1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 
17 #include "CodeGenHwModes.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenTarget.h"
20 #include "SDNodeProperties.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <array>
29 #include <functional>
30 #include <map>
31 #include <numeric>
32 #include <set>
33 #include <vector>
34 
35 namespace llvm {
36 
37 class Record;
38 class Init;
39 class ListInit;
40 class DagInit;
41 class SDNodeInfo;
42 class TreePattern;
43 class TreePatternNode;
44 class CodeGenDAGPatterns;
45 class ComplexPattern;
46 
47 /// Shared pointer for TreePatternNode.
48 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
49 
50 /// This represents a set of MVTs. Since the underlying type for the MVT
51 /// is uint8_t, there are at most 256 values. To reduce the number of memory
52 /// allocations and deallocations, represent the set as a sequence of bits.
53 /// To reduce the allocations even further, make MachineValueTypeSet own
54 /// the storage and use std::array as the bit container.
55 struct MachineValueTypeSet {
56   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
57                              uint8_t>::value,
58                 "Change uint8_t here to the SimpleValueType's type");
59   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
60   using WordType = uint64_t;
61   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
62   static unsigned constexpr NumWords = Capacity/WordWidth;
63   static_assert(NumWords*WordWidth == Capacity,
64                 "Capacity should be a multiple of WordWidth");
65 
66   LLVM_ATTRIBUTE_ALWAYS_INLINE
67   MachineValueTypeSet() {
68     clear();
69   }
70 
71   LLVM_ATTRIBUTE_ALWAYS_INLINE
72   unsigned size() const {
73     unsigned Count = 0;
74     for (WordType W : Words)
75       Count += countPopulation(W);
76     return Count;
77   }
78   LLVM_ATTRIBUTE_ALWAYS_INLINE
79   void clear() {
80     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
81   }
82   LLVM_ATTRIBUTE_ALWAYS_INLINE
83   bool empty() const {
84     for (WordType W : Words)
85       if (W != 0)
86         return false;
87     return true;
88   }
89   LLVM_ATTRIBUTE_ALWAYS_INLINE
90   unsigned count(MVT T) const {
91     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
92   }
93   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
94     bool V = count(T.SimpleTy);
95     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
96     return {*this, V};
97   }
98   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
99     for (unsigned i = 0; i != NumWords; ++i)
100       Words[i] |= S.Words[i];
101     return *this;
102   }
103   LLVM_ATTRIBUTE_ALWAYS_INLINE
104   void erase(MVT T) {
105     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
106   }
107 
108   struct const_iterator {
109     // Some implementations of the C++ library require these traits to be
110     // defined.
111     using iterator_category = std::forward_iterator_tag;
112     using value_type = MVT;
113     using difference_type = ptrdiff_t;
114     using pointer = const MVT*;
115     using reference = const MVT&;
116 
117     LLVM_ATTRIBUTE_ALWAYS_INLINE
118     MVT operator*() const {
119       assert(Pos != Capacity);
120       return MVT::SimpleValueType(Pos);
121     }
122     LLVM_ATTRIBUTE_ALWAYS_INLINE
123     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
124       Pos = End ? Capacity : find_from_pos(0);
125     }
126     LLVM_ATTRIBUTE_ALWAYS_INLINE
127     const_iterator &operator++() {
128       assert(Pos != Capacity);
129       Pos = find_from_pos(Pos+1);
130       return *this;
131     }
132 
133     LLVM_ATTRIBUTE_ALWAYS_INLINE
134     bool operator==(const const_iterator &It) const {
135       return Set == It.Set && Pos == It.Pos;
136     }
137     LLVM_ATTRIBUTE_ALWAYS_INLINE
138     bool operator!=(const const_iterator &It) const {
139       return !operator==(It);
140     }
141 
142   private:
143     unsigned find_from_pos(unsigned P) const {
144       unsigned SkipWords = P / WordWidth;
145       unsigned SkipBits = P % WordWidth;
146       unsigned Count = SkipWords * WordWidth;
147 
148       // If P is in the middle of a word, process it manually here, because
149       // the trailing bits need to be masked off to use findFirstSet.
150       if (SkipBits != 0) {
151         WordType W = Set->Words[SkipWords];
152         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
153         if (W != 0)
154           return Count + findFirstSet(W);
155         Count += WordWidth;
156         SkipWords++;
157       }
158 
159       for (unsigned i = SkipWords; i != NumWords; ++i) {
160         WordType W = Set->Words[i];
161         if (W != 0)
162           return Count + findFirstSet(W);
163         Count += WordWidth;
164       }
165       return Capacity;
166     }
167 
168     const MachineValueTypeSet *Set;
169     unsigned Pos;
170   };
171 
172   LLVM_ATTRIBUTE_ALWAYS_INLINE
173   const_iterator begin() const { return const_iterator(this, false); }
174   LLVM_ATTRIBUTE_ALWAYS_INLINE
175   const_iterator end()   const { return const_iterator(this, true); }
176 
177   LLVM_ATTRIBUTE_ALWAYS_INLINE
178   bool operator==(const MachineValueTypeSet &S) const {
179     return Words == S.Words;
180   }
181   LLVM_ATTRIBUTE_ALWAYS_INLINE
182   bool operator!=(const MachineValueTypeSet &S) const {
183     return !operator==(S);
184   }
185 
186 private:
187   friend struct const_iterator;
188   std::array<WordType,NumWords> Words;
189 };
190 
191 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
192   using SetType = MachineValueTypeSet;
193   std::vector<unsigned> AddrSpaces;
194 
195   TypeSetByHwMode() = default;
196   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
197   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
198   TypeSetByHwMode(MVT::SimpleValueType VT)
199     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
200   TypeSetByHwMode(ValueTypeByHwMode VT)
201     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
202   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
203 
204   SetType &getOrCreate(unsigned Mode) {
205     if (hasMode(Mode))
206       return get(Mode);
207     return Map.insert({Mode,SetType()}).first->second;
208   }
209 
210   bool isValueTypeByHwMode(bool AllowEmpty) const;
211   ValueTypeByHwMode getValueTypeByHwMode() const;
212 
213   LLVM_ATTRIBUTE_ALWAYS_INLINE
214   bool isMachineValueType() const {
215     return isDefaultOnly() && Map.begin()->second.size() == 1;
216   }
217 
218   LLVM_ATTRIBUTE_ALWAYS_INLINE
219   MVT getMachineValueType() const {
220     assert(isMachineValueType());
221     return *Map.begin()->second.begin();
222   }
223 
224   bool isPossible() const;
225 
226   LLVM_ATTRIBUTE_ALWAYS_INLINE
227   bool isDefaultOnly() const {
228     return Map.size() == 1 && Map.begin()->first == DefaultMode;
229   }
230 
231   bool isPointer() const {
232     return getValueTypeByHwMode().isPointer();
233   }
234 
235   unsigned getPtrAddrSpace() const {
236     assert(isPointer());
237     return getValueTypeByHwMode().PtrAddrSpace;
238   }
239 
240   bool insert(const ValueTypeByHwMode &VVT);
241   bool constrain(const TypeSetByHwMode &VTS);
242   template <typename Predicate> bool constrain(Predicate P);
243   template <typename Predicate>
244   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
245 
246   void writeToStream(raw_ostream &OS) const;
247   static void writeToStream(const SetType &S, raw_ostream &OS);
248 
249   bool operator==(const TypeSetByHwMode &VTS) const;
250   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
251 
252   void dump() const;
253   bool validate() const;
254 
255 private:
256   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
257   /// Intersect two sets. Return true if anything has changed.
258   bool intersect(SetType &Out, const SetType &In);
259 };
260 
261 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
262 
263 struct TypeInfer {
264   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
265 
266   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
267     return VTS.isValueTypeByHwMode(AllowEmpty);
268   }
269   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
270                                 bool AllowEmpty) const {
271     assert(VTS.isValueTypeByHwMode(AllowEmpty));
272     return VTS.getValueTypeByHwMode();
273   }
274 
275   /// The protocol in the following functions (Merge*, force*, Enforce*,
276   /// expand*) is to return "true" if a change has been made, "false"
277   /// otherwise.
278 
279   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
280   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
281     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
282   }
283   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
284     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
285   }
286 
287   /// Reduce the set \p Out to have at most one element for each mode.
288   bool forceArbitrary(TypeSetByHwMode &Out);
289 
290   /// The following four functions ensure that upon return the set \p Out
291   /// will only contain types of the specified kind: integer, floating-point,
292   /// scalar, or vector.
293   /// If \p Out is empty, all legal types of the specified kind will be added
294   /// to it. Otherwise, all types that are not of the specified kind will be
295   /// removed from \p Out.
296   bool EnforceInteger(TypeSetByHwMode &Out);
297   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
298   bool EnforceScalar(TypeSetByHwMode &Out);
299   bool EnforceVector(TypeSetByHwMode &Out);
300 
301   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
302   /// unchanged.
303   bool EnforceAny(TypeSetByHwMode &Out);
304   /// Make sure that for each type in \p Small, there exists a larger type
305   /// in \p Big.
306   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
307   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
308   ///    for each type U in \p Elem, U is a scalar type.
309   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
310   ///    (vector) type T in \p Vec, such that U is the element type of T.
311   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
312   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
313                               const ValueTypeByHwMode &VVT);
314   /// Ensure that for each type T in \p Sub, T is a vector type, and there
315   /// exists a type U in \p Vec such that U is a vector type with the same
316   /// element type as T and at least as many elements as T.
317   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
318                                     TypeSetByHwMode &Sub);
319   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
320   /// 2. Ensure that for each vector type T in \p V, there exists a vector
321   ///    type U in \p W, such that T and U have the same number of elements.
322   /// 3. Ensure that for each vector type U in \p W, there exists a vector
323   ///    type T in \p V, such that T and U have the same number of elements
324   ///    (reverse of 2).
325   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
326   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
327   ///    such that T and U have equal size in bits.
328   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
329   ///    such that T and U have equal size in bits (reverse of 1).
330   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
331 
332   /// For each overloaded type (i.e. of form *Any), replace it with the
333   /// corresponding subset of legal, specific types.
334   void expandOverloads(TypeSetByHwMode &VTS);
335   void expandOverloads(TypeSetByHwMode::SetType &Out,
336                        const TypeSetByHwMode::SetType &Legal);
337 
338   struct ValidateOnExit {
339     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
340   #ifndef NDEBUG
341     ~ValidateOnExit();
342   #else
343     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
344   #endif
345     TypeInfer &Infer;
346     TypeSetByHwMode &VTS;
347   };
348 
349   struct SuppressValidation {
350     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
351       Infer.Validate = false;
352     }
353     ~SuppressValidation() {
354       Infer.Validate = SavedValidate;
355     }
356     TypeInfer &Infer;
357     bool SavedValidate;
358   };
359 
360   TreePattern &TP;
361   unsigned ForceMode;     // Mode to use when set.
362   bool CodeGen = false;   // Set during generation of matcher code.
363   bool Validate = true;   // Indicate whether to validate types.
364 
365 private:
366   const TypeSetByHwMode &getLegalTypes();
367 
368   /// Cached legal types (in default mode).
369   bool LegalTypesCached = false;
370   TypeSetByHwMode LegalCache;
371 };
372 
373 /// Set type used to track multiply used variables in patterns
374 typedef StringSet<> MultipleUseVarSet;
375 
376 /// SDTypeConstraint - This is a discriminated union of constraints,
377 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
378 struct SDTypeConstraint {
379   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
380 
381   unsigned OperandNo;   // The operand # this constraint applies to.
382   enum {
383     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
384     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
385     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
386   } ConstraintType;
387 
388   union {   // The discriminated union.
389     struct {
390       unsigned OtherOperandNum;
391     } SDTCisSameAs_Info;
392     struct {
393       unsigned OtherOperandNum;
394     } SDTCisVTSmallerThanOp_Info;
395     struct {
396       unsigned BigOperandNum;
397     } SDTCisOpSmallerThanOp_Info;
398     struct {
399       unsigned OtherOperandNum;
400     } SDTCisEltOfVec_Info;
401     struct {
402       unsigned OtherOperandNum;
403     } SDTCisSubVecOfVec_Info;
404     struct {
405       unsigned OtherOperandNum;
406     } SDTCisSameNumEltsAs_Info;
407     struct {
408       unsigned OtherOperandNum;
409     } SDTCisSameSizeAs_Info;
410   } x;
411 
412   // The VT for SDTCisVT and SDTCVecEltisVT.
413   // Must not be in the union because it has a non-trivial destructor.
414   ValueTypeByHwMode VVT;
415 
416   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
417   /// constraint to the nodes operands.  This returns true if it makes a
418   /// change, false otherwise.  If a type contradiction is found, an error
419   /// is flagged.
420   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
421                            TreePattern &TP) const;
422 };
423 
424 /// ScopedName - A name of a node associated with a "scope" that indicates
425 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
426 /// used. This enables substitution of pattern fragments while keeping track
427 /// of what name(s) were originally given to various nodes in the tree.
428 class ScopedName {
429   unsigned Scope;
430   std::string Identifier;
431 public:
432   ScopedName(unsigned Scope, StringRef Identifier)
433       : Scope(Scope), Identifier(std::string(Identifier)) {
434     assert(Scope != 0 &&
435            "Scope == 0 is used to indicate predicates without arguments");
436   }
437 
438   unsigned getScope() const { return Scope; }
439   const std::string &getIdentifier() const { return Identifier; }
440 
441   std::string getFullName() const;
442 
443   bool operator==(const ScopedName &o) const;
444   bool operator!=(const ScopedName &o) const;
445 };
446 
447 /// SDNodeInfo - One of these records is created for each SDNode instance in
448 /// the target .td file.  This represents the various dag nodes we will be
449 /// processing.
450 class SDNodeInfo {
451   Record *Def;
452   StringRef EnumName;
453   StringRef SDClassName;
454   unsigned Properties;
455   unsigned NumResults;
456   int NumOperands;
457   std::vector<SDTypeConstraint> TypeConstraints;
458 public:
459   // Parse the specified record.
460   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
461 
462   unsigned getNumResults() const { return NumResults; }
463 
464   /// getNumOperands - This is the number of operands required or -1 if
465   /// variadic.
466   int getNumOperands() const { return NumOperands; }
467   Record *getRecord() const { return Def; }
468   StringRef getEnumName() const { return EnumName; }
469   StringRef getSDClassName() const { return SDClassName; }
470 
471   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
472     return TypeConstraints;
473   }
474 
475   /// getKnownType - If the type constraints on this node imply a fixed type
476   /// (e.g. all stores return void, etc), then return it as an
477   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
478   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
479 
480   /// hasProperty - Return true if this node has the specified property.
481   ///
482   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
483 
484   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
485   /// constraints for this node to the operands of the node.  This returns
486   /// true if it makes a change, false otherwise.  If a type contradiction is
487   /// found, an error is flagged.
488   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
489 };
490 
491 /// TreePredicateFn - This is an abstraction that represents the predicates on
492 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
493 /// provide nice accessors.
494 class TreePredicateFn {
495   /// PatFragRec - This is the TreePattern for the PatFrag that we
496   /// originally came from.
497   TreePattern *PatFragRec;
498 public:
499   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
500   TreePredicateFn(TreePattern *N);
501 
502 
503   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
504 
505   /// isAlwaysTrue - Return true if this is a noop predicate.
506   bool isAlwaysTrue() const;
507 
508   bool isImmediatePattern() const { return hasImmCode(); }
509 
510   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
511   /// this is an immediate predicate.  It is an error to call this on a
512   /// non-immediate pattern.
513   std::string getImmediatePredicateCode() const {
514     std::string Result = getImmCode();
515     assert(!Result.empty() && "Isn't an immediate pattern!");
516     return Result;
517   }
518 
519   bool operator==(const TreePredicateFn &RHS) const {
520     return PatFragRec == RHS.PatFragRec;
521   }
522 
523   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
524 
525   /// Return the name to use in the generated code to reference this, this is
526   /// "Predicate_foo" if from a pattern fragment "foo".
527   std::string getFnName() const;
528 
529   /// getCodeToRunOnSDNode - Return the code for the function body that
530   /// evaluates this predicate.  The argument is expected to be in "Node",
531   /// not N.  This handles casting and conversion to a concrete node type as
532   /// appropriate.
533   std::string getCodeToRunOnSDNode() const;
534 
535   /// Get the data type of the argument to getImmediatePredicateCode().
536   StringRef getImmType() const;
537 
538   /// Get a string that describes the type returned by getImmType() but is
539   /// usable as part of an identifier.
540   StringRef getImmTypeIdentifier() const;
541 
542   // Predicate code uses the PatFrag's captured operands.
543   bool usesOperands() const;
544 
545   // Is the desired predefined predicate for a load?
546   bool isLoad() const;
547   // Is the desired predefined predicate for a store?
548   bool isStore() const;
549   // Is the desired predefined predicate for an atomic?
550   bool isAtomic() const;
551 
552   /// Is this predicate the predefined unindexed load predicate?
553   /// Is this predicate the predefined unindexed store predicate?
554   bool isUnindexed() const;
555   /// Is this predicate the predefined non-extending load predicate?
556   bool isNonExtLoad() const;
557   /// Is this predicate the predefined any-extend load predicate?
558   bool isAnyExtLoad() const;
559   /// Is this predicate the predefined sign-extend load predicate?
560   bool isSignExtLoad() const;
561   /// Is this predicate the predefined zero-extend load predicate?
562   bool isZeroExtLoad() const;
563   /// Is this predicate the predefined non-truncating store predicate?
564   bool isNonTruncStore() const;
565   /// Is this predicate the predefined truncating store predicate?
566   bool isTruncStore() const;
567 
568   /// Is this predicate the predefined monotonic atomic predicate?
569   bool isAtomicOrderingMonotonic() const;
570   /// Is this predicate the predefined acquire atomic predicate?
571   bool isAtomicOrderingAcquire() const;
572   /// Is this predicate the predefined release atomic predicate?
573   bool isAtomicOrderingRelease() const;
574   /// Is this predicate the predefined acquire-release atomic predicate?
575   bool isAtomicOrderingAcquireRelease() const;
576   /// Is this predicate the predefined sequentially consistent atomic predicate?
577   bool isAtomicOrderingSequentiallyConsistent() const;
578 
579   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
580   bool isAtomicOrderingAcquireOrStronger() const;
581   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
582   bool isAtomicOrderingWeakerThanAcquire() const;
583 
584   /// Is this predicate the predefined release-or-stronger atomic predicate?
585   bool isAtomicOrderingReleaseOrStronger() const;
586   /// Is this predicate the predefined weaker-than-release atomic predicate?
587   bool isAtomicOrderingWeakerThanRelease() const;
588 
589   /// If non-null, indicates that this predicate is a predefined memory VT
590   /// predicate for a load/store and returns the ValueType record for the memory VT.
591   Record *getMemoryVT() const;
592   /// If non-null, indicates that this predicate is a predefined memory VT
593   /// predicate (checking only the scalar type) for load/store and returns the
594   /// ValueType record for the memory VT.
595   Record *getScalarMemoryVT() const;
596 
597   ListInit *getAddressSpaces() const;
598   int64_t getMinAlignment() const;
599 
600   // If true, indicates that GlobalISel-based C++ code was supplied.
601   bool hasGISelPredicateCode() const;
602   std::string getGISelPredicateCode() const;
603 
604 private:
605   bool hasPredCode() const;
606   bool hasImmCode() const;
607   std::string getPredCode() const;
608   std::string getImmCode() const;
609   bool immCodeUsesAPInt() const;
610   bool immCodeUsesAPFloat() const;
611 
612   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
613 };
614 
615 struct TreePredicateCall {
616   TreePredicateFn Fn;
617 
618   // Scope -- unique identifier for retrieving named arguments. 0 is used when
619   // the predicate does not use named arguments.
620   unsigned Scope;
621 
622   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
623     : Fn(Fn), Scope(Scope) {}
624 
625   bool operator==(const TreePredicateCall &o) const {
626     return Fn == o.Fn && Scope == o.Scope;
627   }
628   bool operator!=(const TreePredicateCall &o) const {
629     return !(*this == o);
630   }
631 };
632 
633 class TreePatternNode {
634   /// The type of each node result.  Before and during type inference, each
635   /// result may be a set of possible types.  After (successful) type inference,
636   /// each is a single concrete type.
637   std::vector<TypeSetByHwMode> Types;
638 
639   /// The index of each result in results of the pattern.
640   std::vector<unsigned> ResultPerm;
641 
642   /// Operator - The Record for the operator if this is an interior node (not
643   /// a leaf).
644   Record *Operator;
645 
646   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
647   ///
648   Init *Val;
649 
650   /// Name - The name given to this node with the :$foo notation.
651   ///
652   std::string Name;
653 
654   std::vector<ScopedName> NamesAsPredicateArg;
655 
656   /// PredicateCalls - The predicate functions to execute on this node to check
657   /// for a match.  If this list is empty, no predicate is involved.
658   std::vector<TreePredicateCall> PredicateCalls;
659 
660   /// TransformFn - The transformation function to execute on this node before
661   /// it can be substituted into the resulting instruction on a pattern match.
662   Record *TransformFn;
663 
664   std::vector<TreePatternNodePtr> Children;
665 
666 public:
667   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
668                   unsigned NumResults)
669       : Operator(Op), Val(nullptr), TransformFn(nullptr),
670         Children(std::move(Ch)) {
671     Types.resize(NumResults);
672     ResultPerm.resize(NumResults);
673     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
674   }
675   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
676     : Operator(nullptr), Val(val), TransformFn(nullptr) {
677     Types.resize(NumResults);
678     ResultPerm.resize(NumResults);
679     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
680   }
681 
682   bool hasName() const { return !Name.empty(); }
683   const std::string &getName() const { return Name; }
684   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
685 
686   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
687     return NamesAsPredicateArg;
688   }
689   void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
690     NamesAsPredicateArg = Names;
691   }
692   void addNameAsPredicateArg(const ScopedName &N) {
693     NamesAsPredicateArg.push_back(N);
694   }
695 
696   bool isLeaf() const { return Val != nullptr; }
697 
698   // Type accessors.
699   unsigned getNumTypes() const { return Types.size(); }
700   ValueTypeByHwMode getType(unsigned ResNo) const {
701     return Types[ResNo].getValueTypeByHwMode();
702   }
703   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
704   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
705     return Types[ResNo];
706   }
707   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
708   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
709   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
710     return Types[ResNo].getMachineValueType().SimpleTy;
711   }
712 
713   bool hasConcreteType(unsigned ResNo) const {
714     return Types[ResNo].isValueTypeByHwMode(false);
715   }
716   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
717     return Types[ResNo].empty();
718   }
719 
720   unsigned getNumResults() const { return ResultPerm.size(); }
721   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
722   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
723 
724   Init *getLeafValue() const { assert(isLeaf()); return Val; }
725   Record *getOperator() const { assert(!isLeaf()); return Operator; }
726 
727   unsigned getNumChildren() const { return Children.size(); }
728   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
729   const TreePatternNodePtr &getChildShared(unsigned N) const {
730     return Children[N];
731   }
732   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
733 
734   /// hasChild - Return true if N is any of our children.
735   bool hasChild(const TreePatternNode *N) const {
736     for (unsigned i = 0, e = Children.size(); i != e; ++i)
737       if (Children[i].get() == N)
738         return true;
739     return false;
740   }
741 
742   bool hasProperTypeByHwMode() const;
743   bool hasPossibleType() const;
744   bool setDefaultMode(unsigned Mode);
745 
746   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
747 
748   const std::vector<TreePredicateCall> &getPredicateCalls() const {
749     return PredicateCalls;
750   }
751   void clearPredicateCalls() { PredicateCalls.clear(); }
752   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
753     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
754     PredicateCalls = Calls;
755   }
756   void addPredicateCall(const TreePredicateCall &Call) {
757     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
758     assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
759     PredicateCalls.push_back(Call);
760   }
761   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
762     assert((Scope != 0) == Fn.usesOperands());
763     addPredicateCall(TreePredicateCall(Fn, Scope));
764   }
765 
766   Record *getTransformFn() const { return TransformFn; }
767   void setTransformFn(Record *Fn) { TransformFn = Fn; }
768 
769   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
770   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
771   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
772 
773   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
774   /// return the ComplexPattern information, otherwise return null.
775   const ComplexPattern *
776   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
777 
778   /// Returns the number of MachineInstr operands that would be produced by this
779   /// node if it mapped directly to an output Instruction's
780   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
781   /// for Operands; otherwise 1.
782   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
783 
784   /// NodeHasProperty - Return true if this node has the specified property.
785   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
786 
787   /// TreeHasProperty - Return true if any node in this tree has the specified
788   /// property.
789   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
790 
791   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
792   /// marked isCommutative.
793   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
794 
795   void print(raw_ostream &OS) const;
796   void dump() const;
797 
798 public:   // Higher level manipulation routines.
799 
800   /// clone - Return a new copy of this tree.
801   ///
802   TreePatternNodePtr clone() const;
803 
804   /// RemoveAllTypes - Recursively strip all the types of this tree.
805   void RemoveAllTypes();
806 
807   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
808   /// the specified node.  For this comparison, all of the state of the node
809   /// is considered, except for the assigned name.  Nodes with differing names
810   /// that are otherwise identical are considered isomorphic.
811   bool isIsomorphicTo(const TreePatternNode *N,
812                       const MultipleUseVarSet &DepVars) const;
813 
814   /// SubstituteFormalArguments - Replace the formal arguments in this tree
815   /// with actual values specified by ArgMap.
816   void
817   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
818 
819   /// InlinePatternFragments - If this pattern refers to any pattern
820   /// fragments, return the set of inlined versions (this can be more than
821   /// one if a PatFrags record has multiple alternatives).
822   void InlinePatternFragments(TreePatternNodePtr T,
823                               TreePattern &TP,
824                               std::vector<TreePatternNodePtr> &OutAlternatives);
825 
826   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
827   /// this node and its children in the tree.  This returns true if it makes a
828   /// change, false otherwise.  If a type contradiction is found, flag an error.
829   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
830 
831   /// UpdateNodeType - Set the node type of N to VT if VT contains
832   /// information.  If N already contains a conflicting type, then flag an
833   /// error.  This returns true if any information was updated.
834   ///
835   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
836                       TreePattern &TP);
837   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
838                       TreePattern &TP);
839   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
840                       TreePattern &TP);
841 
842   // Update node type with types inferred from an instruction operand or result
843   // def from the ins/outs lists.
844   // Return true if the type changed.
845   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
846 
847   /// ContainsUnresolvedType - Return true if this tree contains any
848   /// unresolved types.
849   bool ContainsUnresolvedType(TreePattern &TP) const;
850 
851   /// canPatternMatch - If it is impossible for this pattern to match on this
852   /// target, fill in Reason and return false.  Otherwise, return true.
853   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
854 };
855 
856 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
857   TPN.print(OS);
858   return OS;
859 }
860 
861 
862 /// TreePattern - Represent a pattern, used for instructions, pattern
863 /// fragments, etc.
864 ///
865 class TreePattern {
866   /// Trees - The list of pattern trees which corresponds to this pattern.
867   /// Note that PatFrag's only have a single tree.
868   ///
869   std::vector<TreePatternNodePtr> Trees;
870 
871   /// NamedNodes - This is all of the nodes that have names in the trees in this
872   /// pattern.
873   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
874 
875   /// TheRecord - The actual TableGen record corresponding to this pattern.
876   ///
877   Record *TheRecord;
878 
879   /// Args - This is a list of all of the arguments to this pattern (for
880   /// PatFrag patterns), which are the 'node' markers in this pattern.
881   std::vector<std::string> Args;
882 
883   /// CDP - the top-level object coordinating this madness.
884   ///
885   CodeGenDAGPatterns &CDP;
886 
887   /// isInputPattern - True if this is an input pattern, something to match.
888   /// False if this is an output pattern, something to emit.
889   bool isInputPattern;
890 
891   /// hasError - True if the currently processed nodes have unresolvable types
892   /// or other non-fatal errors
893   bool HasError;
894 
895   /// It's important that the usage of operands in ComplexPatterns is
896   /// consistent: each named operand can be defined by at most one
897   /// ComplexPattern. This records the ComplexPattern instance and the operand
898   /// number for each operand encountered in a ComplexPattern to aid in that
899   /// check.
900   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
901 
902   TypeInfer Infer;
903 
904 public:
905 
906   /// TreePattern constructor - Parse the specified DagInits into the
907   /// current record.
908   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
909               CodeGenDAGPatterns &ise);
910   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
911               CodeGenDAGPatterns &ise);
912   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
913               CodeGenDAGPatterns &ise);
914 
915   /// getTrees - Return the tree patterns which corresponds to this pattern.
916   ///
917   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
918   unsigned getNumTrees() const { return Trees.size(); }
919   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
920   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
921   const TreePatternNodePtr &getOnlyTree() const {
922     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
923     return Trees[0];
924   }
925 
926   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
927     if (NamedNodes.empty())
928       ComputeNamedNodes();
929     return NamedNodes;
930   }
931 
932   /// getRecord - Return the actual TableGen record corresponding to this
933   /// pattern.
934   ///
935   Record *getRecord() const { return TheRecord; }
936 
937   unsigned getNumArgs() const { return Args.size(); }
938   const std::string &getArgName(unsigned i) const {
939     assert(i < Args.size() && "Argument reference out of range!");
940     return Args[i];
941   }
942   std::vector<std::string> &getArgList() { return Args; }
943 
944   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
945 
946   /// InlinePatternFragments - If this pattern refers to any pattern
947   /// fragments, inline them into place, giving us a pattern without any
948   /// PatFrags references.  This may increase the number of trees in the
949   /// pattern if a PatFrags has multiple alternatives.
950   void InlinePatternFragments() {
951     std::vector<TreePatternNodePtr> Copy = Trees;
952     Trees.clear();
953     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
954       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
955   }
956 
957   /// InferAllTypes - Infer/propagate as many types throughout the expression
958   /// patterns as possible.  Return true if all types are inferred, false
959   /// otherwise.  Bail out if a type contradiction is found.
960   bool InferAllTypes(
961       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
962 
963   /// error - If this is the first error in the current resolution step,
964   /// print it and set the error flag.  Otherwise, continue silently.
965   void error(const Twine &Msg);
966   bool hasError() const {
967     return HasError;
968   }
969   void resetError() {
970     HasError = false;
971   }
972 
973   TypeInfer &getInfer() { return Infer; }
974 
975   void print(raw_ostream &OS) const;
976   void dump() const;
977 
978 private:
979   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
980   void ComputeNamedNodes();
981   void ComputeNamedNodes(TreePatternNode *N);
982 };
983 
984 
985 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
986                                             const TypeSetByHwMode &InTy,
987                                             TreePattern &TP) {
988   TypeSetByHwMode VTS(InTy);
989   TP.getInfer().expandOverloads(VTS);
990   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
991 }
992 
993 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
994                                             MVT::SimpleValueType InTy,
995                                             TreePattern &TP) {
996   TypeSetByHwMode VTS(InTy);
997   TP.getInfer().expandOverloads(VTS);
998   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
999 }
1000 
1001 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
1002                                             ValueTypeByHwMode InTy,
1003                                             TreePattern &TP) {
1004   TypeSetByHwMode VTS(InTy);
1005   TP.getInfer().expandOverloads(VTS);
1006   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1007 }
1008 
1009 
1010 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1011 /// that has a set ExecuteAlways / DefaultOps field.
1012 struct DAGDefaultOperand {
1013   std::vector<TreePatternNodePtr> DefaultOps;
1014 };
1015 
1016 class DAGInstruction {
1017   std::vector<Record*> Results;
1018   std::vector<Record*> Operands;
1019   std::vector<Record*> ImpResults;
1020   TreePatternNodePtr SrcPattern;
1021   TreePatternNodePtr ResultPattern;
1022 
1023 public:
1024   DAGInstruction(const std::vector<Record*> &results,
1025                  const std::vector<Record*> &operands,
1026                  const std::vector<Record*> &impresults,
1027                  TreePatternNodePtr srcpattern = nullptr,
1028                  TreePatternNodePtr resultpattern = nullptr)
1029     : Results(results), Operands(operands), ImpResults(impresults),
1030       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1031 
1032   unsigned getNumResults() const { return Results.size(); }
1033   unsigned getNumOperands() const { return Operands.size(); }
1034   unsigned getNumImpResults() const { return ImpResults.size(); }
1035   const std::vector<Record*>& getImpResults() const { return ImpResults; }
1036 
1037   Record *getResult(unsigned RN) const {
1038     assert(RN < Results.size());
1039     return Results[RN];
1040   }
1041 
1042   Record *getOperand(unsigned ON) const {
1043     assert(ON < Operands.size());
1044     return Operands[ON];
1045   }
1046 
1047   Record *getImpResult(unsigned RN) const {
1048     assert(RN < ImpResults.size());
1049     return ImpResults[RN];
1050   }
1051 
1052   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1053   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1054 };
1055 
1056 /// This class represents a condition that has to be satisfied for a pattern
1057 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
1058 /// in addition to the Target.td's predicates, this class can also represent
1059 /// conditions associated with HW modes. Both types will eventually become
1060 /// strings containing C++ code to be executed, the difference is in how
1061 /// these strings are generated.
1062 class Predicate {
1063 public:
1064   Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
1065     assert(R->isSubClassOf("Predicate") &&
1066            "Predicate objects should only be created for records derived"
1067            "from Predicate class");
1068   }
1069   Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
1070     IfCond(C), IsHwMode(true) {}
1071 
1072   /// Return a string which contains the C++ condition code that will serve
1073   /// as a predicate during instruction selection.
1074   std::string getCondString() const {
1075     // The string will excute in a subclass of SelectionDAGISel.
1076     // Cast to std::string explicitly to avoid ambiguity with StringRef.
1077     std::string C = IsHwMode
1078                         ? std::string("MF->getSubtarget().checkFeatures(\"" +
1079                                       Features + "\")")
1080                         : std::string(Def->getValueAsString("CondString"));
1081     if (C.empty())
1082       return "";
1083     return IfCond ? C : "!("+C+')';
1084   }
1085 
1086   bool operator==(const Predicate &P) const {
1087     return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
1088   }
1089   bool operator<(const Predicate &P) const {
1090     if (IsHwMode != P.IsHwMode)
1091       return IsHwMode < P.IsHwMode;
1092     assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
1093     if (IfCond != P.IfCond)
1094       return IfCond < P.IfCond;
1095     if (Def)
1096       return LessRecord()(Def, P.Def);
1097     return Features < P.Features;
1098   }
1099   Record *Def;            ///< Predicate definition from .td file, null for
1100                           ///< HW modes.
1101   std::string Features;   ///< Feature string for HW mode.
1102   bool IfCond;            ///< The boolean value that the condition has to
1103                           ///< evaluate to for this predicate to be true.
1104   bool IsHwMode;          ///< Does this predicate correspond to a HW mode?
1105 };
1106 
1107 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1108 /// processed to produce isel.
1109 class PatternToMatch {
1110 public:
1111   PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
1112                  TreePatternNodePtr src, TreePatternNodePtr dst,
1113                  std::vector<Record *> dstregs, int complexity,
1114                  unsigned uid, unsigned setmode = 0)
1115       : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
1116         Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
1117         AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
1118 
1119   Record          *SrcRecord;   // Originating Record for the pattern.
1120   TreePatternNodePtr SrcPattern;      // Source pattern to match.
1121   TreePatternNodePtr DstPattern;      // Resulting pattern.
1122   std::vector<Predicate> Predicates;  // Top level predicate conditions
1123                                       // to match.
1124   std::vector<Record*> Dstregs; // Physical register defs being matched.
1125   int              AddedComplexity; // Add to matching pattern complexity.
1126   unsigned         ID;          // Unique ID for the record.
1127   unsigned         ForceMode;   // Force this mode in type inference when set.
1128 
1129   Record          *getSrcRecord()  const { return SrcRecord; }
1130   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
1131   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1132   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
1133   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1134   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
1135   int         getAddedComplexity() const { return AddedComplexity; }
1136   const std::vector<Predicate> &getPredicates() const { return Predicates; }
1137 
1138   std::string getPredicateCheck() const;
1139 
1140   /// Compute the complexity metric for the input pattern.  This roughly
1141   /// corresponds to the number of nodes that are covered.
1142   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1143 };
1144 
1145 class CodeGenDAGPatterns {
1146   RecordKeeper &Records;
1147   CodeGenTarget Target;
1148   CodeGenIntrinsicTable Intrinsics;
1149 
1150   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1151   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1152       SDNodeXForms;
1153   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1154   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1155       PatternFragments;
1156   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1157   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1158 
1159   // Specific SDNode definitions:
1160   Record *intrinsic_void_sdnode;
1161   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1162 
1163   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1164   /// value is the pattern to match, the second pattern is the result to
1165   /// emit.
1166   std::vector<PatternToMatch> PatternsToMatch;
1167 
1168   TypeSetByHwMode LegalVTS;
1169 
1170   using PatternRewriterFn = std::function<void (TreePattern *)>;
1171   PatternRewriterFn PatternRewriter;
1172 
1173   unsigned NumScopes = 0;
1174 
1175 public:
1176   CodeGenDAGPatterns(RecordKeeper &R,
1177                      PatternRewriterFn PatternRewriter = nullptr);
1178 
1179   CodeGenTarget &getTargetInfo() { return Target; }
1180   const CodeGenTarget &getTargetInfo() const { return Target; }
1181   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1182 
1183   Record *getSDNodeNamed(const std::string &Name) const;
1184 
1185   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1186     auto F = SDNodes.find(R);
1187     assert(F != SDNodes.end() && "Unknown node!");
1188     return F->second;
1189   }
1190 
1191   // Node transformation lookups.
1192   typedef std::pair<Record*, std::string> NodeXForm;
1193   const NodeXForm &getSDNodeTransform(Record *R) const {
1194     auto F = SDNodeXForms.find(R);
1195     assert(F != SDNodeXForms.end() && "Invalid transform!");
1196     return F->second;
1197   }
1198 
1199   const ComplexPattern &getComplexPattern(Record *R) const {
1200     auto F = ComplexPatterns.find(R);
1201     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1202     return F->second;
1203   }
1204 
1205   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1206     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1207       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1208     llvm_unreachable("Unknown intrinsic!");
1209   }
1210 
1211   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1212     if (IID-1 < Intrinsics.size())
1213       return Intrinsics[IID-1];
1214     llvm_unreachable("Bad intrinsic ID!");
1215   }
1216 
1217   unsigned getIntrinsicID(Record *R) const {
1218     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1219       if (Intrinsics[i].TheDef == R) return i;
1220     llvm_unreachable("Unknown intrinsic!");
1221   }
1222 
1223   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1224     auto F = DefaultOperands.find(R);
1225     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1226     return F->second;
1227   }
1228 
1229   // Pattern Fragment information.
1230   TreePattern *getPatternFragment(Record *R) const {
1231     auto F = PatternFragments.find(R);
1232     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1233     return F->second.get();
1234   }
1235   TreePattern *getPatternFragmentIfRead(Record *R) const {
1236     auto F = PatternFragments.find(R);
1237     if (F == PatternFragments.end())
1238       return nullptr;
1239     return F->second.get();
1240   }
1241 
1242   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1243                    LessRecordByID>::const_iterator pf_iterator;
1244   pf_iterator pf_begin() const { return PatternFragments.begin(); }
1245   pf_iterator pf_end() const { return PatternFragments.end(); }
1246   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1247 
1248   // Patterns to match information.
1249   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1250   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1251   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1252   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1253 
1254   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1255   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1256   void parseInstructionPattern(
1257       CodeGenInstruction &CGI, ListInit *Pattern,
1258       DAGInstMap &DAGInsts);
1259 
1260   const DAGInstruction &getInstruction(Record *R) const {
1261     auto F = Instructions.find(R);
1262     assert(F != Instructions.end() && "Unknown instruction!");
1263     return F->second;
1264   }
1265 
1266   Record *get_intrinsic_void_sdnode() const {
1267     return intrinsic_void_sdnode;
1268   }
1269   Record *get_intrinsic_w_chain_sdnode() const {
1270     return intrinsic_w_chain_sdnode;
1271   }
1272   Record *get_intrinsic_wo_chain_sdnode() const {
1273     return intrinsic_wo_chain_sdnode;
1274   }
1275 
1276   unsigned allocateScope() { return ++NumScopes; }
1277 
1278   bool operandHasDefault(Record *Op) const {
1279     return Op->isSubClassOf("OperandWithDefaultOps") &&
1280       !getDefaultOperand(Op).DefaultOps.empty();
1281   }
1282 
1283 private:
1284   void ParseNodeInfo();
1285   void ParseNodeTransforms();
1286   void ParseComplexPatterns();
1287   void ParsePatternFragments(bool OutFrags = false);
1288   void ParseDefaultOperands();
1289   void ParseInstructions();
1290   void ParsePatterns();
1291   void ExpandHwModeBasedTypes();
1292   void InferInstructionFlags();
1293   void GenerateVariants();
1294   void VerifyInstructionFlags();
1295 
1296   std::vector<Predicate> makePredList(ListInit *L);
1297 
1298   void ParseOnePattern(Record *TheDef,
1299                        TreePattern &Pattern, TreePattern &Result,
1300                        const std::vector<Record *> &InstImpResults);
1301   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1302   void FindPatternInputsAndOutputs(
1303       TreePattern &I, TreePatternNodePtr Pat,
1304       std::map<std::string, TreePatternNodePtr> &InstInputs,
1305       MapVector<std::string, TreePatternNodePtr,
1306                 std::map<std::string, unsigned>> &InstResults,
1307       std::vector<Record *> &InstImpResults);
1308 };
1309 
1310 
1311 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1312                                              TreePattern &TP) const {
1313     bool MadeChange = false;
1314     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1315       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1316     return MadeChange;
1317   }
1318 
1319 } // end namespace llvm
1320 
1321 #endif
1322