1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
12 //
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 //             (the "br" instruction). The presence of any other control flow
15 //             such as indirectbr, switch or callbr will cause an assert.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/DomTreeUpdater.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/Utils.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 
30 #define DEBUG_TYPE "unify-loop-exits"
31 
32 using namespace llvm;
33 
34 static cl::opt<unsigned> MaxBooleansInControlFlowHub(
35     "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
36     cl::desc("Set the maximum number of outgoing blocks for using a boolean "
37              "value to record the exiting block in CreateControlFlowHub."));
38 
39 namespace {
40 struct UnifyLoopExitsLegacyPass : public FunctionPass {
41   static char ID;
42   UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
43     initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
44   }
45 
46   void getAnalysisUsage(AnalysisUsage &AU) const override {
47     AU.addRequiredID(LowerSwitchID);
48     AU.addRequired<LoopInfoWrapperPass>();
49     AU.addRequired<DominatorTreeWrapperPass>();
50     AU.addPreservedID(LowerSwitchID);
51     AU.addPreserved<LoopInfoWrapperPass>();
52     AU.addPreserved<DominatorTreeWrapperPass>();
53   }
54 
55   bool runOnFunction(Function &F) override;
56 };
57 } // namespace
58 
59 char UnifyLoopExitsLegacyPass::ID = 0;
60 
61 FunctionPass *llvm::createUnifyLoopExitsPass() {
62   return new UnifyLoopExitsLegacyPass();
63 }
64 
65 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
66                       "Fixup each natural loop to have a single exit block",
67                       false /* Only looks at CFG */, false /* Analysis Pass */)
68 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
71 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
72                     "Fixup each natural loop to have a single exit block",
73                     false /* Only looks at CFG */, false /* Analysis Pass */)
74 
75 // The current transform introduces new control flow paths which may break the
76 // SSA requirement that every def must dominate all its uses. For example,
77 // consider a value D defined inside the loop that is used by some instruction
78 // U outside the loop. It follows that D dominates U, since the original
79 // program has valid SSA form. After merging the exits, all paths from D to U
80 // now flow through the unified exit block. In addition, there may be other
81 // paths that do not pass through D, but now reach the unified exit
82 // block. Thus, D no longer dominates U.
83 //
84 // Restore the dominance by creating a phi for each such D at the new unified
85 // loop exit. But when doing this, ignore any uses U that are in the new unified
86 // loop exit, since those were introduced specially when the block was created.
87 //
88 // The use of SSAUpdater seems like overkill for this operation. The location
89 // for creating the new PHI is well-known, and also the set of incoming blocks
90 // to the new PHI.
91 static void restoreSSA(const DominatorTree &DT, const Loop *L,
92                        const SetVector<BasicBlock *> &Incoming,
93                        BasicBlock *LoopExitBlock) {
94   using InstVector = SmallVector<Instruction *, 8>;
95   using IIMap = MapVector<Instruction *, InstVector>;
96   IIMap ExternalUsers;
97   for (auto *BB : L->blocks()) {
98     for (auto &I : *BB) {
99       for (auto &U : I.uses()) {
100         auto UserInst = cast<Instruction>(U.getUser());
101         auto UserBlock = UserInst->getParent();
102         if (UserBlock == LoopExitBlock)
103           continue;
104         if (L->contains(UserBlock))
105           continue;
106         LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
107                           << BB->getName() << ")"
108                           << ": " << UserInst->getName() << "("
109                           << UserBlock->getName() << ")"
110                           << "\n");
111         ExternalUsers[&I].push_back(UserInst);
112       }
113     }
114   }
115 
116   for (auto II : ExternalUsers) {
117     // For each Def used outside the loop, create NewPhi in
118     // LoopExitBlock. NewPhi receives Def only along exiting blocks that
119     // dominate it, while the remaining values are undefined since those paths
120     // didn't exist in the original CFG.
121     auto Def = II.first;
122     LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
123     auto NewPhi =
124         PHINode::Create(Def->getType(), Incoming.size(),
125                         Def->getName() + ".moved", &LoopExitBlock->front());
126     for (auto *In : Incoming) {
127       LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
128       if (Def->getParent() == In || DT.dominates(Def, In)) {
129         LLVM_DEBUG(dbgs() << "dominated\n");
130         NewPhi->addIncoming(Def, In);
131       } else {
132         LLVM_DEBUG(dbgs() << "not dominated\n");
133         NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
134       }
135     }
136 
137     LLVM_DEBUG(dbgs() << "external users:");
138     for (auto *U : II.second) {
139       LLVM_DEBUG(dbgs() << " " << U->getName());
140       U->replaceUsesOfWith(Def, NewPhi);
141     }
142     LLVM_DEBUG(dbgs() << "\n");
143   }
144 }
145 
146 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
147   // To unify the loop exits, we need a list of the exiting blocks as
148   // well as exit blocks. The functions for locating these lists both
149   // traverse the entire loop body. It is more efficient to first
150   // locate the exiting blocks and then examine their successors to
151   // locate the exit blocks.
152   SetVector<BasicBlock *> ExitingBlocks;
153   SetVector<BasicBlock *> Exits;
154 
155   // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
156   SmallVector<BasicBlock *, 8> Temp;
157   L->getExitingBlocks(Temp);
158   for (auto *BB : Temp) {
159     ExitingBlocks.insert(BB);
160     for (auto *S : successors(BB)) {
161       auto SL = LI.getLoopFor(S);
162       // A successor is not an exit if it is directly or indirectly in the
163       // current loop.
164       if (SL == L || L->contains(SL))
165         continue;
166       Exits.insert(S);
167     }
168   }
169 
170   LLVM_DEBUG(
171       dbgs() << "Found exit blocks:";
172       for (auto Exit : Exits) {
173         dbgs() << " " << Exit->getName();
174       }
175       dbgs() << "\n";
176 
177       dbgs() << "Found exiting blocks:";
178       for (auto EB : ExitingBlocks) {
179         dbgs() << " " << EB->getName();
180       }
181       dbgs() << "\n";);
182 
183   if (Exits.size() <= 1) {
184     LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
185     return false;
186   }
187 
188   SmallVector<BasicBlock *, 8> GuardBlocks;
189   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
190   auto LoopExitBlock =
191       CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, Exits, "loop.exit",
192                            MaxBooleansInControlFlowHub.getValue());
193 
194   restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
195 
196 #if defined(EXPENSIVE_CHECKS)
197   assert(DT.verify(DominatorTree::VerificationLevel::Full));
198 #else
199   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
200 #endif // EXPENSIVE_CHECKS
201   L->verifyLoop();
202 
203   // The guard blocks were created outside the loop, so they need to become
204   // members of the parent loop.
205   if (auto ParentLoop = L->getParentLoop()) {
206     for (auto *G : GuardBlocks) {
207       ParentLoop->addBasicBlockToLoop(G, LI);
208     }
209     ParentLoop->verifyLoop();
210   }
211 
212 #if defined(EXPENSIVE_CHECKS)
213   LI.verify(DT);
214 #endif // EXPENSIVE_CHECKS
215 
216   return true;
217 }
218 
219 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
220 
221   bool Changed = false;
222   auto Loops = LI.getLoopsInPreorder();
223   for (auto *L : Loops) {
224     LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
225                       << LI.getLoopDepth(L->getHeader()) << ")\n");
226     Changed |= unifyLoopExits(DT, LI, L);
227   }
228   return Changed;
229 }
230 
231 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
232   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
233                     << "\n");
234   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
235   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
236 
237   return runImpl(LI, DT);
238 }
239 
240 namespace llvm {
241 
242 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
243                                           FunctionAnalysisManager &AM) {
244   auto &LI = AM.getResult<LoopAnalysis>(F);
245   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
246 
247   if (!runImpl(LI, DT))
248     return PreservedAnalyses::all();
249   PreservedAnalyses PA;
250   PA.preserve<LoopAnalysis>();
251   PA.preserve<DominatorTreeAnalysis>();
252   return PA;
253 }
254 } // namespace llvm
255