1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 
17 #include "CodeGenIntrinsics.h"
18 #include "CodeGenTarget.h"
19 #include "SDNodeProperties.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <array>
28 #include <functional>
29 #include <map>
30 #include <numeric>
31 #include <set>
32 #include <vector>
33 
34 namespace llvm {
35 
36 class Record;
37 class Init;
38 class ListInit;
39 class DagInit;
40 class SDNodeInfo;
41 class TreePattern;
42 class TreePatternNode;
43 class CodeGenDAGPatterns;
44 
45 /// Shared pointer for TreePatternNode.
46 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
47 
48 /// This represents a set of MVTs. Since the underlying type for the MVT
49 /// is uint8_t, there are at most 256 values. To reduce the number of memory
50 /// allocations and deallocations, represent the set as a sequence of bits.
51 /// To reduce the allocations even further, make MachineValueTypeSet own
52 /// the storage and use std::array as the bit container.
53 struct MachineValueTypeSet {
54   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
55                              uint8_t>::value,
56                 "Change uint8_t here to the SimpleValueType's type");
57   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
58   using WordType = uint64_t;
59   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
60   static unsigned constexpr NumWords = Capacity/WordWidth;
61   static_assert(NumWords*WordWidth == Capacity,
62                 "Capacity should be a multiple of WordWidth");
63 
64   LLVM_ATTRIBUTE_ALWAYS_INLINE
65   MachineValueTypeSet() {
66     clear();
67   }
68 
69   LLVM_ATTRIBUTE_ALWAYS_INLINE
70   unsigned size() const {
71     unsigned Count = 0;
72     for (WordType W : Words)
73       Count += countPopulation(W);
74     return Count;
75   }
76   LLVM_ATTRIBUTE_ALWAYS_INLINE
77   void clear() {
78     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
79   }
80   LLVM_ATTRIBUTE_ALWAYS_INLINE
81   bool empty() const {
82     for (WordType W : Words)
83       if (W != 0)
84         return false;
85     return true;
86   }
87   LLVM_ATTRIBUTE_ALWAYS_INLINE
88   unsigned count(MVT T) const {
89     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
90   }
91   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
92     bool V = count(T.SimpleTy);
93     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
94     return {*this, V};
95   }
96   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
97     for (unsigned i = 0; i != NumWords; ++i)
98       Words[i] |= S.Words[i];
99     return *this;
100   }
101   LLVM_ATTRIBUTE_ALWAYS_INLINE
102   void erase(MVT T) {
103     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
104   }
105 
106   struct const_iterator {
107     // Some implementations of the C++ library require these traits to be
108     // defined.
109     using iterator_category = std::forward_iterator_tag;
110     using value_type = MVT;
111     using difference_type = ptrdiff_t;
112     using pointer = const MVT*;
113     using reference = const MVT&;
114 
115     LLVM_ATTRIBUTE_ALWAYS_INLINE
116     MVT operator*() const {
117       assert(Pos != Capacity);
118       return MVT::SimpleValueType(Pos);
119     }
120     LLVM_ATTRIBUTE_ALWAYS_INLINE
121     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
122       Pos = End ? Capacity : find_from_pos(0);
123     }
124     LLVM_ATTRIBUTE_ALWAYS_INLINE
125     const_iterator &operator++() {
126       assert(Pos != Capacity);
127       Pos = find_from_pos(Pos+1);
128       return *this;
129     }
130 
131     LLVM_ATTRIBUTE_ALWAYS_INLINE
132     bool operator==(const const_iterator &It) const {
133       return Set == It.Set && Pos == It.Pos;
134     }
135     LLVM_ATTRIBUTE_ALWAYS_INLINE
136     bool operator!=(const const_iterator &It) const {
137       return !operator==(It);
138     }
139 
140   private:
141     unsigned find_from_pos(unsigned P) const {
142       unsigned SkipWords = P / WordWidth;
143       unsigned SkipBits = P % WordWidth;
144       unsigned Count = SkipWords * WordWidth;
145 
146       // If P is in the middle of a word, process it manually here, because
147       // the trailing bits need to be masked off to use findFirstSet.
148       if (SkipBits != 0) {
149         WordType W = Set->Words[SkipWords];
150         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
151         if (W != 0)
152           return Count + findFirstSet(W);
153         Count += WordWidth;
154         SkipWords++;
155       }
156 
157       for (unsigned i = SkipWords; i != NumWords; ++i) {
158         WordType W = Set->Words[i];
159         if (W != 0)
160           return Count + findFirstSet(W);
161         Count += WordWidth;
162       }
163       return Capacity;
164     }
165 
166     const MachineValueTypeSet *Set;
167     unsigned Pos;
168   };
169 
170   LLVM_ATTRIBUTE_ALWAYS_INLINE
171   const_iterator begin() const { return const_iterator(this, false); }
172   LLVM_ATTRIBUTE_ALWAYS_INLINE
173   const_iterator end()   const { return const_iterator(this, true); }
174 
175   LLVM_ATTRIBUTE_ALWAYS_INLINE
176   bool operator==(const MachineValueTypeSet &S) const {
177     return Words == S.Words;
178   }
179   LLVM_ATTRIBUTE_ALWAYS_INLINE
180   bool operator!=(const MachineValueTypeSet &S) const {
181     return !operator==(S);
182   }
183 
184 private:
185   friend struct const_iterator;
186   std::array<WordType,NumWords> Words;
187 };
188 
189 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
190   using SetType = MachineValueTypeSet;
191   SmallVector<unsigned, 16> AddrSpaces;
192 
193   TypeSetByHwMode() = default;
194   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
195   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
196   TypeSetByHwMode(MVT::SimpleValueType VT)
197     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
198   TypeSetByHwMode(ValueTypeByHwMode VT)
199     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
200   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
201 
202   SetType &getOrCreate(unsigned Mode) {
203     if (hasMode(Mode))
204       return get(Mode);
205     return Map.insert({Mode,SetType()}).first->second;
206   }
207 
208   bool isValueTypeByHwMode(bool AllowEmpty) const;
209   ValueTypeByHwMode getValueTypeByHwMode() const;
210 
211   LLVM_ATTRIBUTE_ALWAYS_INLINE
212   bool isMachineValueType() const {
213     return isDefaultOnly() && Map.begin()->second.size() == 1;
214   }
215 
216   LLVM_ATTRIBUTE_ALWAYS_INLINE
217   MVT getMachineValueType() const {
218     assert(isMachineValueType());
219     return *Map.begin()->second.begin();
220   }
221 
222   bool isPossible() const;
223 
224   LLVM_ATTRIBUTE_ALWAYS_INLINE
225   bool isDefaultOnly() const {
226     return Map.size() == 1 && Map.begin()->first == DefaultMode;
227   }
228 
229   bool isPointer() const {
230     return getValueTypeByHwMode().isPointer();
231   }
232 
233   unsigned getPtrAddrSpace() const {
234     assert(isPointer());
235     return getValueTypeByHwMode().PtrAddrSpace;
236   }
237 
238   bool insert(const ValueTypeByHwMode &VVT);
239   bool constrain(const TypeSetByHwMode &VTS);
240   template <typename Predicate> bool constrain(Predicate P);
241   template <typename Predicate>
242   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
243 
244   void writeToStream(raw_ostream &OS) const;
245   static void writeToStream(const SetType &S, raw_ostream &OS);
246 
247   bool operator==(const TypeSetByHwMode &VTS) const;
248   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
249 
250   void dump() const;
251   bool validate() const;
252 
253 private:
254   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
255   /// Intersect two sets. Return true if anything has changed.
256   bool intersect(SetType &Out, const SetType &In);
257 };
258 
259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
260 
261 struct TypeInfer {
262   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
263 
264   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
265     return VTS.isValueTypeByHwMode(AllowEmpty);
266   }
267   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
268                                 bool AllowEmpty) const {
269     assert(VTS.isValueTypeByHwMode(AllowEmpty));
270     return VTS.getValueTypeByHwMode();
271   }
272 
273   /// The protocol in the following functions (Merge*, force*, Enforce*,
274   /// expand*) is to return "true" if a change has been made, "false"
275   /// otherwise.
276 
277   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
278   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
279     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
280   }
281   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
282     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
283   }
284 
285   /// Reduce the set \p Out to have at most one element for each mode.
286   bool forceArbitrary(TypeSetByHwMode &Out);
287 
288   /// The following four functions ensure that upon return the set \p Out
289   /// will only contain types of the specified kind: integer, floating-point,
290   /// scalar, or vector.
291   /// If \p Out is empty, all legal types of the specified kind will be added
292   /// to it. Otherwise, all types that are not of the specified kind will be
293   /// removed from \p Out.
294   bool EnforceInteger(TypeSetByHwMode &Out);
295   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
296   bool EnforceScalar(TypeSetByHwMode &Out);
297   bool EnforceVector(TypeSetByHwMode &Out);
298 
299   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
300   /// unchanged.
301   bool EnforceAny(TypeSetByHwMode &Out);
302   /// Make sure that for each type in \p Small, there exists a larger type
303   /// in \p Big.
304   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
305   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
306   ///    for each type U in \p Elem, U is a scalar type.
307   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
308   ///    (vector) type T in \p Vec, such that U is the element type of T.
309   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
310   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
311                               const ValueTypeByHwMode &VVT);
312   /// Ensure that for each type T in \p Sub, T is a vector type, and there
313   /// exists a type U in \p Vec such that U is a vector type with the same
314   /// element type as T and at least as many elements as T.
315   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
316                                     TypeSetByHwMode &Sub);
317   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
318   /// 2. Ensure that for each vector type T in \p V, there exists a vector
319   ///    type U in \p W, such that T and U have the same number of elements.
320   /// 3. Ensure that for each vector type U in \p W, there exists a vector
321   ///    type T in \p V, such that T and U have the same number of elements
322   ///    (reverse of 2).
323   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
324   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
325   ///    such that T and U have equal size in bits.
326   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
327   ///    such that T and U have equal size in bits (reverse of 1).
328   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
329 
330   /// For each overloaded type (i.e. of form *Any), replace it with the
331   /// corresponding subset of legal, specific types.
332   void expandOverloads(TypeSetByHwMode &VTS);
333   void expandOverloads(TypeSetByHwMode::SetType &Out,
334                        const TypeSetByHwMode::SetType &Legal);
335 
336   struct ValidateOnExit {
337     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
338   #ifndef NDEBUG
339     ~ValidateOnExit();
340   #else
341     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
342   #endif
343     TypeInfer &Infer;
344     TypeSetByHwMode &VTS;
345   };
346 
347   struct SuppressValidation {
348     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
349       Infer.Validate = false;
350     }
351     ~SuppressValidation() {
352       Infer.Validate = SavedValidate;
353     }
354     TypeInfer &Infer;
355     bool SavedValidate;
356   };
357 
358   TreePattern &TP;
359   unsigned ForceMode;     // Mode to use when set.
360   bool CodeGen = false;   // Set during generation of matcher code.
361   bool Validate = true;   // Indicate whether to validate types.
362 
363 private:
364   const TypeSetByHwMode &getLegalTypes();
365 
366   /// Cached legal types (in default mode).
367   bool LegalTypesCached = false;
368   TypeSetByHwMode LegalCache;
369 };
370 
371 /// Set type used to track multiply used variables in patterns
372 typedef StringSet<> MultipleUseVarSet;
373 
374 /// SDTypeConstraint - This is a discriminated union of constraints,
375 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
376 struct SDTypeConstraint {
377   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
378 
379   unsigned OperandNo;   // The operand # this constraint applies to.
380   enum {
381     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
382     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
383     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
384   } ConstraintType;
385 
386   union {   // The discriminated union.
387     struct {
388       unsigned OtherOperandNum;
389     } SDTCisSameAs_Info;
390     struct {
391       unsigned OtherOperandNum;
392     } SDTCisVTSmallerThanOp_Info;
393     struct {
394       unsigned BigOperandNum;
395     } SDTCisOpSmallerThanOp_Info;
396     struct {
397       unsigned OtherOperandNum;
398     } SDTCisEltOfVec_Info;
399     struct {
400       unsigned OtherOperandNum;
401     } SDTCisSubVecOfVec_Info;
402     struct {
403       unsigned OtherOperandNum;
404     } SDTCisSameNumEltsAs_Info;
405     struct {
406       unsigned OtherOperandNum;
407     } SDTCisSameSizeAs_Info;
408   } x;
409 
410   // The VT for SDTCisVT and SDTCVecEltisVT.
411   // Must not be in the union because it has a non-trivial destructor.
412   ValueTypeByHwMode VVT;
413 
414   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
415   /// constraint to the nodes operands.  This returns true if it makes a
416   /// change, false otherwise.  If a type contradiction is found, an error
417   /// is flagged.
418   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
419                            TreePattern &TP) const;
420 };
421 
422 /// ScopedName - A name of a node associated with a "scope" that indicates
423 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
424 /// used. This enables substitution of pattern fragments while keeping track
425 /// of what name(s) were originally given to various nodes in the tree.
426 class ScopedName {
427   unsigned Scope;
428   std::string Identifier;
429 public:
430   ScopedName(unsigned Scope, StringRef Identifier)
431       : Scope(Scope), Identifier(std::string(Identifier)) {
432     assert(Scope != 0 &&
433            "Scope == 0 is used to indicate predicates without arguments");
434   }
435 
436   unsigned getScope() const { return Scope; }
437   const std::string &getIdentifier() const { return Identifier; }
438 
439   bool operator==(const ScopedName &o) const;
440   bool operator!=(const ScopedName &o) const;
441 };
442 
443 /// SDNodeInfo - One of these records is created for each SDNode instance in
444 /// the target .td file.  This represents the various dag nodes we will be
445 /// processing.
446 class SDNodeInfo {
447   Record *Def;
448   StringRef EnumName;
449   StringRef SDClassName;
450   unsigned Properties;
451   unsigned NumResults;
452   int NumOperands;
453   std::vector<SDTypeConstraint> TypeConstraints;
454 public:
455   // Parse the specified record.
456   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
457 
458   unsigned getNumResults() const { return NumResults; }
459 
460   /// getNumOperands - This is the number of operands required or -1 if
461   /// variadic.
462   int getNumOperands() const { return NumOperands; }
463   Record *getRecord() const { return Def; }
464   StringRef getEnumName() const { return EnumName; }
465   StringRef getSDClassName() const { return SDClassName; }
466 
467   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
468     return TypeConstraints;
469   }
470 
471   /// getKnownType - If the type constraints on this node imply a fixed type
472   /// (e.g. all stores return void, etc), then return it as an
473   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
474   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
475 
476   /// hasProperty - Return true if this node has the specified property.
477   ///
478   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
479 
480   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
481   /// constraints for this node to the operands of the node.  This returns
482   /// true if it makes a change, false otherwise.  If a type contradiction is
483   /// found, an error is flagged.
484   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
485 };
486 
487 /// TreePredicateFn - This is an abstraction that represents the predicates on
488 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
489 /// provide nice accessors.
490 class TreePredicateFn {
491   /// PatFragRec - This is the TreePattern for the PatFrag that we
492   /// originally came from.
493   TreePattern *PatFragRec;
494 public:
495   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
496   TreePredicateFn(TreePattern *N);
497 
498 
499   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
500 
501   /// isAlwaysTrue - Return true if this is a noop predicate.
502   bool isAlwaysTrue() const;
503 
504   bool isImmediatePattern() const { return hasImmCode(); }
505 
506   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
507   /// this is an immediate predicate.  It is an error to call this on a
508   /// non-immediate pattern.
509   std::string getImmediatePredicateCode() const {
510     std::string Result = getImmCode();
511     assert(!Result.empty() && "Isn't an immediate pattern!");
512     return Result;
513   }
514 
515   bool operator==(const TreePredicateFn &RHS) const {
516     return PatFragRec == RHS.PatFragRec;
517   }
518 
519   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
520 
521   /// Return the name to use in the generated code to reference this, this is
522   /// "Predicate_foo" if from a pattern fragment "foo".
523   std::string getFnName() const;
524 
525   /// getCodeToRunOnSDNode - Return the code for the function body that
526   /// evaluates this predicate.  The argument is expected to be in "Node",
527   /// not N.  This handles casting and conversion to a concrete node type as
528   /// appropriate.
529   std::string getCodeToRunOnSDNode() const;
530 
531   /// Get the data type of the argument to getImmediatePredicateCode().
532   StringRef getImmType() const;
533 
534   /// Get a string that describes the type returned by getImmType() but is
535   /// usable as part of an identifier.
536   StringRef getImmTypeIdentifier() const;
537 
538   // Predicate code uses the PatFrag's captured operands.
539   bool usesOperands() const;
540 
541   // Is the desired predefined predicate for a load?
542   bool isLoad() const;
543   // Is the desired predefined predicate for a store?
544   bool isStore() const;
545   // Is the desired predefined predicate for an atomic?
546   bool isAtomic() const;
547 
548   /// Is this predicate the predefined unindexed load predicate?
549   /// Is this predicate the predefined unindexed store predicate?
550   bool isUnindexed() const;
551   /// Is this predicate the predefined non-extending load predicate?
552   bool isNonExtLoad() const;
553   /// Is this predicate the predefined any-extend load predicate?
554   bool isAnyExtLoad() const;
555   /// Is this predicate the predefined sign-extend load predicate?
556   bool isSignExtLoad() const;
557   /// Is this predicate the predefined zero-extend load predicate?
558   bool isZeroExtLoad() const;
559   /// Is this predicate the predefined non-truncating store predicate?
560   bool isNonTruncStore() const;
561   /// Is this predicate the predefined truncating store predicate?
562   bool isTruncStore() const;
563 
564   /// Is this predicate the predefined monotonic atomic predicate?
565   bool isAtomicOrderingMonotonic() const;
566   /// Is this predicate the predefined acquire atomic predicate?
567   bool isAtomicOrderingAcquire() const;
568   /// Is this predicate the predefined release atomic predicate?
569   bool isAtomicOrderingRelease() const;
570   /// Is this predicate the predefined acquire-release atomic predicate?
571   bool isAtomicOrderingAcquireRelease() const;
572   /// Is this predicate the predefined sequentially consistent atomic predicate?
573   bool isAtomicOrderingSequentiallyConsistent() const;
574 
575   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
576   bool isAtomicOrderingAcquireOrStronger() const;
577   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
578   bool isAtomicOrderingWeakerThanAcquire() const;
579 
580   /// Is this predicate the predefined release-or-stronger atomic predicate?
581   bool isAtomicOrderingReleaseOrStronger() const;
582   /// Is this predicate the predefined weaker-than-release atomic predicate?
583   bool isAtomicOrderingWeakerThanRelease() const;
584 
585   /// If non-null, indicates that this predicate is a predefined memory VT
586   /// predicate for a load/store and returns the ValueType record for the memory VT.
587   Record *getMemoryVT() const;
588   /// If non-null, indicates that this predicate is a predefined memory VT
589   /// predicate (checking only the scalar type) for load/store and returns the
590   /// ValueType record for the memory VT.
591   Record *getScalarMemoryVT() const;
592 
593   ListInit *getAddressSpaces() const;
594   int64_t getMinAlignment() const;
595 
596   // If true, indicates that GlobalISel-based C++ code was supplied.
597   bool hasGISelPredicateCode() const;
598   std::string getGISelPredicateCode() const;
599 
600 private:
601   bool hasPredCode() const;
602   bool hasImmCode() const;
603   std::string getPredCode() const;
604   std::string getImmCode() const;
605   bool immCodeUsesAPInt() const;
606   bool immCodeUsesAPFloat() const;
607 
608   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
609 };
610 
611 struct TreePredicateCall {
612   TreePredicateFn Fn;
613 
614   // Scope -- unique identifier for retrieving named arguments. 0 is used when
615   // the predicate does not use named arguments.
616   unsigned Scope;
617 
618   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
619     : Fn(Fn), Scope(Scope) {}
620 
621   bool operator==(const TreePredicateCall &o) const {
622     return Fn == o.Fn && Scope == o.Scope;
623   }
624   bool operator!=(const TreePredicateCall &o) const {
625     return !(*this == o);
626   }
627 };
628 
629 class TreePatternNode {
630   /// The type of each node result.  Before and during type inference, each
631   /// result may be a set of possible types.  After (successful) type inference,
632   /// each is a single concrete type.
633   std::vector<TypeSetByHwMode> Types;
634 
635   /// The index of each result in results of the pattern.
636   std::vector<unsigned> ResultPerm;
637 
638   /// Operator - The Record for the operator if this is an interior node (not
639   /// a leaf).
640   Record *Operator;
641 
642   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
643   ///
644   Init *Val;
645 
646   /// Name - The name given to this node with the :$foo notation.
647   ///
648   std::string Name;
649 
650   std::vector<ScopedName> NamesAsPredicateArg;
651 
652   /// PredicateCalls - The predicate functions to execute on this node to check
653   /// for a match.  If this list is empty, no predicate is involved.
654   std::vector<TreePredicateCall> PredicateCalls;
655 
656   /// TransformFn - The transformation function to execute on this node before
657   /// it can be substituted into the resulting instruction on a pattern match.
658   Record *TransformFn;
659 
660   std::vector<TreePatternNodePtr> Children;
661 
662 public:
663   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
664                   unsigned NumResults)
665       : Operator(Op), Val(nullptr), TransformFn(nullptr),
666         Children(std::move(Ch)) {
667     Types.resize(NumResults);
668     ResultPerm.resize(NumResults);
669     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
670   }
671   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
672     : Operator(nullptr), Val(val), TransformFn(nullptr) {
673     Types.resize(NumResults);
674     ResultPerm.resize(NumResults);
675     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
676   }
677 
678   bool hasName() const { return !Name.empty(); }
679   const std::string &getName() const { return Name; }
680   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
681 
682   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
683     return NamesAsPredicateArg;
684   }
685   void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
686     NamesAsPredicateArg = Names;
687   }
688   void addNameAsPredicateArg(const ScopedName &N) {
689     NamesAsPredicateArg.push_back(N);
690   }
691 
692   bool isLeaf() const { return Val != nullptr; }
693 
694   // Type accessors.
695   unsigned getNumTypes() const { return Types.size(); }
696   ValueTypeByHwMode getType(unsigned ResNo) const {
697     return Types[ResNo].getValueTypeByHwMode();
698   }
699   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
700   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
701     return Types[ResNo];
702   }
703   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
704   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
705   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
706     return Types[ResNo].getMachineValueType().SimpleTy;
707   }
708 
709   bool hasConcreteType(unsigned ResNo) const {
710     return Types[ResNo].isValueTypeByHwMode(false);
711   }
712   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
713     return Types[ResNo].empty();
714   }
715 
716   unsigned getNumResults() const { return ResultPerm.size(); }
717   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
718   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
719 
720   Init *getLeafValue() const { assert(isLeaf()); return Val; }
721   Record *getOperator() const { assert(!isLeaf()); return Operator; }
722 
723   unsigned getNumChildren() const { return Children.size(); }
724   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
725   const TreePatternNodePtr &getChildShared(unsigned N) const {
726     return Children[N];
727   }
728   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
729 
730   /// hasChild - Return true if N is any of our children.
731   bool hasChild(const TreePatternNode *N) const {
732     for (unsigned i = 0, e = Children.size(); i != e; ++i)
733       if (Children[i].get() == N)
734         return true;
735     return false;
736   }
737 
738   bool hasProperTypeByHwMode() const;
739   bool hasPossibleType() const;
740   bool setDefaultMode(unsigned Mode);
741 
742   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
743 
744   const std::vector<TreePredicateCall> &getPredicateCalls() const {
745     return PredicateCalls;
746   }
747   void clearPredicateCalls() { PredicateCalls.clear(); }
748   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
749     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
750     PredicateCalls = Calls;
751   }
752   void addPredicateCall(const TreePredicateCall &Call) {
753     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
754     assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
755     PredicateCalls.push_back(Call);
756   }
757   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
758     assert((Scope != 0) == Fn.usesOperands());
759     addPredicateCall(TreePredicateCall(Fn, Scope));
760   }
761 
762   Record *getTransformFn() const { return TransformFn; }
763   void setTransformFn(Record *Fn) { TransformFn = Fn; }
764 
765   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
766   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
767   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
768 
769   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
770   /// return the ComplexPattern information, otherwise return null.
771   const ComplexPattern *
772   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
773 
774   /// Returns the number of MachineInstr operands that would be produced by this
775   /// node if it mapped directly to an output Instruction's
776   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
777   /// for Operands; otherwise 1.
778   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
779 
780   /// NodeHasProperty - Return true if this node has the specified property.
781   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
782 
783   /// TreeHasProperty - Return true if any node in this tree has the specified
784   /// property.
785   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
786 
787   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
788   /// marked isCommutative.
789   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
790 
791   void print(raw_ostream &OS) const;
792   void dump() const;
793 
794 public:   // Higher level manipulation routines.
795 
796   /// clone - Return a new copy of this tree.
797   ///
798   TreePatternNodePtr clone() const;
799 
800   /// RemoveAllTypes - Recursively strip all the types of this tree.
801   void RemoveAllTypes();
802 
803   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
804   /// the specified node.  For this comparison, all of the state of the node
805   /// is considered, except for the assigned name.  Nodes with differing names
806   /// that are otherwise identical are considered isomorphic.
807   bool isIsomorphicTo(const TreePatternNode *N,
808                       const MultipleUseVarSet &DepVars) const;
809 
810   /// SubstituteFormalArguments - Replace the formal arguments in this tree
811   /// with actual values specified by ArgMap.
812   void
813   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
814 
815   /// InlinePatternFragments - If this pattern refers to any pattern
816   /// fragments, return the set of inlined versions (this can be more than
817   /// one if a PatFrags record has multiple alternatives).
818   void InlinePatternFragments(TreePatternNodePtr T,
819                               TreePattern &TP,
820                               std::vector<TreePatternNodePtr> &OutAlternatives);
821 
822   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
823   /// this node and its children in the tree.  This returns true if it makes a
824   /// change, false otherwise.  If a type contradiction is found, flag an error.
825   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
826 
827   /// UpdateNodeType - Set the node type of N to VT if VT contains
828   /// information.  If N already contains a conflicting type, then flag an
829   /// error.  This returns true if any information was updated.
830   ///
831   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
832                       TreePattern &TP);
833   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
834                       TreePattern &TP);
835   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
836                       TreePattern &TP);
837 
838   // Update node type with types inferred from an instruction operand or result
839   // def from the ins/outs lists.
840   // Return true if the type changed.
841   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
842 
843   /// ContainsUnresolvedType - Return true if this tree contains any
844   /// unresolved types.
845   bool ContainsUnresolvedType(TreePattern &TP) const;
846 
847   /// canPatternMatch - If it is impossible for this pattern to match on this
848   /// target, fill in Reason and return false.  Otherwise, return true.
849   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
850 };
851 
852 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
853   TPN.print(OS);
854   return OS;
855 }
856 
857 
858 /// TreePattern - Represent a pattern, used for instructions, pattern
859 /// fragments, etc.
860 ///
861 class TreePattern {
862   /// Trees - The list of pattern trees which corresponds to this pattern.
863   /// Note that PatFrag's only have a single tree.
864   ///
865   std::vector<TreePatternNodePtr> Trees;
866 
867   /// NamedNodes - This is all of the nodes that have names in the trees in this
868   /// pattern.
869   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
870 
871   /// TheRecord - The actual TableGen record corresponding to this pattern.
872   ///
873   Record *TheRecord;
874 
875   /// Args - This is a list of all of the arguments to this pattern (for
876   /// PatFrag patterns), which are the 'node' markers in this pattern.
877   std::vector<std::string> Args;
878 
879   /// CDP - the top-level object coordinating this madness.
880   ///
881   CodeGenDAGPatterns &CDP;
882 
883   /// isInputPattern - True if this is an input pattern, something to match.
884   /// False if this is an output pattern, something to emit.
885   bool isInputPattern;
886 
887   /// hasError - True if the currently processed nodes have unresolvable types
888   /// or other non-fatal errors
889   bool HasError;
890 
891   /// It's important that the usage of operands in ComplexPatterns is
892   /// consistent: each named operand can be defined by at most one
893   /// ComplexPattern. This records the ComplexPattern instance and the operand
894   /// number for each operand encountered in a ComplexPattern to aid in that
895   /// check.
896   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
897 
898   TypeInfer Infer;
899 
900 public:
901 
902   /// TreePattern constructor - Parse the specified DagInits into the
903   /// current record.
904   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
905               CodeGenDAGPatterns &ise);
906   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
907               CodeGenDAGPatterns &ise);
908   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
909               CodeGenDAGPatterns &ise);
910 
911   /// getTrees - Return the tree patterns which corresponds to this pattern.
912   ///
913   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
914   unsigned getNumTrees() const { return Trees.size(); }
915   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
916   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
917   const TreePatternNodePtr &getOnlyTree() const {
918     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
919     return Trees[0];
920   }
921 
922   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
923     if (NamedNodes.empty())
924       ComputeNamedNodes();
925     return NamedNodes;
926   }
927 
928   /// getRecord - Return the actual TableGen record corresponding to this
929   /// pattern.
930   ///
931   Record *getRecord() const { return TheRecord; }
932 
933   unsigned getNumArgs() const { return Args.size(); }
934   const std::string &getArgName(unsigned i) const {
935     assert(i < Args.size() && "Argument reference out of range!");
936     return Args[i];
937   }
938   std::vector<std::string> &getArgList() { return Args; }
939 
940   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
941 
942   /// InlinePatternFragments - If this pattern refers to any pattern
943   /// fragments, inline them into place, giving us a pattern without any
944   /// PatFrags references.  This may increase the number of trees in the
945   /// pattern if a PatFrags has multiple alternatives.
946   void InlinePatternFragments() {
947     std::vector<TreePatternNodePtr> Copy = Trees;
948     Trees.clear();
949     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
950       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
951   }
952 
953   /// InferAllTypes - Infer/propagate as many types throughout the expression
954   /// patterns as possible.  Return true if all types are inferred, false
955   /// otherwise.  Bail out if a type contradiction is found.
956   bool InferAllTypes(
957       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
958 
959   /// error - If this is the first error in the current resolution step,
960   /// print it and set the error flag.  Otherwise, continue silently.
961   void error(const Twine &Msg);
962   bool hasError() const {
963     return HasError;
964   }
965   void resetError() {
966     HasError = false;
967   }
968 
969   TypeInfer &getInfer() { return Infer; }
970 
971   void print(raw_ostream &OS) const;
972   void dump() const;
973 
974 private:
975   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
976   void ComputeNamedNodes();
977   void ComputeNamedNodes(TreePatternNode *N);
978 };
979 
980 
981 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
982                                             const TypeSetByHwMode &InTy,
983                                             TreePattern &TP) {
984   TypeSetByHwMode VTS(InTy);
985   TP.getInfer().expandOverloads(VTS);
986   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
987 }
988 
989 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
990                                             MVT::SimpleValueType InTy,
991                                             TreePattern &TP) {
992   TypeSetByHwMode VTS(InTy);
993   TP.getInfer().expandOverloads(VTS);
994   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
995 }
996 
997 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
998                                             ValueTypeByHwMode InTy,
999                                             TreePattern &TP) {
1000   TypeSetByHwMode VTS(InTy);
1001   TP.getInfer().expandOverloads(VTS);
1002   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1003 }
1004 
1005 
1006 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1007 /// that has a set ExecuteAlways / DefaultOps field.
1008 struct DAGDefaultOperand {
1009   std::vector<TreePatternNodePtr> DefaultOps;
1010 };
1011 
1012 class DAGInstruction {
1013   std::vector<Record*> Results;
1014   std::vector<Record*> Operands;
1015   std::vector<Record*> ImpResults;
1016   TreePatternNodePtr SrcPattern;
1017   TreePatternNodePtr ResultPattern;
1018 
1019 public:
1020   DAGInstruction(const std::vector<Record*> &results,
1021                  const std::vector<Record*> &operands,
1022                  const std::vector<Record*> &impresults,
1023                  TreePatternNodePtr srcpattern = nullptr,
1024                  TreePatternNodePtr resultpattern = nullptr)
1025     : Results(results), Operands(operands), ImpResults(impresults),
1026       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1027 
1028   unsigned getNumResults() const { return Results.size(); }
1029   unsigned getNumOperands() const { return Operands.size(); }
1030   unsigned getNumImpResults() const { return ImpResults.size(); }
1031   const std::vector<Record*>& getImpResults() const { return ImpResults; }
1032 
1033   Record *getResult(unsigned RN) const {
1034     assert(RN < Results.size());
1035     return Results[RN];
1036   }
1037 
1038   Record *getOperand(unsigned ON) const {
1039     assert(ON < Operands.size());
1040     return Operands[ON];
1041   }
1042 
1043   Record *getImpResult(unsigned RN) const {
1044     assert(RN < ImpResults.size());
1045     return ImpResults[RN];
1046   }
1047 
1048   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1049   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1050 };
1051 
1052 /// This class represents a condition that has to be satisfied for a pattern
1053 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
1054 /// in addition to the Target.td's predicates, this class can also represent
1055 /// conditions associated with HW modes. Both types will eventually become
1056 /// strings containing C++ code to be executed, the difference is in how
1057 /// these strings are generated.
1058 class Predicate {
1059 public:
1060   Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
1061     assert(R->isSubClassOf("Predicate") &&
1062            "Predicate objects should only be created for records derived"
1063            "from Predicate class");
1064   }
1065   Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
1066     IfCond(C), IsHwMode(true) {}
1067 
1068   /// Return a string which contains the C++ condition code that will serve
1069   /// as a predicate during instruction selection.
1070   std::string getCondString() const {
1071     // The string will excute in a subclass of SelectionDAGISel.
1072     // Cast to std::string explicitly to avoid ambiguity with StringRef.
1073     std::string C = IsHwMode
1074                         ? std::string("MF->getSubtarget().checkFeatures(\"" +
1075                                       Features + "\")")
1076                         : std::string(Def->getValueAsString("CondString"));
1077     if (C.empty())
1078       return "";
1079     return IfCond ? C : "!("+C+')';
1080   }
1081 
1082   bool operator==(const Predicate &P) const {
1083     return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
1084   }
1085   bool operator<(const Predicate &P) const {
1086     if (IsHwMode != P.IsHwMode)
1087       return IsHwMode < P.IsHwMode;
1088     assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
1089     if (IfCond != P.IfCond)
1090       return IfCond < P.IfCond;
1091     if (Def)
1092       return LessRecord()(Def, P.Def);
1093     return Features < P.Features;
1094   }
1095   Record *Def;            ///< Predicate definition from .td file, null for
1096                           ///< HW modes.
1097   std::string Features;   ///< Feature string for HW mode.
1098   bool IfCond;            ///< The boolean value that the condition has to
1099                           ///< evaluate to for this predicate to be true.
1100   bool IsHwMode;          ///< Does this predicate correspond to a HW mode?
1101 };
1102 
1103 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1104 /// processed to produce isel.
1105 class PatternToMatch {
1106 public:
1107   PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
1108                  TreePatternNodePtr src, TreePatternNodePtr dst,
1109                  std::vector<Record *> dstregs, int complexity,
1110                  unsigned uid, unsigned setmode = 0)
1111       : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
1112         Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
1113         AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
1114 
1115   Record          *SrcRecord;   // Originating Record for the pattern.
1116   TreePatternNodePtr SrcPattern;      // Source pattern to match.
1117   TreePatternNodePtr DstPattern;      // Resulting pattern.
1118   std::vector<Predicate> Predicates;  // Top level predicate conditions
1119                                       // to match.
1120   std::vector<Record*> Dstregs; // Physical register defs being matched.
1121   int              AddedComplexity; // Add to matching pattern complexity.
1122   unsigned         ID;          // Unique ID for the record.
1123   unsigned         ForceMode;   // Force this mode in type inference when set.
1124 
1125   Record          *getSrcRecord()  const { return SrcRecord; }
1126   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
1127   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1128   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
1129   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1130   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
1131   int         getAddedComplexity() const { return AddedComplexity; }
1132   const std::vector<Predicate> &getPredicates() const { return Predicates; }
1133 
1134   std::string getPredicateCheck() const;
1135 
1136   /// Compute the complexity metric for the input pattern.  This roughly
1137   /// corresponds to the number of nodes that are covered.
1138   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1139 };
1140 
1141 class CodeGenDAGPatterns {
1142   RecordKeeper &Records;
1143   CodeGenTarget Target;
1144   CodeGenIntrinsicTable Intrinsics;
1145 
1146   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1147   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1148       SDNodeXForms;
1149   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1150   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1151       PatternFragments;
1152   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1153   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1154 
1155   // Specific SDNode definitions:
1156   Record *intrinsic_void_sdnode;
1157   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1158 
1159   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1160   /// value is the pattern to match, the second pattern is the result to
1161   /// emit.
1162   std::vector<PatternToMatch> PatternsToMatch;
1163 
1164   TypeSetByHwMode LegalVTS;
1165 
1166   using PatternRewriterFn = std::function<void (TreePattern *)>;
1167   PatternRewriterFn PatternRewriter;
1168 
1169   unsigned NumScopes = 0;
1170 
1171 public:
1172   CodeGenDAGPatterns(RecordKeeper &R,
1173                      PatternRewriterFn PatternRewriter = nullptr);
1174 
1175   CodeGenTarget &getTargetInfo() { return Target; }
1176   const CodeGenTarget &getTargetInfo() const { return Target; }
1177   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1178 
1179   Record *getSDNodeNamed(StringRef Name) const;
1180 
1181   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1182     auto F = SDNodes.find(R);
1183     assert(F != SDNodes.end() && "Unknown node!");
1184     return F->second;
1185   }
1186 
1187   // Node transformation lookups.
1188   typedef std::pair<Record*, std::string> NodeXForm;
1189   const NodeXForm &getSDNodeTransform(Record *R) const {
1190     auto F = SDNodeXForms.find(R);
1191     assert(F != SDNodeXForms.end() && "Invalid transform!");
1192     return F->second;
1193   }
1194 
1195   const ComplexPattern &getComplexPattern(Record *R) const {
1196     auto F = ComplexPatterns.find(R);
1197     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1198     return F->second;
1199   }
1200 
1201   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1202     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1203       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1204     llvm_unreachable("Unknown intrinsic!");
1205   }
1206 
1207   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1208     if (IID-1 < Intrinsics.size())
1209       return Intrinsics[IID-1];
1210     llvm_unreachable("Bad intrinsic ID!");
1211   }
1212 
1213   unsigned getIntrinsicID(Record *R) const {
1214     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1215       if (Intrinsics[i].TheDef == R) return i;
1216     llvm_unreachable("Unknown intrinsic!");
1217   }
1218 
1219   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1220     auto F = DefaultOperands.find(R);
1221     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1222     return F->second;
1223   }
1224 
1225   // Pattern Fragment information.
1226   TreePattern *getPatternFragment(Record *R) const {
1227     auto F = PatternFragments.find(R);
1228     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1229     return F->second.get();
1230   }
1231   TreePattern *getPatternFragmentIfRead(Record *R) const {
1232     auto F = PatternFragments.find(R);
1233     if (F == PatternFragments.end())
1234       return nullptr;
1235     return F->second.get();
1236   }
1237 
1238   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1239                    LessRecordByID>::const_iterator pf_iterator;
1240   pf_iterator pf_begin() const { return PatternFragments.begin(); }
1241   pf_iterator pf_end() const { return PatternFragments.end(); }
1242   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1243 
1244   // Patterns to match information.
1245   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1246   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1247   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1248   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1249 
1250   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1251   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1252   void parseInstructionPattern(
1253       CodeGenInstruction &CGI, ListInit *Pattern,
1254       DAGInstMap &DAGInsts);
1255 
1256   const DAGInstruction &getInstruction(Record *R) const {
1257     auto F = Instructions.find(R);
1258     assert(F != Instructions.end() && "Unknown instruction!");
1259     return F->second;
1260   }
1261 
1262   Record *get_intrinsic_void_sdnode() const {
1263     return intrinsic_void_sdnode;
1264   }
1265   Record *get_intrinsic_w_chain_sdnode() const {
1266     return intrinsic_w_chain_sdnode;
1267   }
1268   Record *get_intrinsic_wo_chain_sdnode() const {
1269     return intrinsic_wo_chain_sdnode;
1270   }
1271 
1272   unsigned allocateScope() { return ++NumScopes; }
1273 
1274   bool operandHasDefault(Record *Op) const {
1275     return Op->isSubClassOf("OperandWithDefaultOps") &&
1276       !getDefaultOperand(Op).DefaultOps.empty();
1277   }
1278 
1279 private:
1280   void ParseNodeInfo();
1281   void ParseNodeTransforms();
1282   void ParseComplexPatterns();
1283   void ParsePatternFragments(bool OutFrags = false);
1284   void ParseDefaultOperands();
1285   void ParseInstructions();
1286   void ParsePatterns();
1287   void ExpandHwModeBasedTypes();
1288   void InferInstructionFlags();
1289   void GenerateVariants();
1290   void VerifyInstructionFlags();
1291 
1292   std::vector<Predicate> makePredList(ListInit *L);
1293 
1294   void ParseOnePattern(Record *TheDef,
1295                        TreePattern &Pattern, TreePattern &Result,
1296                        const std::vector<Record *> &InstImpResults);
1297   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1298   void FindPatternInputsAndOutputs(
1299       TreePattern &I, TreePatternNodePtr Pat,
1300       std::map<std::string, TreePatternNodePtr> &InstInputs,
1301       MapVector<std::string, TreePatternNodePtr,
1302                 std::map<std::string, unsigned>> &InstResults,
1303       std::vector<Record *> &InstImpResults);
1304 };
1305 
1306 
1307 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1308                                              TreePattern &TP) const {
1309     bool MadeChange = false;
1310     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1311       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1312     return MadeChange;
1313   }
1314 
1315 } // end namespace llvm
1316 
1317 #endif
1318