1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 
17 #include "CodeGenIntrinsics.h"
18 #include "CodeGenTarget.h"
19 #include "SDNodeProperties.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <array>
28 #include <functional>
29 #include <map>
30 #include <numeric>
31 #include <vector>
32 
33 namespace llvm {
34 
35 class Record;
36 class Init;
37 class ListInit;
38 class DagInit;
39 class SDNodeInfo;
40 class TreePattern;
41 class TreePatternNode;
42 class CodeGenDAGPatterns;
43 
44 /// Shared pointer for TreePatternNode.
45 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
46 
47 /// This represents a set of MVTs. Since the underlying type for the MVT
48 /// is uint8_t, there are at most 256 values. To reduce the number of memory
49 /// allocations and deallocations, represent the set as a sequence of bits.
50 /// To reduce the allocations even further, make MachineValueTypeSet own
51 /// the storage and use std::array as the bit container.
52 struct MachineValueTypeSet {
53   static_assert(std::is_same<std::underlying_type_t<MVT::SimpleValueType>,
54                              uint8_t>::value,
55                 "Change uint8_t here to the SimpleValueType's type");
56   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
57   using WordType = uint64_t;
58   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
59   static unsigned constexpr NumWords = Capacity/WordWidth;
60   static_assert(NumWords*WordWidth == Capacity,
61                 "Capacity should be a multiple of WordWidth");
62 
63   LLVM_ATTRIBUTE_ALWAYS_INLINE
64   MachineValueTypeSet() {
65     clear();
66   }
67 
68   LLVM_ATTRIBUTE_ALWAYS_INLINE
69   unsigned size() const {
70     unsigned Count = 0;
71     for (WordType W : Words)
72       Count += llvm::popcount(W);
73     return Count;
74   }
75   LLVM_ATTRIBUTE_ALWAYS_INLINE
76   void clear() {
77     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
78   }
79   LLVM_ATTRIBUTE_ALWAYS_INLINE
80   bool empty() const {
81     for (WordType W : Words)
82       if (W != 0)
83         return false;
84     return true;
85   }
86   LLVM_ATTRIBUTE_ALWAYS_INLINE
87   unsigned count(MVT T) const {
88     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
89   }
90   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
91     bool V = count(T.SimpleTy);
92     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
93     return {*this, V};
94   }
95   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
96     for (unsigned i = 0; i != NumWords; ++i)
97       Words[i] |= S.Words[i];
98     return *this;
99   }
100   LLVM_ATTRIBUTE_ALWAYS_INLINE
101   void erase(MVT T) {
102     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
103   }
104 
105   void writeToStream(raw_ostream &OS) const;
106 
107   struct const_iterator {
108     // Some implementations of the C++ library require these traits to be
109     // defined.
110     using iterator_category = std::forward_iterator_tag;
111     using value_type = MVT;
112     using difference_type = ptrdiff_t;
113     using pointer = const MVT*;
114     using reference = const MVT&;
115 
116     LLVM_ATTRIBUTE_ALWAYS_INLINE
117     MVT operator*() const {
118       assert(Pos != Capacity);
119       return MVT::SimpleValueType(Pos);
120     }
121     LLVM_ATTRIBUTE_ALWAYS_INLINE
122     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
123       Pos = End ? Capacity : find_from_pos(0);
124     }
125     LLVM_ATTRIBUTE_ALWAYS_INLINE
126     const_iterator &operator++() {
127       assert(Pos != Capacity);
128       Pos = find_from_pos(Pos+1);
129       return *this;
130     }
131 
132     LLVM_ATTRIBUTE_ALWAYS_INLINE
133     bool operator==(const const_iterator &It) const {
134       return Set == It.Set && Pos == It.Pos;
135     }
136     LLVM_ATTRIBUTE_ALWAYS_INLINE
137     bool operator!=(const const_iterator &It) const {
138       return !operator==(It);
139     }
140 
141   private:
142     unsigned find_from_pos(unsigned P) const {
143       unsigned SkipWords = P / WordWidth;
144       unsigned SkipBits = P % WordWidth;
145       unsigned Count = SkipWords * WordWidth;
146 
147       // If P is in the middle of a word, process it manually here, because
148       // the trailing bits need to be masked off to use findFirstSet.
149       if (SkipBits != 0) {
150         WordType W = Set->Words[SkipWords];
151         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
152         if (W != 0)
153           return Count + llvm::countr_zero(W);
154         Count += WordWidth;
155         SkipWords++;
156       }
157 
158       for (unsigned i = SkipWords; i != NumWords; ++i) {
159         WordType W = Set->Words[i];
160         if (W != 0)
161           return Count + llvm::countr_zero(W);
162         Count += WordWidth;
163       }
164       return Capacity;
165     }
166 
167     const MachineValueTypeSet *Set;
168     unsigned Pos;
169   };
170 
171   LLVM_ATTRIBUTE_ALWAYS_INLINE
172   const_iterator begin() const { return const_iterator(this, false); }
173   LLVM_ATTRIBUTE_ALWAYS_INLINE
174   const_iterator end()   const { return const_iterator(this, true); }
175 
176   LLVM_ATTRIBUTE_ALWAYS_INLINE
177   bool operator==(const MachineValueTypeSet &S) const {
178     return Words == S.Words;
179   }
180   LLVM_ATTRIBUTE_ALWAYS_INLINE
181   bool operator!=(const MachineValueTypeSet &S) const {
182     return !operator==(S);
183   }
184 
185 private:
186   friend struct const_iterator;
187   std::array<WordType,NumWords> Words;
188 };
189 
190 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T);
191 
192 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
193   using SetType = MachineValueTypeSet;
194   SmallVector<unsigned, 16> AddrSpaces;
195 
196   TypeSetByHwMode() = default;
197   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
198   TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
199   TypeSetByHwMode(MVT::SimpleValueType VT)
200     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
201   TypeSetByHwMode(ValueTypeByHwMode VT)
202     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
203   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
204 
205   SetType &getOrCreate(unsigned Mode) {
206     return Map[Mode];
207   }
208 
209   bool isValueTypeByHwMode(bool AllowEmpty) const;
210   ValueTypeByHwMode getValueTypeByHwMode() const;
211 
212   LLVM_ATTRIBUTE_ALWAYS_INLINE
213   bool isMachineValueType() const {
214     return isDefaultOnly() && Map.begin()->second.size() == 1;
215   }
216 
217   LLVM_ATTRIBUTE_ALWAYS_INLINE
218   MVT getMachineValueType() const {
219     assert(isMachineValueType());
220     return *Map.begin()->second.begin();
221   }
222 
223   bool isPossible() const;
224 
225   LLVM_ATTRIBUTE_ALWAYS_INLINE
226   bool isDefaultOnly() const {
227     return Map.size() == 1 && Map.begin()->first == DefaultMode;
228   }
229 
230   bool isPointer() const {
231     return getValueTypeByHwMode().isPointer();
232   }
233 
234   unsigned getPtrAddrSpace() const {
235     assert(isPointer());
236     return getValueTypeByHwMode().PtrAddrSpace;
237   }
238 
239   bool insert(const ValueTypeByHwMode &VVT);
240   bool constrain(const TypeSetByHwMode &VTS);
241   template <typename Predicate> bool constrain(Predicate P);
242   template <typename Predicate>
243   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
244 
245   void writeToStream(raw_ostream &OS) const;
246 
247   bool operator==(const TypeSetByHwMode &VTS) const;
248   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
249 
250   void dump() const;
251   bool validate() const;
252 
253 private:
254   unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
255   /// Intersect two sets. Return true if anything has changed.
256   bool intersect(SetType &Out, const SetType &In);
257 };
258 
259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
260 
261 struct TypeInfer {
262   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
263 
264   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
265     return VTS.isValueTypeByHwMode(AllowEmpty);
266   }
267   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
268                                 bool AllowEmpty) const {
269     assert(VTS.isValueTypeByHwMode(AllowEmpty));
270     return VTS.getValueTypeByHwMode();
271   }
272 
273   /// The protocol in the following functions (Merge*, force*, Enforce*,
274   /// expand*) is to return "true" if a change has been made, "false"
275   /// otherwise.
276 
277   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
278   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
279     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
280   }
281   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
282     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
283   }
284 
285   /// Reduce the set \p Out to have at most one element for each mode.
286   bool forceArbitrary(TypeSetByHwMode &Out);
287 
288   /// The following four functions ensure that upon return the set \p Out
289   /// will only contain types of the specified kind: integer, floating-point,
290   /// scalar, or vector.
291   /// If \p Out is empty, all legal types of the specified kind will be added
292   /// to it. Otherwise, all types that are not of the specified kind will be
293   /// removed from \p Out.
294   bool EnforceInteger(TypeSetByHwMode &Out);
295   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
296   bool EnforceScalar(TypeSetByHwMode &Out);
297   bool EnforceVector(TypeSetByHwMode &Out);
298 
299   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
300   /// unchanged.
301   bool EnforceAny(TypeSetByHwMode &Out);
302   /// Make sure that for each type in \p Small, there exists a larger type
303   /// in \p Big. \p SmallIsVT indicates that this is being called for
304   /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for
305   /// each call and needs special consideration in how we detect changes.
306   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
307                           bool SmallIsVT = false);
308   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
309   ///    for each type U in \p Elem, U is a scalar type.
310   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
311   ///    (vector) type T in \p Vec, such that U is the element type of T.
312   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
313   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
314                               const ValueTypeByHwMode &VVT);
315   /// Ensure that for each type T in \p Sub, T is a vector type, and there
316   /// exists a type U in \p Vec such that U is a vector type with the same
317   /// element type as T and at least as many elements as T.
318   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
319                                     TypeSetByHwMode &Sub);
320   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
321   /// 2. Ensure that for each vector type T in \p V, there exists a vector
322   ///    type U in \p W, such that T and U have the same number of elements.
323   /// 3. Ensure that for each vector type U in \p W, there exists a vector
324   ///    type T in \p V, such that T and U have the same number of elements
325   ///    (reverse of 2).
326   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
327   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
328   ///    such that T and U have equal size in bits.
329   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
330   ///    such that T and U have equal size in bits (reverse of 1).
331   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
332 
333   /// For each overloaded type (i.e. of form *Any), replace it with the
334   /// corresponding subset of legal, specific types.
335   void expandOverloads(TypeSetByHwMode &VTS);
336   void expandOverloads(TypeSetByHwMode::SetType &Out,
337                        const TypeSetByHwMode::SetType &Legal);
338 
339   struct ValidateOnExit {
340     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
341   #ifndef NDEBUG
342     ~ValidateOnExit();
343   #else
344     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
345   #endif
346     TypeInfer &Infer;
347     TypeSetByHwMode &VTS;
348   };
349 
350   struct SuppressValidation {
351     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
352       Infer.Validate = false;
353     }
354     ~SuppressValidation() {
355       Infer.Validate = SavedValidate;
356     }
357     TypeInfer &Infer;
358     bool SavedValidate;
359   };
360 
361   TreePattern &TP;
362   unsigned ForceMode;     // Mode to use when set.
363   bool CodeGen = false;   // Set during generation of matcher code.
364   bool Validate = true;   // Indicate whether to validate types.
365 
366 private:
367   const TypeSetByHwMode &getLegalTypes();
368 
369   /// Cached legal types (in default mode).
370   bool LegalTypesCached = false;
371   TypeSetByHwMode LegalCache;
372 };
373 
374 /// Set type used to track multiply used variables in patterns
375 typedef StringSet<> MultipleUseVarSet;
376 
377 /// SDTypeConstraint - This is a discriminated union of constraints,
378 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
379 struct SDTypeConstraint {
380   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
381 
382   unsigned OperandNo;   // The operand # this constraint applies to.
383   enum {
384     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
385     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
386     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
387   } ConstraintType;
388 
389   union {   // The discriminated union.
390     struct {
391       unsigned OtherOperandNum;
392     } SDTCisSameAs_Info;
393     struct {
394       unsigned OtherOperandNum;
395     } SDTCisVTSmallerThanOp_Info;
396     struct {
397       unsigned BigOperandNum;
398     } SDTCisOpSmallerThanOp_Info;
399     struct {
400       unsigned OtherOperandNum;
401     } SDTCisEltOfVec_Info;
402     struct {
403       unsigned OtherOperandNum;
404     } SDTCisSubVecOfVec_Info;
405     struct {
406       unsigned OtherOperandNum;
407     } SDTCisSameNumEltsAs_Info;
408     struct {
409       unsigned OtherOperandNum;
410     } SDTCisSameSizeAs_Info;
411   } x;
412 
413   // The VT for SDTCisVT and SDTCVecEltisVT.
414   // Must not be in the union because it has a non-trivial destructor.
415   ValueTypeByHwMode VVT;
416 
417   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
418   /// constraint to the nodes operands.  This returns true if it makes a
419   /// change, false otherwise.  If a type contradiction is found, an error
420   /// is flagged.
421   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
422                            TreePattern &TP) const;
423 };
424 
425 /// ScopedName - A name of a node associated with a "scope" that indicates
426 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
427 /// used. This enables substitution of pattern fragments while keeping track
428 /// of what name(s) were originally given to various nodes in the tree.
429 class ScopedName {
430   unsigned Scope;
431   std::string Identifier;
432 public:
433   ScopedName(unsigned Scope, StringRef Identifier)
434       : Scope(Scope), Identifier(std::string(Identifier)) {
435     assert(Scope != 0 &&
436            "Scope == 0 is used to indicate predicates without arguments");
437   }
438 
439   unsigned getScope() const { return Scope; }
440   const std::string &getIdentifier() const { return Identifier; }
441 
442   bool operator==(const ScopedName &o) const;
443   bool operator!=(const ScopedName &o) const;
444 };
445 
446 /// SDNodeInfo - One of these records is created for each SDNode instance in
447 /// the target .td file.  This represents the various dag nodes we will be
448 /// processing.
449 class SDNodeInfo {
450   Record *Def;
451   StringRef EnumName;
452   StringRef SDClassName;
453   unsigned Properties;
454   unsigned NumResults;
455   int NumOperands;
456   std::vector<SDTypeConstraint> TypeConstraints;
457 public:
458   // Parse the specified record.
459   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
460 
461   unsigned getNumResults() const { return NumResults; }
462 
463   /// getNumOperands - This is the number of operands required or -1 if
464   /// variadic.
465   int getNumOperands() const { return NumOperands; }
466   Record *getRecord() const { return Def; }
467   StringRef getEnumName() const { return EnumName; }
468   StringRef getSDClassName() const { return SDClassName; }
469 
470   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
471     return TypeConstraints;
472   }
473 
474   /// getKnownType - If the type constraints on this node imply a fixed type
475   /// (e.g. all stores return void, etc), then return it as an
476   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
477   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
478 
479   /// hasProperty - Return true if this node has the specified property.
480   ///
481   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
482 
483   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
484   /// constraints for this node to the operands of the node.  This returns
485   /// true if it makes a change, false otherwise.  If a type contradiction is
486   /// found, an error is flagged.
487   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
488 };
489 
490 /// TreePredicateFn - This is an abstraction that represents the predicates on
491 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
492 /// provide nice accessors.
493 class TreePredicateFn {
494   /// PatFragRec - This is the TreePattern for the PatFrag that we
495   /// originally came from.
496   TreePattern *PatFragRec;
497 public:
498   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
499   TreePredicateFn(TreePattern *N);
500 
501 
502   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
503 
504   /// isAlwaysTrue - Return true if this is a noop predicate.
505   bool isAlwaysTrue() const;
506 
507   bool isImmediatePattern() const { return hasImmCode(); }
508 
509   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
510   /// this is an immediate predicate.  It is an error to call this on a
511   /// non-immediate pattern.
512   std::string getImmediatePredicateCode() const {
513     std::string Result = getImmCode();
514     assert(!Result.empty() && "Isn't an immediate pattern!");
515     return Result;
516   }
517 
518   bool operator==(const TreePredicateFn &RHS) const {
519     return PatFragRec == RHS.PatFragRec;
520   }
521 
522   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
523 
524   /// Return the name to use in the generated code to reference this, this is
525   /// "Predicate_foo" if from a pattern fragment "foo".
526   std::string getFnName() const;
527 
528   /// getCodeToRunOnSDNode - Return the code for the function body that
529   /// evaluates this predicate.  The argument is expected to be in "Node",
530   /// not N.  This handles casting and conversion to a concrete node type as
531   /// appropriate.
532   std::string getCodeToRunOnSDNode() const;
533 
534   /// Get the data type of the argument to getImmediatePredicateCode().
535   StringRef getImmType() const;
536 
537   /// Get a string that describes the type returned by getImmType() but is
538   /// usable as part of an identifier.
539   StringRef getImmTypeIdentifier() const;
540 
541   // Predicate code uses the PatFrag's captured operands.
542   bool usesOperands() const;
543 
544   // Check if the HasNoUse predicate is set.
545   bool hasNoUse() const;
546 
547   // Is the desired predefined predicate for a load?
548   bool isLoad() const;
549   // Is the desired predefined predicate for a store?
550   bool isStore() const;
551   // Is the desired predefined predicate for an atomic?
552   bool isAtomic() const;
553 
554   /// Is this predicate the predefined unindexed load predicate?
555   /// Is this predicate the predefined unindexed store predicate?
556   bool isUnindexed() const;
557   /// Is this predicate the predefined non-extending load predicate?
558   bool isNonExtLoad() const;
559   /// Is this predicate the predefined any-extend load predicate?
560   bool isAnyExtLoad() const;
561   /// Is this predicate the predefined sign-extend load predicate?
562   bool isSignExtLoad() const;
563   /// Is this predicate the predefined zero-extend load predicate?
564   bool isZeroExtLoad() const;
565   /// Is this predicate the predefined non-truncating store predicate?
566   bool isNonTruncStore() const;
567   /// Is this predicate the predefined truncating store predicate?
568   bool isTruncStore() const;
569 
570   /// Is this predicate the predefined monotonic atomic predicate?
571   bool isAtomicOrderingMonotonic() const;
572   /// Is this predicate the predefined acquire atomic predicate?
573   bool isAtomicOrderingAcquire() const;
574   /// Is this predicate the predefined release atomic predicate?
575   bool isAtomicOrderingRelease() const;
576   /// Is this predicate the predefined acquire-release atomic predicate?
577   bool isAtomicOrderingAcquireRelease() const;
578   /// Is this predicate the predefined sequentially consistent atomic predicate?
579   bool isAtomicOrderingSequentiallyConsistent() const;
580 
581   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
582   bool isAtomicOrderingAcquireOrStronger() const;
583   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
584   bool isAtomicOrderingWeakerThanAcquire() const;
585 
586   /// Is this predicate the predefined release-or-stronger atomic predicate?
587   bool isAtomicOrderingReleaseOrStronger() const;
588   /// Is this predicate the predefined weaker-than-release atomic predicate?
589   bool isAtomicOrderingWeakerThanRelease() const;
590 
591   /// If non-null, indicates that this predicate is a predefined memory VT
592   /// predicate for a load/store and returns the ValueType record for the memory VT.
593   Record *getMemoryVT() const;
594   /// If non-null, indicates that this predicate is a predefined memory VT
595   /// predicate (checking only the scalar type) for load/store and returns the
596   /// ValueType record for the memory VT.
597   Record *getScalarMemoryVT() const;
598 
599   ListInit *getAddressSpaces() const;
600   int64_t getMinAlignment() const;
601 
602   // If true, indicates that GlobalISel-based C++ code was supplied.
603   bool hasGISelPredicateCode() const;
604   std::string getGISelPredicateCode() const;
605 
606 private:
607   bool hasPredCode() const;
608   bool hasImmCode() const;
609   std::string getPredCode() const;
610   std::string getImmCode() const;
611   bool immCodeUsesAPInt() const;
612   bool immCodeUsesAPFloat() const;
613 
614   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
615 };
616 
617 struct TreePredicateCall {
618   TreePredicateFn Fn;
619 
620   // Scope -- unique identifier for retrieving named arguments. 0 is used when
621   // the predicate does not use named arguments.
622   unsigned Scope;
623 
624   TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
625     : Fn(Fn), Scope(Scope) {}
626 
627   bool operator==(const TreePredicateCall &o) const {
628     return Fn == o.Fn && Scope == o.Scope;
629   }
630   bool operator!=(const TreePredicateCall &o) const {
631     return !(*this == o);
632   }
633 };
634 
635 class TreePatternNode {
636   /// The type of each node result.  Before and during type inference, each
637   /// result may be a set of possible types.  After (successful) type inference,
638   /// each is a single concrete type.
639   std::vector<TypeSetByHwMode> Types;
640 
641   /// The index of each result in results of the pattern.
642   std::vector<unsigned> ResultPerm;
643 
644   /// Operator - The Record for the operator if this is an interior node (not
645   /// a leaf).
646   Record *Operator;
647 
648   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
649   ///
650   Init *Val;
651 
652   /// Name - The name given to this node with the :$foo notation.
653   ///
654   std::string Name;
655 
656   std::vector<ScopedName> NamesAsPredicateArg;
657 
658   /// PredicateCalls - The predicate functions to execute on this node to check
659   /// for a match.  If this list is empty, no predicate is involved.
660   std::vector<TreePredicateCall> PredicateCalls;
661 
662   /// TransformFn - The transformation function to execute on this node before
663   /// it can be substituted into the resulting instruction on a pattern match.
664   Record *TransformFn;
665 
666   std::vector<TreePatternNodePtr> Children;
667 
668 public:
669   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
670                   unsigned NumResults)
671       : Operator(Op), Val(nullptr), TransformFn(nullptr),
672         Children(std::move(Ch)) {
673     Types.resize(NumResults);
674     ResultPerm.resize(NumResults);
675     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
676   }
677   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
678     : Operator(nullptr), Val(val), TransformFn(nullptr) {
679     Types.resize(NumResults);
680     ResultPerm.resize(NumResults);
681     std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
682   }
683 
684   bool hasName() const { return !Name.empty(); }
685   const std::string &getName() const { return Name; }
686   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
687 
688   const std::vector<ScopedName> &getNamesAsPredicateArg() const {
689     return NamesAsPredicateArg;
690   }
691   void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
692     NamesAsPredicateArg = Names;
693   }
694   void addNameAsPredicateArg(const ScopedName &N) {
695     NamesAsPredicateArg.push_back(N);
696   }
697 
698   bool isLeaf() const { return Val != nullptr; }
699 
700   // Type accessors.
701   unsigned getNumTypes() const { return Types.size(); }
702   ValueTypeByHwMode getType(unsigned ResNo) const {
703     return Types[ResNo].getValueTypeByHwMode();
704   }
705   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
706   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
707     return Types[ResNo];
708   }
709   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
710   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
711   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
712     return Types[ResNo].getMachineValueType().SimpleTy;
713   }
714 
715   bool hasConcreteType(unsigned ResNo) const {
716     return Types[ResNo].isValueTypeByHwMode(false);
717   }
718   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
719     return Types[ResNo].empty();
720   }
721 
722   unsigned getNumResults() const { return ResultPerm.size(); }
723   unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
724   void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
725 
726   Init *getLeafValue() const { assert(isLeaf()); return Val; }
727   Record *getOperator() const { assert(!isLeaf()); return Operator; }
728 
729   unsigned getNumChildren() const { return Children.size(); }
730   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
731   const TreePatternNodePtr &getChildShared(unsigned N) const {
732     return Children[N];
733   }
734   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
735 
736   /// hasChild - Return true if N is any of our children.
737   bool hasChild(const TreePatternNode *N) const {
738     for (unsigned i = 0, e = Children.size(); i != e; ++i)
739       if (Children[i].get() == N)
740         return true;
741     return false;
742   }
743 
744   bool hasProperTypeByHwMode() const;
745   bool hasPossibleType() const;
746   bool setDefaultMode(unsigned Mode);
747 
748   bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
749 
750   const std::vector<TreePredicateCall> &getPredicateCalls() const {
751     return PredicateCalls;
752   }
753   void clearPredicateCalls() { PredicateCalls.clear(); }
754   void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
755     assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
756     PredicateCalls = Calls;
757   }
758   void addPredicateCall(const TreePredicateCall &Call) {
759     assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
760     assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
761     PredicateCalls.push_back(Call);
762   }
763   void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
764     assert((Scope != 0) == Fn.usesOperands());
765     addPredicateCall(TreePredicateCall(Fn, Scope));
766   }
767 
768   Record *getTransformFn() const { return TransformFn; }
769   void setTransformFn(Record *Fn) { TransformFn = Fn; }
770 
771   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
772   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
773   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
774 
775   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
776   /// return the ComplexPattern information, otherwise return null.
777   const ComplexPattern *
778   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
779 
780   /// Returns the number of MachineInstr operands that would be produced by this
781   /// node if it mapped directly to an output Instruction's
782   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
783   /// for Operands; otherwise 1.
784   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
785 
786   /// NodeHasProperty - Return true if this node has the specified property.
787   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
788 
789   /// TreeHasProperty - Return true if any node in this tree has the specified
790   /// property.
791   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
792 
793   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
794   /// marked isCommutative.
795   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
796 
797   void print(raw_ostream &OS) const;
798   void dump() const;
799 
800 public:   // Higher level manipulation routines.
801 
802   /// clone - Return a new copy of this tree.
803   ///
804   TreePatternNodePtr clone() const;
805 
806   /// RemoveAllTypes - Recursively strip all the types of this tree.
807   void RemoveAllTypes();
808 
809   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
810   /// the specified node.  For this comparison, all of the state of the node
811   /// is considered, except for the assigned name.  Nodes with differing names
812   /// that are otherwise identical are considered isomorphic.
813   bool isIsomorphicTo(const TreePatternNode *N,
814                       const MultipleUseVarSet &DepVars) const;
815 
816   /// SubstituteFormalArguments - Replace the formal arguments in this tree
817   /// with actual values specified by ArgMap.
818   void
819   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
820 
821   /// InlinePatternFragments - If this pattern refers to any pattern
822   /// fragments, return the set of inlined versions (this can be more than
823   /// one if a PatFrags record has multiple alternatives).
824   void InlinePatternFragments(TreePatternNodePtr T,
825                               TreePattern &TP,
826                               std::vector<TreePatternNodePtr> &OutAlternatives);
827 
828   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
829   /// this node and its children in the tree.  This returns true if it makes a
830   /// change, false otherwise.  If a type contradiction is found, flag an error.
831   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
832 
833   /// UpdateNodeType - Set the node type of N to VT if VT contains
834   /// information.  If N already contains a conflicting type, then flag an
835   /// error.  This returns true if any information was updated.
836   ///
837   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
838                       TreePattern &TP);
839   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
840                       TreePattern &TP);
841   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
842                       TreePattern &TP);
843 
844   // Update node type with types inferred from an instruction operand or result
845   // def from the ins/outs lists.
846   // Return true if the type changed.
847   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
848 
849   /// ContainsUnresolvedType - Return true if this tree contains any
850   /// unresolved types.
851   bool ContainsUnresolvedType(TreePattern &TP) const;
852 
853   /// canPatternMatch - If it is impossible for this pattern to match on this
854   /// target, fill in Reason and return false.  Otherwise, return true.
855   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
856 };
857 
858 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
859   TPN.print(OS);
860   return OS;
861 }
862 
863 
864 /// TreePattern - Represent a pattern, used for instructions, pattern
865 /// fragments, etc.
866 ///
867 class TreePattern {
868   /// Trees - The list of pattern trees which corresponds to this pattern.
869   /// Note that PatFrag's only have a single tree.
870   ///
871   std::vector<TreePatternNodePtr> Trees;
872 
873   /// NamedNodes - This is all of the nodes that have names in the trees in this
874   /// pattern.
875   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
876 
877   /// TheRecord - The actual TableGen record corresponding to this pattern.
878   ///
879   Record *TheRecord;
880 
881   /// Args - This is a list of all of the arguments to this pattern (for
882   /// PatFrag patterns), which are the 'node' markers in this pattern.
883   std::vector<std::string> Args;
884 
885   /// CDP - the top-level object coordinating this madness.
886   ///
887   CodeGenDAGPatterns &CDP;
888 
889   /// isInputPattern - True if this is an input pattern, something to match.
890   /// False if this is an output pattern, something to emit.
891   bool isInputPattern;
892 
893   /// hasError - True if the currently processed nodes have unresolvable types
894   /// or other non-fatal errors
895   bool HasError;
896 
897   /// It's important that the usage of operands in ComplexPatterns is
898   /// consistent: each named operand can be defined by at most one
899   /// ComplexPattern. This records the ComplexPattern instance and the operand
900   /// number for each operand encountered in a ComplexPattern to aid in that
901   /// check.
902   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
903 
904   TypeInfer Infer;
905 
906 public:
907 
908   /// TreePattern constructor - Parse the specified DagInits into the
909   /// current record.
910   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
911               CodeGenDAGPatterns &ise);
912   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
913               CodeGenDAGPatterns &ise);
914   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
915               CodeGenDAGPatterns &ise);
916 
917   /// getTrees - Return the tree patterns which corresponds to this pattern.
918   ///
919   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
920   unsigned getNumTrees() const { return Trees.size(); }
921   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
922   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
923   const TreePatternNodePtr &getOnlyTree() const {
924     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
925     return Trees[0];
926   }
927 
928   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
929     if (NamedNodes.empty())
930       ComputeNamedNodes();
931     return NamedNodes;
932   }
933 
934   /// getRecord - Return the actual TableGen record corresponding to this
935   /// pattern.
936   ///
937   Record *getRecord() const { return TheRecord; }
938 
939   unsigned getNumArgs() const { return Args.size(); }
940   const std::string &getArgName(unsigned i) const {
941     assert(i < Args.size() && "Argument reference out of range!");
942     return Args[i];
943   }
944   std::vector<std::string> &getArgList() { return Args; }
945 
946   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
947 
948   /// InlinePatternFragments - If this pattern refers to any pattern
949   /// fragments, inline them into place, giving us a pattern without any
950   /// PatFrags references.  This may increase the number of trees in the
951   /// pattern if a PatFrags has multiple alternatives.
952   void InlinePatternFragments() {
953     std::vector<TreePatternNodePtr> Copy = Trees;
954     Trees.clear();
955     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
956       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
957   }
958 
959   /// InferAllTypes - Infer/propagate as many types throughout the expression
960   /// patterns as possible.  Return true if all types are inferred, false
961   /// otherwise.  Bail out if a type contradiction is found.
962   bool InferAllTypes(
963       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
964 
965   /// error - If this is the first error in the current resolution step,
966   /// print it and set the error flag.  Otherwise, continue silently.
967   void error(const Twine &Msg);
968   bool hasError() const {
969     return HasError;
970   }
971   void resetError() {
972     HasError = false;
973   }
974 
975   TypeInfer &getInfer() { return Infer; }
976 
977   void print(raw_ostream &OS) const;
978   void dump() const;
979 
980 private:
981   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
982   void ComputeNamedNodes();
983   void ComputeNamedNodes(TreePatternNode *N);
984 };
985 
986 
987 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
988                                             const TypeSetByHwMode &InTy,
989                                             TreePattern &TP) {
990   TypeSetByHwMode VTS(InTy);
991   TP.getInfer().expandOverloads(VTS);
992   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
993 }
994 
995 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
996                                             MVT::SimpleValueType InTy,
997                                             TreePattern &TP) {
998   TypeSetByHwMode VTS(InTy);
999   TP.getInfer().expandOverloads(VTS);
1000   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1001 }
1002 
1003 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
1004                                             ValueTypeByHwMode InTy,
1005                                             TreePattern &TP) {
1006   TypeSetByHwMode VTS(InTy);
1007   TP.getInfer().expandOverloads(VTS);
1008   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1009 }
1010 
1011 
1012 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1013 /// that has a set ExecuteAlways / DefaultOps field.
1014 struct DAGDefaultOperand {
1015   std::vector<TreePatternNodePtr> DefaultOps;
1016 };
1017 
1018 class DAGInstruction {
1019   std::vector<Record*> Results;
1020   std::vector<Record*> Operands;
1021   std::vector<Record*> ImpResults;
1022   TreePatternNodePtr SrcPattern;
1023   TreePatternNodePtr ResultPattern;
1024 
1025 public:
1026   DAGInstruction(const std::vector<Record*> &results,
1027                  const std::vector<Record*> &operands,
1028                  const std::vector<Record*> &impresults,
1029                  TreePatternNodePtr srcpattern = nullptr,
1030                  TreePatternNodePtr resultpattern = nullptr)
1031     : Results(results), Operands(operands), ImpResults(impresults),
1032       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1033 
1034   unsigned getNumResults() const { return Results.size(); }
1035   unsigned getNumOperands() const { return Operands.size(); }
1036   unsigned getNumImpResults() const { return ImpResults.size(); }
1037   const std::vector<Record*>& getImpResults() const { return ImpResults; }
1038 
1039   Record *getResult(unsigned RN) const {
1040     assert(RN < Results.size());
1041     return Results[RN];
1042   }
1043 
1044   Record *getOperand(unsigned ON) const {
1045     assert(ON < Operands.size());
1046     return Operands[ON];
1047   }
1048 
1049   Record *getImpResult(unsigned RN) const {
1050     assert(RN < ImpResults.size());
1051     return ImpResults[RN];
1052   }
1053 
1054   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1055   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1056 };
1057 
1058 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1059 /// processed to produce isel.
1060 class PatternToMatch {
1061   Record          *SrcRecord;   // Originating Record for the pattern.
1062   ListInit        *Predicates;  // Top level predicate conditions to match.
1063   TreePatternNodePtr SrcPattern;      // Source pattern to match.
1064   TreePatternNodePtr DstPattern;      // Resulting pattern.
1065   std::vector<Record*> Dstregs; // Physical register defs being matched.
1066   std::string      HwModeFeatures;
1067   int              AddedComplexity; // Add to matching pattern complexity.
1068   unsigned         ID;          // Unique ID for the record.
1069   unsigned         ForceMode;   // Force this mode in type inference when set.
1070 
1071 public:
1072   PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
1073                  TreePatternNodePtr dst, std::vector<Record *> dstregs,
1074                  int complexity, unsigned uid, unsigned setmode = 0,
1075                  const Twine &hwmodefeatures = "")
1076       : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
1077         DstPattern(dst), Dstregs(std::move(dstregs)),
1078         HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
1079         ID(uid), ForceMode(setmode) {}
1080 
1081   Record          *getSrcRecord()  const { return SrcRecord; }
1082   ListInit        *getPredicates() const { return Predicates; }
1083   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
1084   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1085   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
1086   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1087   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
1088   StringRef   getHwModeFeatures() const { return HwModeFeatures; }
1089   int         getAddedComplexity() const { return AddedComplexity; }
1090   unsigned getID() const { return ID; }
1091   unsigned getForceMode() const { return ForceMode; }
1092 
1093   std::string getPredicateCheck() const;
1094   void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
1095 
1096   /// Compute the complexity metric for the input pattern.  This roughly
1097   /// corresponds to the number of nodes that are covered.
1098   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1099 };
1100 
1101 class CodeGenDAGPatterns {
1102   RecordKeeper &Records;
1103   CodeGenTarget Target;
1104   CodeGenIntrinsicTable Intrinsics;
1105 
1106   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1107   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1108       SDNodeXForms;
1109   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1110   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1111       PatternFragments;
1112   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1113   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1114 
1115   // Specific SDNode definitions:
1116   Record *intrinsic_void_sdnode;
1117   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1118 
1119   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1120   /// value is the pattern to match, the second pattern is the result to
1121   /// emit.
1122   std::vector<PatternToMatch> PatternsToMatch;
1123 
1124   TypeSetByHwMode LegalVTS;
1125 
1126   using PatternRewriterFn = std::function<void (TreePattern *)>;
1127   PatternRewriterFn PatternRewriter;
1128 
1129   unsigned NumScopes = 0;
1130 
1131 public:
1132   CodeGenDAGPatterns(RecordKeeper &R,
1133                      PatternRewriterFn PatternRewriter = nullptr);
1134 
1135   CodeGenTarget &getTargetInfo() { return Target; }
1136   const CodeGenTarget &getTargetInfo() const { return Target; }
1137   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1138 
1139   Record *getSDNodeNamed(StringRef Name) const;
1140 
1141   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1142     auto F = SDNodes.find(R);
1143     assert(F != SDNodes.end() && "Unknown node!");
1144     return F->second;
1145   }
1146 
1147   // Node transformation lookups.
1148   typedef std::pair<Record*, std::string> NodeXForm;
1149   const NodeXForm &getSDNodeTransform(Record *R) const {
1150     auto F = SDNodeXForms.find(R);
1151     assert(F != SDNodeXForms.end() && "Invalid transform!");
1152     return F->second;
1153   }
1154 
1155   const ComplexPattern &getComplexPattern(Record *R) const {
1156     auto F = ComplexPatterns.find(R);
1157     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1158     return F->second;
1159   }
1160 
1161   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1162     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1163       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1164     llvm_unreachable("Unknown intrinsic!");
1165   }
1166 
1167   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1168     if (IID-1 < Intrinsics.size())
1169       return Intrinsics[IID-1];
1170     llvm_unreachable("Bad intrinsic ID!");
1171   }
1172 
1173   unsigned getIntrinsicID(Record *R) const {
1174     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1175       if (Intrinsics[i].TheDef == R) return i;
1176     llvm_unreachable("Unknown intrinsic!");
1177   }
1178 
1179   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1180     auto F = DefaultOperands.find(R);
1181     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1182     return F->second;
1183   }
1184 
1185   // Pattern Fragment information.
1186   TreePattern *getPatternFragment(Record *R) const {
1187     auto F = PatternFragments.find(R);
1188     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1189     return F->second.get();
1190   }
1191   TreePattern *getPatternFragmentIfRead(Record *R) const {
1192     auto F = PatternFragments.find(R);
1193     if (F == PatternFragments.end())
1194       return nullptr;
1195     return F->second.get();
1196   }
1197 
1198   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1199                    LessRecordByID>::const_iterator pf_iterator;
1200   pf_iterator pf_begin() const { return PatternFragments.begin(); }
1201   pf_iterator pf_end() const { return PatternFragments.end(); }
1202   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1203 
1204   // Patterns to match information.
1205   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1206   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1207   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1208   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1209 
1210   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1211   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1212   void parseInstructionPattern(
1213       CodeGenInstruction &CGI, ListInit *Pattern,
1214       DAGInstMap &DAGInsts);
1215 
1216   const DAGInstruction &getInstruction(Record *R) const {
1217     auto F = Instructions.find(R);
1218     assert(F != Instructions.end() && "Unknown instruction!");
1219     return F->second;
1220   }
1221 
1222   Record *get_intrinsic_void_sdnode() const {
1223     return intrinsic_void_sdnode;
1224   }
1225   Record *get_intrinsic_w_chain_sdnode() const {
1226     return intrinsic_w_chain_sdnode;
1227   }
1228   Record *get_intrinsic_wo_chain_sdnode() const {
1229     return intrinsic_wo_chain_sdnode;
1230   }
1231 
1232   unsigned allocateScope() { return ++NumScopes; }
1233 
1234   bool operandHasDefault(Record *Op) const {
1235     return Op->isSubClassOf("OperandWithDefaultOps") &&
1236       !getDefaultOperand(Op).DefaultOps.empty();
1237   }
1238 
1239 private:
1240   void ParseNodeInfo();
1241   void ParseNodeTransforms();
1242   void ParseComplexPatterns();
1243   void ParsePatternFragments(bool OutFrags = false);
1244   void ParseDefaultOperands();
1245   void ParseInstructions();
1246   void ParsePatterns();
1247   void ExpandHwModeBasedTypes();
1248   void InferInstructionFlags();
1249   void GenerateVariants();
1250   void VerifyInstructionFlags();
1251 
1252   void ParseOnePattern(Record *TheDef,
1253                        TreePattern &Pattern, TreePattern &Result,
1254                        const std::vector<Record *> &InstImpResults);
1255   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1256   void FindPatternInputsAndOutputs(
1257       TreePattern &I, TreePatternNodePtr Pat,
1258       std::map<std::string, TreePatternNodePtr> &InstInputs,
1259       MapVector<std::string, TreePatternNodePtr,
1260                 std::map<std::string, unsigned>> &InstResults,
1261       std::vector<Record *> &InstImpResults);
1262 };
1263 
1264 
1265 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1266                                              TreePattern &TP) const {
1267     bool MadeChange = false;
1268     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1269       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1270     return MadeChange;
1271   }
1272 
1273 } // end namespace llvm
1274 
1275 #endif
1276