1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56   return Func == LibFunc_abs || Func == LibFunc_labs ||
57          Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
60 static bool isCallingConvCCompatible(CallInst *CI) {
61   switch(CI->getCallingConv()) {
62   default:
63     return false;
64   case llvm::CallingConv::C:
65     return true;
66   case llvm::CallingConv::ARM_APCS:
67   case llvm::CallingConv::ARM_AAPCS:
68   case llvm::CallingConv::ARM_AAPCS_VFP: {
69 
70     // The iOS ABI diverges from the standard in some cases, so for now don't
71     // try to simplify those calls.
72     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73       return false;
74 
75     auto *FuncTy = CI->getFunctionType();
76 
77     if (!FuncTy->getReturnType()->isPointerTy() &&
78         !FuncTy->getReturnType()->isIntegerTy() &&
79         !FuncTy->getReturnType()->isVoidTy())
80       return false;
81 
82     for (auto Param : FuncTy->params()) {
83       if (!Param->isPointerTy() && !Param->isIntegerTy())
84         return false;
85     }
86     return true;
87   }
88   }
89   return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94   for (User *U : V->users()) {
95     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96       if (IC->isEquality() && IC->getOperand(1) == With)
97         continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105   return any_of(CI->operands(), [](const Use &OI) {
106     return OI->getType()->isFloatingPointTy();
107   });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111   return any_of(CI->operands(), [](const Use &OI) {
112     return OI->getType()->isFP128Ty();
113   });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117   if (Base < 2 || Base > 36)
118     // handle special zero base
119     if (Base != 0)
120       return nullptr;
121 
122   char *End;
123   std::string nptr = Str.str();
124   errno = 0;
125   long long int Result = strtoll(nptr.c_str(), &End, Base);
126   if (errno)
127     return nullptr;
128 
129   // if we assume all possible target locales are ASCII supersets,
130   // then if strtoll successfully parses a number on the host,
131   // it will also successfully parse the same way on the target
132   if (*End != '\0')
133     return nullptr;
134 
135   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136     return nullptr;
137 
138   return ConstantInt::get(CI->getType(), Result);
139 }
140 
141 static bool isOnlyUsedInComparisonWithZero(Value *V) {
142   for (User *U : V->users()) {
143     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
144       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
145         if (C->isNullValue())
146           continue;
147     // Unknown instruction.
148     return false;
149   }
150   return true;
151 }
152 
153 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
154                                  const DataLayout &DL) {
155   if (!isOnlyUsedInComparisonWithZero(CI))
156     return false;
157 
158   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
159     return false;
160 
161   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
162     return false;
163 
164   return true;
165 }
166 
167 static void annotateDereferenceableBytes(CallInst *CI,
168                                          ArrayRef<unsigned> ArgNos,
169                                          uint64_t DereferenceableBytes) {
170   const Function *F = CI->getCaller();
171   if (!F)
172     return;
173   for (unsigned ArgNo : ArgNos) {
174     uint64_t DerefBytes = DereferenceableBytes;
175     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
176     if (!llvm::NullPointerIsDefined(F, AS) ||
177         CI->paramHasAttr(ArgNo, Attribute::NonNull))
178       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
179                                 ArgNo + AttributeList::FirstArgIndex),
180                             DereferenceableBytes);
181 
182     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
183         DerefBytes) {
184       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
185       if (!llvm::NullPointerIsDefined(F, AS) ||
186           CI->paramHasAttr(ArgNo, Attribute::NonNull))
187         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
188       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
189                                   CI->getContext(), DerefBytes));
190     }
191   }
192 }
193 
194 static void annotateNonNullBasedOnAccess(CallInst *CI,
195                                          ArrayRef<unsigned> ArgNos) {
196   Function *F = CI->getCaller();
197   if (!F)
198     return;
199 
200   for (unsigned ArgNo : ArgNos) {
201     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
202       continue;
203     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
204     if (llvm::NullPointerIsDefined(F, AS))
205       continue;
206 
207     CI->addParamAttr(ArgNo, Attribute::NonNull);
208     annotateDereferenceableBytes(CI, ArgNo, 1);
209   }
210 }
211 
212 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
213                                Value *Size, const DataLayout &DL) {
214   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
215     annotateNonNullBasedOnAccess(CI, ArgNos);
216     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
217   } else if (isKnownNonZero(Size, DL)) {
218     annotateNonNullBasedOnAccess(CI, ArgNos);
219     const APInt *X, *Y;
220     uint64_t DerefMin = 1;
221     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
222       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
223       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
224     }
225   }
226 }
227 
228 //===----------------------------------------------------------------------===//
229 // String and Memory Library Call Optimizations
230 //===----------------------------------------------------------------------===//
231 
232 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
233   // Extract some information from the instruction
234   Value *Dst = CI->getArgOperand(0);
235   Value *Src = CI->getArgOperand(1);
236   annotateNonNullBasedOnAccess(CI, {0, 1});
237 
238   // See if we can get the length of the input string.
239   uint64_t Len = GetStringLength(Src);
240   if (Len)
241     annotateDereferenceableBytes(CI, 1, Len);
242   else
243     return nullptr;
244   --Len; // Unbias length.
245 
246   // Handle the simple, do-nothing case: strcat(x, "") -> x
247   if (Len == 0)
248     return Dst;
249 
250   return emitStrLenMemCpy(Src, Dst, Len, B);
251 }
252 
253 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
254                                            IRBuilderBase &B) {
255   // We need to find the end of the destination string.  That's where the
256   // memory is to be moved to. We just generate a call to strlen.
257   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
258   if (!DstLen)
259     return nullptr;
260 
261   // Now that we have the destination's length, we must index into the
262   // destination's pointer to get the actual memcpy destination (end of
263   // the string .. we're concatenating).
264   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
265 
266   // We have enough information to now generate the memcpy call to do the
267   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
268   B.CreateMemCpy(
269       CpyDst, Align(1), Src, Align(1),
270       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
271   return Dst;
272 }
273 
274 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
275   // Extract some information from the instruction.
276   Value *Dst = CI->getArgOperand(0);
277   Value *Src = CI->getArgOperand(1);
278   Value *Size = CI->getArgOperand(2);
279   uint64_t Len;
280   annotateNonNullBasedOnAccess(CI, 0);
281   if (isKnownNonZero(Size, DL))
282     annotateNonNullBasedOnAccess(CI, 1);
283 
284   // We don't do anything if length is not constant.
285   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
286   if (LengthArg) {
287     Len = LengthArg->getZExtValue();
288     // strncat(x, c, 0) -> x
289     if (!Len)
290       return Dst;
291   } else {
292     return nullptr;
293   }
294 
295   // See if we can get the length of the input string.
296   uint64_t SrcLen = GetStringLength(Src);
297   if (SrcLen) {
298     annotateDereferenceableBytes(CI, 1, SrcLen);
299     --SrcLen; // Unbias length.
300   } else {
301     return nullptr;
302   }
303 
304   // strncat(x, "", c) -> x
305   if (SrcLen == 0)
306     return Dst;
307 
308   // We don't optimize this case.
309   if (Len < SrcLen)
310     return nullptr;
311 
312   // strncat(x, s, c) -> strcat(x, s)
313   // s is constant so the strcat can be optimized further.
314   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
315 }
316 
317 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
318   Function *Callee = CI->getCalledFunction();
319   FunctionType *FT = Callee->getFunctionType();
320   Value *SrcStr = CI->getArgOperand(0);
321   annotateNonNullBasedOnAccess(CI, 0);
322 
323   // If the second operand is non-constant, see if we can compute the length
324   // of the input string and turn this into memchr.
325   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
326   if (!CharC) {
327     uint64_t Len = GetStringLength(SrcStr);
328     if (Len)
329       annotateDereferenceableBytes(CI, 0, Len);
330     else
331       return nullptr;
332     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
333       return nullptr;
334 
335     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
336                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
337                       B, DL, TLI);
338   }
339 
340   // Otherwise, the character is a constant, see if the first argument is
341   // a string literal.  If so, we can constant fold.
342   StringRef Str;
343   if (!getConstantStringInfo(SrcStr, Str)) {
344     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
345       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
346         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
347     return nullptr;
348   }
349 
350   // Compute the offset, make sure to handle the case when we're searching for
351   // zero (a weird way to spell strlen).
352   size_t I = (0xFF & CharC->getSExtValue()) == 0
353                  ? Str.size()
354                  : Str.find(CharC->getSExtValue());
355   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
356     return Constant::getNullValue(CI->getType());
357 
358   // strchr(s+n,c)  -> gep(s+n+i,c)
359   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
360 }
361 
362 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
363   Value *SrcStr = CI->getArgOperand(0);
364   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
365   annotateNonNullBasedOnAccess(CI, 0);
366 
367   // Cannot fold anything if we're not looking for a constant.
368   if (!CharC)
369     return nullptr;
370 
371   StringRef Str;
372   if (!getConstantStringInfo(SrcStr, Str)) {
373     // strrchr(s, 0) -> strchr(s, 0)
374     if (CharC->isZero())
375       return emitStrChr(SrcStr, '\0', B, TLI);
376     return nullptr;
377   }
378 
379   // Compute the offset.
380   size_t I = (0xFF & CharC->getSExtValue()) == 0
381                  ? Str.size()
382                  : Str.rfind(CharC->getSExtValue());
383   if (I == StringRef::npos) // Didn't find the char. Return null.
384     return Constant::getNullValue(CI->getType());
385 
386   // strrchr(s+n,c) -> gep(s+n+i,c)
387   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
388 }
389 
390 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
391   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
392   if (Str1P == Str2P) // strcmp(x,x)  -> 0
393     return ConstantInt::get(CI->getType(), 0);
394 
395   StringRef Str1, Str2;
396   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
397   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
398 
399   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
400   if (HasStr1 && HasStr2)
401     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
402 
403   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
404     return B.CreateNeg(B.CreateZExt(
405         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
406 
407   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
408     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
409                         CI->getType());
410 
411   // strcmp(P, "x") -> memcmp(P, "x", 2)
412   uint64_t Len1 = GetStringLength(Str1P);
413   if (Len1)
414     annotateDereferenceableBytes(CI, 0, Len1);
415   uint64_t Len2 = GetStringLength(Str2P);
416   if (Len2)
417     annotateDereferenceableBytes(CI, 1, Len2);
418 
419   if (Len1 && Len2) {
420     return emitMemCmp(Str1P, Str2P,
421                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
422                                        std::min(Len1, Len2)),
423                       B, DL, TLI);
424   }
425 
426   // strcmp to memcmp
427   if (!HasStr1 && HasStr2) {
428     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
429       return emitMemCmp(
430           Str1P, Str2P,
431           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
432           TLI);
433   } else if (HasStr1 && !HasStr2) {
434     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
435       return emitMemCmp(
436           Str1P, Str2P,
437           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
438           TLI);
439   }
440 
441   annotateNonNullBasedOnAccess(CI, {0, 1});
442   return nullptr;
443 }
444 
445 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
446   Value *Str1P = CI->getArgOperand(0);
447   Value *Str2P = CI->getArgOperand(1);
448   Value *Size = CI->getArgOperand(2);
449   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
450     return ConstantInt::get(CI->getType(), 0);
451 
452   if (isKnownNonZero(Size, DL))
453     annotateNonNullBasedOnAccess(CI, {0, 1});
454   // Get the length argument if it is constant.
455   uint64_t Length;
456   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
457     Length = LengthArg->getZExtValue();
458   else
459     return nullptr;
460 
461   if (Length == 0) // strncmp(x,y,0)   -> 0
462     return ConstantInt::get(CI->getType(), 0);
463 
464   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
465     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
466 
467   StringRef Str1, Str2;
468   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
469   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
470 
471   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
472   if (HasStr1 && HasStr2) {
473     StringRef SubStr1 = Str1.substr(0, Length);
474     StringRef SubStr2 = Str2.substr(0, Length);
475     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
476   }
477 
478   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
479     return B.CreateNeg(B.CreateZExt(
480         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
481 
482   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
483     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
484                         CI->getType());
485 
486   uint64_t Len1 = GetStringLength(Str1P);
487   if (Len1)
488     annotateDereferenceableBytes(CI, 0, Len1);
489   uint64_t Len2 = GetStringLength(Str2P);
490   if (Len2)
491     annotateDereferenceableBytes(CI, 1, Len2);
492 
493   // strncmp to memcmp
494   if (!HasStr1 && HasStr2) {
495     Len2 = std::min(Len2, Length);
496     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
497       return emitMemCmp(
498           Str1P, Str2P,
499           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
500           TLI);
501   } else if (HasStr1 && !HasStr2) {
502     Len1 = std::min(Len1, Length);
503     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
504       return emitMemCmp(
505           Str1P, Str2P,
506           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
507           TLI);
508   }
509 
510   return nullptr;
511 }
512 
513 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
514   Value *Src = CI->getArgOperand(0);
515   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
516   uint64_t SrcLen = GetStringLength(Src);
517   if (SrcLen && Size) {
518     annotateDereferenceableBytes(CI, 0, SrcLen);
519     if (SrcLen <= Size->getZExtValue() + 1)
520       return emitStrDup(Src, B, TLI);
521   }
522 
523   return nullptr;
524 }
525 
526 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
527   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
528   if (Dst == Src) // strcpy(x,x)  -> x
529     return Src;
530 
531   annotateNonNullBasedOnAccess(CI, {0, 1});
532   // See if we can get the length of the input string.
533   uint64_t Len = GetStringLength(Src);
534   if (Len)
535     annotateDereferenceableBytes(CI, 1, Len);
536   else
537     return nullptr;
538 
539   // We have enough information to now generate the memcpy call to do the
540   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
541   CallInst *NewCI =
542       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
543                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
544   NewCI->setAttributes(CI->getAttributes());
545   return Dst;
546 }
547 
548 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
549   Function *Callee = CI->getCalledFunction();
550   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
551   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
552     Value *StrLen = emitStrLen(Src, B, DL, TLI);
553     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
554   }
555 
556   // See if we can get the length of the input string.
557   uint64_t Len = GetStringLength(Src);
558   if (Len)
559     annotateDereferenceableBytes(CI, 1, Len);
560   else
561     return nullptr;
562 
563   Type *PT = Callee->getFunctionType()->getParamType(0);
564   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
565   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
566                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
567 
568   // We have enough information to now generate the memcpy call to do the
569   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
570   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
571   NewCI->setAttributes(CI->getAttributes());
572   return DstEnd;
573 }
574 
575 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
576   Function *Callee = CI->getCalledFunction();
577   Value *Dst = CI->getArgOperand(0);
578   Value *Src = CI->getArgOperand(1);
579   Value *Size = CI->getArgOperand(2);
580   annotateNonNullBasedOnAccess(CI, 0);
581   if (isKnownNonZero(Size, DL))
582     annotateNonNullBasedOnAccess(CI, 1);
583 
584   uint64_t Len;
585   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
586     Len = LengthArg->getZExtValue();
587   else
588     return nullptr;
589 
590   // strncpy(x, y, 0) -> x
591   if (Len == 0)
592     return Dst;
593 
594   // See if we can get the length of the input string.
595   uint64_t SrcLen = GetStringLength(Src);
596   if (SrcLen) {
597     annotateDereferenceableBytes(CI, 1, SrcLen);
598     --SrcLen; // Unbias length.
599   } else {
600     return nullptr;
601   }
602 
603   if (SrcLen == 0) {
604     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
605     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
606     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
607     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
608         CI->getContext(), 0, ArgAttrs));
609     return Dst;
610   }
611 
612   // Let strncpy handle the zero padding
613   if (Len > SrcLen + 1)
614     return nullptr;
615 
616   Type *PT = Callee->getFunctionType()->getParamType(0);
617   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
618   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
619                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
620   NewCI->setAttributes(CI->getAttributes());
621   return Dst;
622 }
623 
624 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
625                                                unsigned CharSize) {
626   Value *Src = CI->getArgOperand(0);
627 
628   // Constant folding: strlen("xyz") -> 3
629   if (uint64_t Len = GetStringLength(Src, CharSize))
630     return ConstantInt::get(CI->getType(), Len - 1);
631 
632   // If s is a constant pointer pointing to a string literal, we can fold
633   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
634   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
635   // We only try to simplify strlen when the pointer s points to an array
636   // of i8. Otherwise, we would need to scale the offset x before doing the
637   // subtraction. This will make the optimization more complex, and it's not
638   // very useful because calling strlen for a pointer of other types is
639   // very uncommon.
640   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
641     if (!isGEPBasedOnPointerToString(GEP, CharSize))
642       return nullptr;
643 
644     ConstantDataArraySlice Slice;
645     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
646       uint64_t NullTermIdx;
647       if (Slice.Array == nullptr) {
648         NullTermIdx = 0;
649       } else {
650         NullTermIdx = ~((uint64_t)0);
651         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
652           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
653             NullTermIdx = I;
654             break;
655           }
656         }
657         // If the string does not have '\0', leave it to strlen to compute
658         // its length.
659         if (NullTermIdx == ~((uint64_t)0))
660           return nullptr;
661       }
662 
663       Value *Offset = GEP->getOperand(2);
664       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
665       Known.Zero.flipAllBits();
666       uint64_t ArrSize =
667              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
668 
669       // KnownZero's bits are flipped, so zeros in KnownZero now represent
670       // bits known to be zeros in Offset, and ones in KnowZero represent
671       // bits unknown in Offset. Therefore, Offset is known to be in range
672       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
673       // unsigned-less-than NullTermIdx.
674       //
675       // If Offset is not provably in the range [0, NullTermIdx], we can still
676       // optimize if we can prove that the program has undefined behavior when
677       // Offset is outside that range. That is the case when GEP->getOperand(0)
678       // is a pointer to an object whose memory extent is NullTermIdx+1.
679       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
680           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
681            NullTermIdx == ArrSize - 1)) {
682         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
683         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
684                            Offset);
685       }
686     }
687 
688     return nullptr;
689   }
690 
691   // strlen(x?"foo":"bars") --> x ? 3 : 4
692   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
693     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
694     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
695     if (LenTrue && LenFalse) {
696       ORE.emit([&]() {
697         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
698                << "folded strlen(select) to select of constants";
699       });
700       return B.CreateSelect(SI->getCondition(),
701                             ConstantInt::get(CI->getType(), LenTrue - 1),
702                             ConstantInt::get(CI->getType(), LenFalse - 1));
703     }
704   }
705 
706   // strlen(x) != 0 --> *x != 0
707   // strlen(x) == 0 --> *x == 0
708   if (isOnlyUsedInZeroEqualityComparison(CI))
709     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
710                         CI->getType());
711 
712   return nullptr;
713 }
714 
715 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
716   if (Value *V = optimizeStringLength(CI, B, 8))
717     return V;
718   annotateNonNullBasedOnAccess(CI, 0);
719   return nullptr;
720 }
721 
722 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
723   Module &M = *CI->getModule();
724   unsigned WCharSize = TLI->getWCharSize(M) * 8;
725   // We cannot perform this optimization without wchar_size metadata.
726   if (WCharSize == 0)
727     return nullptr;
728 
729   return optimizeStringLength(CI, B, WCharSize);
730 }
731 
732 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
733   StringRef S1, S2;
734   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
735   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
736 
737   // strpbrk(s, "") -> nullptr
738   // strpbrk("", s) -> nullptr
739   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
740     return Constant::getNullValue(CI->getType());
741 
742   // Constant folding.
743   if (HasS1 && HasS2) {
744     size_t I = S1.find_first_of(S2);
745     if (I == StringRef::npos) // No match.
746       return Constant::getNullValue(CI->getType());
747 
748     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
749                        "strpbrk");
750   }
751 
752   // strpbrk(s, "a") -> strchr(s, 'a')
753   if (HasS2 && S2.size() == 1)
754     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
755 
756   return nullptr;
757 }
758 
759 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
760   Value *EndPtr = CI->getArgOperand(1);
761   if (isa<ConstantPointerNull>(EndPtr)) {
762     // With a null EndPtr, this function won't capture the main argument.
763     // It would be readonly too, except that it still may write to errno.
764     CI->addParamAttr(0, Attribute::NoCapture);
765   }
766 
767   return nullptr;
768 }
769 
770 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
771   StringRef S1, S2;
772   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
773   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
774 
775   // strspn(s, "") -> 0
776   // strspn("", s) -> 0
777   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
778     return Constant::getNullValue(CI->getType());
779 
780   // Constant folding.
781   if (HasS1 && HasS2) {
782     size_t Pos = S1.find_first_not_of(S2);
783     if (Pos == StringRef::npos)
784       Pos = S1.size();
785     return ConstantInt::get(CI->getType(), Pos);
786   }
787 
788   return nullptr;
789 }
790 
791 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
792   StringRef S1, S2;
793   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
794   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
795 
796   // strcspn("", s) -> 0
797   if (HasS1 && S1.empty())
798     return Constant::getNullValue(CI->getType());
799 
800   // Constant folding.
801   if (HasS1 && HasS2) {
802     size_t Pos = S1.find_first_of(S2);
803     if (Pos == StringRef::npos)
804       Pos = S1.size();
805     return ConstantInt::get(CI->getType(), Pos);
806   }
807 
808   // strcspn(s, "") -> strlen(s)
809   if (HasS2 && S2.empty())
810     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
811 
812   return nullptr;
813 }
814 
815 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
816   // fold strstr(x, x) -> x.
817   if (CI->getArgOperand(0) == CI->getArgOperand(1))
818     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
819 
820   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
821   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
822     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
823     if (!StrLen)
824       return nullptr;
825     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
826                                  StrLen, B, DL, TLI);
827     if (!StrNCmp)
828       return nullptr;
829     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
830       ICmpInst *Old = cast<ICmpInst>(*UI++);
831       Value *Cmp =
832           B.CreateICmp(Old->getPredicate(), StrNCmp,
833                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
834       replaceAllUsesWith(Old, Cmp);
835     }
836     return CI;
837   }
838 
839   // See if either input string is a constant string.
840   StringRef SearchStr, ToFindStr;
841   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
842   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
843 
844   // fold strstr(x, "") -> x.
845   if (HasStr2 && ToFindStr.empty())
846     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
847 
848   // If both strings are known, constant fold it.
849   if (HasStr1 && HasStr2) {
850     size_t Offset = SearchStr.find(ToFindStr);
851 
852     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
853       return Constant::getNullValue(CI->getType());
854 
855     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
856     Value *Result = castToCStr(CI->getArgOperand(0), B);
857     Result =
858         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
859     return B.CreateBitCast(Result, CI->getType());
860   }
861 
862   // fold strstr(x, "y") -> strchr(x, 'y').
863   if (HasStr2 && ToFindStr.size() == 1) {
864     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
865     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
866   }
867 
868   annotateNonNullBasedOnAccess(CI, {0, 1});
869   return nullptr;
870 }
871 
872 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
873   if (isKnownNonZero(CI->getOperand(2), DL))
874     annotateNonNullBasedOnAccess(CI, 0);
875   return nullptr;
876 }
877 
878 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
879   Value *SrcStr = CI->getArgOperand(0);
880   Value *Size = CI->getArgOperand(2);
881   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
882   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
883   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
884 
885   // memchr(x, y, 0) -> null
886   if (LenC) {
887     if (LenC->isZero())
888       return Constant::getNullValue(CI->getType());
889   } else {
890     // From now on we need at least constant length and string.
891     return nullptr;
892   }
893 
894   StringRef Str;
895   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
896     return nullptr;
897 
898   // Truncate the string to LenC. If Str is smaller than LenC we will still only
899   // scan the string, as reading past the end of it is undefined and we can just
900   // return null if we don't find the char.
901   Str = Str.substr(0, LenC->getZExtValue());
902 
903   // If the char is variable but the input str and length are not we can turn
904   // this memchr call into a simple bit field test. Of course this only works
905   // when the return value is only checked against null.
906   //
907   // It would be really nice to reuse switch lowering here but we can't change
908   // the CFG at this point.
909   //
910   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
911   // != 0
912   //   after bounds check.
913   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
914     unsigned char Max =
915         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
916                           reinterpret_cast<const unsigned char *>(Str.end()));
917 
918     // Make sure the bit field we're about to create fits in a register on the
919     // target.
920     // FIXME: On a 64 bit architecture this prevents us from using the
921     // interesting range of alpha ascii chars. We could do better by emitting
922     // two bitfields or shifting the range by 64 if no lower chars are used.
923     if (!DL.fitsInLegalInteger(Max + 1))
924       return nullptr;
925 
926     // For the bit field use a power-of-2 type with at least 8 bits to avoid
927     // creating unnecessary illegal types.
928     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
929 
930     // Now build the bit field.
931     APInt Bitfield(Width, 0);
932     for (char C : Str)
933       Bitfield.setBit((unsigned char)C);
934     Value *BitfieldC = B.getInt(Bitfield);
935 
936     // Adjust width of "C" to the bitfield width, then mask off the high bits.
937     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
938     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
939 
940     // First check that the bit field access is within bounds.
941     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
942                                  "memchr.bounds");
943 
944     // Create code that checks if the given bit is set in the field.
945     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
946     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
947 
948     // Finally merge both checks and cast to pointer type. The inttoptr
949     // implicitly zexts the i1 to intptr type.
950     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
951   }
952 
953   // Check if all arguments are constants.  If so, we can constant fold.
954   if (!CharC)
955     return nullptr;
956 
957   // Compute the offset.
958   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
959   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
960     return Constant::getNullValue(CI->getType());
961 
962   // memchr(s+n,c,l) -> gep(s+n+i,c)
963   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
964 }
965 
966 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
967                                          uint64_t Len, IRBuilderBase &B,
968                                          const DataLayout &DL) {
969   if (Len == 0) // memcmp(s1,s2,0) -> 0
970     return Constant::getNullValue(CI->getType());
971 
972   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
973   if (Len == 1) {
974     Value *LHSV =
975         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
976                      CI->getType(), "lhsv");
977     Value *RHSV =
978         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
979                      CI->getType(), "rhsv");
980     return B.CreateSub(LHSV, RHSV, "chardiff");
981   }
982 
983   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
984   // TODO: The case where both inputs are constants does not need to be limited
985   // to legal integers or equality comparison. See block below this.
986   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
987     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
988     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
989 
990     // First, see if we can fold either argument to a constant.
991     Value *LHSV = nullptr;
992     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
993       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
994       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
995     }
996     Value *RHSV = nullptr;
997     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
998       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
999       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1000     }
1001 
1002     // Don't generate unaligned loads. If either source is constant data,
1003     // alignment doesn't matter for that source because there is no load.
1004     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1005         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1006       if (!LHSV) {
1007         Type *LHSPtrTy =
1008             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1009         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1010       }
1011       if (!RHSV) {
1012         Type *RHSPtrTy =
1013             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1014         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1015       }
1016       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1017     }
1018   }
1019 
1020   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1021   // TODO: This is limited to i8 arrays.
1022   StringRef LHSStr, RHSStr;
1023   if (getConstantStringInfo(LHS, LHSStr) &&
1024       getConstantStringInfo(RHS, RHSStr)) {
1025     // Make sure we're not reading out-of-bounds memory.
1026     if (Len > LHSStr.size() || Len > RHSStr.size())
1027       return nullptr;
1028     // Fold the memcmp and normalize the result.  This way we get consistent
1029     // results across multiple platforms.
1030     uint64_t Ret = 0;
1031     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1032     if (Cmp < 0)
1033       Ret = -1;
1034     else if (Cmp > 0)
1035       Ret = 1;
1036     return ConstantInt::get(CI->getType(), Ret);
1037   }
1038 
1039   return nullptr;
1040 }
1041 
1042 // Most simplifications for memcmp also apply to bcmp.
1043 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1044                                                    IRBuilderBase &B) {
1045   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1046   Value *Size = CI->getArgOperand(2);
1047 
1048   if (LHS == RHS) // memcmp(s,s,x) -> 0
1049     return Constant::getNullValue(CI->getType());
1050 
1051   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1052   // Handle constant lengths.
1053   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1054   if (!LenC)
1055     return nullptr;
1056 
1057   // memcmp(d,s,0) -> 0
1058   if (LenC->getZExtValue() == 0)
1059     return Constant::getNullValue(CI->getType());
1060 
1061   if (Value *Res =
1062           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1063     return Res;
1064   return nullptr;
1065 }
1066 
1067 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1068   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1069     return V;
1070 
1071   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1072   // bcmp can be more efficient than memcmp because it only has to know that
1073   // there is a difference, not how different one is to the other.
1074   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1075     Value *LHS = CI->getArgOperand(0);
1076     Value *RHS = CI->getArgOperand(1);
1077     Value *Size = CI->getArgOperand(2);
1078     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1079   }
1080 
1081   return nullptr;
1082 }
1083 
1084 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1085   return optimizeMemCmpBCmpCommon(CI, B);
1086 }
1087 
1088 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1089   Value *Size = CI->getArgOperand(2);
1090   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1091   if (isa<IntrinsicInst>(CI))
1092     return nullptr;
1093 
1094   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1095   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1096                                    CI->getArgOperand(1), Align(1), Size);
1097   NewCI->setAttributes(CI->getAttributes());
1098   return CI->getArgOperand(0);
1099 }
1100 
1101 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1102   Value *Dst = CI->getArgOperand(0);
1103   Value *Src = CI->getArgOperand(1);
1104   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1105   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1106   StringRef SrcStr;
1107   if (CI->use_empty() && Dst == Src)
1108     return Dst;
1109   // memccpy(d, s, c, 0) -> nullptr
1110   if (N) {
1111     if (N->isNullValue())
1112       return Constant::getNullValue(CI->getType());
1113     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1114                                /*TrimAtNul=*/false) ||
1115         !StopChar)
1116       return nullptr;
1117   } else {
1118     return nullptr;
1119   }
1120 
1121   // Wrap arg 'c' of type int to char
1122   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1123   if (Pos == StringRef::npos) {
1124     if (N->getZExtValue() <= SrcStr.size()) {
1125       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1126       return Constant::getNullValue(CI->getType());
1127     }
1128     return nullptr;
1129   }
1130 
1131   Value *NewN =
1132       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1133   // memccpy -> llvm.memcpy
1134   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1135   return Pos + 1 <= N->getZExtValue()
1136              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1137              : Constant::getNullValue(CI->getType());
1138 }
1139 
1140 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1141   Value *Dst = CI->getArgOperand(0);
1142   Value *N = CI->getArgOperand(2);
1143   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1144   CallInst *NewCI =
1145       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1146   NewCI->setAttributes(CI->getAttributes());
1147   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1148 }
1149 
1150 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1151   Value *Size = CI->getArgOperand(2);
1152   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1153   if (isa<IntrinsicInst>(CI))
1154     return nullptr;
1155 
1156   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1157   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1158                                     CI->getArgOperand(1), Align(1), Size);
1159   NewCI->setAttributes(CI->getAttributes());
1160   return CI->getArgOperand(0);
1161 }
1162 
1163 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1164 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1165   // This has to be a memset of zeros (bzero).
1166   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1167   if (!FillValue || FillValue->getZExtValue() != 0)
1168     return nullptr;
1169 
1170   // TODO: We should handle the case where the malloc has more than one use.
1171   // This is necessary to optimize common patterns such as when the result of
1172   // the malloc is checked against null or when a memset intrinsic is used in
1173   // place of a memset library call.
1174   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1175   if (!Malloc || !Malloc->hasOneUse())
1176     return nullptr;
1177 
1178   // Is the inner call really malloc()?
1179   Function *InnerCallee = Malloc->getCalledFunction();
1180   if (!InnerCallee)
1181     return nullptr;
1182 
1183   LibFunc Func;
1184   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1185       Func != LibFunc_malloc)
1186     return nullptr;
1187 
1188   // The memset must cover the same number of bytes that are malloc'd.
1189   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1190     return nullptr;
1191 
1192   // Replace the malloc with a calloc. We need the data layout to know what the
1193   // actual size of a 'size_t' parameter is.
1194   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1195   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1196   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1197   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1198                                  Malloc->getArgOperand(0),
1199                                  Malloc->getAttributes(), B, *TLI)) {
1200     substituteInParent(Malloc, Calloc);
1201     return Calloc;
1202   }
1203 
1204   return nullptr;
1205 }
1206 
1207 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1208   Value *Size = CI->getArgOperand(2);
1209   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1210   if (isa<IntrinsicInst>(CI))
1211     return nullptr;
1212 
1213   if (auto *Calloc = foldMallocMemset(CI, B))
1214     return Calloc;
1215 
1216   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1217   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1218   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1219   NewCI->setAttributes(CI->getAttributes());
1220   return CI->getArgOperand(0);
1221 }
1222 
1223 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1224   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1225     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1226 
1227   return nullptr;
1228 }
1229 
1230 //===----------------------------------------------------------------------===//
1231 // Math Library Optimizations
1232 //===----------------------------------------------------------------------===//
1233 
1234 // Replace a libcall \p CI with a call to intrinsic \p IID
1235 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1236                                Intrinsic::ID IID) {
1237   // Propagate fast-math flags from the existing call to the new call.
1238   IRBuilderBase::FastMathFlagGuard Guard(B);
1239   B.setFastMathFlags(CI->getFastMathFlags());
1240 
1241   Module *M = CI->getModule();
1242   Value *V = CI->getArgOperand(0);
1243   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1244   CallInst *NewCall = B.CreateCall(F, V);
1245   NewCall->takeName(CI);
1246   return NewCall;
1247 }
1248 
1249 /// Return a variant of Val with float type.
1250 /// Currently this works in two cases: If Val is an FPExtension of a float
1251 /// value to something bigger, simply return the operand.
1252 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1253 /// loss of precision do so.
1254 static Value *valueHasFloatPrecision(Value *Val) {
1255   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1256     Value *Op = Cast->getOperand(0);
1257     if (Op->getType()->isFloatTy())
1258       return Op;
1259   }
1260   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1261     APFloat F = Const->getValueAPF();
1262     bool losesInfo;
1263     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1264                     &losesInfo);
1265     if (!losesInfo)
1266       return ConstantFP::get(Const->getContext(), F);
1267   }
1268   return nullptr;
1269 }
1270 
1271 /// Shrink double -> float functions.
1272 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1273                                bool isBinary, bool isPrecise = false) {
1274   Function *CalleeFn = CI->getCalledFunction();
1275   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1276     return nullptr;
1277 
1278   // If not all the uses of the function are converted to float, then bail out.
1279   // This matters if the precision of the result is more important than the
1280   // precision of the arguments.
1281   if (isPrecise)
1282     for (User *U : CI->users()) {
1283       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1284       if (!Cast || !Cast->getType()->isFloatTy())
1285         return nullptr;
1286     }
1287 
1288   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1289   Value *V[2];
1290   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1291   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1292   if (!V[0] || (isBinary && !V[1]))
1293     return nullptr;
1294 
1295   // If call isn't an intrinsic, check that it isn't within a function with the
1296   // same name as the float version of this call, otherwise the result is an
1297   // infinite loop.  For example, from MinGW-w64:
1298   //
1299   // float expf(float val) { return (float) exp((double) val); }
1300   StringRef CalleeName = CalleeFn->getName();
1301   bool IsIntrinsic = CalleeFn->isIntrinsic();
1302   if (!IsIntrinsic) {
1303     StringRef CallerName = CI->getFunction()->getName();
1304     if (!CallerName.empty() && CallerName.back() == 'f' &&
1305         CallerName.size() == (CalleeName.size() + 1) &&
1306         CallerName.startswith(CalleeName))
1307       return nullptr;
1308   }
1309 
1310   // Propagate the math semantics from the current function to the new function.
1311   IRBuilderBase::FastMathFlagGuard Guard(B);
1312   B.setFastMathFlags(CI->getFastMathFlags());
1313 
1314   // g((double) float) -> (double) gf(float)
1315   Value *R;
1316   if (IsIntrinsic) {
1317     Module *M = CI->getModule();
1318     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1319     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1320     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1321   } else {
1322     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1323     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1324                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1325   }
1326   return B.CreateFPExt(R, B.getDoubleTy());
1327 }
1328 
1329 /// Shrink double -> float for unary functions.
1330 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1331                                     bool isPrecise = false) {
1332   return optimizeDoubleFP(CI, B, false, isPrecise);
1333 }
1334 
1335 /// Shrink double -> float for binary functions.
1336 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1337                                      bool isPrecise = false) {
1338   return optimizeDoubleFP(CI, B, true, isPrecise);
1339 }
1340 
1341 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1342 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1343   if (!CI->isFast())
1344     return nullptr;
1345 
1346   // Propagate fast-math flags from the existing call to new instructions.
1347   IRBuilderBase::FastMathFlagGuard Guard(B);
1348   B.setFastMathFlags(CI->getFastMathFlags());
1349 
1350   Value *Real, *Imag;
1351   if (CI->getNumArgOperands() == 1) {
1352     Value *Op = CI->getArgOperand(0);
1353     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1354     Real = B.CreateExtractValue(Op, 0, "real");
1355     Imag = B.CreateExtractValue(Op, 1, "imag");
1356   } else {
1357     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1358     Real = CI->getArgOperand(0);
1359     Imag = CI->getArgOperand(1);
1360   }
1361 
1362   Value *RealReal = B.CreateFMul(Real, Real);
1363   Value *ImagImag = B.CreateFMul(Imag, Imag);
1364 
1365   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1366                                               CI->getType());
1367   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1368 }
1369 
1370 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1371                                       IRBuilderBase &B) {
1372   if (!isa<FPMathOperator>(Call))
1373     return nullptr;
1374 
1375   IRBuilderBase::FastMathFlagGuard Guard(B);
1376   B.setFastMathFlags(Call->getFastMathFlags());
1377 
1378   // TODO: Can this be shared to also handle LLVM intrinsics?
1379   Value *X;
1380   switch (Func) {
1381   case LibFunc_sin:
1382   case LibFunc_sinf:
1383   case LibFunc_sinl:
1384   case LibFunc_tan:
1385   case LibFunc_tanf:
1386   case LibFunc_tanl:
1387     // sin(-X) --> -sin(X)
1388     // tan(-X) --> -tan(X)
1389     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1390       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1391     break;
1392   case LibFunc_cos:
1393   case LibFunc_cosf:
1394   case LibFunc_cosl:
1395     // cos(-X) --> cos(X)
1396     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1397       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1398     break;
1399   default:
1400     break;
1401   }
1402   return nullptr;
1403 }
1404 
1405 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1406   // Multiplications calculated using Addition Chains.
1407   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1408 
1409   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1410 
1411   if (InnerChain[Exp])
1412     return InnerChain[Exp];
1413 
1414   static const unsigned AddChain[33][2] = {
1415       {0, 0}, // Unused.
1416       {0, 0}, // Unused (base case = pow1).
1417       {1, 1}, // Unused (pre-computed).
1418       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1419       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1420       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1421       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1422       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1423   };
1424 
1425   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1426                                  getPow(InnerChain, AddChain[Exp][1], B));
1427   return InnerChain[Exp];
1428 }
1429 
1430 // Return a properly extended 32-bit integer if the operation is an itofp.
1431 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) {
1432   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1433     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1434     // Make sure that the exponent fits inside an int32_t,
1435     // thus avoiding any range issues that FP has not.
1436     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1437     if (BitWidth < 32 ||
1438         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1439       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1440                                   : B.CreateZExt(Op, B.getInt32Ty());
1441   }
1442 
1443   return nullptr;
1444 }
1445 
1446 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1447 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1448 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1449 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1450   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1451   AttributeList Attrs; // Attributes are only meaningful on the original call
1452   Module *Mod = Pow->getModule();
1453   Type *Ty = Pow->getType();
1454   bool Ignored;
1455 
1456   // Evaluate special cases related to a nested function as the base.
1457 
1458   // pow(exp(x), y) -> exp(x * y)
1459   // pow(exp2(x), y) -> exp2(x * y)
1460   // If exp{,2}() is used only once, it is better to fold two transcendental
1461   // math functions into one.  If used again, exp{,2}() would still have to be
1462   // called with the original argument, then keep both original transcendental
1463   // functions.  However, this transformation is only safe with fully relaxed
1464   // math semantics, since, besides rounding differences, it changes overflow
1465   // and underflow behavior quite dramatically.  For example:
1466   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1467   // Whereas:
1468   //   exp(1000 * 0.001) = exp(1)
1469   // TODO: Loosen the requirement for fully relaxed math semantics.
1470   // TODO: Handle exp10() when more targets have it available.
1471   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1472   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1473     LibFunc LibFn;
1474 
1475     Function *CalleeFn = BaseFn->getCalledFunction();
1476     if (CalleeFn &&
1477         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1478       StringRef ExpName;
1479       Intrinsic::ID ID;
1480       Value *ExpFn;
1481       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1482 
1483       switch (LibFn) {
1484       default:
1485         return nullptr;
1486       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1487         ExpName = TLI->getName(LibFunc_exp);
1488         ID = Intrinsic::exp;
1489         LibFnFloat = LibFunc_expf;
1490         LibFnDouble = LibFunc_exp;
1491         LibFnLongDouble = LibFunc_expl;
1492         break;
1493       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1494         ExpName = TLI->getName(LibFunc_exp2);
1495         ID = Intrinsic::exp2;
1496         LibFnFloat = LibFunc_exp2f;
1497         LibFnDouble = LibFunc_exp2;
1498         LibFnLongDouble = LibFunc_exp2l;
1499         break;
1500       }
1501 
1502       // Create new exp{,2}() with the product as its argument.
1503       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1504       ExpFn = BaseFn->doesNotAccessMemory()
1505               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1506                              FMul, ExpName)
1507               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1508                                      LibFnLongDouble, B,
1509                                      BaseFn->getAttributes());
1510 
1511       // Since the new exp{,2}() is different from the original one, dead code
1512       // elimination cannot be trusted to remove it, since it may have side
1513       // effects (e.g., errno).  When the only consumer for the original
1514       // exp{,2}() is pow(), then it has to be explicitly erased.
1515       substituteInParent(BaseFn, ExpFn);
1516       return ExpFn;
1517     }
1518   }
1519 
1520   // Evaluate special cases related to a constant base.
1521 
1522   const APFloat *BaseF;
1523   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1524     return nullptr;
1525 
1526   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1527   if (match(Base, m_SpecificFP(2.0)) &&
1528       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1529       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1530     if (Value *ExpoI = getIntToFPVal(Expo, B))
1531       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1532                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1533                                    B, Attrs);
1534   }
1535 
1536   // pow(2.0 ** n, x) -> exp2(n * x)
1537   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1538     APFloat BaseR = APFloat(1.0);
1539     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1540     BaseR = BaseR / *BaseF;
1541     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1542     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1543     APSInt NI(64, false);
1544     if ((IsInteger || IsReciprocal) &&
1545         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1546             APFloat::opOK &&
1547         NI > 1 && NI.isPowerOf2()) {
1548       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1549       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1550       if (Pow->doesNotAccessMemory())
1551         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1552                             FMul, "exp2");
1553       else
1554         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1555                                     LibFunc_exp2l, B, Attrs);
1556     }
1557   }
1558 
1559   // pow(10.0, x) -> exp10(x)
1560   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1561   if (match(Base, m_SpecificFP(10.0)) &&
1562       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1563     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1564                                 LibFunc_exp10l, B, Attrs);
1565 
1566   // pow(x, y) -> exp2(log2(x) * y)
1567   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1568       !BaseF->isNegative()) {
1569     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1570     // Luckily optimizePow has already handled the x == 1 case.
1571     assert(!match(Base, m_FPOne()) &&
1572            "pow(1.0, y) should have been simplified earlier!");
1573 
1574     Value *Log = nullptr;
1575     if (Ty->isFloatTy())
1576       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1577     else if (Ty->isDoubleTy())
1578       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1579 
1580     if (Log) {
1581       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1582       if (Pow->doesNotAccessMemory())
1583         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1584                             FMul, "exp2");
1585       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1586         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1587                                     LibFunc_exp2l, B, Attrs);
1588     }
1589   }
1590 
1591   return nullptr;
1592 }
1593 
1594 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1595                           Module *M, IRBuilderBase &B,
1596                           const TargetLibraryInfo *TLI) {
1597   // If errno is never set, then use the intrinsic for sqrt().
1598   if (NoErrno) {
1599     Function *SqrtFn =
1600         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1601     return B.CreateCall(SqrtFn, V, "sqrt");
1602   }
1603 
1604   // Otherwise, use the libcall for sqrt().
1605   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1606     // TODO: We also should check that the target can in fact lower the sqrt()
1607     // libcall. We currently have no way to ask this question, so we ask if
1608     // the target has a sqrt() libcall, which is not exactly the same.
1609     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1610                                 LibFunc_sqrtl, B, Attrs);
1611 
1612   return nullptr;
1613 }
1614 
1615 /// Use square root in place of pow(x, +/-0.5).
1616 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1617   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1618   AttributeList Attrs; // Attributes are only meaningful on the original call
1619   Module *Mod = Pow->getModule();
1620   Type *Ty = Pow->getType();
1621 
1622   const APFloat *ExpoF;
1623   if (!match(Expo, m_APFloat(ExpoF)) ||
1624       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1625     return nullptr;
1626 
1627   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1628   // so that requires fast-math-flags (afn or reassoc).
1629   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1630     return nullptr;
1631 
1632   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1633   if (!Sqrt)
1634     return nullptr;
1635 
1636   // Handle signed zero base by expanding to fabs(sqrt(x)).
1637   if (!Pow->hasNoSignedZeros()) {
1638     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1639     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1640   }
1641 
1642   // Handle non finite base by expanding to
1643   // (x == -infinity ? +infinity : sqrt(x)).
1644   if (!Pow->hasNoInfs()) {
1645     Value *PosInf = ConstantFP::getInfinity(Ty),
1646           *NegInf = ConstantFP::getInfinity(Ty, true);
1647     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1648     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1649   }
1650 
1651   // If the exponent is negative, then get the reciprocal.
1652   if (ExpoF->isNegative())
1653     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1654 
1655   return Sqrt;
1656 }
1657 
1658 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1659                                            IRBuilderBase &B) {
1660   Value *Args[] = {Base, Expo};
1661   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1662   return B.CreateCall(F, Args);
1663 }
1664 
1665 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1666   Value *Base = Pow->getArgOperand(0);
1667   Value *Expo = Pow->getArgOperand(1);
1668   Function *Callee = Pow->getCalledFunction();
1669   StringRef Name = Callee->getName();
1670   Type *Ty = Pow->getType();
1671   Module *M = Pow->getModule();
1672   Value *Shrunk = nullptr;
1673   bool AllowApprox = Pow->hasApproxFunc();
1674   bool Ignored;
1675 
1676   // Propagate the math semantics from the call to any created instructions.
1677   IRBuilderBase::FastMathFlagGuard Guard(B);
1678   B.setFastMathFlags(Pow->getFastMathFlags());
1679 
1680   // Shrink pow() to powf() if the arguments are single precision,
1681   // unless the result is expected to be double precision.
1682   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1683       hasFloatVersion(Name))
1684     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1685 
1686   // Evaluate special cases related to the base.
1687 
1688   // pow(1.0, x) -> 1.0
1689   if (match(Base, m_FPOne()))
1690     return Base;
1691 
1692   if (Value *Exp = replacePowWithExp(Pow, B))
1693     return Exp;
1694 
1695   // Evaluate special cases related to the exponent.
1696 
1697   // pow(x, -1.0) -> 1.0 / x
1698   if (match(Expo, m_SpecificFP(-1.0)))
1699     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1700 
1701   // pow(x, +/-0.0) -> 1.0
1702   if (match(Expo, m_AnyZeroFP()))
1703     return ConstantFP::get(Ty, 1.0);
1704 
1705   // pow(x, 1.0) -> x
1706   if (match(Expo, m_FPOne()))
1707     return Base;
1708 
1709   // pow(x, 2.0) -> x * x
1710   if (match(Expo, m_SpecificFP(2.0)))
1711     return B.CreateFMul(Base, Base, "square");
1712 
1713   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1714     return Sqrt;
1715 
1716   // pow(x, n) -> x * x * x * ...
1717   const APFloat *ExpoF;
1718   if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1719     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1720     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1721     // additional fmul.
1722     // TODO: This whole transformation should be backend specific (e.g. some
1723     //       backends might prefer libcalls or the limit for the exponent might
1724     //       be different) and it should also consider optimizing for size.
1725     APFloat LimF(ExpoF->getSemantics(), 33),
1726             ExpoA(abs(*ExpoF));
1727     if (ExpoA < LimF) {
1728       // This transformation applies to integer or integer+0.5 exponents only.
1729       // For integer+0.5, we create a sqrt(Base) call.
1730       Value *Sqrt = nullptr;
1731       if (!ExpoA.isInteger()) {
1732         APFloat Expo2 = ExpoA;
1733         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1734         // is no floating point exception and the result is an integer, then
1735         // ExpoA == integer + 0.5
1736         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1737           return nullptr;
1738 
1739         if (!Expo2.isInteger())
1740           return nullptr;
1741 
1742         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1743                            Pow->doesNotAccessMemory(), M, B, TLI);
1744       }
1745 
1746       // We will memoize intermediate products of the Addition Chain.
1747       Value *InnerChain[33] = {nullptr};
1748       InnerChain[1] = Base;
1749       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1750 
1751       // We cannot readily convert a non-double type (like float) to a double.
1752       // So we first convert it to something which could be converted to double.
1753       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1754       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1755 
1756       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1757       if (Sqrt)
1758         FMul = B.CreateFMul(FMul, Sqrt);
1759 
1760       // If the exponent is negative, then get the reciprocal.
1761       if (ExpoF->isNegative())
1762         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1763 
1764       return FMul;
1765     }
1766 
1767     APSInt IntExpo(32, /*isUnsigned=*/false);
1768     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1769     if (ExpoF->isInteger() &&
1770         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1771             APFloat::opOK) {
1772       return createPowWithIntegerExponent(
1773           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1774     }
1775   }
1776 
1777   // powf(x, itofp(y)) -> powi(x, y)
1778   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1779     if (Value *ExpoI = getIntToFPVal(Expo, B))
1780       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1781   }
1782 
1783   return Shrunk;
1784 }
1785 
1786 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1787   Function *Callee = CI->getCalledFunction();
1788   AttributeList Attrs; // Attributes are only meaningful on the original call
1789   StringRef Name = Callee->getName();
1790   Value *Ret = nullptr;
1791   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1792       hasFloatVersion(Name))
1793     Ret = optimizeUnaryDoubleFP(CI, B, true);
1794 
1795   Type *Ty = CI->getType();
1796   Value *Op = CI->getArgOperand(0);
1797 
1798   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1799   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1800   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1801       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1802     if (Value *Exp = getIntToFPVal(Op, B))
1803       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1804                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1805                                    B, Attrs);
1806   }
1807 
1808   return Ret;
1809 }
1810 
1811 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1812   // If we can shrink the call to a float function rather than a double
1813   // function, do that first.
1814   Function *Callee = CI->getCalledFunction();
1815   StringRef Name = Callee->getName();
1816   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1817     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1818       return Ret;
1819 
1820   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1821   // the intrinsics for improved optimization (for example, vectorization).
1822   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1823   // From the C standard draft WG14/N1256:
1824   // "Ideally, fmax would be sensitive to the sign of zero, for example
1825   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1826   // might be impractical."
1827   IRBuilderBase::FastMathFlagGuard Guard(B);
1828   FastMathFlags FMF = CI->getFastMathFlags();
1829   FMF.setNoSignedZeros();
1830   B.setFastMathFlags(FMF);
1831 
1832   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1833                                                            : Intrinsic::maxnum;
1834   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1835   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1836 }
1837 
1838 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1839   Function *LogFn = Log->getCalledFunction();
1840   AttributeList Attrs; // Attributes are only meaningful on the original call
1841   StringRef LogNm = LogFn->getName();
1842   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1843   Module *Mod = Log->getModule();
1844   Type *Ty = Log->getType();
1845   Value *Ret = nullptr;
1846 
1847   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1848     Ret = optimizeUnaryDoubleFP(Log, B, true);
1849 
1850   // The earlier call must also be 'fast' in order to do these transforms.
1851   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1852   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1853     return Ret;
1854 
1855   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1856 
1857   // This is only applicable to log(), log2(), log10().
1858   if (TLI->getLibFunc(LogNm, LogLb))
1859     switch (LogLb) {
1860     case LibFunc_logf:
1861       LogID = Intrinsic::log;
1862       ExpLb = LibFunc_expf;
1863       Exp2Lb = LibFunc_exp2f;
1864       Exp10Lb = LibFunc_exp10f;
1865       PowLb = LibFunc_powf;
1866       break;
1867     case LibFunc_log:
1868       LogID = Intrinsic::log;
1869       ExpLb = LibFunc_exp;
1870       Exp2Lb = LibFunc_exp2;
1871       Exp10Lb = LibFunc_exp10;
1872       PowLb = LibFunc_pow;
1873       break;
1874     case LibFunc_logl:
1875       LogID = Intrinsic::log;
1876       ExpLb = LibFunc_expl;
1877       Exp2Lb = LibFunc_exp2l;
1878       Exp10Lb = LibFunc_exp10l;
1879       PowLb = LibFunc_powl;
1880       break;
1881     case LibFunc_log2f:
1882       LogID = Intrinsic::log2;
1883       ExpLb = LibFunc_expf;
1884       Exp2Lb = LibFunc_exp2f;
1885       Exp10Lb = LibFunc_exp10f;
1886       PowLb = LibFunc_powf;
1887       break;
1888     case LibFunc_log2:
1889       LogID = Intrinsic::log2;
1890       ExpLb = LibFunc_exp;
1891       Exp2Lb = LibFunc_exp2;
1892       Exp10Lb = LibFunc_exp10;
1893       PowLb = LibFunc_pow;
1894       break;
1895     case LibFunc_log2l:
1896       LogID = Intrinsic::log2;
1897       ExpLb = LibFunc_expl;
1898       Exp2Lb = LibFunc_exp2l;
1899       Exp10Lb = LibFunc_exp10l;
1900       PowLb = LibFunc_powl;
1901       break;
1902     case LibFunc_log10f:
1903       LogID = Intrinsic::log10;
1904       ExpLb = LibFunc_expf;
1905       Exp2Lb = LibFunc_exp2f;
1906       Exp10Lb = LibFunc_exp10f;
1907       PowLb = LibFunc_powf;
1908       break;
1909     case LibFunc_log10:
1910       LogID = Intrinsic::log10;
1911       ExpLb = LibFunc_exp;
1912       Exp2Lb = LibFunc_exp2;
1913       Exp10Lb = LibFunc_exp10;
1914       PowLb = LibFunc_pow;
1915       break;
1916     case LibFunc_log10l:
1917       LogID = Intrinsic::log10;
1918       ExpLb = LibFunc_expl;
1919       Exp2Lb = LibFunc_exp2l;
1920       Exp10Lb = LibFunc_exp10l;
1921       PowLb = LibFunc_powl;
1922       break;
1923     default:
1924       return Ret;
1925     }
1926   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1927            LogID == Intrinsic::log10) {
1928     if (Ty->getScalarType()->isFloatTy()) {
1929       ExpLb = LibFunc_expf;
1930       Exp2Lb = LibFunc_exp2f;
1931       Exp10Lb = LibFunc_exp10f;
1932       PowLb = LibFunc_powf;
1933     } else if (Ty->getScalarType()->isDoubleTy()) {
1934       ExpLb = LibFunc_exp;
1935       Exp2Lb = LibFunc_exp2;
1936       Exp10Lb = LibFunc_exp10;
1937       PowLb = LibFunc_pow;
1938     } else
1939       return Ret;
1940   } else
1941     return Ret;
1942 
1943   IRBuilderBase::FastMathFlagGuard Guard(B);
1944   B.setFastMathFlags(FastMathFlags::getFast());
1945 
1946   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1947   LibFunc ArgLb = NotLibFunc;
1948   TLI->getLibFunc(*Arg, ArgLb);
1949 
1950   // log(pow(x,y)) -> y*log(x)
1951   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1952     Value *LogX =
1953         Log->doesNotAccessMemory()
1954             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1955                            Arg->getOperand(0), "log")
1956             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1957     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1958     // Since pow() may have side effects, e.g. errno,
1959     // dead code elimination may not be trusted to remove it.
1960     substituteInParent(Arg, MulY);
1961     return MulY;
1962   }
1963 
1964   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1965   // TODO: There is no exp10() intrinsic yet.
1966   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1967            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1968     Constant *Eul;
1969     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1970       // FIXME: Add more precise value of e for long double.
1971       Eul = ConstantFP::get(Log->getType(), numbers::e);
1972     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1973       Eul = ConstantFP::get(Log->getType(), 2.0);
1974     else
1975       Eul = ConstantFP::get(Log->getType(), 10.0);
1976     Value *LogE = Log->doesNotAccessMemory()
1977                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1978                                      Eul, "log")
1979                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1980     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1981     // Since exp() may have side effects, e.g. errno,
1982     // dead code elimination may not be trusted to remove it.
1983     substituteInParent(Arg, MulY);
1984     return MulY;
1985   }
1986 
1987   return Ret;
1988 }
1989 
1990 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
1991   Function *Callee = CI->getCalledFunction();
1992   Value *Ret = nullptr;
1993   // TODO: Once we have a way (other than checking for the existince of the
1994   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1995   // condition below.
1996   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1997                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1998     Ret = optimizeUnaryDoubleFP(CI, B, true);
1999 
2000   if (!CI->isFast())
2001     return Ret;
2002 
2003   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2004   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2005     return Ret;
2006 
2007   // We're looking for a repeated factor in a multiplication tree,
2008   // so we can do this fold: sqrt(x * x) -> fabs(x);
2009   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2010   Value *Op0 = I->getOperand(0);
2011   Value *Op1 = I->getOperand(1);
2012   Value *RepeatOp = nullptr;
2013   Value *OtherOp = nullptr;
2014   if (Op0 == Op1) {
2015     // Simple match: the operands of the multiply are identical.
2016     RepeatOp = Op0;
2017   } else {
2018     // Look for a more complicated pattern: one of the operands is itself
2019     // a multiply, so search for a common factor in that multiply.
2020     // Note: We don't bother looking any deeper than this first level or for
2021     // variations of this pattern because instcombine's visitFMUL and/or the
2022     // reassociation pass should give us this form.
2023     Value *OtherMul0, *OtherMul1;
2024     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2025       // Pattern: sqrt((x * y) * z)
2026       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2027         // Matched: sqrt((x * x) * z)
2028         RepeatOp = OtherMul0;
2029         OtherOp = Op1;
2030       }
2031     }
2032   }
2033   if (!RepeatOp)
2034     return Ret;
2035 
2036   // Fast math flags for any created instructions should match the sqrt
2037   // and multiply.
2038   IRBuilderBase::FastMathFlagGuard Guard(B);
2039   B.setFastMathFlags(I->getFastMathFlags());
2040 
2041   // If we found a repeated factor, hoist it out of the square root and
2042   // replace it with the fabs of that factor.
2043   Module *M = Callee->getParent();
2044   Type *ArgType = I->getType();
2045   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2046   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2047   if (OtherOp) {
2048     // If we found a non-repeated factor, we still need to get its square
2049     // root. We then multiply that by the value that was simplified out
2050     // of the square root calculation.
2051     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2052     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2053     return B.CreateFMul(FabsCall, SqrtCall);
2054   }
2055   return FabsCall;
2056 }
2057 
2058 // TODO: Generalize to handle any trig function and its inverse.
2059 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2060   Function *Callee = CI->getCalledFunction();
2061   Value *Ret = nullptr;
2062   StringRef Name = Callee->getName();
2063   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2064     Ret = optimizeUnaryDoubleFP(CI, B, true);
2065 
2066   Value *Op1 = CI->getArgOperand(0);
2067   auto *OpC = dyn_cast<CallInst>(Op1);
2068   if (!OpC)
2069     return Ret;
2070 
2071   // Both calls must be 'fast' in order to remove them.
2072   if (!CI->isFast() || !OpC->isFast())
2073     return Ret;
2074 
2075   // tan(atan(x)) -> x
2076   // tanf(atanf(x)) -> x
2077   // tanl(atanl(x)) -> x
2078   LibFunc Func;
2079   Function *F = OpC->getCalledFunction();
2080   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2081       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2082        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2083        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2084     Ret = OpC->getArgOperand(0);
2085   return Ret;
2086 }
2087 
2088 static bool isTrigLibCall(CallInst *CI) {
2089   // We can only hope to do anything useful if we can ignore things like errno
2090   // and floating-point exceptions.
2091   // We already checked the prototype.
2092   return CI->hasFnAttr(Attribute::NoUnwind) &&
2093          CI->hasFnAttr(Attribute::ReadNone);
2094 }
2095 
2096 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2097                              bool UseFloat, Value *&Sin, Value *&Cos,
2098                              Value *&SinCos) {
2099   Type *ArgTy = Arg->getType();
2100   Type *ResTy;
2101   StringRef Name;
2102 
2103   Triple T(OrigCallee->getParent()->getTargetTriple());
2104   if (UseFloat) {
2105     Name = "__sincospif_stret";
2106 
2107     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2108     // x86_64 can't use {float, float} since that would be returned in both
2109     // xmm0 and xmm1, which isn't what a real struct would do.
2110     ResTy = T.getArch() == Triple::x86_64
2111                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2112                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2113   } else {
2114     Name = "__sincospi_stret";
2115     ResTy = StructType::get(ArgTy, ArgTy);
2116   }
2117 
2118   Module *M = OrigCallee->getParent();
2119   FunctionCallee Callee =
2120       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2121 
2122   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2123     // If the argument is an instruction, it must dominate all uses so put our
2124     // sincos call there.
2125     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2126   } else {
2127     // Otherwise (e.g. for a constant) the beginning of the function is as
2128     // good a place as any.
2129     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2130     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2131   }
2132 
2133   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2134 
2135   if (SinCos->getType()->isStructTy()) {
2136     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2137     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2138   } else {
2139     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2140                                  "sinpi");
2141     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2142                                  "cospi");
2143   }
2144 }
2145 
2146 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2147   // Make sure the prototype is as expected, otherwise the rest of the
2148   // function is probably invalid and likely to abort.
2149   if (!isTrigLibCall(CI))
2150     return nullptr;
2151 
2152   Value *Arg = CI->getArgOperand(0);
2153   SmallVector<CallInst *, 1> SinCalls;
2154   SmallVector<CallInst *, 1> CosCalls;
2155   SmallVector<CallInst *, 1> SinCosCalls;
2156 
2157   bool IsFloat = Arg->getType()->isFloatTy();
2158 
2159   // Look for all compatible sinpi, cospi and sincospi calls with the same
2160   // argument. If there are enough (in some sense) we can make the
2161   // substitution.
2162   Function *F = CI->getFunction();
2163   for (User *U : Arg->users())
2164     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2165 
2166   // It's only worthwhile if both sinpi and cospi are actually used.
2167   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2168     return nullptr;
2169 
2170   Value *Sin, *Cos, *SinCos;
2171   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2172 
2173   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2174                                  Value *Res) {
2175     for (CallInst *C : Calls)
2176       replaceAllUsesWith(C, Res);
2177   };
2178 
2179   replaceTrigInsts(SinCalls, Sin);
2180   replaceTrigInsts(CosCalls, Cos);
2181   replaceTrigInsts(SinCosCalls, SinCos);
2182 
2183   return nullptr;
2184 }
2185 
2186 void LibCallSimplifier::classifyArgUse(
2187     Value *Val, Function *F, bool IsFloat,
2188     SmallVectorImpl<CallInst *> &SinCalls,
2189     SmallVectorImpl<CallInst *> &CosCalls,
2190     SmallVectorImpl<CallInst *> &SinCosCalls) {
2191   CallInst *CI = dyn_cast<CallInst>(Val);
2192 
2193   if (!CI)
2194     return;
2195 
2196   // Don't consider calls in other functions.
2197   if (CI->getFunction() != F)
2198     return;
2199 
2200   Function *Callee = CI->getCalledFunction();
2201   LibFunc Func;
2202   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2203       !isTrigLibCall(CI))
2204     return;
2205 
2206   if (IsFloat) {
2207     if (Func == LibFunc_sinpif)
2208       SinCalls.push_back(CI);
2209     else if (Func == LibFunc_cospif)
2210       CosCalls.push_back(CI);
2211     else if (Func == LibFunc_sincospif_stret)
2212       SinCosCalls.push_back(CI);
2213   } else {
2214     if (Func == LibFunc_sinpi)
2215       SinCalls.push_back(CI);
2216     else if (Func == LibFunc_cospi)
2217       CosCalls.push_back(CI);
2218     else if (Func == LibFunc_sincospi_stret)
2219       SinCosCalls.push_back(CI);
2220   }
2221 }
2222 
2223 //===----------------------------------------------------------------------===//
2224 // Integer Library Call Optimizations
2225 //===----------------------------------------------------------------------===//
2226 
2227 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2228   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2229   Value *Op = CI->getArgOperand(0);
2230   Type *ArgType = Op->getType();
2231   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2232                                           Intrinsic::cttz, ArgType);
2233   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2234   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2235   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2236 
2237   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2238   return B.CreateSelect(Cond, V, B.getInt32(0));
2239 }
2240 
2241 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2242   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2243   Value *Op = CI->getArgOperand(0);
2244   Type *ArgType = Op->getType();
2245   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2246                                           Intrinsic::ctlz, ArgType);
2247   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2248   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2249                   V);
2250   return B.CreateIntCast(V, CI->getType(), false);
2251 }
2252 
2253 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2254   // abs(x) -> x <s 0 ? -x : x
2255   // The negation has 'nsw' because abs of INT_MIN is undefined.
2256   Value *X = CI->getArgOperand(0);
2257   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2258   Value *NegX = B.CreateNSWNeg(X, "neg");
2259   return B.CreateSelect(IsNeg, NegX, X);
2260 }
2261 
2262 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2263   // isdigit(c) -> (c-'0') <u 10
2264   Value *Op = CI->getArgOperand(0);
2265   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2266   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2267   return B.CreateZExt(Op, CI->getType());
2268 }
2269 
2270 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2271   // isascii(c) -> c <u 128
2272   Value *Op = CI->getArgOperand(0);
2273   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2274   return B.CreateZExt(Op, CI->getType());
2275 }
2276 
2277 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2278   // toascii(c) -> c & 0x7f
2279   return B.CreateAnd(CI->getArgOperand(0),
2280                      ConstantInt::get(CI->getType(), 0x7F));
2281 }
2282 
2283 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2284   StringRef Str;
2285   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2286     return nullptr;
2287 
2288   return convertStrToNumber(CI, Str, 10);
2289 }
2290 
2291 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2292   StringRef Str;
2293   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2294     return nullptr;
2295 
2296   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2297     return nullptr;
2298 
2299   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2300     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2301   }
2302 
2303   return nullptr;
2304 }
2305 
2306 //===----------------------------------------------------------------------===//
2307 // Formatting and IO Library Call Optimizations
2308 //===----------------------------------------------------------------------===//
2309 
2310 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2311 
2312 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2313                                                  int StreamArg) {
2314   Function *Callee = CI->getCalledFunction();
2315   // Error reporting calls should be cold, mark them as such.
2316   // This applies even to non-builtin calls: it is only a hint and applies to
2317   // functions that the frontend might not understand as builtins.
2318 
2319   // This heuristic was suggested in:
2320   // Improving Static Branch Prediction in a Compiler
2321   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2322   // Proceedings of PACT'98, Oct. 1998, IEEE
2323   if (!CI->hasFnAttr(Attribute::Cold) &&
2324       isReportingError(Callee, CI, StreamArg)) {
2325     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2326   }
2327 
2328   return nullptr;
2329 }
2330 
2331 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2332   if (!Callee || !Callee->isDeclaration())
2333     return false;
2334 
2335   if (StreamArg < 0)
2336     return true;
2337 
2338   // These functions might be considered cold, but only if their stream
2339   // argument is stderr.
2340 
2341   if (StreamArg >= (int)CI->getNumArgOperands())
2342     return false;
2343   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2344   if (!LI)
2345     return false;
2346   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2347   if (!GV || !GV->isDeclaration())
2348     return false;
2349   return GV->getName() == "stderr";
2350 }
2351 
2352 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2353   // Check for a fixed format string.
2354   StringRef FormatStr;
2355   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2356     return nullptr;
2357 
2358   // Empty format string -> noop.
2359   if (FormatStr.empty()) // Tolerate printf's declared void.
2360     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2361 
2362   // Do not do any of the following transformations if the printf return value
2363   // is used, in general the printf return value is not compatible with either
2364   // putchar() or puts().
2365   if (!CI->use_empty())
2366     return nullptr;
2367 
2368   // printf("x") -> putchar('x'), even for "%" and "%%".
2369   if (FormatStr.size() == 1 || FormatStr == "%%")
2370     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2371 
2372   // printf("%s", "a") --> putchar('a')
2373   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2374     StringRef ChrStr;
2375     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2376       return nullptr;
2377     if (ChrStr.size() != 1)
2378       return nullptr;
2379     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2380   }
2381 
2382   // printf("foo\n") --> puts("foo")
2383   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2384       FormatStr.find('%') == StringRef::npos) { // No format characters.
2385     // Create a string literal with no \n on it.  We expect the constant merge
2386     // pass to be run after this pass, to merge duplicate strings.
2387     FormatStr = FormatStr.drop_back();
2388     Value *GV = B.CreateGlobalString(FormatStr, "str");
2389     return emitPutS(GV, B, TLI);
2390   }
2391 
2392   // Optimize specific format strings.
2393   // printf("%c", chr) --> putchar(chr)
2394   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2395       CI->getArgOperand(1)->getType()->isIntegerTy())
2396     return emitPutChar(CI->getArgOperand(1), B, TLI);
2397 
2398   // printf("%s\n", str) --> puts(str)
2399   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2400       CI->getArgOperand(1)->getType()->isPointerTy())
2401     return emitPutS(CI->getArgOperand(1), B, TLI);
2402   return nullptr;
2403 }
2404 
2405 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2406 
2407   Function *Callee = CI->getCalledFunction();
2408   FunctionType *FT = Callee->getFunctionType();
2409   if (Value *V = optimizePrintFString(CI, B)) {
2410     return V;
2411   }
2412 
2413   // printf(format, ...) -> iprintf(format, ...) if no floating point
2414   // arguments.
2415   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2416     Module *M = B.GetInsertBlock()->getParent()->getParent();
2417     FunctionCallee IPrintFFn =
2418         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2419     CallInst *New = cast<CallInst>(CI->clone());
2420     New->setCalledFunction(IPrintFFn);
2421     B.Insert(New);
2422     return New;
2423   }
2424 
2425   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2426   // arguments.
2427   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2428     Module *M = B.GetInsertBlock()->getParent()->getParent();
2429     auto SmallPrintFFn =
2430         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2431                                FT, Callee->getAttributes());
2432     CallInst *New = cast<CallInst>(CI->clone());
2433     New->setCalledFunction(SmallPrintFFn);
2434     B.Insert(New);
2435     return New;
2436   }
2437 
2438   annotateNonNullBasedOnAccess(CI, 0);
2439   return nullptr;
2440 }
2441 
2442 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2443                                                 IRBuilderBase &B) {
2444   // Check for a fixed format string.
2445   StringRef FormatStr;
2446   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2447     return nullptr;
2448 
2449   // If we just have a format string (nothing else crazy) transform it.
2450   if (CI->getNumArgOperands() == 2) {
2451     // Make sure there's no % in the constant array.  We could try to handle
2452     // %% -> % in the future if we cared.
2453     if (FormatStr.find('%') != StringRef::npos)
2454       return nullptr; // we found a format specifier, bail out.
2455 
2456     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2457     B.CreateMemCpy(
2458         CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2459         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2460                          FormatStr.size() + 1)); // Copy the null byte.
2461     return ConstantInt::get(CI->getType(), FormatStr.size());
2462   }
2463 
2464   // The remaining optimizations require the format string to be "%s" or "%c"
2465   // and have an extra operand.
2466   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2467       CI->getNumArgOperands() < 3)
2468     return nullptr;
2469 
2470   // Decode the second character of the format string.
2471   if (FormatStr[1] == 'c') {
2472     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2473     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2474       return nullptr;
2475     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2476     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2477     B.CreateStore(V, Ptr);
2478     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2479     B.CreateStore(B.getInt8(0), Ptr);
2480 
2481     return ConstantInt::get(CI->getType(), 1);
2482   }
2483 
2484   if (FormatStr[1] == 's') {
2485     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2486     // strlen(str)+1)
2487     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2488       return nullptr;
2489 
2490     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2491     if (!Len)
2492       return nullptr;
2493     Value *IncLen =
2494         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2495     B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2496                    Align(1), IncLen);
2497 
2498     // The sprintf result is the unincremented number of bytes in the string.
2499     return B.CreateIntCast(Len, CI->getType(), false);
2500   }
2501   return nullptr;
2502 }
2503 
2504 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2505   Function *Callee = CI->getCalledFunction();
2506   FunctionType *FT = Callee->getFunctionType();
2507   if (Value *V = optimizeSPrintFString(CI, B)) {
2508     return V;
2509   }
2510 
2511   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2512   // point arguments.
2513   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2514     Module *M = B.GetInsertBlock()->getParent()->getParent();
2515     FunctionCallee SIPrintFFn =
2516         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2517     CallInst *New = cast<CallInst>(CI->clone());
2518     New->setCalledFunction(SIPrintFFn);
2519     B.Insert(New);
2520     return New;
2521   }
2522 
2523   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2524   // floating point arguments.
2525   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2526     Module *M = B.GetInsertBlock()->getParent()->getParent();
2527     auto SmallSPrintFFn =
2528         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2529                                FT, Callee->getAttributes());
2530     CallInst *New = cast<CallInst>(CI->clone());
2531     New->setCalledFunction(SmallSPrintFFn);
2532     B.Insert(New);
2533     return New;
2534   }
2535 
2536   annotateNonNullBasedOnAccess(CI, {0, 1});
2537   return nullptr;
2538 }
2539 
2540 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2541                                                  IRBuilderBase &B) {
2542   // Check for size
2543   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2544   if (!Size)
2545     return nullptr;
2546 
2547   uint64_t N = Size->getZExtValue();
2548   // Check for a fixed format string.
2549   StringRef FormatStr;
2550   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2551     return nullptr;
2552 
2553   // If we just have a format string (nothing else crazy) transform it.
2554   if (CI->getNumArgOperands() == 3) {
2555     // Make sure there's no % in the constant array.  We could try to handle
2556     // %% -> % in the future if we cared.
2557     if (FormatStr.find('%') != StringRef::npos)
2558       return nullptr; // we found a format specifier, bail out.
2559 
2560     if (N == 0)
2561       return ConstantInt::get(CI->getType(), FormatStr.size());
2562     else if (N < FormatStr.size() + 1)
2563       return nullptr;
2564 
2565     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2566     // strlen(fmt)+1)
2567     B.CreateMemCpy(
2568         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2569         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2570                          FormatStr.size() + 1)); // Copy the null byte.
2571     return ConstantInt::get(CI->getType(), FormatStr.size());
2572   }
2573 
2574   // The remaining optimizations require the format string to be "%s" or "%c"
2575   // and have an extra operand.
2576   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2577       CI->getNumArgOperands() == 4) {
2578 
2579     // Decode the second character of the format string.
2580     if (FormatStr[1] == 'c') {
2581       if (N == 0)
2582         return ConstantInt::get(CI->getType(), 1);
2583       else if (N == 1)
2584         return nullptr;
2585 
2586       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2587       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2588         return nullptr;
2589       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2590       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2591       B.CreateStore(V, Ptr);
2592       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2593       B.CreateStore(B.getInt8(0), Ptr);
2594 
2595       return ConstantInt::get(CI->getType(), 1);
2596     }
2597 
2598     if (FormatStr[1] == 's') {
2599       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2600       StringRef Str;
2601       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2602         return nullptr;
2603 
2604       if (N == 0)
2605         return ConstantInt::get(CI->getType(), Str.size());
2606       else if (N < Str.size() + 1)
2607         return nullptr;
2608 
2609       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2610                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2611 
2612       // The snprintf result is the unincremented number of bytes in the string.
2613       return ConstantInt::get(CI->getType(), Str.size());
2614     }
2615   }
2616   return nullptr;
2617 }
2618 
2619 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2620   if (Value *V = optimizeSnPrintFString(CI, B)) {
2621     return V;
2622   }
2623 
2624   if (isKnownNonZero(CI->getOperand(1), DL))
2625     annotateNonNullBasedOnAccess(CI, 0);
2626   return nullptr;
2627 }
2628 
2629 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2630                                                 IRBuilderBase &B) {
2631   optimizeErrorReporting(CI, B, 0);
2632 
2633   // All the optimizations depend on the format string.
2634   StringRef FormatStr;
2635   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2636     return nullptr;
2637 
2638   // Do not do any of the following transformations if the fprintf return
2639   // value is used, in general the fprintf return value is not compatible
2640   // with fwrite(), fputc() or fputs().
2641   if (!CI->use_empty())
2642     return nullptr;
2643 
2644   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2645   if (CI->getNumArgOperands() == 2) {
2646     // Could handle %% -> % if we cared.
2647     if (FormatStr.find('%') != StringRef::npos)
2648       return nullptr; // We found a format specifier.
2649 
2650     return emitFWrite(
2651         CI->getArgOperand(1),
2652         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2653         CI->getArgOperand(0), B, DL, TLI);
2654   }
2655 
2656   // The remaining optimizations require the format string to be "%s" or "%c"
2657   // and have an extra operand.
2658   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2659       CI->getNumArgOperands() < 3)
2660     return nullptr;
2661 
2662   // Decode the second character of the format string.
2663   if (FormatStr[1] == 'c') {
2664     // fprintf(F, "%c", chr) --> fputc(chr, F)
2665     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2666       return nullptr;
2667     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2668   }
2669 
2670   if (FormatStr[1] == 's') {
2671     // fprintf(F, "%s", str) --> fputs(str, F)
2672     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2673       return nullptr;
2674     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2675   }
2676   return nullptr;
2677 }
2678 
2679 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2680   Function *Callee = CI->getCalledFunction();
2681   FunctionType *FT = Callee->getFunctionType();
2682   if (Value *V = optimizeFPrintFString(CI, B)) {
2683     return V;
2684   }
2685 
2686   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2687   // floating point arguments.
2688   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2689     Module *M = B.GetInsertBlock()->getParent()->getParent();
2690     FunctionCallee FIPrintFFn =
2691         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2692     CallInst *New = cast<CallInst>(CI->clone());
2693     New->setCalledFunction(FIPrintFFn);
2694     B.Insert(New);
2695     return New;
2696   }
2697 
2698   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2699   // 128-bit floating point arguments.
2700   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2701     Module *M = B.GetInsertBlock()->getParent()->getParent();
2702     auto SmallFPrintFFn =
2703         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2704                                FT, Callee->getAttributes());
2705     CallInst *New = cast<CallInst>(CI->clone());
2706     New->setCalledFunction(SmallFPrintFFn);
2707     B.Insert(New);
2708     return New;
2709   }
2710 
2711   return nullptr;
2712 }
2713 
2714 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2715   optimizeErrorReporting(CI, B, 3);
2716 
2717   // Get the element size and count.
2718   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2719   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2720   if (SizeC && CountC) {
2721     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2722 
2723     // If this is writing zero records, remove the call (it's a noop).
2724     if (Bytes == 0)
2725       return ConstantInt::get(CI->getType(), 0);
2726 
2727     // If this is writing one byte, turn it into fputc.
2728     // This optimisation is only valid, if the return value is unused.
2729     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2730       Value *Char = B.CreateLoad(B.getInt8Ty(),
2731                                  castToCStr(CI->getArgOperand(0), B), "char");
2732       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2733       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2734     }
2735   }
2736 
2737   return nullptr;
2738 }
2739 
2740 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2741   optimizeErrorReporting(CI, B, 1);
2742 
2743   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2744   // requires more arguments and thus extra MOVs are required.
2745   bool OptForSize = CI->getFunction()->hasOptSize() ||
2746                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2747                                                 PGSOQueryType::IRPass);
2748   if (OptForSize)
2749     return nullptr;
2750 
2751   // We can't optimize if return value is used.
2752   if (!CI->use_empty())
2753     return nullptr;
2754 
2755   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2756   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2757   if (!Len)
2758     return nullptr;
2759 
2760   // Known to have no uses (see above).
2761   return emitFWrite(
2762       CI->getArgOperand(0),
2763       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2764       CI->getArgOperand(1), B, DL, TLI);
2765 }
2766 
2767 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2768   annotateNonNullBasedOnAccess(CI, 0);
2769   if (!CI->use_empty())
2770     return nullptr;
2771 
2772   // Check for a constant string.
2773   // puts("") -> putchar('\n')
2774   StringRef Str;
2775   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2776     return emitPutChar(B.getInt32('\n'), B, TLI);
2777 
2778   return nullptr;
2779 }
2780 
2781 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2782   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2783   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2784                          Align(1), CI->getArgOperand(2));
2785 }
2786 
2787 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2788   LibFunc Func;
2789   SmallString<20> FloatFuncName = FuncName;
2790   FloatFuncName += 'f';
2791   if (TLI->getLibFunc(FloatFuncName, Func))
2792     return TLI->has(Func);
2793   return false;
2794 }
2795 
2796 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2797                                                       IRBuilderBase &Builder) {
2798   LibFunc Func;
2799   Function *Callee = CI->getCalledFunction();
2800   // Check for string/memory library functions.
2801   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2802     // Make sure we never change the calling convention.
2803     assert((ignoreCallingConv(Func) ||
2804             isCallingConvCCompatible(CI)) &&
2805       "Optimizing string/memory libcall would change the calling convention");
2806     switch (Func) {
2807     case LibFunc_strcat:
2808       return optimizeStrCat(CI, Builder);
2809     case LibFunc_strncat:
2810       return optimizeStrNCat(CI, Builder);
2811     case LibFunc_strchr:
2812       return optimizeStrChr(CI, Builder);
2813     case LibFunc_strrchr:
2814       return optimizeStrRChr(CI, Builder);
2815     case LibFunc_strcmp:
2816       return optimizeStrCmp(CI, Builder);
2817     case LibFunc_strncmp:
2818       return optimizeStrNCmp(CI, Builder);
2819     case LibFunc_strcpy:
2820       return optimizeStrCpy(CI, Builder);
2821     case LibFunc_stpcpy:
2822       return optimizeStpCpy(CI, Builder);
2823     case LibFunc_strncpy:
2824       return optimizeStrNCpy(CI, Builder);
2825     case LibFunc_strlen:
2826       return optimizeStrLen(CI, Builder);
2827     case LibFunc_strpbrk:
2828       return optimizeStrPBrk(CI, Builder);
2829     case LibFunc_strndup:
2830       return optimizeStrNDup(CI, Builder);
2831     case LibFunc_strtol:
2832     case LibFunc_strtod:
2833     case LibFunc_strtof:
2834     case LibFunc_strtoul:
2835     case LibFunc_strtoll:
2836     case LibFunc_strtold:
2837     case LibFunc_strtoull:
2838       return optimizeStrTo(CI, Builder);
2839     case LibFunc_strspn:
2840       return optimizeStrSpn(CI, Builder);
2841     case LibFunc_strcspn:
2842       return optimizeStrCSpn(CI, Builder);
2843     case LibFunc_strstr:
2844       return optimizeStrStr(CI, Builder);
2845     case LibFunc_memchr:
2846       return optimizeMemChr(CI, Builder);
2847     case LibFunc_memrchr:
2848       return optimizeMemRChr(CI, Builder);
2849     case LibFunc_bcmp:
2850       return optimizeBCmp(CI, Builder);
2851     case LibFunc_memcmp:
2852       return optimizeMemCmp(CI, Builder);
2853     case LibFunc_memcpy:
2854       return optimizeMemCpy(CI, Builder);
2855     case LibFunc_memccpy:
2856       return optimizeMemCCpy(CI, Builder);
2857     case LibFunc_mempcpy:
2858       return optimizeMemPCpy(CI, Builder);
2859     case LibFunc_memmove:
2860       return optimizeMemMove(CI, Builder);
2861     case LibFunc_memset:
2862       return optimizeMemSet(CI, Builder);
2863     case LibFunc_realloc:
2864       return optimizeRealloc(CI, Builder);
2865     case LibFunc_wcslen:
2866       return optimizeWcslen(CI, Builder);
2867     case LibFunc_bcopy:
2868       return optimizeBCopy(CI, Builder);
2869     default:
2870       break;
2871     }
2872   }
2873   return nullptr;
2874 }
2875 
2876 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2877                                                        LibFunc Func,
2878                                                        IRBuilderBase &Builder) {
2879   // Don't optimize calls that require strict floating point semantics.
2880   if (CI->isStrictFP())
2881     return nullptr;
2882 
2883   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2884     return V;
2885 
2886   switch (Func) {
2887   case LibFunc_sinpif:
2888   case LibFunc_sinpi:
2889   case LibFunc_cospif:
2890   case LibFunc_cospi:
2891     return optimizeSinCosPi(CI, Builder);
2892   case LibFunc_powf:
2893   case LibFunc_pow:
2894   case LibFunc_powl:
2895     return optimizePow(CI, Builder);
2896   case LibFunc_exp2l:
2897   case LibFunc_exp2:
2898   case LibFunc_exp2f:
2899     return optimizeExp2(CI, Builder);
2900   case LibFunc_fabsf:
2901   case LibFunc_fabs:
2902   case LibFunc_fabsl:
2903     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2904   case LibFunc_sqrtf:
2905   case LibFunc_sqrt:
2906   case LibFunc_sqrtl:
2907     return optimizeSqrt(CI, Builder);
2908   case LibFunc_logf:
2909   case LibFunc_log:
2910   case LibFunc_logl:
2911   case LibFunc_log10f:
2912   case LibFunc_log10:
2913   case LibFunc_log10l:
2914   case LibFunc_log1pf:
2915   case LibFunc_log1p:
2916   case LibFunc_log1pl:
2917   case LibFunc_log2f:
2918   case LibFunc_log2:
2919   case LibFunc_log2l:
2920   case LibFunc_logbf:
2921   case LibFunc_logb:
2922   case LibFunc_logbl:
2923     return optimizeLog(CI, Builder);
2924   case LibFunc_tan:
2925   case LibFunc_tanf:
2926   case LibFunc_tanl:
2927     return optimizeTan(CI, Builder);
2928   case LibFunc_ceil:
2929     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2930   case LibFunc_floor:
2931     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2932   case LibFunc_round:
2933     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2934   case LibFunc_roundeven:
2935     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2936   case LibFunc_nearbyint:
2937     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2938   case LibFunc_rint:
2939     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2940   case LibFunc_trunc:
2941     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2942   case LibFunc_acos:
2943   case LibFunc_acosh:
2944   case LibFunc_asin:
2945   case LibFunc_asinh:
2946   case LibFunc_atan:
2947   case LibFunc_atanh:
2948   case LibFunc_cbrt:
2949   case LibFunc_cosh:
2950   case LibFunc_exp:
2951   case LibFunc_exp10:
2952   case LibFunc_expm1:
2953   case LibFunc_cos:
2954   case LibFunc_sin:
2955   case LibFunc_sinh:
2956   case LibFunc_tanh:
2957     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2958       return optimizeUnaryDoubleFP(CI, Builder, true);
2959     return nullptr;
2960   case LibFunc_copysign:
2961     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2962       return optimizeBinaryDoubleFP(CI, Builder);
2963     return nullptr;
2964   case LibFunc_fminf:
2965   case LibFunc_fmin:
2966   case LibFunc_fminl:
2967   case LibFunc_fmaxf:
2968   case LibFunc_fmax:
2969   case LibFunc_fmaxl:
2970     return optimizeFMinFMax(CI, Builder);
2971   case LibFunc_cabs:
2972   case LibFunc_cabsf:
2973   case LibFunc_cabsl:
2974     return optimizeCAbs(CI, Builder);
2975   default:
2976     return nullptr;
2977   }
2978 }
2979 
2980 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
2981   // TODO: Split out the code below that operates on FP calls so that
2982   //       we can all non-FP calls with the StrictFP attribute to be
2983   //       optimized.
2984   if (CI->isNoBuiltin())
2985     return nullptr;
2986 
2987   LibFunc Func;
2988   Function *Callee = CI->getCalledFunction();
2989   bool isCallingConvC = isCallingConvCCompatible(CI);
2990 
2991   SmallVector<OperandBundleDef, 2> OpBundles;
2992   CI->getOperandBundlesAsDefs(OpBundles);
2993 
2994   IRBuilderBase::OperandBundlesGuard Guard(Builder);
2995   Builder.setDefaultOperandBundles(OpBundles);
2996 
2997   // Command-line parameter overrides instruction attribute.
2998   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2999   // used by the intrinsic optimizations.
3000   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3001     UnsafeFPShrink = EnableUnsafeFPShrink;
3002   else if (isa<FPMathOperator>(CI) && CI->isFast())
3003     UnsafeFPShrink = true;
3004 
3005   // First, check for intrinsics.
3006   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3007     if (!isCallingConvC)
3008       return nullptr;
3009     // The FP intrinsics have corresponding constrained versions so we don't
3010     // need to check for the StrictFP attribute here.
3011     switch (II->getIntrinsicID()) {
3012     case Intrinsic::pow:
3013       return optimizePow(CI, Builder);
3014     case Intrinsic::exp2:
3015       return optimizeExp2(CI, Builder);
3016     case Intrinsic::log:
3017     case Intrinsic::log2:
3018     case Intrinsic::log10:
3019       return optimizeLog(CI, Builder);
3020     case Intrinsic::sqrt:
3021       return optimizeSqrt(CI, Builder);
3022     // TODO: Use foldMallocMemset() with memset intrinsic.
3023     case Intrinsic::memset:
3024       return optimizeMemSet(CI, Builder);
3025     case Intrinsic::memcpy:
3026       return optimizeMemCpy(CI, Builder);
3027     case Intrinsic::memmove:
3028       return optimizeMemMove(CI, Builder);
3029     default:
3030       return nullptr;
3031     }
3032   }
3033 
3034   // Also try to simplify calls to fortified library functions.
3035   if (Value *SimplifiedFortifiedCI =
3036           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3037     // Try to further simplify the result.
3038     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3039     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3040       // Ensure that SimplifiedCI's uses are complete, since some calls have
3041       // their uses analyzed.
3042       replaceAllUsesWith(CI, SimplifiedCI);
3043 
3044       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3045       // we might replace later on.
3046       IRBuilderBase::InsertPointGuard Guard(Builder);
3047       Builder.SetInsertPoint(SimplifiedCI);
3048       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3049         // If we were able to further simplify, remove the now redundant call.
3050         substituteInParent(SimplifiedCI, V);
3051         return V;
3052       }
3053     }
3054     return SimplifiedFortifiedCI;
3055   }
3056 
3057   // Then check for known library functions.
3058   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3059     // We never change the calling convention.
3060     if (!ignoreCallingConv(Func) && !isCallingConvC)
3061       return nullptr;
3062     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3063       return V;
3064     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3065       return V;
3066     switch (Func) {
3067     case LibFunc_ffs:
3068     case LibFunc_ffsl:
3069     case LibFunc_ffsll:
3070       return optimizeFFS(CI, Builder);
3071     case LibFunc_fls:
3072     case LibFunc_flsl:
3073     case LibFunc_flsll:
3074       return optimizeFls(CI, Builder);
3075     case LibFunc_abs:
3076     case LibFunc_labs:
3077     case LibFunc_llabs:
3078       return optimizeAbs(CI, Builder);
3079     case LibFunc_isdigit:
3080       return optimizeIsDigit(CI, Builder);
3081     case LibFunc_isascii:
3082       return optimizeIsAscii(CI, Builder);
3083     case LibFunc_toascii:
3084       return optimizeToAscii(CI, Builder);
3085     case LibFunc_atoi:
3086     case LibFunc_atol:
3087     case LibFunc_atoll:
3088       return optimizeAtoi(CI, Builder);
3089     case LibFunc_strtol:
3090     case LibFunc_strtoll:
3091       return optimizeStrtol(CI, Builder);
3092     case LibFunc_printf:
3093       return optimizePrintF(CI, Builder);
3094     case LibFunc_sprintf:
3095       return optimizeSPrintF(CI, Builder);
3096     case LibFunc_snprintf:
3097       return optimizeSnPrintF(CI, Builder);
3098     case LibFunc_fprintf:
3099       return optimizeFPrintF(CI, Builder);
3100     case LibFunc_fwrite:
3101       return optimizeFWrite(CI, Builder);
3102     case LibFunc_fputs:
3103       return optimizeFPuts(CI, Builder);
3104     case LibFunc_puts:
3105       return optimizePuts(CI, Builder);
3106     case LibFunc_perror:
3107       return optimizeErrorReporting(CI, Builder);
3108     case LibFunc_vfprintf:
3109     case LibFunc_fiprintf:
3110       return optimizeErrorReporting(CI, Builder, 0);
3111     default:
3112       return nullptr;
3113     }
3114   }
3115   return nullptr;
3116 }
3117 
3118 LibCallSimplifier::LibCallSimplifier(
3119     const DataLayout &DL, const TargetLibraryInfo *TLI,
3120     OptimizationRemarkEmitter &ORE,
3121     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3122     function_ref<void(Instruction *, Value *)> Replacer,
3123     function_ref<void(Instruction *)> Eraser)
3124     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3125       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3126 
3127 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3128   // Indirect through the replacer used in this instance.
3129   Replacer(I, With);
3130 }
3131 
3132 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3133   Eraser(I);
3134 }
3135 
3136 // TODO:
3137 //   Additional cases that we need to add to this file:
3138 //
3139 // cbrt:
3140 //   * cbrt(expN(X))  -> expN(x/3)
3141 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3142 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3143 //
3144 // exp, expf, expl:
3145 //   * exp(log(x))  -> x
3146 //
3147 // log, logf, logl:
3148 //   * log(exp(x))   -> x
3149 //   * log(exp(y))   -> y*log(e)
3150 //   * log(exp10(y)) -> y*log(10)
3151 //   * log(sqrt(x))  -> 0.5*log(x)
3152 //
3153 // pow, powf, powl:
3154 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3155 //   * pow(pow(x,y),z)-> pow(x,y*z)
3156 //
3157 // signbit:
3158 //   * signbit(cnst) -> cnst'
3159 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3160 //
3161 // sqrt, sqrtf, sqrtl:
3162 //   * sqrt(expN(x))  -> expN(x*0.5)
3163 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3164 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3165 //
3166 
3167 //===----------------------------------------------------------------------===//
3168 // Fortified Library Call Optimizations
3169 //===----------------------------------------------------------------------===//
3170 
3171 bool
3172 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3173                                                     unsigned ObjSizeOp,
3174                                                     Optional<unsigned> SizeOp,
3175                                                     Optional<unsigned> StrOp,
3176                                                     Optional<unsigned> FlagOp) {
3177   // If this function takes a flag argument, the implementation may use it to
3178   // perform extra checks. Don't fold into the non-checking variant.
3179   if (FlagOp) {
3180     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3181     if (!Flag || !Flag->isZero())
3182       return false;
3183   }
3184 
3185   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3186     return true;
3187 
3188   if (ConstantInt *ObjSizeCI =
3189           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3190     if (ObjSizeCI->isMinusOne())
3191       return true;
3192     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3193     if (OnlyLowerUnknownSize)
3194       return false;
3195     if (StrOp) {
3196       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3197       // If the length is 0 we don't know how long it is and so we can't
3198       // remove the check.
3199       if (Len)
3200         annotateDereferenceableBytes(CI, *StrOp, Len);
3201       else
3202         return false;
3203       return ObjSizeCI->getZExtValue() >= Len;
3204     }
3205 
3206     if (SizeOp) {
3207       if (ConstantInt *SizeCI =
3208               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3209         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3210     }
3211   }
3212   return false;
3213 }
3214 
3215 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3216                                                      IRBuilderBase &B) {
3217   if (isFortifiedCallFoldable(CI, 3, 2)) {
3218     CallInst *NewCI =
3219         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3220                        Align(1), CI->getArgOperand(2));
3221     NewCI->setAttributes(CI->getAttributes());
3222     return CI->getArgOperand(0);
3223   }
3224   return nullptr;
3225 }
3226 
3227 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3228                                                       IRBuilderBase &B) {
3229   if (isFortifiedCallFoldable(CI, 3, 2)) {
3230     CallInst *NewCI =
3231         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3232                         Align(1), CI->getArgOperand(2));
3233     NewCI->setAttributes(CI->getAttributes());
3234     return CI->getArgOperand(0);
3235   }
3236   return nullptr;
3237 }
3238 
3239 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3240                                                      IRBuilderBase &B) {
3241   // TODO: Try foldMallocMemset() here.
3242 
3243   if (isFortifiedCallFoldable(CI, 3, 2)) {
3244     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3245     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3246                                      CI->getArgOperand(2), Align(1));
3247     NewCI->setAttributes(CI->getAttributes());
3248     return CI->getArgOperand(0);
3249   }
3250   return nullptr;
3251 }
3252 
3253 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3254                                                       IRBuilderBase &B,
3255                                                       LibFunc Func) {
3256   const DataLayout &DL = CI->getModule()->getDataLayout();
3257   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3258         *ObjSize = CI->getArgOperand(2);
3259 
3260   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3261   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3262     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3263     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3264   }
3265 
3266   // If a) we don't have any length information, or b) we know this will
3267   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3268   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3269   // TODO: It might be nice to get a maximum length out of the possible
3270   // string lengths for varying.
3271   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3272     if (Func == LibFunc_strcpy_chk)
3273       return emitStrCpy(Dst, Src, B, TLI);
3274     else
3275       return emitStpCpy(Dst, Src, B, TLI);
3276   }
3277 
3278   if (OnlyLowerUnknownSize)
3279     return nullptr;
3280 
3281   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3282   uint64_t Len = GetStringLength(Src);
3283   if (Len)
3284     annotateDereferenceableBytes(CI, 1, Len);
3285   else
3286     return nullptr;
3287 
3288   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3289   Value *LenV = ConstantInt::get(SizeTTy, Len);
3290   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3291   // If the function was an __stpcpy_chk, and we were able to fold it into
3292   // a __memcpy_chk, we still need to return the correct end pointer.
3293   if (Ret && Func == LibFunc_stpcpy_chk)
3294     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3295   return Ret;
3296 }
3297 
3298 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3299                                                      IRBuilderBase &B) {
3300   if (isFortifiedCallFoldable(CI, 1, None, 0))
3301     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3302                       TLI);
3303   return nullptr;
3304 }
3305 
3306 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3307                                                        IRBuilderBase &B,
3308                                                        LibFunc Func) {
3309   if (isFortifiedCallFoldable(CI, 3, 2)) {
3310     if (Func == LibFunc_strncpy_chk)
3311       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3312                                CI->getArgOperand(2), B, TLI);
3313     else
3314       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3315                          CI->getArgOperand(2), B, TLI);
3316   }
3317 
3318   return nullptr;
3319 }
3320 
3321 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3322                                                       IRBuilderBase &B) {
3323   if (isFortifiedCallFoldable(CI, 4, 3))
3324     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3325                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3326 
3327   return nullptr;
3328 }
3329 
3330 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3331                                                        IRBuilderBase &B) {
3332   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3333     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3334     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3335                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3336   }
3337 
3338   return nullptr;
3339 }
3340 
3341 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3342                                                       IRBuilderBase &B) {
3343   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3344     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3345     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3346                        B, TLI);
3347   }
3348 
3349   return nullptr;
3350 }
3351 
3352 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3353                                                      IRBuilderBase &B) {
3354   if (isFortifiedCallFoldable(CI, 2))
3355     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3356 
3357   return nullptr;
3358 }
3359 
3360 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3361                                                    IRBuilderBase &B) {
3362   if (isFortifiedCallFoldable(CI, 3))
3363     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3364                        CI->getArgOperand(2), B, TLI);
3365 
3366   return nullptr;
3367 }
3368 
3369 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3370                                                       IRBuilderBase &B) {
3371   if (isFortifiedCallFoldable(CI, 3))
3372     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3373                        CI->getArgOperand(2), B, TLI);
3374 
3375   return nullptr;
3376 }
3377 
3378 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3379                                                       IRBuilderBase &B) {
3380   if (isFortifiedCallFoldable(CI, 3))
3381     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3382                        CI->getArgOperand(2), B, TLI);
3383 
3384   return nullptr;
3385 }
3386 
3387 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3388                                                         IRBuilderBase &B) {
3389   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3390     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3391                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3392 
3393   return nullptr;
3394 }
3395 
3396 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3397                                                        IRBuilderBase &B) {
3398   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3399     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3400                         CI->getArgOperand(4), B, TLI);
3401 
3402   return nullptr;
3403 }
3404 
3405 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3406                                                 IRBuilderBase &Builder) {
3407   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3408   // Some clang users checked for _chk libcall availability using:
3409   //   __has_builtin(__builtin___memcpy_chk)
3410   // When compiling with -fno-builtin, this is always true.
3411   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3412   // end up with fortified libcalls, which isn't acceptable in a freestanding
3413   // environment which only provides their non-fortified counterparts.
3414   //
3415   // Until we change clang and/or teach external users to check for availability
3416   // differently, disregard the "nobuiltin" attribute and TLI::has.
3417   //
3418   // PR23093.
3419 
3420   LibFunc Func;
3421   Function *Callee = CI->getCalledFunction();
3422   bool isCallingConvC = isCallingConvCCompatible(CI);
3423 
3424   SmallVector<OperandBundleDef, 2> OpBundles;
3425   CI->getOperandBundlesAsDefs(OpBundles);
3426 
3427   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3428   Builder.setDefaultOperandBundles(OpBundles);
3429 
3430   // First, check that this is a known library functions and that the prototype
3431   // is correct.
3432   if (!TLI->getLibFunc(*Callee, Func))
3433     return nullptr;
3434 
3435   // We never change the calling convention.
3436   if (!ignoreCallingConv(Func) && !isCallingConvC)
3437     return nullptr;
3438 
3439   switch (Func) {
3440   case LibFunc_memcpy_chk:
3441     return optimizeMemCpyChk(CI, Builder);
3442   case LibFunc_memmove_chk:
3443     return optimizeMemMoveChk(CI, Builder);
3444   case LibFunc_memset_chk:
3445     return optimizeMemSetChk(CI, Builder);
3446   case LibFunc_stpcpy_chk:
3447   case LibFunc_strcpy_chk:
3448     return optimizeStrpCpyChk(CI, Builder, Func);
3449   case LibFunc_strlen_chk:
3450     return optimizeStrLenChk(CI, Builder);
3451   case LibFunc_stpncpy_chk:
3452   case LibFunc_strncpy_chk:
3453     return optimizeStrpNCpyChk(CI, Builder, Func);
3454   case LibFunc_memccpy_chk:
3455     return optimizeMemCCpyChk(CI, Builder);
3456   case LibFunc_snprintf_chk:
3457     return optimizeSNPrintfChk(CI, Builder);
3458   case LibFunc_sprintf_chk:
3459     return optimizeSPrintfChk(CI, Builder);
3460   case LibFunc_strcat_chk:
3461     return optimizeStrCatChk(CI, Builder);
3462   case LibFunc_strlcat_chk:
3463     return optimizeStrLCat(CI, Builder);
3464   case LibFunc_strncat_chk:
3465     return optimizeStrNCatChk(CI, Builder);
3466   case LibFunc_strlcpy_chk:
3467     return optimizeStrLCpyChk(CI, Builder);
3468   case LibFunc_vsnprintf_chk:
3469     return optimizeVSNPrintfChk(CI, Builder);
3470   case LibFunc_vsprintf_chk:
3471     return optimizeVSPrintfChk(CI, Builder);
3472   default:
3473     break;
3474   }
3475   return nullptr;
3476 }
3477 
3478 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3479     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3480     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3481