
3489   if (InvertPCond)
3490     PPred = QB.CreateNot(PPred);
3491   if (InvertQCond)
3492     QPred = QB.CreateNot(QPred);
3493   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3494 
3495   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3496                                       /*Unreachable=*/false,
3497                                       /*BranchWeights=*/nullptr, DTU);
3498   QB.SetInsertPoint(T);
3499   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3500   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3501   // Choose the minimum alignment. If we could prove both stores execute, we
3502   // could use biggest one.  In this case, though, we only know that one of the
3503   // stores executes.  And we don't know it's safe to take the alignment from a
3504   // store that doesn't execute.
3505   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3506 
3507   QStore->eraseFromParent();
3508   PStore->eraseFromParent();
3509 
3510   return true;
3511 }
3512 
3513 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3514                                    DomTreeUpdater *DTU, const DataLayout &DL,
3515                                    const TargetTransformInfo &TTI) {
3516   // The intention here is to find diamonds or triangles (see below) where each
3517   // conditional block contains a store to the same address. Both of these
3518   // stores are conditional, so they can't be unconditionally sunk. But it may
3519   // be profitable to speculatively sink the stores into one merged store at the
3520   // end, and predicate the merged store on the union of the two conditions of
3521   // PBI and QBI.
3522   //
3523   // This can reduce the number of stores executed if both of the conditions are
3524   // true, and can allow the blocks to become small enough to be if-converted.
3525   // This optimization will also chain, so that ladders of test-and-set
3526   // sequences can be if-converted away.
3527   //
3528   // We only deal with simple diamonds or triangles:
3529   //
3530   //     PBI       or      PBI        or a combination of the two
3531   //    /   \               | \
3532   //   PTB  PFB             |  PFB
3533   //    \   /               | /
3534   //     QBI                QBI
3535   //    /  \                | \
3536   //   QTB  QFB             |  QFB
3537   //    \  /                | /
3538   //    PostBB            PostBB
3539   //
3540   // We model triangles as a type of diamond with a nullptr "true" block.
3541   // Triangles are canonicalized so that the fallthrough edge is represented by
3542   // a true condition, as in the diagram above.
3543   BasicBlock *PTB = PBI->getSuccessor(0);
3544   BasicBlock *PFB = PBI->getSuccessor(1);
3545   BasicBlock *QTB = QBI->getSuccessor(0);
3546   BasicBlock *QFB = QBI->getSuccessor(1);
3547   BasicBlock *PostBB = QFB->getSingleSuccessor();
3548 
3549   // Make sure we have a good guess for PostBB. If QTB's only successor is
3550   // QFB, then QFB is a better PostBB.
3551   if (QTB->getSingleSuccessor() == QFB)
3552     PostBB = QFB;
3553 
3554   // If we couldn't find a good PostBB, stop.
3555   if (!PostBB)
3556     return false;
3557 
3558   bool InvertPCond = false, InvertQCond = false;
3559   // Canonicalize fallthroughs to the true branches.
3560   if (PFB == QBI->getParent()) {
3561     std::swap(PFB, PTB);
3562     InvertPCond = true;
3563   }
3564   if (QFB == PostBB) {
3565     std::swap(QFB, QTB);
3566     InvertQCond = true;
3567   }
3568 
3569   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3570   // and QFB may not. Model fallthroughs as a nullptr block.
3571   if (PTB == QBI->getParent())
3572     PTB = nullptr;
3573   if (QTB == PostBB)
3574     QTB = nullptr;
3575 
3576   // Legality bailouts. We must have at least the non-fallthrough blocks and
3577   // the post-dominating block, and the non-fallthroughs must only have one
3578   // predecessor.
3579   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3580     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3581   };
3582   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3583       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3584     return false;
3585   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3586       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3587     return false;
3588   if (!QBI->getParent()->hasNUses(2))
3589     return false;
3590 
3591   // OK, this is a sequence of two diamonds or triangles.
3592   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3593   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3594   for (auto *BB : {PTB, PFB}) {
3595     if (!BB)
3596       continue;
3597     for (auto &I : *BB)
3598       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3599         PStoreAddresses.insert(SI->getPointerOperand());
3600   }
3601   for (auto *BB : {QTB, QFB}) {
3602     if (!BB)
3603       continue;
3604     for (auto &I : *BB)
3605       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3606         QStoreAddresses.insert(SI->getPointerOperand());
3607   }
3608 
3609   set_intersect(PStoreAddresses, QStoreAddresses);
3610   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3611   // clear what it contains.
3612   auto &CommonAddresses = PStoreAddresses;
3613 
3614   bool Changed = false;
3615   for (auto *Address : CommonAddresses)
3616     Changed |=
3617         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3618                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3619   return Changed;
3620 }
3621 
3622 /// If the previous block ended with a widenable branch, determine if reusing
3623 /// the target block is profitable and legal.  This will have the effect of
3624 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3625 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3626                                            DomTreeUpdater *DTU) {
3627   // TODO: This can be generalized in two important ways:
3628   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3629   //    values from the PBI edge.
3630   // 2) We can sink side effecting instructions into BI's fallthrough
3631   //    successor provided they doesn't contribute to computation of
3632   //    BI's condition.
3633   Value *CondWB, *WC;
3634   BasicBlock *IfTrueBB, *IfFalseBB;
3635   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3636       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3637     return false;
3638   if (!IfFalseBB->phis().empty())
3639     return false; // TODO
3640   // Use lambda to lazily compute expensive condition after cheap ones.
3641   auto NoSideEffects = [](BasicBlock &BB) {
3642     return llvm::none_of(BB, [](const Instruction &I) {
3643         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3644       });
3645   };
3646   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3647       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3648       NoSideEffects(*BI->getParent())) {
3649     auto *OldSuccessor = BI->getSuccessor(1);
3650     OldSuccessor->removePredecessor(BI->getParent());
3651     BI->setSuccessor(1, IfFalseBB);
3652     if (DTU)
3653       DTU->applyUpdates(
3654           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3655            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3656     return true;
3657   }
3658   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3659       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3660       NoSideEffects(*BI->getParent())) {
3661     auto *OldSuccessor = BI->getSuccessor(0);
3662     OldSuccessor->removePredecessor(BI->getParent());
3663     BI->setSuccessor(0, IfFalseBB);
3664     if (DTU)
3665       DTU->applyUpdates(
3666           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3667            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3668     return true;
3669   }
3670   return false;
3671 }
3672 
3673 /// If we have a conditional branch as a predecessor of another block,
3674 /// this function tries to simplify it.  We know
3675 /// that PBI and BI are both conditional branches, and BI is in one of the
3676 /// successor blocks of PBI - PBI branches to BI.
3677 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3678                                            DomTreeUpdater *DTU,
3679                                            const DataLayout &DL,
3680                                            const TargetTransformInfo &TTI) {
3681   assert(PBI->isConditional() && BI->isConditional());
3682   BasicBlock *BB = BI->getParent();
3683 
3684   // If this block ends with a branch instruction, and if there is a
3685   // predecessor that ends on a branch of the same condition, make
3686   // this conditional branch redundant.
3687   if (PBI->getCondition() == BI->getCondition() &&
3688       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3689     // Okay, the outcome of this conditional branch is statically
3690     // knowable.  If this block had a single pred, handle specially.
3691     if (BB->getSinglePredecessor()) {
3692       // Turn this into a branch on constant.
3693       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3694       BI->setCondition(
3695           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3696       return true; // Nuke the branch on constant.
3697     }
3698 
3699     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3700     // in the constant and simplify the block result.  Subsequent passes of
3701     // simplifycfg will thread the block.
3702     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3703       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3704       PHINode *NewPN = PHINode::Create(
3705           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3706           BI->getCondition()->getName() + ".pr", &BB->front());
3707       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3708       // predecessor, compute the PHI'd conditional value for all of the preds.
3709       // Any predecessor where the condition is not computable we keep symbolic.
3710       for (pred_iterator PI = PB; PI != PE; ++PI) {
3711         BasicBlock *P = *PI;
3712         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3713             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3714             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3715           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3716           NewPN->addIncoming(
3717               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3718               P);
3719         } else {
3720           NewPN->addIncoming(BI->getCondition(), P);
3721         }
3722       }
3723 
3724       BI->setCondition(NewPN);
3725       return true;
3726     }
3727   }
3728 
3729   // If the previous block ended with a widenable branch, determine if reusing
3730   // the target block is profitable and legal.  This will have the effect of
3731   // "widening" PBI, but doesn't require us to reason about hosting safety.
3732   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3733     return true;
3734 
3735   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3736     if (CE->canTrap())
3737       return false;
3738 
3739   // If both branches are conditional and both contain stores to the same
3740   // address, remove the stores from the conditionals and create a conditional
3741   // merged store at the end.
3742   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3743     return true;
3744 
3745   // If this is a conditional branch in an empty block, and if any
3746   // predecessors are a conditional branch to one of our destinations,
3747   // fold the conditions into logical ops and one cond br.
3748 
3749   // Ignore dbg intrinsics.
3750   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
3751     return false;
3752 
3753   int PBIOp, BIOp;
3754   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3755     PBIOp = 0;
3756     BIOp = 0;
3757   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3758     PBIOp = 0;
3759     BIOp = 1;
3760   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3761     PBIOp = 1;
3762     BIOp = 0;
3763   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3764     PBIOp = 1;
3765     BIOp = 1;
3766   } else {
3767     return false;
3768   }
3769 
3770   // Check to make sure that the other destination of this branch
3771   // isn't BB itself.  If so, this is an infinite loop that will
3772   // keep getting unwound.
3773   if (PBI->getSuccessor(PBIOp) == BB)
3774     return false;
3775 
3776   // Do not perform this transformation if it would require
3777   // insertion of a large number of select instructions. For targets
3778   // without predication/cmovs, this is a big pessimization.
3779 
3780   // Also do not perform this transformation if any phi node in the common
3781   // destination block can trap when reached by BB or PBB (PR17073). In that
3782   // case, it would be unsafe to hoist the operation into a select instruction.
3783 
3784   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3785   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3786   unsigned NumPhis = 0;
3787   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3788        ++II, ++NumPhis) {
3789     if (NumPhis > 2) // Disable this xform.
3790       return false;
3791 
3792     PHINode *PN = cast<PHINode>(II);
3793     Value *BIV = PN->getIncomingValueForBlock(BB);
3794     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3795       if (CE->canTrap())
3796         return false;
3797 
3798     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3799     Value *PBIV = PN->getIncomingValue(PBBIdx);
3800     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3801       if (CE->canTrap())
3802         return false;
3803   }
3804 
3805   // Finally, if everything is ok, fold the branches to logical ops.
3806   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3807 
3808   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3809                     << "AND: " << *BI->getParent());
3810 
3811   SmallVector<DominatorTree::UpdateType, 5> Updates;
3812 
3813   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3814   // branch in it, where one edge (OtherDest) goes back to itself but the other
3815   // exits.  We don't *know* that the program avoids the infinite loop
3816   // (even though that seems likely).  If we do this xform naively, we'll end up
3817   // recursively unpeeling the loop.  Since we know that (after the xform is
3818   // done) that the block *is* infinite if reached, we just make it an obviously
3819   // infinite loop with no cond branch.
3820   if (OtherDest == BB) {
3821     // Insert it at the end of the function, because it's either code,
3822     // or it won't matter if it's hot. :)
3823     BasicBlock *InfLoopBlock =
3824         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3825     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3826     if (DTU)
3827       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3828     OtherDest = InfLoopBlock;
3829   }
3830 
3831   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3832 
3833   // BI may have other predecessors.  Because of this, we leave
3834   // it alone, but modify PBI.
3835 
3836   // Make sure we get to CommonDest on True&True directions.
3837   Value *PBICond = PBI->getCondition();
3838   IRBuilder<NoFolder> Builder(PBI);
3839   if (PBIOp)
3840     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3841 
3842   Value *BICond = BI->getCondition();
3843   if (BIOp)
3844     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3845 
3846   // Merge the conditions.
3847   Value *Cond =
3848       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3849 
3850   // Modify PBI to branch on the new condition to the new dests.
3851   PBI->setCondition(Cond);
3852   PBI->setSuccessor(0, CommonDest);
3853   PBI->setSuccessor(1, OtherDest);
3854 
3855   if (DTU) {
3856     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3857     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3858 
3859     DTU->applyUpdates(Updates);
3860   }
3861 
3862   // Update branch weight for PBI.
3863   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3864   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3865   bool HasWeights =
3866       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3867                              SuccTrueWeight, SuccFalseWeight);
3868   if (HasWeights) {
3869     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3870     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3871     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3872     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3873     // The weight to CommonDest should be PredCommon * SuccTotal +
3874     //                                    PredOther * SuccCommon.
3875     // The weight to OtherDest should be PredOther * SuccOther.
3876     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3877                                   PredOther * SuccCommon,
3878                               PredOther * SuccOther};
3879     // Halve the weights if any of them cannot fit in an uint32_t
3880     FitWeights(NewWeights);
3881 
3882     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3883   }
3884 
3885   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3886   // block that are identical to the entries for BI's block.
3887   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3888 
3889   // We know that the CommonDest already had an edge from PBI to
3890   // it.  If it has PHIs though, the PHIs may have different
3891   // entries for BB and PBI's BB.  If so, insert a select to make
3892   // them agree.
3893   for (PHINode &PN : CommonDest->phis()) {
3894     Value *BIV = PN.getIncomingValueForBlock(BB);
3895     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3896     Value *PBIV = PN.getIncomingValue(PBBIdx);
3897     if (BIV != PBIV) {
3898       // Insert a select in PBI to pick the right value.
3899       SelectInst *NV = cast<SelectInst>(
3900           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3901       PN.setIncomingValue(PBBIdx, NV);
3902       // Although the select has the same condition as PBI, the original branch
3903       // weights for PBI do not apply to the new select because the select's
3904       // 'logical' edges are incoming edges of the phi that is eliminated, not
3905       // the outgoing edges of PBI.
3906       if (HasWeights) {
3907         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3908         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3909         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3910         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3911         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3912         // The weight to PredOtherDest should be PredOther * SuccCommon.
3913         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3914                                   PredOther * SuccCommon};
3915 
3916         FitWeights(NewWeights);
3917 
3918         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3919       }
3920     }
3921   }
3922 
3923   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3924   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3925 
3926   // This basic block is probably dead.  We know it has at least
3927   // one fewer predecessor.
3928   return true;
3929 }
3930 
3931 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3932 // true or to FalseBB if Cond is false.
3933 // Takes care of updating the successors and removing the old terminator.
3934 // Also makes sure not to introduce new successors by assuming that edges to
3935 // non-successor TrueBBs and FalseBBs aren't reachable.
3936 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3937                                                 Value *Cond, BasicBlock *TrueBB,
3938                                                 BasicBlock *FalseBB,
3939                                                 uint32_t TrueWeight,
3940                                                 uint32_t FalseWeight) {
3941   auto *BB = OldTerm->getParent();
3942   // Remove any superfluous successor edges from the CFG.
3943   // First, figure out which successors to preserve.
3944   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3945   // successor.
3946   BasicBlock *KeepEdge1 = TrueBB;
3947   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3948 
3949   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
3950 
3951   // Then remove the rest.
3952   for (BasicBlock *Succ : successors(OldTerm)) {
3953     // Make sure only to keep exactly one copy of each edge.
3954     if (Succ == KeepEdge1)
3955       KeepEdge1 = nullptr;
3956     else if (Succ == KeepEdge2)
3957       KeepEdge2 = nullptr;
3958     else {
3959       Succ->removePredecessor(BB,
3960                               /*KeepOneInputPHIs=*/true);
3961 
3962       if (Succ != TrueBB && Succ != FalseBB)
3963         RemovedSuccessors.insert(Succ);
3964     }
3965   }
3966 
3967   IRBuilder<> Builder(OldTerm);
3968   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3969 
3970   // Insert an appropriate new terminator.
3971   if (!KeepEdge1 && !KeepEdge2) {
3972     if (TrueBB == FalseBB) {
3973       // We were only looking for one successor, and it was present.
3974       // Create an unconditional branch to it.
3975       Builder.CreateBr(TrueBB);
3976     } else {
3977       // We found both of the successors we were looking for.
3978       // Create a conditional branch sharing the condition of the select.
3979       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3980       if (TrueWeight != FalseWeight)
3981         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3982     }
3983   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3984     // Neither of the selected blocks were successors, so this
3985     // terminator must be unreachable.
3986     new UnreachableInst(OldTerm->getContext(), OldTerm);
3987   } else {
3988     // One of the selected values was a successor, but the other wasn't.
3989     // Insert an unconditional branch to the one that was found;
3990     // the edge to the one that wasn't must be unreachable.
3991     if (!KeepEdge1) {
3992       // Only TrueBB was found.
3993       Builder.CreateBr(TrueBB);
3994     } else {
3995       // Only FalseBB was found.
3996       Builder.CreateBr(FalseBB);
3997     }
3998   }
3999 
4000   EraseTerminatorAndDCECond(OldTerm);
4001 
4002   if (DTU) {
4003     SmallVector<DominatorTree::UpdateType, 2> Updates;
4004     Updates.reserve(RemovedSuccessors.size());
4005     for (auto *RemovedSuccessor : RemovedSuccessors)
4006       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4007     DTU->applyUpdates(Updates);
4008   }
4009 
4010   return true;
4011 }
4012 
4013 // Replaces
4014 //   (switch (select cond, X, Y)) on constant X, Y
4015 // with a branch - conditional if X and Y lead to distinct BBs,
4016 // unconditional otherwise.
4017 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4018                                             SelectInst *Select) {
4019   // Check for constant integer values in the select.
4020   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4021   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4022   if (!TrueVal || !FalseVal)
4023     return false;
4024 
4025   // Find the relevant condition and destinations.
4026   Value *Condition = Select->getCondition();
4027   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4028   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4029 
4030   // Get weight for TrueBB and FalseBB.
4031   uint32_t TrueWeight = 0, FalseWeight = 0;
4032   SmallVector<uint64_t, 8> Weights;
4033   bool HasWeights = HasBranchWeights(SI);
4034   if (HasWeights) {
4035     GetBranchWeights(SI, Weights);
4036     if (Weights.size() == 1 + SI->getNumCases()) {
4037       TrueWeight =
4038           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4039       FalseWeight =
4040           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4041     }
4042   }
4043 
4044   // Perform the actual simplification.
4045   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4046                                     FalseWeight);
4047 }
4048 
4049 // Replaces
4050 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4051 //                             blockaddress(@fn, BlockB)))
4052 // with
4053 //   (br cond, BlockA, BlockB).
4054 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4055                                                 SelectInst *SI) {
4056   // Check that both operands of the select are block addresses.
4057   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4058   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4059   if (!TBA || !FBA)
4060     return false;
4061 
4062   // Extract the actual blocks.
4063   BasicBlock *TrueBB = TBA->getBasicBlock();
4064   BasicBlock *FalseBB = FBA->getBasicBlock();
4065 
4066   // Perform the actual simplification.
4067   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4068                                     0);
4069 }
4070 
4071 /// This is called when we find an icmp instruction
4072 /// (a seteq/setne with a constant) as the only instruction in a
4073 /// block that ends with an uncond branch.  We are looking for a very specific
4074 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4075 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4076 /// default value goes to an uncond block with a seteq in it, we get something
4077 /// like:
4078 ///
4079 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4080 /// DEFAULT:
4081 ///   %tmp = icmp eq i8 %A, 92
4082 ///   br label %end
4083 /// end:
4084 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4085 ///
4086 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4087 /// the PHI, merging the third icmp into the switch.
4088 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4089     ICmpInst *ICI, IRBuilder<> &Builder) {
4090   BasicBlock *BB = ICI->getParent();
4091 
4092   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4093   // complex.
4094   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4095     return false;
4096 
4097   Value *V = ICI->getOperand(0);
4098   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4099 
4100   // The pattern we're looking for is where our only predecessor is a switch on
4101   // 'V' and this block is the default case for the switch.  In this case we can
4102   // fold the compared value into the switch to simplify things.
4103   BasicBlock *Pred = BB->getSinglePredecessor();
4104   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4105     return false;
4106 
4107   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4108   if (SI->getCondition() != V)
4109     return false;
4110 
4111   // If BB is reachable on a non-default case, then we simply know the value of
4112   // V in this block.  Substitute it and constant fold the icmp instruction
4113   // away.
4114   if (SI->getDefaultDest() != BB) {
4115     ConstantInt *VVal = SI->findCaseDest(BB);
4116     assert(VVal && "Should have a unique destination value");
4117     ICI->setOperand(0, VVal);
4118 
4119     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4120       ICI->replaceAllUsesWith(V);
4121       ICI->eraseFromParent();
4122     }
4123     // BB is now empty, so it is likely to simplify away.
4124     return requestResimplify();
4125   }
4126 
4127   // Ok, the block is reachable from the default dest.  If the constant we're
4128   // comparing exists in one of the other edges, then we can constant fold ICI
4129   // and zap it.
4130   if (SI->findCaseValue(Cst) != SI->case_default()) {
4131     Value *V;
4132     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4133       V = ConstantInt::getFalse(BB->getContext());
4134     else
4135       V = ConstantInt::getTrue(BB->getContext());
4136 
4137     ICI->replaceAllUsesWith(V);
4138     ICI->eraseFromParent();
4139     // BB is now empty, so it is likely to simplify away.
4140     return requestResimplify();
4141   }
4142 
4143   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4144   // the block.
4145   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4146   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4147   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4148       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4149     return false;
4150 
4151   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4152   // true in the PHI.
4153   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4154   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4155 
4156   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4157     std::swap(DefaultCst, NewCst);
4158 
4159   // Replace ICI (which is used by the PHI for the default value) with true or
4160   // false depending on if it is EQ or NE.
4161   ICI->replaceAllUsesWith(DefaultCst);
4162   ICI->eraseFromParent();
4163 
4164   SmallVector<DominatorTree::UpdateType, 2> Updates;
4165 
4166   // Okay, the switch goes to this block on a default value.  Add an edge from
4167   // the switch to the merge point on the compared value.
4168   BasicBlock *NewBB =
4169       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4170   {
4171     SwitchInstProfUpdateWrapper SIW(*SI);
4172     auto W0 = SIW.getSuccessorWeight(0);
4173     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4174     if (W0) {
4175       NewW = ((uint64_t(*W0) + 1) >> 1);
4176       SIW.setSuccessorWeight(0, *NewW);
4177     }
4178     SIW.addCase(Cst, NewBB, NewW);
4179     if (DTU)
4180       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4181   }
4182 
4183   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4184   Builder.SetInsertPoint(NewBB);
4185   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4186   Builder.CreateBr(SuccBlock);
4187   PHIUse->addIncoming(NewCst, NewBB);
4188   if (DTU) {
4189     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4190     DTU->applyUpdates(Updates);
4191   }
4192   return true;
4193 }
4194 
4195 /// The specified branch is a conditional branch.
4196 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4197 /// fold it into a switch instruction if so.
4198 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4199                                                IRBuilder<> &Builder,
4200                                                const DataLayout &DL) {
4201   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4202   if (!Cond)
4203     return false;
4204 
4205   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4206   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4207   // 'setne's and'ed together, collect them.
4208 
4209   // Try to gather values from a chain of and/or to be turned into a switch
4210   ConstantComparesGatherer ConstantCompare(Cond, DL);
4211   // Unpack the result
4212   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4213   Value *CompVal = ConstantCompare.CompValue;
4214   unsigned UsedICmps = ConstantCompare.UsedICmps;
4215   Value *ExtraCase = ConstantCompare.Extra;
4216 
4217   // If we didn't have a multiply compared value, fail.
4218   if (!CompVal)
4219     return false;
4220 
4221   // Avoid turning single icmps into a switch.
4222   if (UsedICmps <= 1)
4223     return false;
4224 
4225   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4226 
4227   // There might be duplicate constants in the list, which the switch
4228   // instruction can't handle, remove them now.
4229   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4230   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4231 
4232   // If Extra was used, we require at least two switch values to do the
4233   // transformation.  A switch with one value is just a conditional branch.
4234   if (ExtraCase && Values.size() < 2)
4235     return false;
4236 
4237   // TODO: Preserve branch weight metadata, similarly to how
4238   // FoldValueComparisonIntoPredecessors preserves it.
4239 
4240   // Figure out which block is which destination.
4241   BasicBlock *DefaultBB = BI->getSuccessor(1);
4242   BasicBlock *EdgeBB = BI->getSuccessor(0);
4243   if (!TrueWhenEqual)
4244     std::swap(DefaultBB, EdgeBB);
4245 
4246   BasicBlock *BB = BI->getParent();
4247 
4248   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4249                     << " cases into SWITCH.  BB is:\n"
4250                     << *BB);
4251 
4252   SmallVector<DominatorTree::UpdateType, 2> Updates;
4253 
4254   // If there are any extra values that couldn't be folded into the switch
4255   // then we evaluate them with an explicit branch first. Split the block
4256   // right before the condbr to handle it.
4257   if (ExtraCase) {
4258     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4259                                    /*MSSAU=*/nullptr, "switch.early.test");
4260 
4261     // Remove the uncond branch added to the old block.
4262     Instruction *OldTI = BB->getTerminator();
4263     Builder.SetInsertPoint(OldTI);
4264 
4265     // There can be an unintended UB if extra values are Poison. Before the
4266     // transformation, extra values may not be evaluated according to the
4267     // condition, and it will not raise UB. But after transformation, we are
4268     // evaluating extra values before checking the condition, and it will raise
4269     // UB. It can be solved by adding freeze instruction to extra values.
4270     AssumptionCache *AC = Options.AC;
4271 
4272     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4273       ExtraCase = Builder.CreateFreeze(ExtraCase);
4274 
4275     if (TrueWhenEqual)
4276       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4277     else
4278       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4279 
4280     OldTI->eraseFromParent();
4281 
4282     if (DTU)
4283       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4284 
4285     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4286     // for the edge we just added.
4287     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4288 
4289     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4290                       << "\nEXTRABB = " << *BB);
4291     BB = NewBB;
4292   }
4293 
4294   Builder.SetInsertPoint(BI);
4295   // Convert pointer to int before we switch.
4296   if (CompVal->getType()->isPointerTy()) {
4297     CompVal = Builder.CreatePtrToInt(
4298         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4299   }
4300 
4301   // Create the new switch instruction now.
4302   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4303 
4304   // Add all of the 'cases' to the switch instruction.
4305   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4306     New->addCase(Values[i], EdgeBB);
4307 
4308   // We added edges from PI to the EdgeBB.  As such, if there were any
4309   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4310   // the number of edges added.
4311   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4312     PHINode *PN = cast<PHINode>(BBI);
4313     Value *InVal = PN->getIncomingValueForBlock(BB);
4314     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4315       PN->addIncoming(InVal, BB);
4316   }
4317 
4318   // Erase the old branch instruction.
4319   EraseTerminatorAndDCECond(BI);
4320   if (DTU)
4321     DTU->applyUpdates(Updates);
4322 
4323   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4324   return true;
4325 }
4326 
4327 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4328   if (isa<PHINode>(RI->getValue()))
4329     return simplifyCommonResume(RI);
4330   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4331            RI->getValue() == RI->getParent()->getFirstNonPHI())
4332     // The resume must unwind the exception that caused control to branch here.
4333     return simplifySingleResume(RI);
4334 
4335   return false;
4336 }
4337 
4338 // Check if cleanup block is empty
4339 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4340   for (Instruction &I : R) {
4341     auto *II = dyn_cast<IntrinsicInst>(&I);
4342     if (!II)
4343       return false;
4344 
4345     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4346     switch (IntrinsicID) {
4347     case Intrinsic::dbg_declare:
4348     case Intrinsic::dbg_value:
4349     case Intrinsic::dbg_label:
4350     case Intrinsic::lifetime_end:
4351       break;
4352     default:
4353       return false;
4354     }
4355   }
4356   return true;
4357 }
4358 
4359 // Simplify resume that is shared by several landing pads (phi of landing pad).
4360 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4361   BasicBlock *BB = RI->getParent();
4362 
4363   // Check that there are no other instructions except for debug and lifetime
4364   // intrinsics between the phi's and resume instruction.
4365   if (!isCleanupBlockEmpty(
4366           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4367     return false;
4368 
4369   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4370   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4371 
4372   // Check incoming blocks to see if any of them are trivial.
4373   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4374        Idx++) {
4375     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4376     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4377 
4378     // If the block has other successors, we can not delete it because
4379     // it has other dependents.
4380     if (IncomingBB->getUniqueSuccessor() != BB)
4381       continue;
4382 
4383     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4384     // Not the landing pad that caused the control to branch here.
4385     if (IncomingValue != LandingPad)
4386       continue;
4387 
4388     if (isCleanupBlockEmpty(
4389             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4390       TrivialUnwindBlocks.insert(IncomingBB);
4391   }
4392 
4393   // If no trivial unwind blocks, don't do any simplifications.
4394   if (TrivialUnwindBlocks.empty())
4395     return false;
4396 
4397   // Turn all invokes that unwind here into calls.
4398   for (auto *TrivialBB : TrivialUnwindBlocks) {
4399     // Blocks that will be simplified should be removed from the phi node.
4400     // Note there could be multiple edges to the resume block, and we need
4401     // to remove them all.
4402     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4403       BB->removePredecessor(TrivialBB, true);
4404 
4405     for (BasicBlock *Pred :
4406          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4407       removeUnwindEdge(Pred, DTU);
4408       ++NumInvokes;
4409     }
4410 
4411     // In each SimplifyCFG run, only the current processed block can be erased.
4412     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4413     // of erasing TrivialBB, we only remove the branch to the common resume
4414     // block so that we can later erase the resume block since it has no
4415     // predecessors.
4416     TrivialBB->getTerminator()->eraseFromParent();
4417     new UnreachableInst(RI->getContext(), TrivialBB);
4418     if (DTU)
4419       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4420   }
4421 
4422   // Delete the resume block if all its predecessors have been removed.
4423   if (pred_empty(BB))
4424     DeleteDeadBlock(BB, DTU);
4425 
4426   return !TrivialUnwindBlocks.empty();
4427 }
4428 
4429 // Simplify resume that is only used by a single (non-phi) landing pad.
4430 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4431   BasicBlock *BB = RI->getParent();
4432   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4433   assert(RI->getValue() == LPInst &&
4434          "Resume must unwind the exception that caused control to here");
4435 
4436   // Check that there are no other instructions except for debug intrinsics.
4437   if (!isCleanupBlockEmpty(
4438           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4439     return false;
4440 
4441   // Turn all invokes that unwind here into calls and delete the basic block.
4442   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4443     removeUnwindEdge(Pred, DTU);
4444     ++NumInvokes;
4445   }
4446 
4447   // The landingpad is now unreachable.  Zap it.
4448   DeleteDeadBlock(BB, DTU);
4449   return true;
4450 }
4451 
4452 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4453   // If this is a trivial cleanup pad that executes no instructions, it can be
4454   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4455   // that is an EH pad will be updated to continue to the caller and any
4456   // predecessor that terminates with an invoke instruction will have its invoke
4457   // instruction converted to a call instruction.  If the cleanup pad being
4458   // simplified does not continue to the caller, each predecessor will be
4459   // updated to continue to the unwind destination of the cleanup pad being
4460   // simplified.
4461   BasicBlock *BB = RI->getParent();
4462   CleanupPadInst *CPInst = RI->getCleanupPad();
4463   if (CPInst->getParent() != BB)
4464     // This isn't an empty cleanup.
4465     return false;
4466 
4467   // We cannot kill the pad if it has multiple uses.  This typically arises
4468   // from unreachable basic blocks.
4469   if (!CPInst->hasOneUse())
4470     return false;
4471 
4472   // Check that there are no other instructions except for benign intrinsics.
4473   if (!isCleanupBlockEmpty(
4474           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4475     return false;
4476 
4477   // If the cleanup return we are simplifying unwinds to the caller, this will
4478   // set UnwindDest to nullptr.
4479   BasicBlock *UnwindDest = RI->getUnwindDest();
4480   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4481 
4482   // We're about to remove BB from the control flow.  Before we do, sink any
4483   // PHINodes into the unwind destination.  Doing this before changing the
4484   // control flow avoids some potentially slow checks, since we can currently
4485   // be certain that UnwindDest and BB have no common predecessors (since they
4486   // are both EH pads).
4487   if (UnwindDest) {
4488     // First, go through the PHI nodes in UnwindDest and update any nodes that
4489     // reference the block we are removing
4490     for (PHINode &DestPN : UnwindDest->phis()) {
4491       int Idx = DestPN.getBasicBlockIndex(BB);
4492       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4493       assert(Idx != -1);
4494       // This PHI node has an incoming value that corresponds to a control
4495       // path through the cleanup pad we are removing.  If the incoming
4496       // value is in the cleanup pad, it must be a PHINode (because we
4497       // verified above that the block is otherwise empty).  Otherwise, the
4498       // value is either a constant or a value that dominates the cleanup
4499       // pad being removed.
4500       //
4501       // Because BB and UnwindDest are both EH pads, all of their
4502       // predecessors must unwind to these blocks, and since no instruction
4503       // can have multiple unwind destinations, there will be no overlap in
4504       // incoming blocks between SrcPN and DestPN.
4505       Value *SrcVal = DestPN.getIncomingValue(Idx);
4506       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4507 
4508       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4509       for (auto *Pred : predecessors(BB)) {
4510         Value *Incoming =
4511             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4512         DestPN.addIncoming(Incoming, Pred);
4513       }
4514     }
4515 
4516     // Sink any remaining PHI nodes directly into UnwindDest.
4517     Instruction *InsertPt = DestEHPad;
4518     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4519       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4520         // If the PHI node has no uses or all of its uses are in this basic
4521         // block (meaning they are debug or lifetime intrinsics), just leave
4522         // it.  It will be erased when we erase BB below.
4523         continue;
4524 
4525       // Otherwise, sink this PHI node into UnwindDest.
4526       // Any predecessors to UnwindDest which are not already represented
4527       // must be back edges which inherit the value from the path through
4528       // BB.  In this case, the PHI value must reference itself.
4529       for (auto *pred : predecessors(UnwindDest))
4530         if (pred != BB)
4531           PN.addIncoming(&PN, pred);
4532       PN.moveBefore(InsertPt);
4533       // Also, add a dummy incoming value for the original BB itself,
4534       // so that the PHI is well-formed until we drop said predecessor.
4535       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4536     }
4537   }
4538 
4539   std::vector<DominatorTree::UpdateType> Updates;
4540 
4541   // We use make_early_inc_range here because we will remove all predecessors.
4542   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4543     if (UnwindDest == nullptr) {
4544       if (DTU) {
4545         DTU->applyUpdates(Updates);
4546         Updates.clear();
4547       }
4548       removeUnwindEdge(PredBB, DTU);
4549       ++NumInvokes;
4550     } else {
4551       BB->removePredecessor(PredBB);
4552       Instruction *TI = PredBB->getTerminator();
4553       TI->replaceUsesOfWith(BB, UnwindDest);
4554       if (DTU) {
4555         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4556         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4557       }
4558     }
4559   }
4560 
4561   if (DTU)
4562     DTU->applyUpdates(Updates);
4563 
4564   DeleteDeadBlock(BB, DTU);
4565 
4566   return true;
4567 }
4568 
4569 // Try to merge two cleanuppads together.
4570 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4571   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4572   // with.
4573   BasicBlock *UnwindDest = RI->getUnwindDest();
4574   if (!UnwindDest)
4575     return false;
4576 
4577   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4578   // be safe to merge without code duplication.
4579   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4580     return false;
4581 
4582   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4583   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4584   if (!SuccessorCleanupPad)
4585     return false;
4586 
4587   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4588   // Replace any uses of the successor cleanupad with the predecessor pad
4589   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4590   // funclet bundle operands.
4591   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4592   // Remove the old cleanuppad.
4593   SuccessorCleanupPad->eraseFromParent();
4594   // Now, we simply replace the cleanupret with a branch to the unwind
4595   // destination.
4596   BranchInst::Create(UnwindDest, RI->getParent());
4597   RI->eraseFromParent();
4598 
4599   return true;
4600 }
4601 
4602 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4603   // It is possible to transiantly have an undef cleanuppad operand because we
4604   // have deleted some, but not all, dead blocks.
4605   // Eventually, this block will be deleted.
4606   if (isa<UndefValue>(RI->getOperand(0)))
4607     return false;
4608 
4609   if (mergeCleanupPad(RI))
4610     return true;
4611 
4612   if (removeEmptyCleanup(RI, DTU))
4613     return true;
4614 
4615   return false;
4616 }
4617 
4618 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4619 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4620   BasicBlock *BB = UI->getParent();
4621 
4622   bool Changed = false;
4623 
4624   // If there are any instructions immediately before the unreachable that can
4625   // be removed, do so.
4626   while (UI->getIterator() != BB->begin()) {
4627     BasicBlock::iterator BBI = UI->getIterator();
4628     --BBI;
4629 
4630     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4631       break; // Can not drop any more instructions. We're done here.
4632     // Otherwise, this instruction can be freely erased,
4633     // even if it is not side-effect free.
4634 
4635     // Note that deleting EH's here is in fact okay, although it involves a bit
4636     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4637     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4638     // and we can therefore guarantee this block will be erased.
4639 
4640     // Delete this instruction (any uses are guaranteed to be dead)
4641     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4642     BBI->eraseFromParent();
4643     Changed = true;
4644   }
4645 
4646   // If the unreachable instruction is the first in the block, take a gander
4647   // at all of the predecessors of this instruction, and simplify them.
4648   if (&BB->front() != UI)
4649     return Changed;
4650 
4651   std::vector<DominatorTree::UpdateType> Updates;
4652 
4653   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4654   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4655     auto *Predecessor = Preds[i];
4656     Instruction *TI = Predecessor->getTerminator();
4657     IRBuilder<> Builder(TI);
4658     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4659       // We could either have a proper unconditional branch,
4660       // or a degenerate conditional branch with matching destinations.
4661       if (all_of(BI->successors(),
4662                  [BB](auto *Successor) { return Successor == BB; })) {
4663         new UnreachableInst(TI->getContext(), TI);
4664         TI->eraseFromParent();
4665         Changed = true;
4666       } else {
4667         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4668         Value* Cond = BI->getCondition();
4669         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4670                "The destinations are guaranteed to be different here.");
4671         if (BI->getSuccessor(0) == BB) {
4672           Builder.CreateAssumption(Builder.CreateNot(Cond));
4673           Builder.CreateBr(BI->getSuccessor(1));
4674         } else {
4675           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4676           Builder.CreateAssumption(Cond);
4677           Builder.CreateBr(BI->getSuccessor(0));
4678         }
4679         EraseTerminatorAndDCECond(BI);
4680         Changed = true;
4681       }
4682       if (DTU)
4683         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4684     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4685       SwitchInstProfUpdateWrapper SU(*SI);
4686       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4687         if (i->getCaseSuccessor() != BB) {
4688           ++i;
4689           continue;
4690         }
4691         BB->removePredecessor(SU->getParent());
4692         i = SU.removeCase(i);
4693         e = SU->case_end();
4694         Changed = true;
4695       }
4696       // Note that the default destination can't be removed!
4697       if (DTU && SI->getDefaultDest() != BB)
4698         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4699     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4700       if (II->getUnwindDest() == BB) {
4701         if (DTU) {
4702           DTU->applyUpdates(Updates);
4703           Updates.clear();
4704         }
4705         removeUnwindEdge(TI->getParent(), DTU);
4706         Changed = true;
4707       }
4708     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4709       if (CSI->getUnwindDest() == BB) {
4710         if (DTU) {
4711           DTU->applyUpdates(Updates);
4712           Updates.clear();
4713         }
4714         removeUnwindEdge(TI->getParent(), DTU);
4715         Changed = true;
4716         continue;
4717       }
4718 
4719       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4720                                              E = CSI->handler_end();
4721            I != E; ++I) {
4722         if (*I == BB) {
4723           CSI->removeHandler(I);
4724           --I;
4725           --E;
4726           Changed = true;
4727         }
4728       }
4729       if (DTU)
4730         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4731       if (CSI->getNumHandlers() == 0) {
4732         if (CSI->hasUnwindDest()) {
4733           // Redirect all predecessors of the block containing CatchSwitchInst
4734           // to instead branch to the CatchSwitchInst's unwind destination.
4735           if (DTU) {
4736             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4737               Updates.push_back({DominatorTree::Insert,
4738                                  PredecessorOfPredecessor,
4739                                  CSI->getUnwindDest()});
4740               Updates.push_back({DominatorTree::Delete,
4741                                  PredecessorOfPredecessor, Predecessor});
4742             }
4743           }
4744           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4745         } else {
4746           // Rewrite all preds to unwind to caller (or from invoke to call).
4747           if (DTU) {
4748             DTU->applyUpdates(Updates);
4749             Updates.clear();
4750           }
4751           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4752           for (BasicBlock *EHPred : EHPreds)
4753             removeUnwindEdge(EHPred, DTU);
4754         }
4755         // The catchswitch is no longer reachable.
4756         new UnreachableInst(CSI->getContext(), CSI);
4757         CSI->eraseFromParent();
4758         Changed = true;
4759       }
4760     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4761       (void)CRI;
4762       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4763              "Expected to always have an unwind to BB.");
4764       if (DTU)
4765         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4766       new UnreachableInst(TI->getContext(), TI);
4767       TI->eraseFromParent();
4768       Changed = true;
4769     }
4770   }
4771 
4772   if (DTU)
4773     DTU->applyUpdates(Updates);
4774 
4775   // If this block is now dead, remove it.
4776   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4777     DeleteDeadBlock(BB, DTU);
4778     return true;
4779   }
4780 
4781   return Changed;
4782 }
4783 
4784 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4785   assert(Cases.size() >= 1);
4786 
4787   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4788   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4789     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4790       return false;
4791   }
4792   return true;
4793 }
4794 
4795 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4796                                            DomTreeUpdater *DTU) {
4797   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4798   auto *BB = Switch->getParent();
4799   auto *OrigDefaultBlock = Switch->getDefaultDest();
4800   OrigDefaultBlock->removePredecessor(BB);
4801   BasicBlock *NewDefaultBlock = BasicBlock::Create(
4802       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
4803       OrigDefaultBlock);
4804   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
4805   Switch->setDefaultDest(&*NewDefaultBlock);
4806   if (DTU) {
4807     SmallVector<DominatorTree::UpdateType, 2> Updates;
4808     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
4809     if (!is_contained(successors(BB), OrigDefaultBlock))
4810       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
4811     DTU->applyUpdates(Updates);
4812   }
4813 }
4814 
4815 /// Turn a switch with two reachable destinations into an integer range
4816 /// comparison and branch.
4817 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4818                                              IRBuilder<> &Builder) {
4819   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4820 
4821   bool HasDefault =
4822       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4823 
4824   auto *BB = SI->getParent();
4825 
4826   // Partition the cases into two sets with different destinations.
4827   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4828   BasicBlock *DestB = nullptr;
4829   SmallVector<ConstantInt *, 16> CasesA;
4830   SmallVector<ConstantInt *, 16> CasesB;
4831 
4832   for (auto Case : SI->cases()) {
4833     BasicBlock *Dest = Case.getCaseSuccessor();
4834     if (!DestA)
4835       DestA = Dest;
4836     if (Dest == DestA) {
4837       CasesA.push_back(Case.getCaseValue());
4838       continue;
4839     }
4840     if (!DestB)
4841       DestB = Dest;
4842     if (Dest == DestB) {
4843       CasesB.push_back(Case.getCaseValue());
4844       continue;
4845     }
4846     return false; // More than two destinations.
4847   }
4848 
4849   assert(DestA && DestB &&
4850          "Single-destination switch should have been folded.");
4851   assert(DestA != DestB);
4852   assert(DestB != SI->getDefaultDest());
4853   assert(!CasesB.empty() && "There must be non-default cases.");
4854   assert(!CasesA.empty() || HasDefault);
4855 
4856   // Figure out if one of the sets of cases form a contiguous range.
4857   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4858   BasicBlock *ContiguousDest = nullptr;
4859   BasicBlock *OtherDest = nullptr;
4860   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4861     ContiguousCases = &CasesA;
4862     ContiguousDest = DestA;
4863     OtherDest = DestB;
4864   } else if (CasesAreContiguous(CasesB)) {
4865     ContiguousCases = &CasesB;
4866     ContiguousDest = DestB;
4867     OtherDest = DestA;
4868   } else
4869     return false;
4870 
4871   // Start building the compare and branch.
4872 
4873   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4874   Constant *NumCases =
4875       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4876 
4877   Value *Sub = SI->getCondition();
4878   if (!Offset->isNullValue())
4879     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4880 
4881   Value *Cmp;
4882   // If NumCases overflowed, then all possible values jump to the successor.
4883   if (NumCases->isNullValue() && !ContiguousCases->empty())
4884     Cmp = ConstantInt::getTrue(SI->getContext());
4885   else
4886     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4887   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4888 
4889   // Update weight for the newly-created conditional branch.
4890   if (HasBranchWeights(SI)) {
4891     SmallVector<uint64_t, 8> Weights;
4892     GetBranchWeights(SI, Weights);
4893     if (Weights.size() == 1 + SI->getNumCases()) {
4894       uint64_t TrueWeight = 0;
4895       uint64_t FalseWeight = 0;
4896       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4897         if (SI->getSuccessor(I) == ContiguousDest)
4898           TrueWeight += Weights[I];
4899         else
4900           FalseWeight += Weights[I];
4901       }
4902       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4903         TrueWeight /= 2;
4904         FalseWeight /= 2;
4905       }
4906       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4907     }
4908   }
4909 
4910   // Prune obsolete incoming values off the successors' PHI nodes.
4911   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4912     unsigned PreviousEdges = ContiguousCases->size();
4913     if (ContiguousDest == SI->getDefaultDest())
4914       ++PreviousEdges;
4915     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4916       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4917   }
4918   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4919     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4920     if (OtherDest == SI->getDefaultDest())
4921       ++PreviousEdges;
4922     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4923       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4924   }
4925 
4926   // Clean up the default block - it may have phis or other instructions before
4927   // the unreachable terminator.
4928   if (!HasDefault)
4929     createUnreachableSwitchDefault(SI, DTU);
4930 
4931   auto *UnreachableDefault = SI->getDefaultDest();
4932 
4933   // Drop the switch.
4934   SI->eraseFromParent();
4935 
4936   if (!HasDefault && DTU)
4937     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4938 
4939   return true;
4940 }
4941 
4942 /// Compute masked bits for the condition of a switch
4943 /// and use it to remove dead cases.
4944 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4945                                      AssumptionCache *AC,
4946                                      const DataLayout &DL) {
4947   Value *Cond = SI->getCondition();
4948   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4949 
4950   // We can also eliminate cases by determining that their values are outside of
4951   // the limited range of the condition based on how many significant (non-sign)
4952   // bits are in the condition value.
4953   unsigned MaxSignificantBitsInCond =
4954       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
4955 
4956   // Gather dead cases.
4957   SmallVector<ConstantInt *, 8> DeadCases;
4958   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4959   SmallVector<BasicBlock *, 8> UniqueSuccessors;
4960   for (auto &Case : SI->cases()) {
4961     auto *Successor = Case.getCaseSuccessor();
4962     if (DTU) {
4963       if (!NumPerSuccessorCases.count(Successor))
4964         UniqueSuccessors.push_back(Successor);
4965       ++NumPerSuccessorCases[Successor];
4966     }
4967     const APInt &CaseVal = Case.getCaseValue()->getValue();
4968     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4969         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4970       DeadCases.push_back(Case.getCaseValue());
4971       if (DTU)
4972         --NumPerSuccessorCases[Successor];
4973       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4974                         << " is dead.\n");
4975     }
4976   }
4977 
4978   // If we can prove that the cases must cover all possible values, the
4979   // default destination becomes dead and we can remove it.  If we know some
4980   // of the bits in the value, we can use that to more precisely compute the
4981   // number of possible unique case values.
4982   bool HasDefault =
4983       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4984   const unsigned NumUnknownBits =
4985       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
4986   assert(NumUnknownBits <= Known.getBitWidth());
4987   if (HasDefault && DeadCases.empty() &&
4988       NumUnknownBits < 64 /* avoid overflow */ &&
4989       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4990     createUnreachableSwitchDefault(SI, DTU);
4991     return true;
4992   }
4993 
4994   if (DeadCases.empty())
4995     return false;
4996 
4997   SwitchInstProfUpdateWrapper SIW(*SI);
4998   for (ConstantInt *DeadCase : DeadCases) {
4999     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5000     assert(CaseI != SI->case_default() &&
5001            "Case was not found. Probably mistake in DeadCases forming.");
5002     // Prune unused values from PHI nodes.
5003     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5004     SIW.removeCase(CaseI);
5005   }
5006 
5007   if (DTU) {
5008     std::vector<DominatorTree::UpdateType> Updates;
5009     for (auto *Successor : UniqueSuccessors)
5010       if (NumPerSuccessorCases[Successor] == 0)
5011         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5012     DTU->applyUpdates(Updates);
5013   }
5014 
5015   return true;
5016 }
5017 
5018 /// If BB would be eligible for simplification by
5019 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5020 /// by an unconditional branch), look at the phi node for BB in the successor
5021 /// block and see if the incoming value is equal to CaseValue. If so, return
5022 /// the phi node, and set PhiIndex to BB's index in the phi node.
5023 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5024                                               BasicBlock *BB, int *PhiIndex) {
5025   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5026     return nullptr; // BB must be empty to be a candidate for simplification.
5027   if (!BB->getSinglePredecessor())
5028     return nullptr; // BB must be dominated by the switch.
5029 
5030   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5031   if (!Branch || !Branch->isUnconditional())
5032     return nullptr; // Terminator must be unconditional branch.
5033 
5034   BasicBlock *Succ = Branch->getSuccessor(0);
5035 
5036   for (PHINode &PHI : Succ->phis()) {
5037     int Idx = PHI.getBasicBlockIndex(BB);
5038     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5039 
5040     Value *InValue = PHI.getIncomingValue(Idx);
5041     if (InValue != CaseValue)
5042       continue;
5043 
5044     *PhiIndex = Idx;
5045     return &PHI;
5046   }
5047 
5048   return nullptr;
5049 }
5050 
5051 /// Try to forward the condition of a switch instruction to a phi node
5052 /// dominated by the switch, if that would mean that some of the destination
5053 /// blocks of the switch can be folded away. Return true if a change is made.
5054 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5055   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5056 
5057   ForwardingNodesMap ForwardingNodes;
5058   BasicBlock *SwitchBlock = SI->getParent();
5059   bool Changed = false;
5060   for (auto &Case : SI->cases()) {
5061     ConstantInt *CaseValue = Case.getCaseValue();
5062     BasicBlock *CaseDest = Case.getCaseSuccessor();
5063 
5064     // Replace phi operands in successor blocks that are using the constant case
5065     // value rather than the switch condition variable:
5066     //   switchbb:
5067     //   switch i32 %x, label %default [
5068     //     i32 17, label %succ
5069     //   ...
5070     //   succ:
5071     //     %r = phi i32 ... [ 17, %switchbb ] ...
5072     // -->
5073     //     %r = phi i32 ... [ %x, %switchbb ] ...
5074 
5075     for (PHINode &Phi : CaseDest->phis()) {
5076       // This only works if there is exactly 1 incoming edge from the switch to
5077       // a phi. If there is >1, that means multiple cases of the switch map to 1
5078       // value in the phi, and that phi value is not the switch condition. Thus,
5079       // this transform would not make sense (the phi would be invalid because
5080       // a phi can't have different incoming values from the same block).
5081       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5082       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5083           count(Phi.blocks(), SwitchBlock) == 1) {
5084         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5085         Changed = true;
5086       }
5087     }
5088 
5089     // Collect phi nodes that are indirectly using this switch's case constants.
5090     int PhiIdx;
5091     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5092       ForwardingNodes[Phi].push_back(PhiIdx);
5093   }
5094 
5095   for (auto &ForwardingNode : ForwardingNodes) {
5096     PHINode *Phi = ForwardingNode.first;
5097     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5098     if (Indexes.size() < 2)
5099       continue;
5100 
5101     for (int Index : Indexes)
5102       Phi->setIncomingValue(Index, SI->getCondition());
5103     Changed = true;
5104   }
5105 
5106   return Changed;
5107 }
5108 
5109 /// Return true if the backend will be able to handle
5110 /// initializing an array of constants like C.
5111 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5112   if (C->isThreadDependent())
5113     return false;
5114   if (C->isDLLImportDependent())
5115     return false;
5116 
5117   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5118       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5119       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5120     return false;
5121 
5122   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5123     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5124     // materializing the array of constants.
5125     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5126     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5127       return false;
5128   }
5129 
5130   if (!TTI.shouldBuildLookupTablesForConstant(C))
5131     return false;
5132 
5133   return true;
5134 }
5135 
5136 /// If V is a Constant, return it. Otherwise, try to look up
5137 /// its constant value in ConstantPool, returning 0 if it's not there.
5138 static Constant *
5139 LookupConstant(Value *V,
5140                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5141   if (Constant *C = dyn_cast<Constant>(V))
5142     return C;
5143   return ConstantPool.lookup(V);
5144 }
5145 
5146 /// Try to fold instruction I into a constant. This works for
5147 /// simple instructions such as binary operations where both operands are
5148 /// constant or can be replaced by constants from the ConstantPool. Returns the
5149 /// resulting constant on success, 0 otherwise.
5150 static Constant *
5151 ConstantFold(Instruction *I, const DataLayout &DL,
5152              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5153   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5154     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5155     if (!A)
5156       return nullptr;
5157     if (A->isAllOnesValue())
5158       return LookupConstant(Select->getTrueValue(), ConstantPool);
5159     if (A->isNullValue())
5160       return LookupConstant(Select->getFalseValue(), ConstantPool);
5161     return nullptr;
5162   }
5163 
5164   SmallVector<Constant *, 4> COps;
5165   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5166     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5167       COps.push_back(A);
5168     else
5169       return nullptr;
5170   }
5171 
5172   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5173     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5174                                            COps[1], DL);
5175   }
5176 
5177   return ConstantFoldInstOperands(I, COps, DL);
5178 }
5179 
5180 /// Try to determine the resulting constant values in phi nodes
5181 /// at the common destination basic block, *CommonDest, for one of the case
5182 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5183 /// case), of a switch instruction SI.
5184 static bool
5185 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5186                BasicBlock **CommonDest,
5187                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5188                const DataLayout &DL, const TargetTransformInfo &TTI) {
5189   // The block from which we enter the common destination.
5190   BasicBlock *Pred = SI->getParent();
5191 
5192   // If CaseDest is empty except for some side-effect free instructions through
5193   // which we can constant-propagate the CaseVal, continue to its successor.
5194   SmallDenseMap<Value *, Constant *> ConstantPool;
5195   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5196   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5197     if (I.isTerminator()) {
5198       // If the terminator is a simple branch, continue to the next block.
5199       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5200         return false;
5201       Pred = CaseDest;
5202       CaseDest = I.getSuccessor(0);
5203     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5204       // Instruction is side-effect free and constant.
5205 
5206       // If the instruction has uses outside this block or a phi node slot for
5207       // the block, it is not safe to bypass the instruction since it would then
5208       // no longer dominate all its uses.
5209       for (auto &Use : I.uses()) {
5210         User *User = Use.getUser();
5211         if (Instruction *I = dyn_cast<Instruction>(User))
5212           if (I->getParent() == CaseDest)
5213             continue;
5214         if (PHINode *Phi = dyn_cast<PHINode>(User))
5215           if (Phi->getIncomingBlock(Use) == CaseDest)
5216             continue;
5217         return false;
5218       }
5219 
5220       ConstantPool.insert(std::make_pair(&I, C));
5221     } else {
5222       break;
5223     }
5224   }
5225 
5226   // If we did not have a CommonDest before, use the current one.
5227   if (!*CommonDest)
5228     *CommonDest = CaseDest;
5229   // If the destination isn't the common one, abort.
5230   if (CaseDest != *CommonDest)
5231     return false;
5232 
5233   // Get the values for this case from phi nodes in the destination block.
5234   for (PHINode &PHI : (*CommonDest)->phis()) {
5235     int Idx = PHI.getBasicBlockIndex(Pred);
5236     if (Idx == -1)
5237       continue;
5238 
5239     Constant *ConstVal =
5240         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5241     if (!ConstVal)
5242       return false;
5243 
5244     // Be conservative about which kinds of constants we support.
5245     if (!ValidLookupTableConstant(ConstVal, TTI))
5246       return false;
5247 
5248     Res.push_back(std::make_pair(&PHI, ConstVal));
5249   }
5250 
5251   return Res.size() > 0;
5252 }
5253 
5254 // Helper function used to add CaseVal to the list of cases that generate
5255 // Result. Returns the updated number of cases that generate this result.
5256 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5257                                  SwitchCaseResultVectorTy &UniqueResults,
5258                                  Constant *Result) {
5259   for (auto &I : UniqueResults) {
5260     if (I.first == Result) {
5261       I.second.push_back(CaseVal);
5262       return I.second.size();
5263     }
5264   }
5265   UniqueResults.push_back(
5266       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5267   return 1;
5268 }
5269 
5270 // Helper function that initializes a map containing
5271 // results for the PHI node of the common destination block for a switch
5272 // instruction. Returns false if multiple PHI nodes have been found or if
5273 // there is not a common destination block for the switch.
5274 static bool
5275 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5276                       SwitchCaseResultVectorTy &UniqueResults,
5277                       Constant *&DefaultResult, const DataLayout &DL,
5278                       const TargetTransformInfo &TTI,
5279                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5280   for (auto &I : SI->cases()) {
5281     ConstantInt *CaseVal = I.getCaseValue();
5282 
5283     // Resulting value at phi nodes for this case value.
5284     SwitchCaseResultsTy Results;
5285     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5286                         DL, TTI))
5287       return false;
5288 
5289     // Only one value per case is permitted.
5290     if (Results.size() > 1)
5291       return false;
5292 
5293     // Add the case->result mapping to UniqueResults.
5294     const uintptr_t NumCasesForResult =
5295         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5296 
5297     // Early out if there are too many cases for this result.
5298     if (NumCasesForResult > MaxCasesPerResult)
5299       return false;
5300 
5301     // Early out if there are too many unique results.
5302     if (UniqueResults.size() > MaxUniqueResults)
5303       return false;
5304 
5305     // Check the PHI consistency.
5306     if (!PHI)
5307       PHI = Results[0].first;
5308     else if (PHI != Results[0].first)
5309       return false;
5310   }
5311   // Find the default result value.
5312   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5313   BasicBlock *DefaultDest = SI->getDefaultDest();
5314   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5315                  DL, TTI);
5316   // If the default value is not found abort unless the default destination
5317   // is unreachable.
5318   DefaultResult =
5319       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5320   if ((!DefaultResult &&
5321        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5322     return false;
5323 
5324   return true;
5325 }
5326 
5327 // Helper function that checks if it is possible to transform a switch with only
5328 // two cases (or two cases + default) that produces a result into a select.
5329 // Example:
5330 // switch (a) {
5331 //   case 10:                %0 = icmp eq i32 %a, 10
5332 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5333 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5334 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5335 //   default:
5336 //     return 4;
5337 // }
5338 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5339                                    Constant *DefaultResult, Value *Condition,
5340                                    IRBuilder<> &Builder) {
5341   // If we are selecting between only two cases transform into a simple
5342   // select or a two-way select if default is possible.
5343   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5344       ResultVector[1].second.size() == 1) {
5345     ConstantInt *const FirstCase = ResultVector[0].second[0];
5346     ConstantInt *const SecondCase = ResultVector[1].second[0];
5347 
5348     bool DefaultCanTrigger = DefaultResult;
5349     Value *SelectValue = ResultVector[1].first;
5350     if (DefaultCanTrigger) {
5351       Value *const ValueCompare =
5352           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5353       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5354                                          DefaultResult, "switch.select");
5355     }
5356     Value *const ValueCompare =
5357         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5358     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5359                                 SelectValue, "switch.select");
5360   }
5361 
5362   // Handle the degenerate case where two cases have the same value.
5363   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5364       DefaultResult) {
5365     Value *Cmp1 = Builder.CreateICmpEQ(
5366         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5367     Value *Cmp2 = Builder.CreateICmpEQ(
5368         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5369     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5370     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5371   }
5372 
5373   return nullptr;
5374 }
5375 
5376 // Helper function to cleanup a switch instruction that has been converted into
5377 // a select, fixing up PHI nodes and basic blocks.
5378 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5379                                               Value *SelectValue,
5380                                               IRBuilder<> &Builder,
5381                                               DomTreeUpdater *DTU) {
5382   std::vector<DominatorTree::UpdateType> Updates;
5383 
5384   BasicBlock *SelectBB = SI->getParent();
5385   BasicBlock *DestBB = PHI->getParent();
5386 
5387   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5388     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5389   Builder.CreateBr(DestBB);
5390 
5391   // Remove the switch.
5392 
5393   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5394     PHI->removeIncomingValue(SelectBB);
5395   PHI->addIncoming(SelectValue, SelectBB);
5396 
5397   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5398   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5399     BasicBlock *Succ = SI->getSuccessor(i);
5400 
5401     if (Succ == DestBB)
5402       continue;
5403     Succ->removePredecessor(SelectBB);
5404     if (DTU && RemovedSuccessors.insert(Succ).second)
5405       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5406   }
5407   SI->eraseFromParent();
5408   if (DTU)
5409     DTU->applyUpdates(Updates);
5410 }
5411 
5412 /// If the switch is only used to initialize one or more
5413 /// phi nodes in a common successor block with only two different
5414 /// constant values, replace the switch with select.
5415 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5416                            DomTreeUpdater *DTU, const DataLayout &DL,
5417                            const TargetTransformInfo &TTI) {
5418   Value *const Cond = SI->getCondition();
5419   PHINode *PHI = nullptr;
5420   BasicBlock *CommonDest = nullptr;
5421   Constant *DefaultResult;
5422   SwitchCaseResultVectorTy UniqueResults;
5423   // Collect all the cases that will deliver the same value from the switch.
5424   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5425                              DL, TTI, /*MaxUniqueResults*/2,
5426                              /*MaxCasesPerResult*/2))
5427     return false;
5428   assert(PHI != nullptr && "PHI for value select not found");
5429 
5430   Builder.SetInsertPoint(SI);
5431   Value *SelectValue =
5432       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5433   if (SelectValue) {
5434     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5435     return true;
5436   }
5437   // The switch couldn't be converted into a select.
5438   return false;
5439 }
5440 
5441 namespace {
5442 
5443 /// This class represents a lookup table that can be used to replace a switch.
5444 class SwitchLookupTable {
5445 public:
5446   /// Create a lookup table to use as a switch replacement with the contents
5447   /// of Values, using DefaultValue to fill any holes in the table.
5448   SwitchLookupTable(
5449       Module &M, uint64_t TableSize, ConstantInt *Offset,
5450       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5451       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5452 
5453   /// Build instructions with Builder to retrieve the value at
5454   /// the position given by Index in the lookup table.
5455   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5456 
5457   /// Return true if a table with TableSize elements of
5458   /// type ElementType would fit in a target-legal register.
5459   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5460                                  Type *ElementType);
5461 
5462 private:
5463   // Depending on the contents of the table, it can be represented in
5464   // different ways.
5465   enum {
5466     // For tables where each element contains the same value, we just have to
5467     // store that single value and return it for each lookup.
5468     SingleValueKind,
5469 
5470     // For tables where there is a linear relationship between table index
5471     // and values. We calculate the result with a simple multiplication
5472     // and addition instead of a table lookup.
5473     LinearMapKind,
5474 
5475     // For small tables with integer elements, we can pack them into a bitmap
5476     // that fits into a target-legal register. Values are retrieved by
5477     // shift and mask operations.
5478     BitMapKind,
5479 
5480     // The table is stored as an array of values. Values are retrieved by load
5481     // instructions from the table.
5482     ArrayKind
5483   } Kind;
5484 
5485   // For SingleValueKind, this is the single value.
5486   Constant *SingleValue = nullptr;
5487 
5488   // For BitMapKind, this is the bitmap.
5489   ConstantInt *BitMap = nullptr;
5490   IntegerType *BitMapElementTy = nullptr;
5491 
5492   // For LinearMapKind, these are the constants used to derive the value.
5493   ConstantInt *LinearOffset = nullptr;
5494   ConstantInt *LinearMultiplier = nullptr;
5495 
5496   // For ArrayKind, this is the array.
5497   GlobalVariable *Array = nullptr;
5498 };
5499 
5500 } // end anonymous namespace
5501 
5502 SwitchLookupTable::SwitchLookupTable(
5503     Module &M, uint64_t TableSize, ConstantInt *Offset,
5504     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5505     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5506   assert(Values.size() && "Can't build lookup table without values!");
5507   assert(TableSize >= Values.size() && "Can't fit values in table!");
5508 
5509   // If all values in the table are equal, this is that value.
5510   SingleValue = Values.begin()->second;
5511 
5512   Type *ValueType = Values.begin()->second->getType();
5513 
5514   // Build up the table contents.
5515   SmallVector<Constant *, 64> TableContents(TableSize);
5516   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5517     ConstantInt *CaseVal = Values[I].first;
5518     Constant *CaseRes = Values[I].second;
5519     assert(CaseRes->getType() == ValueType);
5520 
5521     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5522     TableContents[Idx] = CaseRes;
5523 
5524     if (CaseRes != SingleValue)
5525       SingleValue = nullptr;
5526   }
5527 
5528   // Fill in any holes in the table with the default result.
5529   if (Values.size() < TableSize) {
5530     assert(DefaultValue &&
5531            "Need a default value to fill the lookup table holes.");
5532     assert(DefaultValue->getType() == ValueType);
5533     for (uint64_t I = 0; I < TableSize; ++I) {
5534       if (!TableContents[I])
5535         TableContents[I] = DefaultValue;
5536     }
5537 
5538     if (DefaultValue != SingleValue)
5539       SingleValue = nullptr;
5540   }
5541 
5542   // If each element in the table contains the same value, we only need to store
5543   // that single value.
5544   if (SingleValue) {
5545     Kind = SingleValueKind;
5546     return;
5547   }
5548 
5549   // Check if we can derive the value with a linear transformation from the
5550   // table index.
5551   if (isa<IntegerType>(ValueType)) {
5552     bool LinearMappingPossible = true;
5553     APInt PrevVal;
5554     APInt DistToPrev;
5555     assert(TableSize >= 2 && "Should be a SingleValue table.");
5556     // Check if there is the same distance between two consecutive values.
5557     for (uint64_t I = 0; I < TableSize; ++I) {
5558       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5559       if (!ConstVal) {
5560         // This is an undef. We could deal with it, but undefs in lookup tables
5561         // are very seldom. It's probably not worth the additional complexity.
5562         LinearMappingPossible = false;
5563         break;
5564       }
5565       const APInt &Val = ConstVal->getValue();
5566       if (I != 0) {
5567         APInt Dist = Val - PrevVal;
5568         if (I == 1) {
5569           DistToPrev = Dist;
5570         } else if (Dist != DistToPrev) {
5571           LinearMappingPossible = false;
5572           break;
5573         }
5574       }
5575       PrevVal = Val;
5576     }
5577     if (LinearMappingPossible) {
5578       LinearOffset = cast<ConstantInt>(TableContents[0]);
5579       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5580       Kind = LinearMapKind;
5581       ++NumLinearMaps;
5582       return;
5583     }
5584   }
5585 
5586   // If the type is integer and the table fits in a register, build a bitmap.
5587   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5588     IntegerType *IT = cast<IntegerType>(ValueType);
5589     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5590     for (uint64_t I = TableSize; I > 0; --I) {
5591       TableInt <<= IT->getBitWidth();
5592       // Insert values into the bitmap. Undef values are set to zero.
5593       if (!isa<UndefValue>(TableContents[I - 1])) {
5594         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5595         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5596       }
5597     }
5598     BitMap = ConstantInt::get(M.getContext(), TableInt);
5599     BitMapElementTy = IT;
5600     Kind = BitMapKind;
5601     ++NumBitMaps;
5602     return;
5603   }
5604 
5605   // Store the table in an array.
5606   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5607   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5608 
5609   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5610                              GlobalVariable::PrivateLinkage, Initializer,
5611                              "switch.table." + FuncName);
5612   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5613   // Set the alignment to that of an array items. We will be only loading one
5614   // value out of it.
5615   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5616   Kind = ArrayKind;
5617 }
5618 
5619 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5620   switch (Kind) {
5621   case SingleValueKind:
5622     return SingleValue;
5623   case LinearMapKind: {
5624     // Derive the result value from the input value.
5625     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5626                                           false, "switch.idx.cast");
5627     if (!LinearMultiplier->isOne())
5628       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5629     if (!LinearOffset->isZero())
5630       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5631     return Result;
5632   }
5633   case BitMapKind: {
5634     // Type of the bitmap (e.g. i59).
5635     IntegerType *MapTy = BitMap->getType();
5636 
5637     // Cast Index to the same type as the bitmap.
5638     // Note: The Index is <= the number of elements in the table, so
5639     // truncating it to the width of the bitmask is safe.
5640     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5641 
5642     // Multiply the shift amount by the element width.
5643     ShiftAmt = Builder.CreateMul(
5644         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5645         "switch.shiftamt");
5646 
5647     // Shift down.
5648     Value *DownShifted =
5649         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5650     // Mask off.
5651     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5652   }
5653   case ArrayKind: {
5654     // Make sure the table index will not overflow when treated as signed.
5655     IntegerType *IT = cast<IntegerType>(Index->getType());
5656     uint64_t TableSize =
5657         Array->getInitializer()->getType()->getArrayNumElements();
5658     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5659       Index = Builder.CreateZExt(
5660           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5661           "switch.tableidx.zext");
5662 
5663     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5664     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5665                                            GEPIndices, "switch.gep");
5666     return Builder.CreateLoad(
5667         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5668         "switch.load");
5669   }
5670   }
5671   llvm_unreachable("Unknown lookup table kind!");
5672 }
5673 
5674 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5675                                            uint64_t TableSize,
5676                                            Type *ElementType) {
5677   auto *IT = dyn_cast<IntegerType>(ElementType);
5678   if (!IT)
5679     return false;
5680   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5681   // are <= 15, we could try to narrow the type.
5682 
5683   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5684   if (TableSize >= UINT_MAX / IT->getBitWidth())
5685     return false;
5686   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5687 }
5688 
5689 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5690                                       const DataLayout &DL) {
5691   // Allow any legal type.
5692   if (TTI.isTypeLegal(Ty))
5693     return true;
5694 
5695   auto *IT = dyn_cast<IntegerType>(Ty);
5696   if (!IT)
5697     return false;
5698 
5699   // Also allow power of 2 integer types that have at least 8 bits and fit in
5700   // a register. These types are common in frontend languages and targets
5701   // usually support loads of these types.
5702   // TODO: We could relax this to any integer that fits in a register and rely
5703   // on ABI alignment and padding in the table to allow the load to be widened.
5704   // Or we could widen the constants and truncate the load.
5705   unsigned BitWidth = IT->getBitWidth();
5706   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5707          DL.fitsInLegalInteger(IT->getBitWidth());
5708 }
5709 
5710 /// Determine whether a lookup table should be built for this switch, based on
5711 /// the number of cases, size of the table, and the types of the results.
5712 // TODO: We could support larger than legal types by limiting based on the
5713 // number of loads required and/or table size. If the constants are small we
5714 // could use smaller table entries and extend after the load.
5715 static bool
5716 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5717                        const TargetTransformInfo &TTI, const DataLayout &DL,
5718                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5719   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5720     return false; // TableSize overflowed, or mul below might overflow.
5721 
5722   bool AllTablesFitInRegister = true;
5723   bool HasIllegalType = false;
5724   for (const auto &I : ResultTypes) {
5725     Type *Ty = I.second;
5726 
5727     // Saturate this flag to true.
5728     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
5729 
5730     // Saturate this flag to false.
5731     AllTablesFitInRegister =
5732         AllTablesFitInRegister &&
5733         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5734 
5735     // If both flags saturate, we're done. NOTE: This *only* works with
5736     // saturating flags, and all flags have to saturate first due to the
5737     // non-deterministic behavior of iterating over a dense map.
5738     if (HasIllegalType && !AllTablesFitInRegister)
5739       break;
5740   }
5741 
5742   // If each table would fit in a register, we should build it anyway.
5743   if (AllTablesFitInRegister)
5744     return true;
5745 
5746   // Don't build a table that doesn't fit in-register if it has illegal types.
5747   if (HasIllegalType)
5748     return false;
5749 
5750   // The table density should be at least 40%. This is the same criterion as for
5751   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5752   // FIXME: Find the best cut-off.
5753   return SI->getNumCases() * 10 >= TableSize * 4;
5754 }
5755 
5756 /// Try to reuse the switch table index compare. Following pattern:
5757 /// \code
5758 ///     if (idx < tablesize)
5759 ///        r = table[idx]; // table does not contain default_value
5760 ///     else
5761 ///        r = default_value;
5762 ///     if (r != default_value)
5763 ///        ...
5764 /// \endcode
5765 /// Is optimized to:
5766 /// \code
5767 ///     cond = idx < tablesize;
5768 ///     if (cond)
5769 ///        r = table[idx];
5770 ///     else
5771 ///        r = default_value;
5772 ///     if (cond)
5773 ///        ...
5774 /// \endcode
5775 /// Jump threading will then eliminate the second if(cond).
5776 static void reuseTableCompare(
5777     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5778     Constant *DefaultValue,
5779     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5780   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5781   if (!CmpInst)
5782     return;
5783 
5784   // We require that the compare is in the same block as the phi so that jump
5785   // threading can do its work afterwards.
5786   if (CmpInst->getParent() != PhiBlock)
5787     return;
5788 
5789   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5790   if (!CmpOp1)
5791     return;
5792 
5793   Value *RangeCmp = RangeCheckBranch->getCondition();
5794   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5795   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5796 
5797   // Check if the compare with the default value is constant true or false.
5798   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5799                                                  DefaultValue, CmpOp1, true);
5800   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5801     return;
5802 
5803   // Check if the compare with the case values is distinct from the default
5804   // compare result.
5805   for (auto ValuePair : Values) {
5806     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5807                                                 ValuePair.second, CmpOp1, true);
5808     if (!CaseConst || CaseConst == DefaultConst ||
5809         (CaseConst != TrueConst && CaseConst != FalseConst))
5810       return;
5811   }
5812 
5813   // Check if the branch instruction dominates the phi node. It's a simple
5814   // dominance check, but sufficient for our needs.
5815   // Although this check is invariant in the calling loops, it's better to do it
5816   // at this late stage. Practically we do it at most once for a switch.
5817   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5818   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5819     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5820       return;
5821   }
5822 
5823   if (DefaultConst == FalseConst) {
5824     // The compare yields the same result. We can replace it.
5825     CmpInst->replaceAllUsesWith(RangeCmp);
5826     ++NumTableCmpReuses;
5827   } else {
5828     // The compare yields the same result, just inverted. We can replace it.
5829     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5830         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5831         RangeCheckBranch);
5832     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5833     ++NumTableCmpReuses;
5834   }
5835 }
5836 
5837 /// If the switch is only used to initialize one or more phi nodes in a common
5838 /// successor block with different constant values, replace the switch with
5839 /// lookup tables.
5840 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5841                                 DomTreeUpdater *DTU, const DataLayout &DL,
5842                                 const TargetTransformInfo &TTI) {
5843   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5844 
5845   BasicBlock *BB = SI->getParent();
5846   Function *Fn = BB->getParent();
5847   // Only build lookup table when we have a target that supports it or the
5848   // attribute is not set.
5849   if (!TTI.shouldBuildLookupTables() ||
5850       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5851     return false;
5852 
5853   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5854   // split off a dense part and build a lookup table for that.
5855 
5856   // FIXME: This creates arrays of GEPs to constant strings, which means each
5857   // GEP needs a runtime relocation in PIC code. We should just build one big
5858   // string and lookup indices into that.
5859 
5860   // Ignore switches with less than three cases. Lookup tables will not make
5861   // them faster, so we don't analyze them.
5862   if (SI->getNumCases() < 3)
5863     return false;
5864 
5865   // Figure out the corresponding result for each case value and phi node in the
5866   // common destination, as well as the min and max case values.
5867   assert(!SI->cases().empty());
5868   SwitchInst::CaseIt CI = SI->case_begin();
5869   ConstantInt *MinCaseVal = CI->getCaseValue();
5870   ConstantInt *MaxCaseVal = CI->getCaseValue();
5871 
5872   BasicBlock *CommonDest = nullptr;
5873 
5874   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5875   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5876 
5877   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5878   SmallDenseMap<PHINode *, Type *> ResultTypes;
5879   SmallVector<PHINode *, 4> PHIs;
5880 
5881   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5882     ConstantInt *CaseVal = CI->getCaseValue();
5883     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5884       MinCaseVal = CaseVal;
5885     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5886       MaxCaseVal = CaseVal;
5887 
5888     // Resulting value at phi nodes for this case value.
5889     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5890     ResultsTy Results;
5891     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5892                         Results, DL, TTI))
5893       return false;
5894 
5895     // Append the result from this case to the list for each phi.
5896     for (const auto &I : Results) {
5897       PHINode *PHI = I.first;
5898       Constant *Value = I.second;
5899       if (!ResultLists.count(PHI))
5900         PHIs.push_back(PHI);
5901       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5902     }
5903   }
5904 
5905   // Keep track of the result types.
5906   for (PHINode *PHI : PHIs) {
5907     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5908   }
5909 
5910   uint64_t NumResults = ResultLists[PHIs[0]].size();
5911   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5912   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5913   bool TableHasHoles = (NumResults < TableSize);
5914 
5915   // If the table has holes, we need a constant result for the default case
5916   // or a bitmask that fits in a register.
5917   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5918   bool HasDefaultResults =
5919       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5920                      DefaultResultsList, DL, TTI);
5921 
5922   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5923   if (NeedMask) {
5924     // As an extra penalty for the validity test we require more cases.
5925     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5926       return false;
5927     if (!DL.fitsInLegalInteger(TableSize))
5928       return false;
5929   }
5930 
5931   for (const auto &I : DefaultResultsList) {
5932     PHINode *PHI = I.first;
5933     Constant *Result = I.second;
5934     DefaultResults[PHI] = Result;
5935   }
5936 
5937   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5938     return false;
5939 
5940   std::vector<DominatorTree::UpdateType> Updates;
5941 
5942   // Create the BB that does the lookups.
5943   Module &Mod = *CommonDest->getParent()->getParent();
5944   BasicBlock *LookupBB = BasicBlock::Create(
5945       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5946 
5947   // Compute the table index value.
5948   Builder.SetInsertPoint(SI);
5949   Value *TableIndex;
5950   if (MinCaseVal->isNullValue())
5951     TableIndex = SI->getCondition();
5952   else
5953     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5954                                    "switch.tableidx");
5955 
5956   // Compute the maximum table size representable by the integer type we are
5957   // switching upon.
5958   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5959   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5960   assert(MaxTableSize >= TableSize &&
5961          "It is impossible for a switch to have more entries than the max "
5962          "representable value of its input integer type's size.");
5963 
5964   // If the default destination is unreachable, or if the lookup table covers
5965   // all values of the conditional variable, branch directly to the lookup table
5966   // BB. Otherwise, check that the condition is within the case range.
5967   const bool DefaultIsReachable =
5968       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5969   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5970   BranchInst *RangeCheckBranch = nullptr;
5971 
5972   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5973     Builder.CreateBr(LookupBB);
5974     if (DTU)
5975       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5976     // Note: We call removeProdecessor later since we need to be able to get the
5977     // PHI value for the default case in case we're using a bit mask.
5978   } else {
5979     Value *Cmp = Builder.CreateICmpULT(
5980         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5981     RangeCheckBranch =
5982         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5983     if (DTU)
5984       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5985   }
5986 
5987   // Populate the BB that does the lookups.
5988   Builder.SetInsertPoint(LookupBB);
5989 
5990   if (NeedMask) {
5991     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5992     // re-purposed to do the hole check, and we create a new LookupBB.
5993     BasicBlock *MaskBB = LookupBB;
5994     MaskBB->setName("switch.hole_check");
5995     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5996                                   CommonDest->getParent(), CommonDest);
5997 
5998     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5999     // unnecessary illegal types.
6000     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6001     APInt MaskInt(TableSizePowOf2, 0);
6002     APInt One(TableSizePowOf2, 1);
6003     // Build bitmask; fill in a 1 bit for every case.
6004     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6005     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6006       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6007                          .getLimitedValue();
6008       MaskInt |= One << Idx;
6009     }
6010     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6011 
6012     // Get the TableIndex'th bit of the bitmask.
6013     // If this bit is 0 (meaning hole) jump to the default destination,
6014     // else continue with table lookup.
6015     IntegerType *MapTy = TableMask->getType();
6016     Value *MaskIndex =
6017         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6018     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6019     Value *LoBit = Builder.CreateTrunc(
6020         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6021     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6022     if (DTU) {
6023       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6024       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6025     }
6026     Builder.SetInsertPoint(LookupBB);
6027     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6028   }
6029 
6030   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6031     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6032     // do not delete PHINodes here.
6033     SI->getDefaultDest()->removePredecessor(BB,
6034                                             /*KeepOneInputPHIs=*/true);
6035     if (DTU)
6036       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6037   }
6038 
6039   for (PHINode *PHI : PHIs) {
6040     const ResultListTy &ResultList = ResultLists[PHI];
6041 
6042     // If using a bitmask, use any value to fill the lookup table holes.
6043     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6044     StringRef FuncName = Fn->getName();
6045     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6046                             FuncName);
6047 
6048     Value *Result = Table.BuildLookup(TableIndex, Builder);
6049 
6050     // Do a small peephole optimization: re-use the switch table compare if
6051     // possible.
6052     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6053       BasicBlock *PhiBlock = PHI->getParent();
6054       // Search for compare instructions which use the phi.
6055       for (auto *User : PHI->users()) {
6056         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6057       }
6058     }
6059 
6060     PHI->addIncoming(Result, LookupBB);
6061   }
6062 
6063   Builder.CreateBr(CommonDest);
6064   if (DTU)
6065     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6066 
6067   // Remove the switch.
6068   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6069   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6070     BasicBlock *Succ = SI->getSuccessor(i);
6071 
6072     if (Succ == SI->getDefaultDest())
6073       continue;
6074     Succ->removePredecessor(BB);
6075     if (DTU && RemovedSuccessors.insert(Succ).second)
6076       Updates.push_back({DominatorTree::Delete, BB, Succ});
6077   }
6078   SI->eraseFromParent();
6079 
6080   if (DTU)
6081     DTU->applyUpdates(Updates);
6082 
6083   ++NumLookupTables;
6084   if (NeedMask)
6085     ++NumLookupTablesHoles;
6086   return true;
6087 }
6088 
6089 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6090   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6091   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6092   uint64_t Range = Diff + 1;
6093   uint64_t NumCases = Values.size();
6094   // 40% is the default density for building a jump table in optsize/minsize mode.
6095   uint64_t MinDensity = 40;
6096 
6097   return NumCases * 100 >= Range * MinDensity;
6098 }
6099 
6100 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6101 /// of cases.
6102 ///
6103 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6104 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6105 ///
6106 /// This converts a sparse switch into a dense switch which allows better
6107 /// lowering and could also allow transforming into a lookup table.
6108 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6109                               const DataLayout &DL,
6110                               const TargetTransformInfo &TTI) {
6111   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6112   if (CondTy->getIntegerBitWidth() > 64 ||
6113       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6114     return false;
6115   // Only bother with this optimization if there are more than 3 switch cases;
6116   // SDAG will only bother creating jump tables for 4 or more cases.
6117   if (SI->getNumCases() < 4)
6118     return false;
6119 
6120   // This transform is agnostic to the signedness of the input or case values. We
6121   // can treat the case values as signed or unsigned. We can optimize more common
6122   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6123   // as signed.
6124   SmallVector<int64_t,4> Values;
6125   for (auto &C : SI->cases())
6126     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6127   llvm::sort(Values);
6128 
6129   // If the switch is already dense, there's nothing useful to do here.
6130   if (isSwitchDense(Values))
6131     return false;
6132 
6133   // First, transform the values such that they start at zero and ascend.
6134   int64_t Base = Values[0];
6135   for (auto &V : Values)
6136     V -= (uint64_t)(Base);
6137 
6138   // Now we have signed numbers that have been shifted so that, given enough
6139   // precision, there are no negative values. Since the rest of the transform
6140   // is bitwise only, we switch now to an unsigned representation.
6141 
6142   // This transform can be done speculatively because it is so cheap - it
6143   // results in a single rotate operation being inserted.
6144   // FIXME: It's possible that optimizing a switch on powers of two might also
6145   // be beneficial - flag values are often powers of two and we could use a CLZ
6146   // as the key function.
6147 
6148   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6149   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6150   // less than 64.
6151   unsigned Shift = 64;
6152   for (auto &V : Values)
6153     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6154   assert(Shift < 64);
6155   if (Shift > 0)
6156     for (auto &V : Values)
6157       V = (int64_t)((uint64_t)V >> Shift);
6158 
6159   if (!isSwitchDense(Values))
6160     // Transform didn't create a dense switch.
6161     return false;
6162 
6163   // The obvious transform is to shift the switch condition right and emit a
6164   // check that the condition actually cleanly divided by GCD, i.e.
6165   //   C & (1 << Shift - 1) == 0
6166   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6167   //
6168   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6169   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6170   // are nonzero then the switch condition will be very large and will hit the
6171   // default case.
6172 
6173   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6174   Builder.SetInsertPoint(SI);
6175   auto *ShiftC = ConstantInt::get(Ty, Shift);
6176   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6177   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6178   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6179   auto *Rot = Builder.CreateOr(LShr, Shl);
6180   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6181 
6182   for (auto Case : SI->cases()) {
6183     auto *Orig = Case.getCaseValue();
6184     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6185     Case.setValue(
6186         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6187   }
6188   return true;
6189 }
6190 
6191 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6192   BasicBlock *BB = SI->getParent();
6193 
6194   if (isValueEqualityComparison(SI)) {
6195     // If we only have one predecessor, and if it is a branch on this value,
6196     // see if that predecessor totally determines the outcome of this switch.
6197     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6198       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6199         return requestResimplify();
6200 
6201     Value *Cond = SI->getCondition();
6202     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6203       if (SimplifySwitchOnSelect(SI, Select))
6204         return requestResimplify();
6205 
6206     // If the block only contains the switch, see if we can fold the block
6207     // away into any preds.
6208     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6209       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6210         return requestResimplify();
6211   }
6212 
6213   // Try to transform the switch into an icmp and a branch.
6214   // The conversion from switch to comparison may lose information on
6215   // impossible switch values, so disable it early in the pipeline.
6216   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6217     return requestResimplify();
6218 
6219   // Remove unreachable cases.
6220   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6221     return requestResimplify();
6222 
6223   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6224     return requestResimplify();
6225 
6226   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6227     return requestResimplify();
6228 
6229   // The conversion from switch to lookup tables results in difficult-to-analyze
6230   // code and makes pruning branches much harder. This is a problem if the
6231   // switch expression itself can still be restricted as a result of inlining or
6232   // CVP. Therefore, only apply this transformation during late stages of the
6233   // optimisation pipeline.
6234   if (Options.ConvertSwitchToLookupTable &&
6235       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6236     return requestResimplify();
6237 
6238   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6239     return requestResimplify();
6240 
6241   return false;
6242 }
6243 
6244 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6245   BasicBlock *BB = IBI->getParent();
6246   bool Changed = false;
6247 
6248   // Eliminate redundant destinations.
6249   SmallPtrSet<Value *, 8> Succs;
6250   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6251   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6252     BasicBlock *Dest = IBI->getDestination(i);
6253     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6254       if (!Dest->hasAddressTaken())
6255         RemovedSuccs.insert(Dest);
6256       Dest->removePredecessor(BB);
6257       IBI->removeDestination(i);
6258       --i;
6259       --e;
6260       Changed = true;
6261     }
6262   }
6263 
6264   if (DTU) {
6265     std::vector<DominatorTree::UpdateType> Updates;
6266     Updates.reserve(RemovedSuccs.size());
6267     for (auto *RemovedSucc : RemovedSuccs)
6268       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6269     DTU->applyUpdates(Updates);
6270   }
6271 
6272   if (IBI->getNumDestinations() == 0) {
6273     // If the indirectbr has no successors, change it to unreachable.
6274     new UnreachableInst(IBI->getContext(), IBI);
6275     EraseTerminatorAndDCECond(IBI);
6276     return true;
6277   }
6278 
6279   if (IBI->getNumDestinations() == 1) {
6280     // If the indirectbr has one successor, change it to a direct branch.
6281     BranchInst::Create(IBI->getDestination(0), IBI);
6282     EraseTerminatorAndDCECond(IBI);
6283     return true;
6284   }
6285 
6286   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6287     if (SimplifyIndirectBrOnSelect(IBI, SI))
6288       return requestResimplify();
6289   }
6290   return Changed;
6291 }
6292 
6293 /// Given an block with only a single landing pad and a unconditional branch
6294 /// try to find another basic block which this one can be merged with.  This
6295 /// handles cases where we have multiple invokes with unique landing pads, but
6296 /// a shared handler.
6297 ///
6298 /// We specifically choose to not worry about merging non-empty blocks
6299 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6300 /// practice, the optimizer produces empty landing pad blocks quite frequently
6301 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6302 /// sinking in this file)
6303 ///
6304 /// This is primarily a code size optimization.  We need to avoid performing
6305 /// any transform which might inhibit optimization (such as our ability to
6306 /// specialize a particular handler via tail commoning).  We do this by not
6307 /// merging any blocks which require us to introduce a phi.  Since the same
6308 /// values are flowing through both blocks, we don't lose any ability to
6309 /// specialize.  If anything, we make such specialization more likely.
6310 ///
6311 /// TODO - This transformation could remove entries from a phi in the target
6312 /// block when the inputs in the phi are the same for the two blocks being
6313 /// merged.  In some cases, this could result in removal of the PHI entirely.
6314 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6315                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6316   auto Succ = BB->getUniqueSuccessor();
6317   assert(Succ);
6318   // If there's a phi in the successor block, we'd likely have to introduce
6319   // a phi into the merged landing pad block.
6320   if (isa<PHINode>(*Succ->begin()))
6321     return false;
6322 
6323   for (BasicBlock *OtherPred : predecessors(Succ)) {
6324     if (BB == OtherPred)
6325       continue;
6326     BasicBlock::iterator I = OtherPred->begin();
6327     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6328     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6329       continue;
6330     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6331       ;
6332     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6333     if (!BI2 || !BI2->isIdenticalTo(BI))
6334       continue;
6335 
6336     std::vector<DominatorTree::UpdateType> Updates;
6337 
6338     // We've found an identical block.  Update our predecessors to take that
6339     // path instead and make ourselves dead.
6340     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6341     for (BasicBlock *Pred : UniquePreds) {
6342       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6343       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6344              "unexpected successor");
6345       II->setUnwindDest(OtherPred);
6346       if (DTU) {
6347         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6348         Updates.push_back({DominatorTree::Delete, Pred, BB});
6349       }
6350     }
6351 
6352     // The debug info in OtherPred doesn't cover the merged control flow that
6353     // used to go through BB.  We need to delete it or update it.
6354     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6355       if (isa<DbgInfoIntrinsic>(Inst))
6356         Inst.eraseFromParent();
6357 
6358     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6359     for (BasicBlock *Succ : UniqueSuccs) {
6360       Succ->removePredecessor(BB);
6361       if (DTU)
6362         Updates.push_back({DominatorTree::Delete, BB, Succ});
6363     }
6364 
6365     IRBuilder<> Builder(BI);
6366     Builder.CreateUnreachable();
6367     BI->eraseFromParent();
6368     if (DTU)
6369       DTU->applyUpdates(Updates);
6370     return true;
6371   }
6372   return false;
6373 }
6374 
6375 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6376   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6377                                    : simplifyCondBranch(Branch, Builder);
6378 }
6379 
6380 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6381                                           IRBuilder<> &Builder) {
6382   BasicBlock *BB = BI->getParent();
6383   BasicBlock *Succ = BI->getSuccessor(0);
6384 
6385   // If the Terminator is the only non-phi instruction, simplify the block.
6386   // If LoopHeader is provided, check if the block or its successor is a loop
6387   // header. (This is for early invocations before loop simplify and
6388   // vectorization to keep canonical loop forms for nested loops. These blocks
6389   // can be eliminated when the pass is invoked later in the back-end.)
6390   // Note that if BB has only one predecessor then we do not introduce new
6391   // backedge, so we can eliminate BB.
6392   bool NeedCanonicalLoop =
6393       Options.NeedCanonicalLoop &&
6394       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6395        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6396   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6397   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6398       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6399     return true;
6400 
6401   // If the only instruction in the block is a seteq/setne comparison against a
6402   // constant, try to simplify the block.
6403   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6404     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6405       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6406         ;
6407       if (I->isTerminator() &&
6408           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6409         return true;
6410     }
6411 
6412   // See if we can merge an empty landing pad block with another which is
6413   // equivalent.
6414   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6415     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6416       ;
6417     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6418       return true;
6419   }
6420 
6421   // If this basic block is ONLY a compare and a branch, and if a predecessor
6422   // branches to us and our successor, fold the comparison into the
6423   // predecessor and use logical operations to update the incoming value
6424   // for PHI nodes in common successor.
6425   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6426                              Options.BonusInstThreshold))
6427     return requestResimplify();
6428   return false;
6429 }
6430 
6431 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6432   BasicBlock *PredPred = nullptr;
6433   for (auto *P : predecessors(BB)) {
6434     BasicBlock *PPred = P->getSinglePredecessor();
6435     if (!PPred || (PredPred && PredPred != PPred))
6436       return nullptr;
6437     PredPred = PPred;
6438   }
6439   return PredPred;
6440 }
6441 
6442 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6443   assert(
6444       !isa<ConstantInt>(BI->getCondition()) &&
6445       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6446       "Tautological conditional branch should have been eliminated already.");
6447 
6448   BasicBlock *BB = BI->getParent();
6449   if (!Options.SimplifyCondBranch)
6450     return false;
6451 
6452   // Conditional branch
6453   if (isValueEqualityComparison(BI)) {
6454     // If we only have one predecessor, and if it is a branch on this value,
6455     // see if that predecessor totally determines the outcome of this
6456     // switch.
6457     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6458       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6459         return requestResimplify();
6460 
6461     // This block must be empty, except for the setcond inst, if it exists.
6462     // Ignore dbg and pseudo intrinsics.
6463     auto I = BB->instructionsWithoutDebug(true).begin();
6464     if (&*I == BI) {
6465       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6466         return requestResimplify();
6467     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6468       ++I;
6469       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6470         return requestResimplify();
6471     }
6472   }
6473 
6474   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6475   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6476     return true;
6477 
6478   // If this basic block has dominating predecessor blocks and the dominating
6479   // blocks' conditions imply BI's condition, we know the direction of BI.
6480   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6481   if (Imp) {
6482     // Turn this into a branch on constant.
6483     auto *OldCond = BI->getCondition();
6484     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6485                              : ConstantInt::getFalse(BB->getContext());
6486     BI->setCondition(TorF);
6487     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6488     return requestResimplify();
6489   }
6490 
6491   // If this basic block is ONLY a compare and a branch, and if a predecessor
6492   // branches to us and one of our successors, fold the comparison into the
6493   // predecessor and use logical operations to pick the right destination.
6494   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6495                              Options.BonusInstThreshold))
6496     return requestResimplify();
6497 
6498   // We have a conditional branch to two blocks that are only reachable
6499   // from BI.  We know that the condbr dominates the two blocks, so see if
6500   // there is any identical code in the "then" and "else" blocks.  If so, we
6501   // can hoist it up to the branching block.
6502   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6503     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6504       if (HoistCommon &&
6505           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6506         return requestResimplify();
6507     } else {
6508       // If Successor #1 has multiple preds, we may be able to conditionally
6509       // execute Successor #0 if it branches to Successor #1.
6510       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6511       if (Succ0TI->getNumSuccessors() == 1 &&
6512           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6513         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6514           return requestResimplify();
6515     }
6516   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6517     // If Successor #0 has multiple preds, we may be able to conditionally
6518     // execute Successor #1 if it branches to Successor #0.
6519     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6520     if (Succ1TI->getNumSuccessors() == 1 &&
6521         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6522       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6523         return requestResimplify();
6524   }
6525 
6526   // If this is a branch on a phi node in the current block, thread control
6527   // through this block if any PHI node entries are constants.
6528   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6529     if (PN->getParent() == BI->getParent())
6530       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6531         return requestResimplify();
6532 
6533   // Scan predecessor blocks for conditional branches.
6534   for (BasicBlock *Pred : predecessors(BB))
6535     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6536       if (PBI != BI && PBI->isConditional())
6537         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6538           return requestResimplify();
6539 
6540   // Look for diamond patterns.
6541   if (MergeCondStores)
6542     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6543       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6544         if (PBI != BI && PBI->isConditional())
6545           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6546             return requestResimplify();
6547 
6548   return false;
6549 }
6550 
6551 /// Check if passing a value to an instruction will cause undefined behavior.
6552 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6553   Constant *C = dyn_cast<Constant>(V);
6554   if (!C)
6555     return false;
6556 
6557   if (I->use_empty())
6558     return false;
6559 
6560   if (C->isNullValue() || isa<UndefValue>(C)) {
6561     // Only look at the first use, avoid hurting compile time with long uselists
6562     auto *Use = cast<Instruction>(*I->user_begin());
6563     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6564     // before I in the block. The latter two can be the case if Use is a PHI
6565     // node.
6566     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6567       return false;
6568 
6569     // Now make sure that there are no instructions in between that can alter
6570     // control flow (eg. calls)
6571     auto InstrRange =
6572         make_range(std::next(I->getIterator()), Use->getIterator());
6573     if (any_of(InstrRange, [](Instruction &I) {
6574           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6575         }))
6576       return false;
6577 
6578     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6579     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6580       if (GEP->getPointerOperand() == I) {
6581         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6582           PtrValueMayBeModified = true;
6583         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6584       }
6585 
6586     // Look through bitcasts.
6587     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6588       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6589 
6590     // Load from null is undefined.
6591     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6592       if (!LI->isVolatile())
6593         return !NullPointerIsDefined(LI->getFunction(),
6594                                      LI->getPointerAddressSpace());
6595 
6596     // Store to null is undefined.
6597     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6598       if (!SI->isVolatile())
6599         return (!NullPointerIsDefined(SI->getFunction(),
6600                                       SI->getPointerAddressSpace())) &&
6601                SI->getPointerOperand() == I;
6602 
6603     if (auto *CB = dyn_cast<CallBase>(Use)) {
6604       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6605         return false;
6606       // A call to null is undefined.
6607       if (CB->getCalledOperand() == I)
6608         return true;
6609 
6610       if (C->isNullValue()) {
6611         for (const llvm::Use &Arg : CB->args())
6612           if (Arg == I) {
6613             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6614             if (CB->isPassingUndefUB(ArgIdx) &&
6615                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6616               // Passing null to a nonnnull+noundef argument is undefined.
6617               return !PtrValueMayBeModified;
6618             }
6619           }
6620       } else if (isa<UndefValue>(C)) {
6621         // Passing undef to a noundef argument is undefined.
6622         for (const llvm::Use &Arg : CB->args())
6623           if (Arg == I) {
6624             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6625             if (CB->isPassingUndefUB(ArgIdx)) {
6626               // Passing undef to a noundef argument is undefined.
6627               return true;
6628             }
6629           }
6630       }
6631     }
6632   }
6633   return false;
6634 }
6635 
6636 /// If BB has an incoming value that will always trigger undefined behavior
6637 /// (eg. null pointer dereference), remove the branch leading here.
6638 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6639                                               DomTreeUpdater *DTU) {
6640   for (PHINode &PHI : BB->phis())
6641     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6642       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6643         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6644         Instruction *T = Predecessor->getTerminator();
6645         IRBuilder<> Builder(T);
6646         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6647           BB->removePredecessor(Predecessor);
6648           // Turn uncoditional branches into unreachables and remove the dead
6649           // destination from conditional branches.
6650           if (BI->isUnconditional())
6651             Builder.CreateUnreachable();
6652           else {
6653             // Preserve guarding condition in assume, because it might not be
6654             // inferrable from any dominating condition.
6655             Value *Cond = BI->getCondition();
6656             if (BI->getSuccessor(0) == BB)
6657               Builder.CreateAssumption(Builder.CreateNot(Cond));
6658             else
6659               Builder.CreateAssumption(Cond);
6660             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6661                                                        : BI->getSuccessor(0));
6662           }
6663           BI->eraseFromParent();
6664           if (DTU)
6665             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6666           return true;
6667         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
6668           // Redirect all branches leading to UB into
6669           // a newly created unreachable block.
6670           BasicBlock *Unreachable = BasicBlock::Create(
6671               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
6672           Builder.SetInsertPoint(Unreachable);
6673           // The new block contains only one instruction: Unreachable
6674           Builder.CreateUnreachable();
6675           for (auto &Case : SI->cases())
6676             if (Case.getCaseSuccessor() == BB) {
6677               BB->removePredecessor(Predecessor);
6678               Case.setSuccessor(Unreachable);
6679             }
6680           if (SI->getDefaultDest() == BB) {
6681             BB->removePredecessor(Predecessor);
6682             SI->setDefaultDest(Unreachable);
6683           }
6684 
6685           if (DTU)
6686             DTU->applyUpdates(
6687                 { { DominatorTree::Insert, Predecessor, Unreachable },
6688                   { DominatorTree::Delete, Predecessor, BB } });
6689           return true;
6690         }
6691       }
6692 
6693   return false;
6694 }
6695 
6696 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6697   bool Changed = false;
6698 
6699   assert(BB && BB->getParent() && "Block not embedded in function!");
6700   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6701 
6702   // Remove basic blocks that have no predecessors (except the entry block)...
6703   // or that just have themself as a predecessor.  These are unreachable.
6704   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6705       BB->getSinglePredecessor() == BB) {
6706     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6707     DeleteDeadBlock(BB, DTU);
6708     return true;
6709   }
6710 
6711   // Check to see if we can constant propagate this terminator instruction
6712   // away...
6713   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6714                                     /*TLI=*/nullptr, DTU);
6715 
6716   // Check for and eliminate duplicate PHI nodes in this block.
6717   Changed |= EliminateDuplicatePHINodes(BB);
6718 
6719   // Check for and remove branches that will always cause undefined behavior.
6720   if (removeUndefIntroducingPredecessor(BB, DTU))
6721     return requestResimplify();
6722 
6723   // Merge basic blocks into their predecessor if there is only one distinct
6724   // pred, and if there is only one distinct successor of the predecessor, and
6725   // if there are no PHI nodes.
6726   if (MergeBlockIntoPredecessor(BB, DTU))
6727     return true;
6728 
6729   if (SinkCommon && Options.SinkCommonInsts)
6730     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6731       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6732       // so we may now how duplicate PHI's.
6733       // Let's rerun EliminateDuplicatePHINodes() first,
6734       // before FoldTwoEntryPHINode() potentially converts them into select's,
6735       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6736       return true;
6737     }
6738 
6739   IRBuilder<> Builder(BB);
6740 
6741   if (Options.FoldTwoEntryPHINode) {
6742     // If there is a trivial two-entry PHI node in this basic block, and we can
6743     // eliminate it, do so now.
6744     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6745       if (PN->getNumIncomingValues() == 2)
6746         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
6747           return true;
6748   }
6749 
6750   Instruction *Terminator = BB->getTerminator();
6751   Builder.SetInsertPoint(Terminator);
6752   switch (Terminator->getOpcode()) {
6753   case Instruction::Br:
6754     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6755     break;
6756   case Instruction::Resume:
6757     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6758     break;
6759   case Instruction::CleanupRet:
6760     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6761     break;
6762   case Instruction::Switch:
6763     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6764     break;
6765   case Instruction::Unreachable:
6766     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6767     break;
6768   case Instruction::IndirectBr:
6769     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6770     break;
6771   }
6772 
6773   return Changed;
6774 }
6775 
6776 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6777   bool Changed = false;
6778 
6779   // Repeated simplify BB as long as resimplification is requested.
6780   do {
6781     Resimplify = false;
6782 
6783     // Perform one round of simplifcation. Resimplify flag will be set if
6784     // another iteration is requested.
6785     Changed |= simplifyOnce(BB);
6786   } while (Resimplify);
6787 
6788   return Changed;
6789 }
6790 
6791 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6792                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6793                        ArrayRef<WeakVH> LoopHeaders) {
6794   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6795                         Options)
6796       .run(BB);
6797 }
6798