1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <queue>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "regalloc-emitter"
45 
46 //===----------------------------------------------------------------------===//
47 //                             CodeGenSubRegIndex
48 //===----------------------------------------------------------------------===//
49 
50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
51   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
52   Name = std::string(R->getName());
53   if (R->getValue("Namespace"))
54     Namespace = std::string(R->getValueAsString("Namespace"));
55   Size = R->getValueAsInt("Size");
56   Offset = R->getValueAsInt("Offset");
57 }
58 
59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
60                                        unsigned Enum)
61     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
62       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
63       Artificial(true) {}
64 
65 std::string CodeGenSubRegIndex::getQualifiedName() const {
66   std::string N = getNamespace();
67   if (!N.empty())
68     N += "::";
69   N += getName();
70   return N;
71 }
72 
73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
74   if (!TheDef)
75     return;
76 
77   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
78   if (!Comps.empty()) {
79     if (Comps.size() != 2)
80       PrintFatalError(TheDef->getLoc(),
81                       "ComposedOf must have exactly two entries");
82     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
83     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
84     CodeGenSubRegIndex *X = A->addComposite(B, this);
85     if (X)
86       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
87   }
88 
89   std::vector<Record*> Parts =
90     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
91   if (!Parts.empty()) {
92     if (Parts.size() < 2)
93       PrintFatalError(TheDef->getLoc(),
94                       "CoveredBySubRegs must have two or more entries");
95     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
96     for (Record *Part : Parts)
97       IdxParts.push_back(RegBank.getSubRegIdx(Part));
98     setConcatenationOf(IdxParts);
99   }
100 }
101 
102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
103   // Already computed?
104   if (LaneMask.any())
105     return LaneMask;
106 
107   // Recursion guard, shouldn't be required.
108   LaneMask = LaneBitmask::getAll();
109 
110   // The lane mask is simply the union of all sub-indices.
111   LaneBitmask M;
112   for (const auto &C : Composed)
113     M |= C.second->computeLaneMask();
114   assert(M.any() && "Missing lane mask, sub-register cycle?");
115   LaneMask = M;
116   return LaneMask;
117 }
118 
119 void CodeGenSubRegIndex::setConcatenationOf(
120     ArrayRef<CodeGenSubRegIndex*> Parts) {
121   if (ConcatenationOf.empty())
122     ConcatenationOf.assign(Parts.begin(), Parts.end());
123   else
124     assert(std::equal(Parts.begin(), Parts.end(),
125                       ConcatenationOf.begin()) && "parts consistent");
126 }
127 
128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
130        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
131     CodeGenSubRegIndex *SubIdx = *I;
132     SubIdx->computeConcatTransitiveClosure();
133 #ifndef NDEBUG
134     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
135       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
136 #endif
137 
138     if (SubIdx->ConcatenationOf.empty()) {
139       ++I;
140     } else {
141       I = ConcatenationOf.erase(I);
142       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
143                                  SubIdx->ConcatenationOf.end());
144       I += SubIdx->ConcatenationOf.size();
145     }
146   }
147 }
148 
149 //===----------------------------------------------------------------------===//
150 //                              CodeGenRegister
151 //===----------------------------------------------------------------------===//
152 
153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
154     : TheDef(R), EnumValue(Enum),
155       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
156       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
157       HasDisjunctSubRegs(false), SubRegsComplete(false),
158       SuperRegsComplete(false), TopoSig(~0u) {
159   Artificial = R->getValueAsBit("isArtificial");
160 }
161 
162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
163   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
164   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
165 
166   if (SRIs.size() != SRs.size())
167     PrintFatalError(TheDef->getLoc(),
168                     "SubRegs and SubRegIndices must have the same size");
169 
170   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
171     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
172     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
173   }
174 
175   // Also compute leading super-registers. Each register has a list of
176   // covered-by-subregs super-registers where it appears as the first explicit
177   // sub-register.
178   //
179   // This is used by computeSecondarySubRegs() to find candidates.
180   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
181     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
182 
183   // Add ad hoc alias links. This is a symmetric relationship between two
184   // registers, so build a symmetric graph by adding links in both ends.
185   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
186   for (Record *Alias : Aliases) {
187     CodeGenRegister *Reg = RegBank.getReg(Alias);
188     ExplicitAliases.push_back(Reg);
189     Reg->ExplicitAliases.push_back(this);
190   }
191 }
192 
193 StringRef CodeGenRegister::getName() const {
194   assert(TheDef && "no def");
195   return TheDef->getName();
196 }
197 
198 namespace {
199 
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator {
202   CodeGenRegister::Vec::const_iterator RegI, RegE;
203   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
204   static CodeGenRegister::RegUnitList Sentinel;
205 
206 public:
207   RegUnitIterator(const CodeGenRegister::Vec &Regs):
208     RegI(Regs.begin()), RegE(Regs.end()) {
209 
210     if (RegI == RegE) {
211       UnitI = Sentinel.end();
212       UnitE = Sentinel.end();
213     } else {
214       UnitI = (*RegI)->getRegUnits().begin();
215       UnitE = (*RegI)->getRegUnits().end();
216       advance();
217     }
218   }
219 
220   bool isValid() const { return UnitI != UnitE; }
221 
222   unsigned operator* () const { assert(isValid()); return *UnitI; }
223 
224   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
225 
226   /// Preincrement.  Move to the next unit.
227   void operator++() {
228     assert(isValid() && "Cannot advance beyond the last operand");
229     ++UnitI;
230     advance();
231   }
232 
233 protected:
234   void advance() {
235     while (UnitI == UnitE) {
236       if (++RegI == RegE)
237         break;
238       UnitI = (*RegI)->getRegUnits().begin();
239       UnitE = (*RegI)->getRegUnits().end();
240     }
241   }
242 };
243 
244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (auto Comp : Comps) {
318       SubRegMap::const_iterator SRI = Map.find(Comp.first);
319       if (SRI == Map.end())
320         continue; // Idx + I->first doesn't exist in SR.
321       // Add I->second as a name for the subreg SRI->second, assuming it is
322       // orphaned, and the name isn't already used for something else.
323       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
324         continue;
325       // We found a new name for the orphaned sub-register.
326       SubRegs.insert(std::make_pair(Comp.second, SRI->second));
327       Indices.push_back(Comp.second);
328     }
329   }
330 
331   // Now Orphans contains the inherited subregisters without a direct index.
332   // Create inferred indexes for all missing entries.
333   // Work backwards in the Indices vector in order to compose subregs bottom-up.
334   // Consider this subreg sequence:
335   //
336   //   qsub_1 -> dsub_0 -> ssub_0
337   //
338   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339   // can be reached in two different ways:
340   //
341   //   qsub_1 -> ssub_0
342   //   dsub_2 -> ssub_0
343   //
344   // We pick the latter composition because another register may have [dsub_0,
345   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
346   // dsub_2 -> ssub_0 composition can be shared.
347   while (!Indices.empty() && !Orphans.empty()) {
348     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
349     CodeGenRegister *SR = SubRegs[Idx];
350     const SubRegMap &Map = SR->computeSubRegs(RegBank);
351     for (const auto &SubReg : Map)
352       if (Orphans.erase(SubReg.second))
353         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
354   }
355 
356   // Compute the inverse SubReg -> Idx map.
357   for (const auto &SubReg : SubRegs) {
358     if (SubReg.second == this) {
359       ArrayRef<SMLoc> Loc;
360       if (TheDef)
361         Loc = TheDef->getLoc();
362       PrintFatalError(Loc, "Register " + getName() +
363                       " has itself as a sub-register");
364     }
365 
366     // Compute AllSuperRegsCovered.
367     if (!CoveredBySubRegs)
368       SubReg.first->AllSuperRegsCovered = false;
369 
370     // Ensure that every sub-register has a unique name.
371     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
372       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
373     if (Ins->second == SubReg.first)
374       continue;
375     // Trouble: Two different names for SubReg.second.
376     ArrayRef<SMLoc> Loc;
377     if (TheDef)
378       Loc = TheDef->getLoc();
379     PrintFatalError(Loc, "Sub-register can't have two names: " +
380                   SubReg.second->getName() + " available as " +
381                   SubReg.first->getName() + " and " + Ins->second->getName());
382   }
383 
384   // Derive possible names for sub-register concatenations from any explicit
385   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386   // that getConcatSubRegIndex() won't invent any concatenated indices that the
387   // user already specified.
388   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
389     CodeGenRegister *SR = ExplicitSubRegs[i];
390     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
391         SR->Artificial)
392       continue;
393 
394     // SR is composed of multiple sub-regs. Find their names in this register.
395     SmallVector<CodeGenSubRegIndex*, 8> Parts;
396     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
397       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
398       if (!I.Artificial)
399         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
400     }
401 
402     // Offer this as an existing spelling for the concatenation of Parts.
403     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
404     Idx.setConcatenationOf(Parts);
405   }
406 
407   // Initialize RegUnitList. Because getSubRegs is called recursively, this
408   // processes the register hierarchy in postorder.
409   //
410   // Inherit all sub-register units. It is good enough to look at the explicit
411   // sub-registers, the other registers won't contribute any more units.
412   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
413     CodeGenRegister *SR = ExplicitSubRegs[i];
414     RegUnits |= SR->RegUnits;
415   }
416 
417   // Absent any ad hoc aliasing, we create one register unit per leaf register.
418   // These units correspond to the maximal cliques in the register overlap
419   // graph which is optimal.
420   //
421   // When there is ad hoc aliasing, we simply create one unit per edge in the
422   // undirected ad hoc aliasing graph. Technically, we could do better by
423   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424   // are extremely rare anyway (I've never seen one), so we don't bother with
425   // the added complexity.
426   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
427     CodeGenRegister *AR = ExplicitAliases[i];
428     // Only visit each edge once.
429     if (AR->SubRegsComplete)
430       continue;
431     // Create a RegUnit representing this alias edge, and add it to both
432     // registers.
433     unsigned Unit = RegBank.newRegUnit(this, AR);
434     RegUnits.set(Unit);
435     AR->RegUnits.set(Unit);
436   }
437 
438   // Finally, create units for leaf registers without ad hoc aliases. Note that
439   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440   // necessary. This means the aliasing leaf registers can share a single unit.
441   if (RegUnits.empty())
442     RegUnits.set(RegBank.newRegUnit(this));
443 
444   // We have now computed the native register units. More may be adopted later
445   // for balancing purposes.
446   NativeRegUnits = RegUnits;
447 
448   return SubRegs;
449 }
450 
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
453 //
454 //   QQ0 = {Q0, Q1}
455 //   Q0 = {D0, D1}
456 //   Q1 = {D2, D3}
457 //
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
460 //
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
463 //
464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
465   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
466 
467   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
468   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
469     SubRegQueue.push(P);
470 
471   // Look at the leading super-registers of each sub-register. Those are the
472   // candidates for new sub-registers, assuming they are fully contained in
473   // this register.
474   while (!SubRegQueue.empty()) {
475     CodeGenSubRegIndex *SubRegIdx;
476     const CodeGenRegister *SubReg;
477     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
478     SubRegQueue.pop();
479 
480     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
481     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
482       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
483       // Already got this sub-register?
484       if (Cand == this || getSubRegIndex(Cand))
485         continue;
486       // Check if each component of Cand is already a sub-register.
487       assert(!Cand->ExplicitSubRegs.empty() &&
488              "Super-register has no sub-registers");
489       if (Cand->ExplicitSubRegs.size() == 1)
490         continue;
491       SmallVector<CodeGenSubRegIndex*, 8> Parts;
492       // We know that the first component is (SubRegIdx,SubReg). However we
493       // may still need to split it into smaller subregister parts.
494       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
495       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
496       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
497         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
498           if (SubRegIdx->ConcatenationOf.empty())
499             Parts.push_back(SubRegIdx);
500           else
501             append_range(Parts, SubRegIdx->ConcatenationOf);
502         } else {
503           // Sub-register doesn't exist.
504           Parts.clear();
505           break;
506         }
507       }
508       // There is nothing to do if some Cand sub-register is not part of this
509       // register.
510       if (Parts.empty())
511         continue;
512 
513       // Each part of Cand is a sub-register of this. Make the full Cand also
514       // a sub-register with a concatenated sub-register index.
515       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
516       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
517           std::make_pair(Concat, Cand);
518 
519       if (!SubRegs.insert(NewSubReg).second)
520         continue;
521 
522       // We inserted a new subregister.
523       NewSubRegs.push_back(NewSubReg);
524       SubRegQueue.push(NewSubReg);
525       SubReg2Idx.insert(std::make_pair(Cand, Concat));
526     }
527   }
528 
529   // Create sub-register index composition maps for the synthesized indices.
530   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
531     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
532     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
533     for (auto SubReg : NewSubReg->SubRegs) {
534       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
535       if (!SubIdx)
536         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
537                                               SubReg.second->getName() +
538                                               " in " + getName());
539       NewIdx->addComposite(SubReg.first, SubIdx);
540     }
541   }
542 }
543 
544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
545   // Only visit each register once.
546   if (SuperRegsComplete)
547     return;
548   SuperRegsComplete = true;
549 
550   // Make sure all sub-registers have been visited first, so the super-reg
551   // lists will be topologically ordered.
552   for (auto SubReg : SubRegs)
553     SubReg.second->computeSuperRegs(RegBank);
554 
555   // Now add this as a super-register on all sub-registers.
556   // Also compute the TopoSigId in post-order.
557   TopoSigId Id;
558   for (auto SubReg : SubRegs) {
559     // Topological signature computed from SubIdx, TopoId(SubReg).
560     // Loops and idempotent indices have TopoSig = ~0u.
561     Id.push_back(SubReg.first->EnumValue);
562     Id.push_back(SubReg.second->TopoSig);
563 
564     // Don't add duplicate entries.
565     if (!SubReg.second->SuperRegs.empty() &&
566         SubReg.second->SuperRegs.back() == this)
567       continue;
568     SubReg.second->SuperRegs.push_back(this);
569   }
570   TopoSig = RegBank.getTopoSig(Id);
571 }
572 
573 void
574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
575                                     CodeGenRegBank &RegBank) const {
576   assert(SubRegsComplete && "Must precompute sub-registers");
577   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
578     CodeGenRegister *SR = ExplicitSubRegs[i];
579     if (OSet.insert(SR))
580       SR->addSubRegsPreOrder(OSet, RegBank);
581   }
582   // Add any secondary sub-registers that weren't part of the explicit tree.
583   for (auto SubReg : SubRegs)
584     OSet.insert(SubReg.second);
585 }
586 
587 // Get the sum of this register's unit weights.
588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589   unsigned Weight = 0;
590   for (unsigned RegUnit : RegUnits) {
591     Weight += RegBank.getRegUnit(RegUnit).Weight;
592   }
593   return Weight;
594 }
595 
596 //===----------------------------------------------------------------------===//
597 //                               RegisterTuples
598 //===----------------------------------------------------------------------===//
599 
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
602 // registers.
603 namespace {
604 
605 struct TupleExpander : SetTheory::Expander {
606   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607   // the synthesized definitions for their lifetime.
608   std::vector<std::unique_ptr<Record>> &SynthDefs;
609 
610   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
611       : SynthDefs(SynthDefs) {}
612 
613   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
614     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
615     unsigned Dim = Indices.size();
616     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
617     if (Dim != SubRegs->size())
618       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
619     if (Dim < 2)
620       PrintFatalError(Def->getLoc(),
621                       "Tuples must have at least 2 sub-registers");
622 
623     // Evaluate the sub-register lists to be zipped.
624     unsigned Length = ~0u;
625     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
626     for (unsigned i = 0; i != Dim; ++i) {
627       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
628       Length = std::min(Length, unsigned(Lists[i].size()));
629     }
630 
631     if (Length == 0)
632       return;
633 
634     // Precompute some types.
635     Record *RegisterCl = Def->getRecords().getClass("Register");
636     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
637     std::vector<StringRef> RegNames =
638       Def->getValueAsListOfStrings("RegAsmNames");
639 
640     // Zip them up.
641     RecordKeeper &RK = Def->getRecords();
642     for (unsigned n = 0; n != Length; ++n) {
643       std::string Name;
644       Record *Proto = Lists[0][n];
645       std::vector<Init*> Tuple;
646       for (unsigned i = 0; i != Dim; ++i) {
647         Record *Reg = Lists[i][n];
648         if (i) Name += '_';
649         Name += Reg->getName();
650         Tuple.push_back(DefInit::get(Reg));
651       }
652 
653       // Take the cost list of the first register in the tuple.
654       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
655       SmallVector<Init *, 2> CostPerUse;
656       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
657 
658       StringInit *AsmName = StringInit::get(RK, "");
659       if (!RegNames.empty()) {
660         if (RegNames.size() <= n)
661           PrintFatalError(Def->getLoc(),
662                           "Register tuple definition missing name for '" +
663                             Name + "'.");
664         AsmName = StringInit::get(RK, RegNames[n]);
665       }
666 
667       // Create a new Record representing the synthesized register. This record
668       // is only for consumption by CodeGenRegister, it is not added to the
669       // RecordKeeper.
670       SynthDefs.emplace_back(
671           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
672       Record *NewReg = SynthDefs.back().get();
673       Elts.insert(NewReg);
674 
675       // Copy Proto super-classes.
676       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
677       for (const auto &SuperPair : Supers)
678         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
679 
680       // Copy Proto fields.
681       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
682         RecordVal RV = Proto->getValues()[i];
683 
684         // Skip existing fields, like NAME.
685         if (NewReg->getValue(RV.getNameInit()))
686           continue;
687 
688         StringRef Field = RV.getName();
689 
690         // Replace the sub-register list with Tuple.
691         if (Field == "SubRegs")
692           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
693 
694         if (Field == "AsmName")
695           RV.setValue(AsmName);
696 
697         // CostPerUse is aggregated from all Tuple members.
698         if (Field == "CostPerUse")
699           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
700 
701         // Composite registers are always covered by sub-registers.
702         if (Field == "CoveredBySubRegs")
703           RV.setValue(BitInit::get(RK, true));
704 
705         // Copy fields from the RegisterTuples def.
706         if (Field == "SubRegIndices" ||
707             Field == "CompositeIndices") {
708           NewReg->addValue(*Def->getValue(Field));
709           continue;
710         }
711 
712         // Some fields get their default uninitialized value.
713         if (Field == "DwarfNumbers" ||
714             Field == "DwarfAlias" ||
715             Field == "Aliases") {
716           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
717             NewReg->addValue(*DefRV);
718           continue;
719         }
720 
721         // Everything else is copied from Proto.
722         NewReg->addValue(RV);
723       }
724     }
725   }
726 };
727 
728 } // end anonymous namespace
729 
730 //===----------------------------------------------------------------------===//
731 //                            CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
733 
734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
735   llvm::sort(M, deref<std::less<>>());
736   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
737 }
738 
739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
740     : TheDef(R), Name(std::string(R->getName())),
741       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
743   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
744   if (TypeList.empty())
745     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
746   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747     Record *Type = TypeList[i];
748     if (!Type->isSubClassOf("ValueType"))
749       PrintFatalError(R->getLoc(),
750                       "RegTypes list member '" + Type->getName() +
751                           "' does not derive from the ValueType class!");
752     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
753   }
754 
755   // Allocation order 0 is the full set. AltOrders provides others.
756   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758   Orders.resize(1 + AltOrders->size());
759 
760   // Default allocation order always contains all registers.
761   Artificial = true;
762   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763     Orders[0].push_back((*Elements)[i]);
764     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765     Members.push_back(Reg);
766     Artificial &= Reg->Artificial;
767     TopoSigs.set(Reg->getTopoSig());
768   }
769   sortAndUniqueRegisters(Members);
770 
771   // Alternative allocation orders may be subsets.
772   SetTheory::RecSet Order;
773   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775     Orders[1 + i].append(Order.begin(), Order.end());
776     // Verify that all altorder members are regclass members.
777     while (!Order.empty()) {
778       CodeGenRegister *Reg = RegBank.getReg(Order.back());
779       Order.pop_back();
780       if (!contains(Reg))
781         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782                       " is not a class member");
783     }
784   }
785 
786   Namespace = R->getValueAsString("Namespace");
787 
788   if (const RecordVal *RV = R->getValue("RegInfos"))
789     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791   unsigned Size = R->getValueAsInt("Size");
792   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793          "Impossible to determine register size");
794   if (!RSI.hasDefault()) {
795     RegSizeInfo RI;
796     RI.RegSize = RI.SpillSize = Size ? Size
797                                      : VTs[0].getSimple().getSizeInBits();
798     RI.SpillAlignment = R->getValueAsInt("Alignment");
799     RSI.insertRegSizeForMode(DefaultMode, RI);
800   }
801 
802   CopyCost = R->getValueAsInt("CopyCost");
803   Allocatable = R->getValueAsBit("isAllocatable");
804   AltOrderSelect = R->getValueAsString("AltOrderSelect");
805   int AllocationPriority = R->getValueAsInt("AllocationPriority");
806   if (AllocationPriority < 0 || AllocationPriority > 63)
807     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
808   this->AllocationPriority = AllocationPriority;
809 
810   BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
811   for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
812     BitInit *Bit = cast<BitInit>(TSF->getBit(I));
813     TSFlags |= uint8_t(Bit->getValue()) << I;
814   }
815 }
816 
817 // Create an inferred register class that was missing from the .td files.
818 // Most properties will be inherited from the closest super-class after the
819 // class structure has been computed.
820 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
821                                            StringRef Name, Key Props)
822     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
823       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
824       CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) {
825   Artificial = true;
826   GeneratePressureSet = false;
827   for (const auto R : Members) {
828     TopoSigs.set(R->getTopoSig());
829     Artificial &= R->Artificial;
830   }
831 }
832 
833 // Compute inherited propertied for a synthesized register class.
834 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
835   assert(!getDef() && "Only synthesized classes can inherit properties");
836   assert(!SuperClasses.empty() && "Synthesized class without super class");
837 
838   // The last super-class is the smallest one.
839   CodeGenRegisterClass &Super = *SuperClasses.back();
840 
841   // Most properties are copied directly.
842   // Exceptions are members, size, and alignment
843   Namespace = Super.Namespace;
844   VTs = Super.VTs;
845   CopyCost = Super.CopyCost;
846   // Check for allocatable superclasses.
847   Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
848     return S->Allocatable;
849   });
850   AltOrderSelect = Super.AltOrderSelect;
851   AllocationPriority = Super.AllocationPriority;
852   TSFlags = Super.TSFlags;
853   GeneratePressureSet |= Super.GeneratePressureSet;
854 
855   // Copy all allocation orders, filter out foreign registers from the larger
856   // super-class.
857   Orders.resize(Super.Orders.size());
858   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
859     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
860       if (contains(RegBank.getReg(Super.Orders[i][j])))
861         Orders[i].push_back(Super.Orders[i][j]);
862 }
863 
864 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
865   if (llvm::is_contained(VTs, VT))
866     return true;
867 
868   // If VT is not identical to any of this class's types, but is a simple
869   // type, check if any of the types for this class contain it under some
870   // mode.
871   // The motivating example came from RISCV, where (likely because of being
872   // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
873   // type in GRC was {*:[i32], m1:[i64]}.
874   if (VT.isSimple()) {
875     MVT T = VT.getSimple();
876     for (const ValueTypeByHwMode &OurVT : VTs) {
877       if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
878         return true;
879     }
880   }
881   return false;
882 }
883 
884 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
885   return std::binary_search(Members.begin(), Members.end(), Reg,
886                             deref<std::less<>>());
887 }
888 
889 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
890   if (TheDef && !TheDef->isValueUnset("Weight"))
891     return TheDef->getValueAsInt("Weight");
892 
893   if (Members.empty() || Artificial)
894     return 0;
895 
896   return (*Members.begin())->getWeight(RegBank);
897 }
898 
899 namespace llvm {
900 
901   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
902     OS << "{ " << K.RSI;
903     for (const auto R : *K.Members)
904       OS << ", " << R->getName();
905     return OS << " }";
906   }
907 
908 } // end namespace llvm
909 
910 // This is a simple lexicographical order that can be used to search for sets.
911 // It is not the same as the topological order provided by TopoOrderRC.
912 bool CodeGenRegisterClass::Key::
913 operator<(const CodeGenRegisterClass::Key &B) const {
914   assert(Members && B.Members);
915   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
916 }
917 
918 // Returns true if RC is a strict subclass.
919 // RC is a sub-class of this class if it is a valid replacement for any
920 // instruction operand where a register of this classis required. It must
921 // satisfy these conditions:
922 //
923 // 1. All RC registers are also in this.
924 // 2. The RC spill size must not be smaller than our spill size.
925 // 3. RC spill alignment must be compatible with ours.
926 //
927 static bool testSubClass(const CodeGenRegisterClass *A,
928                          const CodeGenRegisterClass *B) {
929   return A->RSI.isSubClassOf(B->RSI) &&
930          std::includes(A->getMembers().begin(), A->getMembers().end(),
931                        B->getMembers().begin(), B->getMembers().end(),
932                        deref<std::less<>>());
933 }
934 
935 /// Sorting predicate for register classes.  This provides a topological
936 /// ordering that arranges all register classes before their sub-classes.
937 ///
938 /// Register classes with the same registers, spill size, and alignment form a
939 /// clique.  They will be ordered alphabetically.
940 ///
941 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
942                         const CodeGenRegisterClass &PB) {
943   auto *A = &PA;
944   auto *B = &PB;
945   if (A == B)
946     return false;
947 
948   if (A->RSI < B->RSI)
949     return true;
950   if (A->RSI != B->RSI)
951     return false;
952 
953   // Order by descending set size.  Note that the classes' allocation order may
954   // not have been computed yet.  The Members set is always vaild.
955   if (A->getMembers().size() > B->getMembers().size())
956     return true;
957   if (A->getMembers().size() < B->getMembers().size())
958     return false;
959 
960   // Finally order by name as a tie breaker.
961   return StringRef(A->getName()) < B->getName();
962 }
963 
964 std::string CodeGenRegisterClass::getQualifiedName() const {
965   if (Namespace.empty())
966     return getName();
967   else
968     return (Namespace + "::" + getName()).str();
969 }
970 
971 // Compute sub-classes of all register classes.
972 // Assume the classes are ordered topologically.
973 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
974   auto &RegClasses = RegBank.getRegClasses();
975 
976   // Visit backwards so sub-classes are seen first.
977   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
978     CodeGenRegisterClass &RC = *I;
979     RC.SubClasses.resize(RegClasses.size());
980     RC.SubClasses.set(RC.EnumValue);
981     if (RC.Artificial)
982       continue;
983 
984     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
985     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
986       CodeGenRegisterClass &SubRC = *I2;
987       if (RC.SubClasses.test(SubRC.EnumValue))
988         continue;
989       if (!testSubClass(&RC, &SubRC))
990         continue;
991       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
992       // check them again.
993       RC.SubClasses |= SubRC.SubClasses;
994     }
995 
996     // Sweep up missed clique members.  They will be immediately preceding RC.
997     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
998       RC.SubClasses.set(I2->EnumValue);
999   }
1000 
1001   // Compute the SuperClasses lists from the SubClasses vectors.
1002   for (auto &RC : RegClasses) {
1003     const BitVector &SC = RC.getSubClasses();
1004     auto I = RegClasses.begin();
1005     for (int s = 0, next_s = SC.find_first(); next_s != -1;
1006          next_s = SC.find_next(s)) {
1007       std::advance(I, next_s - s);
1008       s = next_s;
1009       if (&*I == &RC)
1010         continue;
1011       I->SuperClasses.push_back(&RC);
1012     }
1013   }
1014 
1015   // With the class hierarchy in place, let synthesized register classes inherit
1016   // properties from their closest super-class. The iteration order here can
1017   // propagate properties down multiple levels.
1018   for (auto &RC : RegClasses)
1019     if (!RC.getDef())
1020       RC.inheritProperties(RegBank);
1021 }
1022 
1023 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
1024 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1025     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1026   auto SizeOrder = [this](const CodeGenRegisterClass *A,
1027                       const CodeGenRegisterClass *B) {
1028     // If there are multiple, identical register classes, prefer the original
1029     // register class.
1030     if (A == B)
1031       return false;
1032     if (A->getMembers().size() == B->getMembers().size())
1033       return A == this;
1034     return A->getMembers().size() > B->getMembers().size();
1035   };
1036 
1037   auto &RegClasses = RegBank.getRegClasses();
1038 
1039   // Find all the subclasses of this one that fully support the sub-register
1040   // index and order them by size. BiggestSuperRC should always be first.
1041   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1042   if (!BiggestSuperRegRC)
1043     return None;
1044   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1045   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1046   for (auto &RC : RegClasses)
1047     if (SuperRegRCsBV[RC.EnumValue])
1048       SuperRegRCs.emplace_back(&RC);
1049   llvm::stable_sort(SuperRegRCs, SizeOrder);
1050 
1051   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1052          "Biggest class wasn't first");
1053 
1054   // Find all the subreg classes and order them by size too.
1055   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1056   for (auto &RC: RegClasses) {
1057     BitVector SuperRegClassesBV(RegClasses.size());
1058     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1059     if (SuperRegClassesBV.any())
1060       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1061   }
1062   llvm::sort(SuperRegClasses,
1063              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1064                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1065                return SizeOrder(A.first, B.first);
1066              });
1067 
1068   // Find the biggest subclass and subreg class such that R:subidx is in the
1069   // subreg class for all R in subclass.
1070   //
1071   // For example:
1072   // All registers in X86's GR64 have a sub_32bit subregister but no class
1073   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1074   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1075   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1076   // having excluded RIP, we are able to find a SubRegRC (GR32).
1077   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1078   CodeGenRegisterClass *SubRegRC = nullptr;
1079   for (auto *SuperRegRC : SuperRegRCs) {
1080     for (const auto &SuperRegClassPair : SuperRegClasses) {
1081       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1082       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1083         SubRegRC = SuperRegClassPair.first;
1084         ChosenSuperRegClass = SuperRegRC;
1085 
1086         // If SubRegRC is bigger than SuperRegRC then there are members of
1087         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1088         // find a better fit and fall back on this one if there isn't one.
1089         //
1090         // This is intended to prevent X86 from making odd choices such as
1091         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1092         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1093         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1094         // mapping.
1095         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1096           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1097       }
1098     }
1099 
1100     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1101     // registers, then we're done.
1102     if (ChosenSuperRegClass)
1103       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1104   }
1105 
1106   return None;
1107 }
1108 
1109 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1110                                               BitVector &Out) const {
1111   auto FindI = SuperRegClasses.find(SubIdx);
1112   if (FindI == SuperRegClasses.end())
1113     return;
1114   for (CodeGenRegisterClass *RC : FindI->second)
1115     Out.set(RC->EnumValue);
1116 }
1117 
1118 // Populate a unique sorted list of units from a register set.
1119 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1120   std::vector<unsigned> &RegUnits) const {
1121   std::vector<unsigned> TmpUnits;
1122   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1123     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1124     if (!RU.Artificial)
1125       TmpUnits.push_back(*UnitI);
1126   }
1127   llvm::sort(TmpUnits);
1128   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1129                    std::back_inserter(RegUnits));
1130 }
1131 
1132 //===----------------------------------------------------------------------===//
1133 //                           CodeGenRegisterCategory
1134 //===----------------------------------------------------------------------===//
1135 
1136 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1137                                                  Record *R)
1138     : TheDef(R), Name(std::string(R->getName())) {
1139   for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1140     Classes.push_back(RegBank.getRegClass(RegClass));
1141 }
1142 
1143 //===----------------------------------------------------------------------===//
1144 //                               CodeGenRegBank
1145 //===----------------------------------------------------------------------===//
1146 
1147 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1148                                const CodeGenHwModes &Modes) : CGH(Modes) {
1149   // Configure register Sets to understand register classes and tuples.
1150   Sets.addFieldExpander("RegisterClass", "MemberList");
1151   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1152   Sets.addExpander("RegisterTuples",
1153                    std::make_unique<TupleExpander>(SynthDefs));
1154 
1155   // Read in the user-defined (named) sub-register indices.
1156   // More indices will be synthesized later.
1157   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1158   llvm::sort(SRIs, LessRecord());
1159   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1160     getSubRegIdx(SRIs[i]);
1161   // Build composite maps from ComposedOf fields.
1162   for (auto &Idx : SubRegIndices)
1163     Idx.updateComponents(*this);
1164 
1165   // Read in the register definitions.
1166   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1167   llvm::sort(Regs, LessRecordRegister());
1168   // Assign the enumeration values.
1169   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1170     getReg(Regs[i]);
1171 
1172   // Expand tuples and number the new registers.
1173   std::vector<Record*> Tups =
1174     Records.getAllDerivedDefinitions("RegisterTuples");
1175 
1176   for (Record *R : Tups) {
1177     std::vector<Record *> TupRegs = *Sets.expand(R);
1178     llvm::sort(TupRegs, LessRecordRegister());
1179     for (Record *RC : TupRegs)
1180       getReg(RC);
1181   }
1182 
1183   // Now all the registers are known. Build the object graph of explicit
1184   // register-register references.
1185   for (auto &Reg : Registers)
1186     Reg.buildObjectGraph(*this);
1187 
1188   // Compute register name map.
1189   for (auto &Reg : Registers)
1190     // FIXME: This could just be RegistersByName[name] = register, except that
1191     // causes some failures in MIPS - perhaps they have duplicate register name
1192     // entries? (or maybe there's a reason for it - I don't know much about this
1193     // code, just drive-by refactoring)
1194     RegistersByName.insert(
1195         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1196 
1197   // Precompute all sub-register maps.
1198   // This will create Composite entries for all inferred sub-register indices.
1199   for (auto &Reg : Registers)
1200     Reg.computeSubRegs(*this);
1201 
1202   // Compute transitive closure of subregister index ConcatenationOf vectors
1203   // and initialize ConcatIdx map.
1204   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1205     SRI.computeConcatTransitiveClosure();
1206     if (!SRI.ConcatenationOf.empty())
1207       ConcatIdx.insert(std::make_pair(
1208           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1209                                              SRI.ConcatenationOf.end()), &SRI));
1210   }
1211 
1212   // Infer even more sub-registers by combining leading super-registers.
1213   for (auto &Reg : Registers)
1214     if (Reg.CoveredBySubRegs)
1215       Reg.computeSecondarySubRegs(*this);
1216 
1217   // After the sub-register graph is complete, compute the topologically
1218   // ordered SuperRegs list.
1219   for (auto &Reg : Registers)
1220     Reg.computeSuperRegs(*this);
1221 
1222   // For each pair of Reg:SR, if both are non-artificial, mark the
1223   // corresponding sub-register index as non-artificial.
1224   for (auto &Reg : Registers) {
1225     if (Reg.Artificial)
1226       continue;
1227     for (auto P : Reg.getSubRegs()) {
1228       const CodeGenRegister *SR = P.second;
1229       if (!SR->Artificial)
1230         P.first->Artificial = false;
1231     }
1232   }
1233 
1234   // Native register units are associated with a leaf register. They've all been
1235   // discovered now.
1236   NumNativeRegUnits = RegUnits.size();
1237 
1238   // Read in register class definitions.
1239   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1240   if (RCs.empty())
1241     PrintFatalError("No 'RegisterClass' subclasses defined!");
1242 
1243   // Allocate user-defined register classes.
1244   for (auto *R : RCs) {
1245     RegClasses.emplace_back(*this, R);
1246     CodeGenRegisterClass &RC = RegClasses.back();
1247     if (!RC.Artificial)
1248       addToMaps(&RC);
1249   }
1250 
1251   // Infer missing classes to create a full algebra.
1252   computeInferredRegisterClasses();
1253 
1254   // Order register classes topologically and assign enum values.
1255   RegClasses.sort(TopoOrderRC);
1256   unsigned i = 0;
1257   for (auto &RC : RegClasses)
1258     RC.EnumValue = i++;
1259   CodeGenRegisterClass::computeSubClasses(*this);
1260 
1261   // Read in the register category definitions.
1262   std::vector<Record *> RCats =
1263       Records.getAllDerivedDefinitions("RegisterCategory");
1264   for (auto *R : RCats)
1265     RegCategories.emplace_back(*this, R);
1266 }
1267 
1268 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1269 CodeGenSubRegIndex*
1270 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1271   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1272   return &SubRegIndices.back();
1273 }
1274 
1275 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1276   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1277   if (Idx)
1278     return Idx;
1279   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1280   Idx = &SubRegIndices.back();
1281   return Idx;
1282 }
1283 
1284 const CodeGenSubRegIndex *
1285 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1286   return Def2SubRegIdx.lookup(Def);
1287 }
1288 
1289 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1290   CodeGenRegister *&Reg = Def2Reg[Def];
1291   if (Reg)
1292     return Reg;
1293   Registers.emplace_back(Def, Registers.size() + 1);
1294   Reg = &Registers.back();
1295   return Reg;
1296 }
1297 
1298 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1299   if (Record *Def = RC->getDef())
1300     Def2RC.insert(std::make_pair(Def, RC));
1301 
1302   // Duplicate classes are rejected by insert().
1303   // That's OK, we only care about the properties handled by CGRC::Key.
1304   CodeGenRegisterClass::Key K(*RC);
1305   Key2RC.insert(std::make_pair(K, RC));
1306 }
1307 
1308 // Create a synthetic sub-class if it is missing.
1309 CodeGenRegisterClass*
1310 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1311                                     const CodeGenRegister::Vec *Members,
1312                                     StringRef Name) {
1313   // Synthetic sub-class has the same size and alignment as RC.
1314   CodeGenRegisterClass::Key K(Members, RC->RSI);
1315   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1316   if (FoundI != Key2RC.end())
1317     return FoundI->second;
1318 
1319   // Sub-class doesn't exist, create a new one.
1320   RegClasses.emplace_back(*this, Name, K);
1321   addToMaps(&RegClasses.back());
1322   return &RegClasses.back();
1323 }
1324 
1325 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1326   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1327     return RC;
1328 
1329   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1330 }
1331 
1332 CodeGenSubRegIndex*
1333 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1334                                         CodeGenSubRegIndex *B) {
1335   // Look for an existing entry.
1336   CodeGenSubRegIndex *Comp = A->compose(B);
1337   if (Comp)
1338     return Comp;
1339 
1340   // None exists, synthesize one.
1341   std::string Name = A->getName() + "_then_" + B->getName();
1342   Comp = createSubRegIndex(Name, A->getNamespace());
1343   A->addComposite(B, Comp);
1344   return Comp;
1345 }
1346 
1347 CodeGenSubRegIndex *CodeGenRegBank::
1348 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1349   assert(Parts.size() > 1 && "Need two parts to concatenate");
1350 #ifndef NDEBUG
1351   for (CodeGenSubRegIndex *Idx : Parts) {
1352     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1353   }
1354 #endif
1355 
1356   // Look for an existing entry.
1357   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1358   if (Idx)
1359     return Idx;
1360 
1361   // None exists, synthesize one.
1362   std::string Name = Parts.front()->getName();
1363   // Determine whether all parts are contiguous.
1364   bool isContinuous = true;
1365   unsigned Size = Parts.front()->Size;
1366   unsigned LastOffset = Parts.front()->Offset;
1367   unsigned LastSize = Parts.front()->Size;
1368   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1369     Name += '_';
1370     Name += Parts[i]->getName();
1371     Size += Parts[i]->Size;
1372     if (Parts[i]->Offset != (LastOffset + LastSize))
1373       isContinuous = false;
1374     LastOffset = Parts[i]->Offset;
1375     LastSize = Parts[i]->Size;
1376   }
1377   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1378   Idx->Size = Size;
1379   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1380   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1381   return Idx;
1382 }
1383 
1384 void CodeGenRegBank::computeComposites() {
1385   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1386 
1387   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1388   // register to (sub)register associated with the action of the left-hand
1389   // side subregister.
1390   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1391   for (const CodeGenRegister &R : Registers) {
1392     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1393     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1394       SubRegAction[P.first].insert({&R, P.second});
1395   }
1396 
1397   // Calculate the composition of two subregisters as compositions of their
1398   // associated actions.
1399   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1400                                   const CodeGenSubRegIndex *Sub2) {
1401     RegMap C;
1402     const RegMap &Img1 = SubRegAction.at(Sub1);
1403     const RegMap &Img2 = SubRegAction.at(Sub2);
1404     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1405       auto F = Img2.find(P.second);
1406       if (F != Img2.end())
1407         C.insert({P.first, F->second});
1408     }
1409     return C;
1410   };
1411 
1412   // Check if the two maps agree on the intersection of their domains.
1413   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1414     // Technically speaking, an empty map agrees with any other map, but
1415     // this could flag false positives. We're interested in non-vacuous
1416     // agreements.
1417     if (Map1.empty() || Map2.empty())
1418       return false;
1419     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1420       auto F = Map2.find(P.first);
1421       if (F == Map2.end() || P.second != F->second)
1422         return false;
1423     }
1424     return true;
1425   };
1426 
1427   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1428                                   const CodeGenSubRegIndex*>;
1429   SmallSet<CompositePair,4> UserDefined;
1430   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1431     for (auto P : Idx.getComposites())
1432       UserDefined.insert(std::make_pair(&Idx, P.first));
1433 
1434   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1435   // and many registers will share TopoSigs on regular architectures.
1436   BitVector TopoSigs(getNumTopoSigs());
1437 
1438   for (const auto &Reg1 : Registers) {
1439     // Skip identical subreg structures already processed.
1440     if (TopoSigs.test(Reg1.getTopoSig()))
1441       continue;
1442     TopoSigs.set(Reg1.getTopoSig());
1443 
1444     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1445     for (auto I1 : SRM1) {
1446       CodeGenSubRegIndex *Idx1 = I1.first;
1447       CodeGenRegister *Reg2 = I1.second;
1448       // Ignore identity compositions.
1449       if (&Reg1 == Reg2)
1450         continue;
1451       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1452       // Try composing Idx1 with another SubRegIndex.
1453       for (auto I2 : SRM2) {
1454         CodeGenSubRegIndex *Idx2 = I2.first;
1455         CodeGenRegister *Reg3 = I2.second;
1456         // Ignore identity compositions.
1457         if (Reg2 == Reg3)
1458           continue;
1459         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1460         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1461         assert(Idx3 && "Sub-register doesn't have an index");
1462 
1463         // Conflicting composition? Emit a warning but allow it.
1464         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1465           // If the composition was not user-defined, always emit a warning.
1466           if (!UserDefined.count({Idx1, Idx2}) ||
1467               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1468             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1469                          " and " + Idx2->getQualifiedName() +
1470                          " compose ambiguously as " + Prev->getQualifiedName() +
1471                          " or " + Idx3->getQualifiedName());
1472         }
1473       }
1474     }
1475   }
1476 }
1477 
1478 // Compute lane masks. This is similar to register units, but at the
1479 // sub-register index level. Each bit in the lane mask is like a register unit
1480 // class, and two lane masks will have a bit in common if two sub-register
1481 // indices overlap in some register.
1482 //
1483 // Conservatively share a lane mask bit if two sub-register indices overlap in
1484 // some registers, but not in others. That shouldn't happen a lot.
1485 void CodeGenRegBank::computeSubRegLaneMasks() {
1486   // First assign individual bits to all the leaf indices.
1487   unsigned Bit = 0;
1488   // Determine mask of lanes that cover their registers.
1489   CoveringLanes = LaneBitmask::getAll();
1490   for (auto &Idx : SubRegIndices) {
1491     if (Idx.getComposites().empty()) {
1492       if (Bit > LaneBitmask::BitWidth) {
1493         PrintFatalError(
1494           Twine("Ran out of lanemask bits to represent subregister ")
1495           + Idx.getName());
1496       }
1497       Idx.LaneMask = LaneBitmask::getLane(Bit);
1498       ++Bit;
1499     } else {
1500       Idx.LaneMask = LaneBitmask::getNone();
1501     }
1502   }
1503 
1504   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1505   // here is that for each possible target subregister we look at the leafs
1506   // in the subregister graph that compose for this target and create
1507   // transformation sequences for the lanemasks. Each step in the sequence
1508   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1509   // are usually the same for many subregisters we can easily combine the steps
1510   // by combining the masks.
1511   for (const auto &Idx : SubRegIndices) {
1512     const auto &Composites = Idx.getComposites();
1513     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1514 
1515     if (Composites.empty()) {
1516       // Moving from a class with no subregisters we just had a single lane:
1517       // The subregister must be a leaf subregister and only occupies 1 bit.
1518       // Move the bit from the class without subregisters into that position.
1519       unsigned DstBit = Idx.LaneMask.getHighestLane();
1520       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1521              "Must be a leaf subregister");
1522       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1523       LaneTransforms.push_back(MaskRol);
1524     } else {
1525       // Go through all leaf subregisters and find the ones that compose with
1526       // Idx. These make out all possible valid bits in the lane mask we want to
1527       // transform. Looking only at the leafs ensure that only a single bit in
1528       // the mask is set.
1529       unsigned NextBit = 0;
1530       for (auto &Idx2 : SubRegIndices) {
1531         // Skip non-leaf subregisters.
1532         if (!Idx2.getComposites().empty())
1533           continue;
1534         // Replicate the behaviour from the lane mask generation loop above.
1535         unsigned SrcBit = NextBit;
1536         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1537         if (NextBit < LaneBitmask::BitWidth-1)
1538           ++NextBit;
1539         assert(Idx2.LaneMask == SrcMask);
1540 
1541         // Get the composed subregister if there is any.
1542         auto C = Composites.find(&Idx2);
1543         if (C == Composites.end())
1544           continue;
1545         const CodeGenSubRegIndex *Composite = C->second;
1546         // The Composed subreg should be a leaf subreg too
1547         assert(Composite->getComposites().empty());
1548 
1549         // Create Mask+Rotate operation and merge with existing ops if possible.
1550         unsigned DstBit = Composite->LaneMask.getHighestLane();
1551         int Shift = DstBit - SrcBit;
1552         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1553                                         : LaneBitmask::BitWidth + Shift;
1554         for (auto &I : LaneTransforms) {
1555           if (I.RotateLeft == RotateLeft) {
1556             I.Mask |= SrcMask;
1557             SrcMask = LaneBitmask::getNone();
1558           }
1559         }
1560         if (SrcMask.any()) {
1561           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1562           LaneTransforms.push_back(MaskRol);
1563         }
1564       }
1565     }
1566 
1567     // Optimize if the transformation consists of one step only: Set mask to
1568     // 0xffffffff (including some irrelevant invalid bits) so that it should
1569     // merge with more entries later while compressing the table.
1570     if (LaneTransforms.size() == 1)
1571       LaneTransforms[0].Mask = LaneBitmask::getAll();
1572 
1573     // Further compression optimization: For invalid compositions resulting
1574     // in a sequence with 0 entries we can just pick any other. Choose
1575     // Mask 0xffffffff with Rotation 0.
1576     if (LaneTransforms.size() == 0) {
1577       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1578       LaneTransforms.push_back(P);
1579     }
1580   }
1581 
1582   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1583   // by the sub-register graph? This doesn't occur in any known targets.
1584 
1585   // Inherit lanes from composites.
1586   for (const auto &Idx : SubRegIndices) {
1587     LaneBitmask Mask = Idx.computeLaneMask();
1588     // If some super-registers without CoveredBySubRegs use this index, we can
1589     // no longer assume that the lanes are covering their registers.
1590     if (!Idx.AllSuperRegsCovered)
1591       CoveringLanes &= ~Mask;
1592   }
1593 
1594   // Compute lane mask combinations for register classes.
1595   for (auto &RegClass : RegClasses) {
1596     LaneBitmask LaneMask;
1597     for (const auto &SubRegIndex : SubRegIndices) {
1598       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1599         continue;
1600       LaneMask |= SubRegIndex.LaneMask;
1601     }
1602 
1603     // For classes without any subregisters set LaneMask to 1 instead of 0.
1604     // This makes it easier for client code to handle classes uniformly.
1605     if (LaneMask.none())
1606       LaneMask = LaneBitmask::getLane(0);
1607 
1608     RegClass.LaneMask = LaneMask;
1609   }
1610 }
1611 
1612 namespace {
1613 
1614 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1615 // the transitive closure of the union of overlapping register
1616 // classes. Together, the UberRegSets form a partition of the registers. If we
1617 // consider overlapping register classes to be connected, then each UberRegSet
1618 // is a set of connected components.
1619 //
1620 // An UberRegSet will likely be a horizontal slice of register names of
1621 // the same width. Nontrivial subregisters should then be in a separate
1622 // UberRegSet. But this property isn't required for valid computation of
1623 // register unit weights.
1624 //
1625 // A Weight field caches the max per-register unit weight in each UberRegSet.
1626 //
1627 // A set of SingularDeterminants flags single units of some register in this set
1628 // for which the unit weight equals the set weight. These units should not have
1629 // their weight increased.
1630 struct UberRegSet {
1631   CodeGenRegister::Vec Regs;
1632   unsigned Weight = 0;
1633   CodeGenRegister::RegUnitList SingularDeterminants;
1634 
1635   UberRegSet() = default;
1636 };
1637 
1638 } // end anonymous namespace
1639 
1640 // Partition registers into UberRegSets, where each set is the transitive
1641 // closure of the union of overlapping register classes.
1642 //
1643 // UberRegSets[0] is a special non-allocatable set.
1644 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1645                             std::vector<UberRegSet*> &RegSets,
1646                             CodeGenRegBank &RegBank) {
1647   const auto &Registers = RegBank.getRegisters();
1648 
1649   // The Register EnumValue is one greater than its index into Registers.
1650   assert(Registers.size() == Registers.back().EnumValue &&
1651          "register enum value mismatch");
1652 
1653   // For simplicitly make the SetID the same as EnumValue.
1654   IntEqClasses UberSetIDs(Registers.size()+1);
1655   std::set<unsigned> AllocatableRegs;
1656   for (auto &RegClass : RegBank.getRegClasses()) {
1657     if (!RegClass.Allocatable)
1658       continue;
1659 
1660     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1661     if (Regs.empty())
1662       continue;
1663 
1664     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1665     assert(USetID && "register number 0 is invalid");
1666 
1667     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1668     for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1669       AllocatableRegs.insert(CGR->EnumValue);
1670       UberSetIDs.join(USetID, CGR->EnumValue);
1671     }
1672   }
1673   // Combine non-allocatable regs.
1674   for (const auto &Reg : Registers) {
1675     unsigned RegNum = Reg.EnumValue;
1676     if (AllocatableRegs.count(RegNum))
1677       continue;
1678 
1679     UberSetIDs.join(0, RegNum);
1680   }
1681   UberSetIDs.compress();
1682 
1683   // Make the first UberSet a special unallocatable set.
1684   unsigned ZeroID = UberSetIDs[0];
1685 
1686   // Insert Registers into the UberSets formed by union-find.
1687   // Do not resize after this.
1688   UberSets.resize(UberSetIDs.getNumClasses());
1689   unsigned i = 0;
1690   for (const CodeGenRegister &Reg : Registers) {
1691     unsigned USetID = UberSetIDs[Reg.EnumValue];
1692     if (!USetID)
1693       USetID = ZeroID;
1694     else if (USetID == ZeroID)
1695       USetID = 0;
1696 
1697     UberRegSet *USet = &UberSets[USetID];
1698     USet->Regs.push_back(&Reg);
1699     sortAndUniqueRegisters(USet->Regs);
1700     RegSets[i++] = USet;
1701   }
1702 }
1703 
1704 // Recompute each UberSet weight after changing unit weights.
1705 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1706                                CodeGenRegBank &RegBank) {
1707   // Skip the first unallocatable set.
1708   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1709          E = UberSets.end(); I != E; ++I) {
1710 
1711     // Initialize all unit weights in this set, and remember the max units/reg.
1712     const CodeGenRegister *Reg = nullptr;
1713     unsigned MaxWeight = 0, Weight = 0;
1714     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1715       if (Reg != UnitI.getReg()) {
1716         if (Weight > MaxWeight)
1717           MaxWeight = Weight;
1718         Reg = UnitI.getReg();
1719         Weight = 0;
1720       }
1721       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1722         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1723         if (!UWeight) {
1724           UWeight = 1;
1725           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1726         }
1727         Weight += UWeight;
1728       }
1729     }
1730     if (Weight > MaxWeight)
1731       MaxWeight = Weight;
1732     if (I->Weight != MaxWeight) {
1733       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1734                         << MaxWeight;
1735                  for (auto &Unit
1736                       : I->Regs) dbgs()
1737                  << " " << Unit->getName();
1738                  dbgs() << "\n");
1739       // Update the set weight.
1740       I->Weight = MaxWeight;
1741     }
1742 
1743     // Find singular determinants.
1744     for (const auto R : I->Regs) {
1745       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1746         I->SingularDeterminants |= R->getRegUnits();
1747       }
1748     }
1749   }
1750 }
1751 
1752 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1753 // a register and its subregisters so that they have the same weight as their
1754 // UberSet. Self-recursion processes the subregister tree in postorder so
1755 // subregisters are normalized first.
1756 //
1757 // Side effects:
1758 // - creates new adopted register units
1759 // - causes superregisters to inherit adopted units
1760 // - increases the weight of "singular" units
1761 // - induces recomputation of UberWeights.
1762 static bool normalizeWeight(CodeGenRegister *Reg,
1763                             std::vector<UberRegSet> &UberSets,
1764                             std::vector<UberRegSet*> &RegSets,
1765                             BitVector &NormalRegs,
1766                             CodeGenRegister::RegUnitList &NormalUnits,
1767                             CodeGenRegBank &RegBank) {
1768   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1769   if (NormalRegs.test(Reg->EnumValue))
1770     return false;
1771   NormalRegs.set(Reg->EnumValue);
1772 
1773   bool Changed = false;
1774   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1775   for (auto SRI : SRM) {
1776     if (SRI.second == Reg)
1777       continue; // self-cycles happen
1778 
1779     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1780                                NormalUnits, RegBank);
1781   }
1782   // Postorder register normalization.
1783 
1784   // Inherit register units newly adopted by subregisters.
1785   if (Reg->inheritRegUnits(RegBank))
1786     computeUberWeights(UberSets, RegBank);
1787 
1788   // Check if this register is too skinny for its UberRegSet.
1789   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1790 
1791   unsigned RegWeight = Reg->getWeight(RegBank);
1792   if (UberSet->Weight > RegWeight) {
1793     // A register unit's weight can be adjusted only if it is the singular unit
1794     // for this register, has not been used to normalize a subregister's set,
1795     // and has not already been used to singularly determine this UberRegSet.
1796     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1797     if (Reg->getRegUnits().count() != 1
1798         || hasRegUnit(NormalUnits, AdjustUnit)
1799         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1800       // We don't have an adjustable unit, so adopt a new one.
1801       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1802       Reg->adoptRegUnit(AdjustUnit);
1803       // Adopting a unit does not immediately require recomputing set weights.
1804     }
1805     else {
1806       // Adjust the existing single unit.
1807       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1808         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1809       // The unit may be shared among sets and registers within this set.
1810       computeUberWeights(UberSets, RegBank);
1811     }
1812     Changed = true;
1813   }
1814 
1815   // Mark these units normalized so superregisters can't change their weights.
1816   NormalUnits |= Reg->getRegUnits();
1817 
1818   return Changed;
1819 }
1820 
1821 // Compute a weight for each register unit created during getSubRegs.
1822 //
1823 // The goal is that two registers in the same class will have the same weight,
1824 // where each register's weight is defined as sum of its units' weights.
1825 void CodeGenRegBank::computeRegUnitWeights() {
1826   std::vector<UberRegSet> UberSets;
1827   std::vector<UberRegSet*> RegSets(Registers.size());
1828   computeUberSets(UberSets, RegSets, *this);
1829   // UberSets and RegSets are now immutable.
1830 
1831   computeUberWeights(UberSets, *this);
1832 
1833   // Iterate over each Register, normalizing the unit weights until reaching
1834   // a fix point.
1835   unsigned NumIters = 0;
1836   for (bool Changed = true; Changed; ++NumIters) {
1837     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1838     (void) NumIters;
1839     Changed = false;
1840     for (auto &Reg : Registers) {
1841       CodeGenRegister::RegUnitList NormalUnits;
1842       BitVector NormalRegs;
1843       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1844                                  NormalUnits, *this);
1845     }
1846   }
1847 }
1848 
1849 // Find a set in UniqueSets with the same elements as Set.
1850 // Return an iterator into UniqueSets.
1851 static std::vector<RegUnitSet>::const_iterator
1852 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1853                const RegUnitSet &Set) {
1854   std::vector<RegUnitSet>::const_iterator
1855     I = UniqueSets.begin(), E = UniqueSets.end();
1856   for(;I != E; ++I) {
1857     if (I->Units == Set.Units)
1858       break;
1859   }
1860   return I;
1861 }
1862 
1863 // Return true if the RUSubSet is a subset of RUSuperSet.
1864 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1865                             const std::vector<unsigned> &RUSuperSet) {
1866   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1867                        RUSubSet.begin(), RUSubSet.end());
1868 }
1869 
1870 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1871 /// but with one or two registers removed. We occasionally have registers like
1872 /// APSR and PC thrown in with the general registers. We also see many
1873 /// special-purpose register subsets, such as tail-call and Thumb
1874 /// encodings. Generating all possible overlapping sets is combinatorial and
1875 /// overkill for modeling pressure. Ideally we could fix this statically in
1876 /// tablegen by (1) having the target define register classes that only include
1877 /// the allocatable registers and marking other classes as non-allocatable and
1878 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1879 /// the purpose of pressure.  However, we make an attempt to handle targets that
1880 /// are not nicely defined by merging nearly identical register unit sets
1881 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1882 /// set limit by filtering the reserved registers.
1883 ///
1884 /// Merge sets only if the units have the same weight. For example, on ARM,
1885 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1886 /// should not expand the S set to include D regs.
1887 void CodeGenRegBank::pruneUnitSets() {
1888   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1889 
1890   // Form an equivalence class of UnitSets with no significant difference.
1891   std::vector<unsigned> SuperSetIDs;
1892   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1893        SubIdx != EndIdx; ++SubIdx) {
1894     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1895     unsigned SuperIdx = 0;
1896     for (; SuperIdx != EndIdx; ++SuperIdx) {
1897       if (SuperIdx == SubIdx)
1898         continue;
1899 
1900       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1901       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1902       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1903           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1904           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1905           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1906         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1907                           << "\n");
1908         // We can pick any of the set names for the merged set. Go for the
1909         // shortest one to avoid picking the name of one of the classes that are
1910         // artificially created by tablegen. So "FPR128_lo" instead of
1911         // "QQQQ_with_qsub3_in_FPR128_lo".
1912         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1913           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1914         break;
1915       }
1916     }
1917     if (SuperIdx == EndIdx)
1918       SuperSetIDs.push_back(SubIdx);
1919   }
1920   // Populate PrunedUnitSets with each equivalence class's superset.
1921   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1922   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1923     unsigned SuperIdx = SuperSetIDs[i];
1924     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1925     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1926   }
1927   RegUnitSets.swap(PrunedUnitSets);
1928 }
1929 
1930 // Create a RegUnitSet for each RegClass that contains all units in the class
1931 // including adopted units that are necessary to model register pressure. Then
1932 // iteratively compute RegUnitSets such that the union of any two overlapping
1933 // RegUnitSets is repreresented.
1934 //
1935 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1936 // RegUnitSet that is a superset of that RegUnitClass.
1937 void CodeGenRegBank::computeRegUnitSets() {
1938   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1939 
1940   // Compute a unique RegUnitSet for each RegClass.
1941   auto &RegClasses = getRegClasses();
1942   for (auto &RC : RegClasses) {
1943     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1944       continue;
1945 
1946     // Speculatively grow the RegUnitSets to hold the new set.
1947     RegUnitSets.resize(RegUnitSets.size() + 1);
1948     RegUnitSets.back().Name = RC.getName();
1949 
1950     // Compute a sorted list of units in this class.
1951     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1952 
1953     // Find an existing RegUnitSet.
1954     std::vector<RegUnitSet>::const_iterator SetI =
1955       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1956     if (SetI != std::prev(RegUnitSets.end()))
1957       RegUnitSets.pop_back();
1958   }
1959 
1960   if (RegUnitSets.empty())
1961     PrintFatalError("RegUnitSets cannot be empty!");
1962 
1963   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1964                                                    USEnd = RegUnitSets.size();
1965                                                    USIdx < USEnd; ++USIdx) {
1966     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1967     for (auto &U : RegUnitSets[USIdx].Units)
1968       printRegUnitName(U);
1969     dbgs() << "\n";
1970   });
1971 
1972   // Iteratively prune unit sets.
1973   pruneUnitSets();
1974 
1975   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1976                                                  USEnd = RegUnitSets.size();
1977                                                  USIdx < USEnd; ++USIdx) {
1978     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1979     for (auto &U : RegUnitSets[USIdx].Units)
1980       printRegUnitName(U);
1981     dbgs() << "\n";
1982   } dbgs() << "\nUnion sets:\n");
1983 
1984   // Iterate over all unit sets, including new ones added by this loop.
1985   unsigned NumRegUnitSubSets = RegUnitSets.size();
1986   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1987     // In theory, this is combinatorial. In practice, it needs to be bounded
1988     // by a small number of sets for regpressure to be efficient.
1989     // If the assert is hit, we need to implement pruning.
1990     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1991 
1992     // Compare new sets with all original classes.
1993     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1994          SearchIdx != EndIdx; ++SearchIdx) {
1995       std::set<unsigned> Intersection;
1996       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1997                             RegUnitSets[Idx].Units.end(),
1998                             RegUnitSets[SearchIdx].Units.begin(),
1999                             RegUnitSets[SearchIdx].Units.end(),
2000                             std::inserter(Intersection, Intersection.begin()));
2001       if (Intersection.empty())
2002         continue;
2003 
2004       // Speculatively grow the RegUnitSets to hold the new set.
2005       RegUnitSets.resize(RegUnitSets.size() + 1);
2006       RegUnitSets.back().Name =
2007         RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
2008 
2009       std::set_union(RegUnitSets[Idx].Units.begin(),
2010                      RegUnitSets[Idx].Units.end(),
2011                      RegUnitSets[SearchIdx].Units.begin(),
2012                      RegUnitSets[SearchIdx].Units.end(),
2013                      std::inserter(RegUnitSets.back().Units,
2014                                    RegUnitSets.back().Units.begin()));
2015 
2016       // Find an existing RegUnitSet, or add the union to the unique sets.
2017       std::vector<RegUnitSet>::const_iterator SetI =
2018         findRegUnitSet(RegUnitSets, RegUnitSets.back());
2019       if (SetI != std::prev(RegUnitSets.end()))
2020         RegUnitSets.pop_back();
2021       else {
2022         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
2023                           << RegUnitSets.back().Name << ":";
2024                    for (auto &U
2025                         : RegUnitSets.back().Units) printRegUnitName(U);
2026                    dbgs() << "\n";);
2027       }
2028     }
2029   }
2030 
2031   // Iteratively prune unit sets after inferring supersets.
2032   pruneUnitSets();
2033 
2034   LLVM_DEBUG(
2035       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2036                            USIdx < USEnd; ++USIdx) {
2037         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2038         for (auto &U : RegUnitSets[USIdx].Units)
2039           printRegUnitName(U);
2040         dbgs() << "\n";
2041       });
2042 
2043   // For each register class, list the UnitSets that are supersets.
2044   RegClassUnitSets.resize(RegClasses.size());
2045   int RCIdx = -1;
2046   for (auto &RC : RegClasses) {
2047     ++RCIdx;
2048     if (!RC.Allocatable)
2049       continue;
2050 
2051     // Recompute the sorted list of units in this class.
2052     std::vector<unsigned> RCRegUnits;
2053     RC.buildRegUnitSet(*this, RCRegUnits);
2054 
2055     // Don't increase pressure for unallocatable regclasses.
2056     if (RCRegUnits.empty())
2057       continue;
2058 
2059     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2060                for (auto U
2061                     : RCRegUnits) printRegUnitName(U);
2062                dbgs() << "\n  UnitSetIDs:");
2063 
2064     // Find all supersets.
2065     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2066          USIdx != USEnd; ++USIdx) {
2067       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2068         LLVM_DEBUG(dbgs() << " " << USIdx);
2069         RegClassUnitSets[RCIdx].push_back(USIdx);
2070       }
2071     }
2072     LLVM_DEBUG(dbgs() << "\n");
2073     assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2074            "missing unit set for regclass");
2075   }
2076 
2077   // For each register unit, ensure that we have the list of UnitSets that
2078   // contain the unit. Normally, this matches an existing list of UnitSets for a
2079   // register class. If not, we create a new entry in RegClassUnitSets as a
2080   // "fake" register class.
2081   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2082        UnitIdx < UnitEnd; ++UnitIdx) {
2083     std::vector<unsigned> RUSets;
2084     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2085       RegUnitSet &RUSet = RegUnitSets[i];
2086       if (!is_contained(RUSet.Units, UnitIdx))
2087         continue;
2088       RUSets.push_back(i);
2089     }
2090     unsigned RCUnitSetsIdx = 0;
2091     for (unsigned e = RegClassUnitSets.size();
2092          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2093       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2094         break;
2095       }
2096     }
2097     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2098     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2099       // Create a new list of UnitSets as a "fake" register class.
2100       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2101       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2102     }
2103   }
2104 }
2105 
2106 void CodeGenRegBank::computeRegUnitLaneMasks() {
2107   for (auto &Register : Registers) {
2108     // Create an initial lane mask for all register units.
2109     const auto &RegUnits = Register.getRegUnits();
2110     CodeGenRegister::RegUnitLaneMaskList
2111         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2112     // Iterate through SubRegisters.
2113     typedef CodeGenRegister::SubRegMap SubRegMap;
2114     const SubRegMap &SubRegs = Register.getSubRegs();
2115     for (auto S : SubRegs) {
2116       CodeGenRegister *SubReg = S.second;
2117       // Ignore non-leaf subregisters, their lane masks are fully covered by
2118       // the leaf subregisters anyway.
2119       if (!SubReg->getSubRegs().empty())
2120         continue;
2121       CodeGenSubRegIndex *SubRegIndex = S.first;
2122       const CodeGenRegister *SubRegister = S.second;
2123       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2124       // Distribute LaneMask to Register Units touched.
2125       for (unsigned SUI : SubRegister->getRegUnits()) {
2126         bool Found = false;
2127         unsigned u = 0;
2128         for (unsigned RU : RegUnits) {
2129           if (SUI == RU) {
2130             RegUnitLaneMasks[u] |= LaneMask;
2131             assert(!Found);
2132             Found = true;
2133           }
2134           ++u;
2135         }
2136         (void)Found;
2137         assert(Found);
2138       }
2139     }
2140     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2141   }
2142 }
2143 
2144 void CodeGenRegBank::computeDerivedInfo() {
2145   computeComposites();
2146   computeSubRegLaneMasks();
2147 
2148   // Compute a weight for each register unit created during getSubRegs.
2149   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2150   computeRegUnitWeights();
2151 
2152   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2153   // supersets for the union of overlapping sets.
2154   computeRegUnitSets();
2155 
2156   computeRegUnitLaneMasks();
2157 
2158   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2159   for (CodeGenRegisterClass &RC : RegClasses) {
2160     RC.HasDisjunctSubRegs = false;
2161     RC.CoveredBySubRegs = true;
2162     for (const CodeGenRegister *Reg : RC.getMembers()) {
2163       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2164       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2165     }
2166   }
2167 
2168   // Get the weight of each set.
2169   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2170     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2171 
2172   // Find the order of each set.
2173   RegUnitSetOrder.reserve(RegUnitSets.size());
2174   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2175     RegUnitSetOrder.push_back(Idx);
2176 
2177   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2178     return getRegPressureSet(ID1).Units.size() <
2179            getRegPressureSet(ID2).Units.size();
2180   });
2181   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2182     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2183   }
2184 }
2185 
2186 //
2187 // Synthesize missing register class intersections.
2188 //
2189 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2190 // returns a maximal register class for all X.
2191 //
2192 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2193   assert(!RegClasses.empty());
2194   // Stash the iterator to the last element so that this loop doesn't visit
2195   // elements added by the getOrCreateSubClass call within it.
2196   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2197        I != std::next(E); ++I) {
2198     CodeGenRegisterClass *RC1 = RC;
2199     CodeGenRegisterClass *RC2 = &*I;
2200     if (RC1 == RC2)
2201       continue;
2202 
2203     // Compute the set intersection of RC1 and RC2.
2204     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2205     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2206     CodeGenRegister::Vec Intersection;
2207     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2208                           Memb2.end(),
2209                           std::inserter(Intersection, Intersection.begin()),
2210                           deref<std::less<>>());
2211 
2212     // Skip disjoint class pairs.
2213     if (Intersection.empty())
2214       continue;
2215 
2216     // If RC1 and RC2 have different spill sizes or alignments, use the
2217     // stricter one for sub-classing.  If they are equal, prefer RC1.
2218     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2219       std::swap(RC1, RC2);
2220 
2221     getOrCreateSubClass(RC1, &Intersection,
2222                         RC1->getName() + "_and_" + RC2->getName());
2223   }
2224 }
2225 
2226 //
2227 // Synthesize missing sub-classes for getSubClassWithSubReg().
2228 //
2229 // Make sure that the set of registers in RC with a given SubIdx sub-register
2230 // form a register class.  Update RC->SubClassWithSubReg.
2231 //
2232 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2233   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2234   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2235                    deref<std::less<>>>
2236       SubReg2SetMap;
2237 
2238   // Compute the set of registers supporting each SubRegIndex.
2239   SubReg2SetMap SRSets;
2240   for (const auto R : RC->getMembers()) {
2241     if (R->Artificial)
2242       continue;
2243     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2244     for (auto I : SRM) {
2245       if (!I.first->Artificial)
2246         SRSets[I.first].push_back(R);
2247     }
2248   }
2249 
2250   for (auto I : SRSets)
2251     sortAndUniqueRegisters(I.second);
2252 
2253   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2254   // numerical order to visit synthetic indices last.
2255   for (const auto &SubIdx : SubRegIndices) {
2256     if (SubIdx.Artificial)
2257       continue;
2258     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2259     // Unsupported SubRegIndex. Skip it.
2260     if (I == SRSets.end())
2261       continue;
2262     // In most cases, all RC registers support the SubRegIndex.
2263     if (I->second.size() == RC->getMembers().size()) {
2264       RC->setSubClassWithSubReg(&SubIdx, RC);
2265       continue;
2266     }
2267     // This is a real subset.  See if we have a matching class.
2268     CodeGenRegisterClass *SubRC =
2269       getOrCreateSubClass(RC, &I->second,
2270                           RC->getName() + "_with_" + I->first->getName());
2271     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2272   }
2273 }
2274 
2275 //
2276 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2277 //
2278 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2279 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2280 //
2281 
2282 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2283                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2284   SmallVector<std::pair<const CodeGenRegister*,
2285                         const CodeGenRegister*>, 16> SSPairs;
2286   BitVector TopoSigs(getNumTopoSigs());
2287 
2288   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2289   for (auto &SubIdx : SubRegIndices) {
2290     // Skip indexes that aren't fully supported by RC's registers. This was
2291     // computed by inferSubClassWithSubReg() above which should have been
2292     // called first.
2293     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2294       continue;
2295 
2296     // Build list of (Super, Sub) pairs for this SubIdx.
2297     SSPairs.clear();
2298     TopoSigs.reset();
2299     for (const auto Super : RC->getMembers()) {
2300       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2301       assert(Sub && "Missing sub-register");
2302       SSPairs.push_back(std::make_pair(Super, Sub));
2303       TopoSigs.set(Sub->getTopoSig());
2304     }
2305 
2306     // Iterate over sub-register class candidates.  Ignore classes created by
2307     // this loop. They will never be useful.
2308     // Store an iterator to the last element (not end) so that this loop doesn't
2309     // visit newly inserted elements.
2310     assert(!RegClasses.empty());
2311     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2312          I != std::next(E); ++I) {
2313       CodeGenRegisterClass &SubRC = *I;
2314       if (SubRC.Artificial)
2315         continue;
2316       // Topological shortcut: SubRC members have the wrong shape.
2317       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2318         continue;
2319       // Compute the subset of RC that maps into SubRC.
2320       CodeGenRegister::Vec SubSetVec;
2321       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2322         if (SubRC.contains(SSPairs[i].second))
2323           SubSetVec.push_back(SSPairs[i].first);
2324 
2325       if (SubSetVec.empty())
2326         continue;
2327 
2328       // RC injects completely into SubRC.
2329       sortAndUniqueRegisters(SubSetVec);
2330       if (SubSetVec.size() == SSPairs.size()) {
2331         SubRC.addSuperRegClass(&SubIdx, RC);
2332         continue;
2333       }
2334 
2335       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2336       // class.
2337       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2338                                           SubIdx.getName() + "_in_" +
2339                                           SubRC.getName());
2340     }
2341   }
2342 }
2343 
2344 //
2345 // Infer missing register classes.
2346 //
2347 void CodeGenRegBank::computeInferredRegisterClasses() {
2348   assert(!RegClasses.empty());
2349   // When this function is called, the register classes have not been sorted
2350   // and assigned EnumValues yet.  That means getSubClasses(),
2351   // getSuperClasses(), and hasSubClass() functions are defunct.
2352 
2353   // Use one-before-the-end so it doesn't move forward when new elements are
2354   // added.
2355   auto FirstNewRC = std::prev(RegClasses.end());
2356 
2357   // Visit all register classes, including the ones being added by the loop.
2358   // Watch out for iterator invalidation here.
2359   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2360     CodeGenRegisterClass *RC = &*I;
2361     if (RC->Artificial)
2362       continue;
2363 
2364     // Synthesize answers for getSubClassWithSubReg().
2365     inferSubClassWithSubReg(RC);
2366 
2367     // Synthesize answers for getCommonSubClass().
2368     inferCommonSubClass(RC);
2369 
2370     // Synthesize answers for getMatchingSuperRegClass().
2371     inferMatchingSuperRegClass(RC);
2372 
2373     // New register classes are created while this loop is running, and we need
2374     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2375     // to match old super-register classes with sub-register classes created
2376     // after inferMatchingSuperRegClass was called.  At this point,
2377     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2378     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2379     if (I == FirstNewRC) {
2380       auto NextNewRC = std::prev(RegClasses.end());
2381       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2382            ++I2)
2383         inferMatchingSuperRegClass(&*I2, E2);
2384       FirstNewRC = NextNewRC;
2385     }
2386   }
2387 }
2388 
2389 /// getRegisterClassForRegister - Find the register class that contains the
2390 /// specified physical register.  If the register is not in a register class,
2391 /// return null. If the register is in multiple classes, and the classes have a
2392 /// superset-subset relationship and the same set of types, return the
2393 /// superclass.  Otherwise return null.
2394 const CodeGenRegisterClass*
2395 CodeGenRegBank::getRegClassForRegister(Record *R) {
2396   const CodeGenRegister *Reg = getReg(R);
2397   const CodeGenRegisterClass *FoundRC = nullptr;
2398   for (const auto &RC : getRegClasses()) {
2399     if (!RC.contains(Reg))
2400       continue;
2401 
2402     // If this is the first class that contains the register,
2403     // make a note of it and go on to the next class.
2404     if (!FoundRC) {
2405       FoundRC = &RC;
2406       continue;
2407     }
2408 
2409     // If a register's classes have different types, return null.
2410     if (RC.getValueTypes() != FoundRC->getValueTypes())
2411       return nullptr;
2412 
2413     // Check to see if the previously found class that contains
2414     // the register is a subclass of the current class. If so,
2415     // prefer the superclass.
2416     if (RC.hasSubClass(FoundRC)) {
2417       FoundRC = &RC;
2418       continue;
2419     }
2420 
2421     // Check to see if the previously found class that contains
2422     // the register is a superclass of the current class. If so,
2423     // prefer the superclass.
2424     if (FoundRC->hasSubClass(&RC))
2425       continue;
2426 
2427     // Multiple classes, and neither is a superclass of the other.
2428     // Return null.
2429     return nullptr;
2430   }
2431   return FoundRC;
2432 }
2433 
2434 const CodeGenRegisterClass *
2435 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2436                                        ValueTypeByHwMode *VT) {
2437   const CodeGenRegister *Reg = getReg(RegRecord);
2438   const CodeGenRegisterClass *BestRC = nullptr;
2439   for (const auto &RC : getRegClasses()) {
2440     if ((!VT || RC.hasType(*VT)) &&
2441         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2442       BestRC = &RC;
2443   }
2444 
2445   assert(BestRC && "Couldn't find the register class");
2446   return BestRC;
2447 }
2448 
2449 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2450   SetVector<const CodeGenRegister*> Set;
2451 
2452   // First add Regs with all sub-registers.
2453   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2454     CodeGenRegister *Reg = getReg(Regs[i]);
2455     if (Set.insert(Reg))
2456       // Reg is new, add all sub-registers.
2457       // The pre-ordering is not important here.
2458       Reg->addSubRegsPreOrder(Set, *this);
2459   }
2460 
2461   // Second, find all super-registers that are completely covered by the set.
2462   for (unsigned i = 0; i != Set.size(); ++i) {
2463     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2464     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2465       const CodeGenRegister *Super = SR[j];
2466       if (!Super->CoveredBySubRegs || Set.count(Super))
2467         continue;
2468       // This new super-register is covered by its sub-registers.
2469       bool AllSubsInSet = true;
2470       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2471       for (auto I : SRM)
2472         if (!Set.count(I.second)) {
2473           AllSubsInSet = false;
2474           break;
2475         }
2476       // All sub-registers in Set, add Super as well.
2477       // We will visit Super later to recheck its super-registers.
2478       if (AllSubsInSet)
2479         Set.insert(Super);
2480     }
2481   }
2482 
2483   // Convert to BitVector.
2484   BitVector BV(Registers.size() + 1);
2485   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2486     BV.set(Set[i]->EnumValue);
2487   return BV;
2488 }
2489 
2490 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2491   if (Unit < NumNativeRegUnits)
2492     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2493   else
2494     dbgs() << " #" << Unit;
2495 }
2496