1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GenericDomTreeConstruction.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/LoopVersioning.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 VPRecipeBase *VPValue::getDefiningRecipe() {
114   return cast_or_null<VPRecipeBase>(Def);
115 }
116 
117 const VPRecipeBase *VPValue::getDefiningRecipe() const {
118   return cast_or_null<VPRecipeBase>(Def);
119 }
120 
121 // Get the top-most entry block of \p Start. This is the entry block of the
122 // containing VPlan. This function is templated to support both const and non-const blocks
123 template <typename T> static T *getPlanEntry(T *Start) {
124   T *Next = Start;
125   T *Current = Start;
126   while ((Next = Next->getParent()))
127     Current = Next;
128 
129   SmallSetVector<T *, 8> WorkList;
130   WorkList.insert(Current);
131 
132   for (unsigned i = 0; i < WorkList.size(); i++) {
133     T *Current = WorkList[i];
134     if (Current->getNumPredecessors() == 0)
135       return Current;
136     auto &Predecessors = Current->getPredecessors();
137     WorkList.insert(Predecessors.begin(), Predecessors.end());
138   }
139 
140   llvm_unreachable("VPlan without any entry node without predecessors");
141 }
142 
143 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
144 
145 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
146 
147 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
148 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
149   const VPBlockBase *Block = this;
150   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
151     Block = Region->getEntry();
152   return cast<VPBasicBlock>(Block);
153 }
154 
155 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
156   VPBlockBase *Block = this;
157   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
158     Block = Region->getEntry();
159   return cast<VPBasicBlock>(Block);
160 }
161 
162 void VPBlockBase::setPlan(VPlan *ParentPlan) {
163   assert(ParentPlan->getEntry() == this &&
164          "Can only set plan on its entry block.");
165   Plan = ParentPlan;
166 }
167 
168 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
169 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
170   const VPBlockBase *Block = this;
171   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
172     Block = Region->getExiting();
173   return cast<VPBasicBlock>(Block);
174 }
175 
176 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
177   VPBlockBase *Block = this;
178   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
179     Block = Region->getExiting();
180   return cast<VPBasicBlock>(Block);
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
184   if (!Successors.empty() || !Parent)
185     return this;
186   assert(Parent->getExiting() == this &&
187          "Block w/o successors not the exiting block of its parent.");
188   return Parent->getEnclosingBlockWithSuccessors();
189 }
190 
191 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
192   if (!Predecessors.empty() || !Parent)
193     return this;
194   assert(Parent->getEntry() == this &&
195          "Block w/o predecessors not the entry of its parent.");
196   return Parent->getEnclosingBlockWithPredecessors();
197 }
198 
199 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
200   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
201     delete Block;
202 }
203 
204 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
205   iterator It = begin();
206   while (It != end() && It->isPhi())
207     It++;
208   return It;
209 }
210 
211 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
212   if (!Def->hasDefiningRecipe())
213     return Def->getLiveInIRValue();
214 
215   if (hasScalarValue(Def, Instance)) {
216     return Data
217         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
218   }
219 
220   assert(hasVectorValue(Def, Instance.Part));
221   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
222   if (!VecPart->getType()->isVectorTy()) {
223     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
224     return VecPart;
225   }
226   // TODO: Cache created scalar values.
227   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
228   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
229   // set(Def, Extract, Instance);
230   return Extract;
231 }
232 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
233   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
234   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
235 }
236 
237 void VPTransformState::addNewMetadata(Instruction *To,
238                                       const Instruction *Orig) {
239   // If the loop was versioned with memchecks, add the corresponding no-alias
240   // metadata.
241   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
242     LVer->annotateInstWithNoAlias(To, Orig);
243 }
244 
245 void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
246   propagateMetadata(To, From);
247   addNewMetadata(To, From);
248 }
249 
250 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
251   for (Value *V : To) {
252     if (Instruction *I = dyn_cast<Instruction>(V))
253       addMetadata(I, From);
254   }
255 }
256 
257 void VPTransformState::setDebugLocFromInst(const Value *V) {
258   const Instruction *Inst = dyn_cast<Instruction>(V);
259   if (!Inst) {
260     Builder.SetCurrentDebugLocation(DebugLoc());
261     return;
262   }
263 
264   const DILocation *DIL = Inst->getDebugLoc();
265   // When a FSDiscriminator is enabled, we don't need to add the multiply
266   // factors to the discriminators.
267   if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() &&
268       !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
269     // FIXME: For scalable vectors, assume vscale=1.
270     auto NewDIL =
271         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
272     if (NewDIL)
273       Builder.SetCurrentDebugLocation(*NewDIL);
274     else
275       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
276                         << DIL->getFilename() << " Line: " << DIL->getLine());
277   } else
278     Builder.SetCurrentDebugLocation(DIL);
279 }
280 
281 BasicBlock *
282 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
283   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
284   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
285   BasicBlock *PrevBB = CFG.PrevBB;
286   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
287                                          PrevBB->getParent(), CFG.ExitBB);
288   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
289 
290   // Hook up the new basic block to its predecessors.
291   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
292     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
293     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
294     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
295 
296     assert(PredBB && "Predecessor basic-block not found building successor.");
297     auto *PredBBTerminator = PredBB->getTerminator();
298     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
299 
300     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
301     if (isa<UnreachableInst>(PredBBTerminator)) {
302       assert(PredVPSuccessors.size() == 1 &&
303              "Predecessor ending w/o branch must have single successor.");
304       DebugLoc DL = PredBBTerminator->getDebugLoc();
305       PredBBTerminator->eraseFromParent();
306       auto *Br = BranchInst::Create(NewBB, PredBB);
307       Br->setDebugLoc(DL);
308     } else if (TermBr && !TermBr->isConditional()) {
309       TermBr->setSuccessor(0, NewBB);
310     } else {
311       // Set each forward successor here when it is created, excluding
312       // backedges. A backward successor is set when the branch is created.
313       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
314       assert(!TermBr->getSuccessor(idx) &&
315              "Trying to reset an existing successor block.");
316       TermBr->setSuccessor(idx, NewBB);
317     }
318   }
319   return NewBB;
320 }
321 
322 void VPBasicBlock::execute(VPTransformState *State) {
323   bool Replica = State->Instance && !State->Instance->isFirstIteration();
324   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
325   VPBlockBase *SingleHPred = nullptr;
326   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
327 
328   auto IsLoopRegion = [](VPBlockBase *BB) {
329     auto *R = dyn_cast<VPRegionBlock>(BB);
330     return R && !R->isReplicator();
331   };
332 
333   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
334   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
335     // ExitBB can be re-used for the exit block of the Plan.
336     NewBB = State->CFG.ExitBB;
337     State->CFG.PrevBB = NewBB;
338 
339     // Update the branch instruction in the predecessor to branch to ExitBB.
340     VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
341     VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
342     assert(PredVPB->getSingleSuccessor() == this &&
343            "predecessor must have the current block as only successor");
344     BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
345     // The Exit block of a loop is always set to be successor 0 of the Exiting
346     // block.
347     cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
348   } else if (PrevVPBB && /* A */
349              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
350                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
351                PrevVPBB->getSingleHierarchicalSuccessor() &&
352                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
353                 !IsLoopRegion(SingleHPred))) &&         /* B */
354              !(Replica && getPredecessors().empty())) { /* C */
355     // The last IR basic block is reused, as an optimization, in three cases:
356     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
357     // B. when the current VPBB has a single (hierarchical) predecessor which
358     //    is PrevVPBB and the latter has a single (hierarchical) successor which
359     //    both are in the same non-replicator region; and
360     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
361     //    is the exiting VPBB of this region from a previous instance, or the
362     //    predecessor of this region.
363 
364     NewBB = createEmptyBasicBlock(State->CFG);
365     State->Builder.SetInsertPoint(NewBB);
366     // Temporarily terminate with unreachable until CFG is rewired.
367     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
368     // Register NewBB in its loop. In innermost loops its the same for all
369     // BB's.
370     if (State->CurrentVectorLoop)
371       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
372     State->Builder.SetInsertPoint(Terminator);
373     State->CFG.PrevBB = NewBB;
374   }
375 
376   // 2. Fill the IR basic block with IR instructions.
377   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
378                     << " in BB:" << NewBB->getName() << '\n');
379 
380   State->CFG.VPBB2IRBB[this] = NewBB;
381   State->CFG.PrevVPBB = this;
382 
383   for (VPRecipeBase &Recipe : Recipes)
384     Recipe.execute(*State);
385 
386   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
387 }
388 
389 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
390   for (VPRecipeBase &R : Recipes) {
391     for (auto *Def : R.definedValues())
392       Def->replaceAllUsesWith(NewValue);
393 
394     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
395       R.setOperand(I, NewValue);
396   }
397 }
398 
399 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
400   assert((SplitAt == end() || SplitAt->getParent() == this) &&
401          "can only split at a position in the same block");
402 
403   SmallVector<VPBlockBase *, 2> Succs(successors());
404   // First, disconnect the current block from its successors.
405   for (VPBlockBase *Succ : Succs)
406     VPBlockUtils::disconnectBlocks(this, Succ);
407 
408   // Create new empty block after the block to split.
409   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
410   VPBlockUtils::insertBlockAfter(SplitBlock, this);
411 
412   // Add successors for block to split to new block.
413   for (VPBlockBase *Succ : Succs)
414     VPBlockUtils::connectBlocks(SplitBlock, Succ);
415 
416   // Finally, move the recipes starting at SplitAt to new block.
417   for (VPRecipeBase &ToMove :
418        make_early_inc_range(make_range(SplitAt, this->end())))
419     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
420 
421   return SplitBlock;
422 }
423 
424 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
425   VPRegionBlock *P = getParent();
426   if (P && P->isReplicator()) {
427     P = P->getParent();
428     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
429            "unexpected nested replicate regions");
430   }
431   return P;
432 }
433 
434 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
435   if (VPBB->empty()) {
436     assert(
437         VPBB->getNumSuccessors() < 2 &&
438         "block with multiple successors doesn't have a recipe as terminator");
439     return false;
440   }
441 
442   const VPRecipeBase *R = &VPBB->back();
443   auto *VPI = dyn_cast<VPInstruction>(R);
444   bool IsCondBranch =
445       isa<VPBranchOnMaskRecipe>(R) ||
446       (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
447                VPI->getOpcode() == VPInstruction::BranchOnCount));
448   (void)IsCondBranch;
449 
450   if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
451     assert(IsCondBranch && "block with multiple successors not terminated by "
452                            "conditional branch recipe");
453 
454     return true;
455   }
456 
457   assert(
458       !IsCondBranch &&
459       "block with 0 or 1 successors terminated by conditional branch recipe");
460   return false;
461 }
462 
463 VPRecipeBase *VPBasicBlock::getTerminator() {
464   if (hasConditionalTerminator(this))
465     return &back();
466   return nullptr;
467 }
468 
469 const VPRecipeBase *VPBasicBlock::getTerminator() const {
470   if (hasConditionalTerminator(this))
471     return &back();
472   return nullptr;
473 }
474 
475 bool VPBasicBlock::isExiting() const {
476   return getParent()->getExitingBasicBlock() == this;
477 }
478 
479 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
480 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
481   if (getSuccessors().empty()) {
482     O << Indent << "No successors\n";
483   } else {
484     O << Indent << "Successor(s): ";
485     ListSeparator LS;
486     for (auto *Succ : getSuccessors())
487       O << LS << Succ->getName();
488     O << '\n';
489   }
490 }
491 
492 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
493                          VPSlotTracker &SlotTracker) const {
494   O << Indent << getName() << ":\n";
495 
496   auto RecipeIndent = Indent + "  ";
497   for (const VPRecipeBase &Recipe : *this) {
498     Recipe.print(O, RecipeIndent, SlotTracker);
499     O << '\n';
500   }
501 
502   printSuccessors(O, Indent);
503 }
504 #endif
505 
506 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
507   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
508     // Drop all references in VPBasicBlocks and replace all uses with
509     // DummyValue.
510     Block->dropAllReferences(NewValue);
511 }
512 
513 void VPRegionBlock::execute(VPTransformState *State) {
514   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
515       RPOT(Entry);
516 
517   if (!isReplicator()) {
518     // Create and register the new vector loop.
519     Loop *PrevLoop = State->CurrentVectorLoop;
520     State->CurrentVectorLoop = State->LI->AllocateLoop();
521     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
522     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
523 
524     // Insert the new loop into the loop nest and register the new basic blocks
525     // before calling any utilities such as SCEV that require valid LoopInfo.
526     if (ParentLoop)
527       ParentLoop->addChildLoop(State->CurrentVectorLoop);
528     else
529       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
530 
531     // Visit the VPBlocks connected to "this", starting from it.
532     for (VPBlockBase *Block : RPOT) {
533       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
534       Block->execute(State);
535     }
536 
537     State->CurrentVectorLoop = PrevLoop;
538     return;
539   }
540 
541   assert(!State->Instance && "Replicating a Region with non-null instance.");
542 
543   // Enter replicating mode.
544   State->Instance = VPIteration(0, 0);
545 
546   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
547     State->Instance->Part = Part;
548     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
549     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
550          ++Lane) {
551       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
552       // Visit the VPBlocks connected to \p this, starting from it.
553       for (VPBlockBase *Block : RPOT) {
554         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
555         Block->execute(State);
556       }
557     }
558   }
559 
560   // Exit replicating mode.
561   State->Instance.reset();
562 }
563 
564 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
565 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
566                           VPSlotTracker &SlotTracker) const {
567   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
568   auto NewIndent = Indent + "  ";
569   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
570     O << '\n';
571     BlockBase->print(O, NewIndent, SlotTracker);
572   }
573   O << Indent << "}\n";
574 
575   printSuccessors(O, Indent);
576 }
577 #endif
578 
579 VPlan::~VPlan() {
580   clearLiveOuts();
581 
582   if (Entry) {
583     VPValue DummyValue;
584     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
585       Block->dropAllReferences(&DummyValue);
586 
587     VPBlockBase::deleteCFG(Entry);
588   }
589   for (VPValue *VPV : VPValuesToFree)
590     delete VPV;
591   if (TripCount)
592     delete TripCount;
593   if (BackedgeTakenCount)
594     delete BackedgeTakenCount;
595   for (auto &P : VPExternalDefs)
596     delete P.second;
597 }
598 
599 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() {
600   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
601   for (VPRecipeBase &R : Header->phis()) {
602     if (isa<VPActiveLaneMaskPHIRecipe>(&R))
603       return cast<VPActiveLaneMaskPHIRecipe>(&R);
604   }
605   return nullptr;
606 }
607 
608 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
609                              Value *CanonicalIVStartValue,
610                              VPTransformState &State,
611                              bool IsEpilogueVectorization) {
612 
613   // Check if the trip count is needed, and if so build it.
614   if (TripCount && TripCount->getNumUsers()) {
615     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
616       State.set(TripCount, TripCountV, Part);
617   }
618 
619   // Check if the backedge taken count is needed, and if so build it.
620   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
621     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
622     auto *TCMO = Builder.CreateSub(TripCountV,
623                                    ConstantInt::get(TripCountV->getType(), 1),
624                                    "trip.count.minus.1");
625     auto VF = State.VF;
626     Value *VTCMO =
627         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
628     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
629       State.set(BackedgeTakenCount, VTCMO, Part);
630   }
631 
632   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
633     State.set(&VectorTripCount, VectorTripCountV, Part);
634 
635   // When vectorizing the epilogue loop, the canonical induction start value
636   // needs to be changed from zero to the value after the main vector loop.
637   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
638   if (CanonicalIVStartValue) {
639     VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue);
640     auto *IV = getCanonicalIV();
641     assert(all_of(IV->users(),
642                   [](const VPUser *U) {
643                     if (isa<VPScalarIVStepsRecipe>(U) ||
644                         isa<VPDerivedIVRecipe>(U))
645                       return true;
646                     auto *VPI = cast<VPInstruction>(U);
647                     return VPI->getOpcode() ==
648                                VPInstruction::CanonicalIVIncrement ||
649                            VPI->getOpcode() ==
650                                VPInstruction::CanonicalIVIncrementNUW;
651                   }) &&
652            "the canonical IV should only be used by its increments or "
653            "ScalarIVSteps when "
654            "resetting the start value");
655     IV->setOperand(0, VPV);
656   }
657 }
658 
659 /// Generate the code inside the preheader and body of the vectorized loop.
660 /// Assumes a single pre-header basic-block was created for this. Introduce
661 /// additional basic-blocks as needed, and fill them all.
662 void VPlan::execute(VPTransformState *State) {
663   // Set the reverse mapping from VPValues to Values for code generation.
664   for (auto &Entry : Value2VPValue)
665     State->VPValue2Value[Entry.second] = Entry.first;
666 
667   // Initialize CFG state.
668   State->CFG.PrevVPBB = nullptr;
669   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
670   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
671   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
672 
673   // Generate code in the loop pre-header and body.
674   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
675     Block->execute(State);
676 
677   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
678   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
679 
680   // Fix the latch value of canonical, reduction and first-order recurrences
681   // phis in the vector loop.
682   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
683   for (VPRecipeBase &R : Header->phis()) {
684     // Skip phi-like recipes that generate their backedege values themselves.
685     if (isa<VPWidenPHIRecipe>(&R))
686       continue;
687 
688     if (isa<VPWidenPointerInductionRecipe>(&R) ||
689         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
690       PHINode *Phi = nullptr;
691       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
692         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
693       } else {
694         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
695         // TODO: Split off the case that all users of a pointer phi are scalar
696         // from the VPWidenPointerInductionRecipe.
697         if (WidenPhi->onlyScalarsGenerated(State->VF))
698           continue;
699 
700         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
701         Phi = cast<PHINode>(GEP->getPointerOperand());
702       }
703 
704       Phi->setIncomingBlock(1, VectorLatchBB);
705 
706       // Move the last step to the end of the latch block. This ensures
707       // consistent placement of all induction updates.
708       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
709       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
710       continue;
711     }
712 
713     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
714     // For  canonical IV, first-order recurrences and in-order reduction phis,
715     // only a single part is generated, which provides the last part from the
716     // previous iteration. For non-ordered reductions all UF parts are
717     // generated.
718     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
719                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
720                             (isa<VPReductionPHIRecipe>(PhiR) &&
721                              cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
722     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
723 
724     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
725       Value *Phi = State->get(PhiR, Part);
726       Value *Val = State->get(PhiR->getBackedgeValue(),
727                               SinglePartNeeded ? State->UF - 1 : Part);
728       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
729     }
730   }
731 
732   // We do not attempt to preserve DT for outer loop vectorization currently.
733   if (!EnableVPlanNativePath) {
734     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
735     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
736     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
737                         State->CFG.ExitBB);
738   }
739 }
740 
741 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
742 LLVM_DUMP_METHOD
743 void VPlan::print(raw_ostream &O) const {
744   VPSlotTracker SlotTracker(this);
745 
746   O << "VPlan '" << getName() << "' {";
747 
748   if (VectorTripCount.getNumUsers() > 0) {
749     O << "\nLive-in ";
750     VectorTripCount.printAsOperand(O, SlotTracker);
751     O << " = vector-trip-count\n";
752   }
753 
754   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
755     O << "\nLive-in ";
756     BackedgeTakenCount->printAsOperand(O, SlotTracker);
757     O << " = backedge-taken count\n";
758   }
759 
760   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
761     O << '\n';
762     Block->print(O, "", SlotTracker);
763   }
764 
765   if (!LiveOuts.empty())
766     O << "\n";
767   for (const auto &KV : LiveOuts) {
768     O << "Live-out ";
769     KV.second->getPhi()->printAsOperand(O);
770     O << " = ";
771     KV.second->getOperand(0)->printAsOperand(O, SlotTracker);
772     O << "\n";
773   }
774 
775   O << "}\n";
776 }
777 
778 std::string VPlan::getName() const {
779   std::string Out;
780   raw_string_ostream RSO(Out);
781   RSO << Name << " for ";
782   if (!VFs.empty()) {
783     RSO << "VF={" << VFs[0];
784     for (ElementCount VF : drop_begin(VFs))
785       RSO << "," << VF;
786     RSO << "},";
787   }
788 
789   if (UFs.empty()) {
790     RSO << "UF>=1";
791   } else {
792     RSO << "UF={" << UFs[0];
793     for (unsigned UF : drop_begin(UFs))
794       RSO << "," << UF;
795     RSO << "}";
796   }
797 
798   return Out;
799 }
800 
801 LLVM_DUMP_METHOD
802 void VPlan::printDOT(raw_ostream &O) const {
803   VPlanPrinter Printer(O, *this);
804   Printer.dump();
805 }
806 
807 LLVM_DUMP_METHOD
808 void VPlan::dump() const { print(dbgs()); }
809 #endif
810 
811 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
812   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
813   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
814 }
815 
816 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
817                                 BasicBlock *LoopLatchBB,
818                                 BasicBlock *LoopExitBB) {
819   // The vector body may be more than a single basic-block by this point.
820   // Update the dominator tree information inside the vector body by propagating
821   // it from header to latch, expecting only triangular control-flow, if any.
822   BasicBlock *PostDomSucc = nullptr;
823   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
824     // Get the list of successors of this block.
825     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
826     assert(Succs.size() <= 2 &&
827            "Basic block in vector loop has more than 2 successors.");
828     PostDomSucc = Succs[0];
829     if (Succs.size() == 1) {
830       assert(PostDomSucc->getSinglePredecessor() &&
831              "PostDom successor has more than one predecessor.");
832       DT->addNewBlock(PostDomSucc, BB);
833       continue;
834     }
835     BasicBlock *InterimSucc = Succs[1];
836     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
837       PostDomSucc = Succs[1];
838       InterimSucc = Succs[0];
839     }
840     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
841            "One successor of a basic block does not lead to the other.");
842     assert(InterimSucc->getSinglePredecessor() &&
843            "Interim successor has more than one predecessor.");
844     assert(PostDomSucc->hasNPredecessors(2) &&
845            "PostDom successor has more than two predecessors.");
846     DT->addNewBlock(InterimSucc, BB);
847     DT->addNewBlock(PostDomSucc, BB);
848   }
849   // Latch block is a new dominator for the loop exit.
850   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
851   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
852 }
853 
854 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
855 
856 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
857   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
858          Twine(getOrCreateBID(Block));
859 }
860 
861 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
862   const std::string &Name = Block->getName();
863   if (!Name.empty())
864     return Name;
865   return "VPB" + Twine(getOrCreateBID(Block));
866 }
867 
868 void VPlanPrinter::dump() {
869   Depth = 1;
870   bumpIndent(0);
871   OS << "digraph VPlan {\n";
872   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
873   if (!Plan.getName().empty())
874     OS << "\\n" << DOT::EscapeString(Plan.getName());
875   if (Plan.BackedgeTakenCount) {
876     OS << ", where:\\n";
877     Plan.BackedgeTakenCount->print(OS, SlotTracker);
878     OS << " := BackedgeTakenCount";
879   }
880   OS << "\"]\n";
881   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
882   OS << "edge [fontname=Courier, fontsize=30]\n";
883   OS << "compound=true\n";
884 
885   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
886     dumpBlock(Block);
887 
888   OS << "}\n";
889 }
890 
891 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
892   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
893     dumpBasicBlock(BasicBlock);
894   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
895     dumpRegion(Region);
896   else
897     llvm_unreachable("Unsupported kind of VPBlock.");
898 }
899 
900 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
901                             bool Hidden, const Twine &Label) {
902   // Due to "dot" we print an edge between two regions as an edge between the
903   // exiting basic block and the entry basic of the respective regions.
904   const VPBlockBase *Tail = From->getExitingBasicBlock();
905   const VPBlockBase *Head = To->getEntryBasicBlock();
906   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
907   OS << " [ label=\"" << Label << '\"';
908   if (Tail != From)
909     OS << " ltail=" << getUID(From);
910   if (Head != To)
911     OS << " lhead=" << getUID(To);
912   if (Hidden)
913     OS << "; splines=none";
914   OS << "]\n";
915 }
916 
917 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
918   auto &Successors = Block->getSuccessors();
919   if (Successors.size() == 1)
920     drawEdge(Block, Successors.front(), false, "");
921   else if (Successors.size() == 2) {
922     drawEdge(Block, Successors.front(), false, "T");
923     drawEdge(Block, Successors.back(), false, "F");
924   } else {
925     unsigned SuccessorNumber = 0;
926     for (auto *Successor : Successors)
927       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
928   }
929 }
930 
931 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
932   // Implement dot-formatted dump by performing plain-text dump into the
933   // temporary storage followed by some post-processing.
934   OS << Indent << getUID(BasicBlock) << " [label =\n";
935   bumpIndent(1);
936   std::string Str;
937   raw_string_ostream SS(Str);
938   // Use no indentation as we need to wrap the lines into quotes ourselves.
939   BasicBlock->print(SS, "", SlotTracker);
940 
941   // We need to process each line of the output separately, so split
942   // single-string plain-text dump.
943   SmallVector<StringRef, 0> Lines;
944   StringRef(Str).rtrim('\n').split(Lines, "\n");
945 
946   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
947     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
948   };
949 
950   // Don't need the "+" after the last line.
951   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
952     EmitLine(Line, " +\n");
953   EmitLine(Lines.back(), "\n");
954 
955   bumpIndent(-1);
956   OS << Indent << "]\n";
957 
958   dumpEdges(BasicBlock);
959 }
960 
961 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
962   OS << Indent << "subgraph " << getUID(Region) << " {\n";
963   bumpIndent(1);
964   OS << Indent << "fontname=Courier\n"
965      << Indent << "label=\""
966      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
967      << DOT::EscapeString(Region->getName()) << "\"\n";
968   // Dump the blocks of the region.
969   assert(Region->getEntry() && "Region contains no inner blocks.");
970   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
971     dumpBlock(Block);
972   bumpIndent(-1);
973   OS << Indent << "}\n";
974   dumpEdges(Region);
975 }
976 
977 void VPlanIngredient::print(raw_ostream &O) const {
978   if (auto *Inst = dyn_cast<Instruction>(V)) {
979     if (!Inst->getType()->isVoidTy()) {
980       Inst->printAsOperand(O, false);
981       O << " = ";
982     }
983     O << Inst->getOpcodeName() << " ";
984     unsigned E = Inst->getNumOperands();
985     if (E > 0) {
986       Inst->getOperand(0)->printAsOperand(O, false);
987       for (unsigned I = 1; I < E; ++I)
988         Inst->getOperand(I)->printAsOperand(O << ", ", false);
989     }
990   } else // !Inst
991     V->printAsOperand(O, false);
992 }
993 
994 #endif
995 
996 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
997 
998 void VPValue::replaceAllUsesWith(VPValue *New) {
999   for (unsigned J = 0; J < getNumUsers();) {
1000     VPUser *User = Users[J];
1001     unsigned NumUsers = getNumUsers();
1002     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1003       if (User->getOperand(I) == this)
1004         User->setOperand(I, New);
1005     // If a user got removed after updating the current user, the next user to
1006     // update will be moved to the current position, so we only need to
1007     // increment the index if the number of users did not change.
1008     if (NumUsers == getNumUsers())
1009       J++;
1010   }
1011 }
1012 
1013 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1014 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1015   if (const Value *UV = getUnderlyingValue()) {
1016     OS << "ir<";
1017     UV->printAsOperand(OS, false);
1018     OS << ">";
1019     return;
1020   }
1021 
1022   unsigned Slot = Tracker.getSlot(this);
1023   if (Slot == unsigned(-1))
1024     OS << "<badref>";
1025   else
1026     OS << "vp<%" << Tracker.getSlot(this) << ">";
1027 }
1028 
1029 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1030   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1031     Op->printAsOperand(O, SlotTracker);
1032   });
1033 }
1034 #endif
1035 
1036 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1037                                           Old2NewTy &Old2New,
1038                                           InterleavedAccessInfo &IAI) {
1039   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1040       RPOT(Region->getEntry());
1041   for (VPBlockBase *Base : RPOT) {
1042     visitBlock(Base, Old2New, IAI);
1043   }
1044 }
1045 
1046 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1047                                          InterleavedAccessInfo &IAI) {
1048   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1049     for (VPRecipeBase &VPI : *VPBB) {
1050       if (isa<VPHeaderPHIRecipe>(&VPI))
1051         continue;
1052       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1053       auto *VPInst = cast<VPInstruction>(&VPI);
1054 
1055       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1056       if (!Inst)
1057         continue;
1058       auto *IG = IAI.getInterleaveGroup(Inst);
1059       if (!IG)
1060         continue;
1061 
1062       auto NewIGIter = Old2New.find(IG);
1063       if (NewIGIter == Old2New.end())
1064         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1065             IG->getFactor(), IG->isReverse(), IG->getAlign());
1066 
1067       if (Inst == IG->getInsertPos())
1068         Old2New[IG]->setInsertPos(VPInst);
1069 
1070       InterleaveGroupMap[VPInst] = Old2New[IG];
1071       InterleaveGroupMap[VPInst]->insertMember(
1072           VPInst, IG->getIndex(Inst),
1073           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1074                                 : IG->getFactor()));
1075     }
1076   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1077     visitRegion(Region, Old2New, IAI);
1078   else
1079     llvm_unreachable("Unsupported kind of VPBlock.");
1080 }
1081 
1082 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1083                                                  InterleavedAccessInfo &IAI) {
1084   Old2NewTy Old2New;
1085   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1086 }
1087 
1088 void VPSlotTracker::assignSlot(const VPValue *V) {
1089   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1090   Slots[V] = NextSlot++;
1091 }
1092 
1093 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1094 
1095   for (const auto &P : Plan.VPExternalDefs)
1096     assignSlot(P.second);
1097 
1098   assignSlot(&Plan.VectorTripCount);
1099   if (Plan.BackedgeTakenCount)
1100     assignSlot(Plan.BackedgeTakenCount);
1101 
1102   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1103       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1104   for (const VPBasicBlock *VPBB :
1105        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1106     for (const VPRecipeBase &Recipe : *VPBB)
1107       for (VPValue *Def : Recipe.definedValues())
1108         assignSlot(Def);
1109 }
1110 
1111 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1112   return all_of(Def->users(),
1113                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1114 }
1115 
1116 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1117                                                 ScalarEvolution &SE) {
1118   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1119     return Plan.getOrAddExternalDef(E->getValue());
1120   if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1121     return Plan.getOrAddExternalDef(E->getValue());
1122 
1123   VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
1124   VPExpandSCEVRecipe *Step = new VPExpandSCEVRecipe(Expr, SE);
1125   Preheader->appendRecipe(Step);
1126   return Step;
1127 }
1128