1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenInstruction.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include <algorithm>
25 using namespace llvm;
26 
27 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
28 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
29 
30 static cl::opt<unsigned>
31     AsmParserNum("asmparsernum", cl::init(0),
32                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
33                  cl::cat(AsmParserCat));
34 
35 static cl::opt<unsigned>
36     AsmWriterNum("asmwriternum", cl::init(0),
37                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
38                  cl::cat(AsmWriterCat));
39 
40 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
41 /// record corresponds to.
42 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
43   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
44 }
45 
46 StringRef llvm::getName(MVT::SimpleValueType T) {
47   switch (T) {
48   case MVT::Other:   return "UNKNOWN";
49   case MVT::iPTR:    return "TLI.getPointerTy()";
50   case MVT::iPTRAny: return "TLI.getPointerTy()";
51   default: return getEnumName(T);
52   }
53 }
54 
55 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
56   // clang-format off
57   switch (T) {
58   case MVT::Other:    return "MVT::Other";
59   case MVT::i1:       return "MVT::i1";
60   case MVT::i2:       return "MVT::i2";
61   case MVT::i4:       return "MVT::i4";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::bf16:     return "MVT::bf16";
73   case MVT::f32:      return "MVT::f32";
74   case MVT::f64:      return "MVT::f64";
75   case MVT::f80:      return "MVT::f80";
76   case MVT::f128:     return "MVT::f128";
77   case MVT::ppcf128:  return "MVT::ppcf128";
78   case MVT::x86mmx:   return "MVT::x86mmx";
79   case MVT::x86amx:   return "MVT::x86amx";
80   case MVT::i64x8:    return "MVT::i64x8";
81   case MVT::Glue:     return "MVT::Glue";
82   case MVT::isVoid:   return "MVT::isVoid";
83   case MVT::v1i1:     return "MVT::v1i1";
84   case MVT::v2i1:     return "MVT::v2i1";
85   case MVT::v4i1:     return "MVT::v4i1";
86   case MVT::v8i1:     return "MVT::v8i1";
87   case MVT::v16i1:    return "MVT::v16i1";
88   case MVT::v32i1:    return "MVT::v32i1";
89   case MVT::v64i1:    return "MVT::v64i1";
90   case MVT::v128i1:   return "MVT::v128i1";
91   case MVT::v256i1:   return "MVT::v256i1";
92   case MVT::v512i1:   return "MVT::v512i1";
93   case MVT::v1024i1:  return "MVT::v1024i1";
94   case MVT::v2048i1:  return "MVT::v2048i1";
95   case MVT::v128i2:   return "MVT::v128i2";
96   case MVT::v256i2:   return "MVT::v256i2";
97   case MVT::v64i4:    return "MVT::v64i4";
98   case MVT::v128i4:   return "MVT::v128i4";
99   case MVT::v1i8:     return "MVT::v1i8";
100   case MVT::v2i8:     return "MVT::v2i8";
101   case MVT::v4i8:     return "MVT::v4i8";
102   case MVT::v8i8:     return "MVT::v8i8";
103   case MVT::v16i8:    return "MVT::v16i8";
104   case MVT::v32i8:    return "MVT::v32i8";
105   case MVT::v64i8:    return "MVT::v64i8";
106   case MVT::v128i8:   return "MVT::v128i8";
107   case MVT::v256i8:   return "MVT::v256i8";
108   case MVT::v512i8:   return "MVT::v512i8";
109   case MVT::v1024i8:  return "MVT::v1024i8";
110   case MVT::v1i16:    return "MVT::v1i16";
111   case MVT::v2i16:    return "MVT::v2i16";
112   case MVT::v3i16:    return "MVT::v3i16";
113   case MVT::v4i16:    return "MVT::v4i16";
114   case MVT::v8i16:    return "MVT::v8i16";
115   case MVT::v16i16:   return "MVT::v16i16";
116   case MVT::v32i16:   return "MVT::v32i16";
117   case MVT::v64i16:   return "MVT::v64i16";
118   case MVT::v128i16:  return "MVT::v128i16";
119   case MVT::v256i16:  return "MVT::v256i16";
120   case MVT::v512i16:  return "MVT::v512i16";
121   case MVT::v1i32:    return "MVT::v1i32";
122   case MVT::v2i32:    return "MVT::v2i32";
123   case MVT::v3i32:    return "MVT::v3i32";
124   case MVT::v4i32:    return "MVT::v4i32";
125   case MVT::v5i32:    return "MVT::v5i32";
126   case MVT::v6i32:    return "MVT::v6i32";
127   case MVT::v7i32:    return "MVT::v7i32";
128   case MVT::v8i32:    return "MVT::v8i32";
129   case MVT::v9i32:    return "MVT::v9i32";
130   case MVT::v10i32:   return "MVT::v10i32";
131   case MVT::v11i32:   return "MVT::v11i32";
132   case MVT::v12i32:   return "MVT::v12i32";
133   case MVT::v16i32:   return "MVT::v16i32";
134   case MVT::v32i32:   return "MVT::v32i32";
135   case MVT::v64i32:   return "MVT::v64i32";
136   case MVT::v128i32:  return "MVT::v128i32";
137   case MVT::v256i32:  return "MVT::v256i32";
138   case MVT::v512i32:  return "MVT::v512i32";
139   case MVT::v1024i32: return "MVT::v1024i32";
140   case MVT::v2048i32: return "MVT::v2048i32";
141   case MVT::v1i64:    return "MVT::v1i64";
142   case MVT::v2i64:    return "MVT::v2i64";
143   case MVT::v3i64:    return "MVT::v3i64";
144   case MVT::v4i64:    return "MVT::v4i64";
145   case MVT::v8i64:    return "MVT::v8i64";
146   case MVT::v16i64:   return "MVT::v16i64";
147   case MVT::v32i64:   return "MVT::v32i64";
148   case MVT::v64i64:   return "MVT::v64i64";
149   case MVT::v128i64:  return "MVT::v128i64";
150   case MVT::v256i64:  return "MVT::v256i64";
151   case MVT::v1i128:   return "MVT::v1i128";
152   case MVT::v1f16:    return "MVT::v1f16";
153   case MVT::v2f16:    return "MVT::v2f16";
154   case MVT::v3f16:    return "MVT::v3f16";
155   case MVT::v4f16:    return "MVT::v4f16";
156   case MVT::v8f16:    return "MVT::v8f16";
157   case MVT::v16f16:   return "MVT::v16f16";
158   case MVT::v32f16:   return "MVT::v32f16";
159   case MVT::v64f16:   return "MVT::v64f16";
160   case MVT::v128f16:  return "MVT::v128f16";
161   case MVT::v256f16:  return "MVT::v256f16";
162   case MVT::v512f16:  return "MVT::v512f16";
163   case MVT::v2bf16:   return "MVT::v2bf16";
164   case MVT::v3bf16:   return "MVT::v3bf16";
165   case MVT::v4bf16:   return "MVT::v4bf16";
166   case MVT::v8bf16:   return "MVT::v8bf16";
167   case MVT::v16bf16:  return "MVT::v16bf16";
168   case MVT::v32bf16:  return "MVT::v32bf16";
169   case MVT::v64bf16:  return "MVT::v64bf16";
170   case MVT::v128bf16: return "MVT::v128bf16";
171   case MVT::v1f32:    return "MVT::v1f32";
172   case MVT::v2f32:    return "MVT::v2f32";
173   case MVT::v3f32:    return "MVT::v3f32";
174   case MVT::v4f32:    return "MVT::v4f32";
175   case MVT::v5f32:    return "MVT::v5f32";
176   case MVT::v6f32:    return "MVT::v6f32";
177   case MVT::v7f32:    return "MVT::v7f32";
178   case MVT::v8f32:    return "MVT::v8f32";
179   case MVT::v9f32:    return "MVT::v9f32";
180   case MVT::v10f32:   return "MVT::v10f32";
181   case MVT::v11f32:   return "MVT::v11f32";
182   case MVT::v12f32:   return "MVT::v12f32";
183   case MVT::v16f32:   return "MVT::v16f32";
184   case MVT::v32f32:   return "MVT::v32f32";
185   case MVT::v64f32:   return "MVT::v64f32";
186   case MVT::v128f32:  return "MVT::v128f32";
187   case MVT::v256f32:  return "MVT::v256f32";
188   case MVT::v512f32:  return "MVT::v512f32";
189   case MVT::v1024f32: return "MVT::v1024f32";
190   case MVT::v2048f32: return "MVT::v2048f32";
191   case MVT::v1f64:    return "MVT::v1f64";
192   case MVT::v2f64:    return "MVT::v2f64";
193   case MVT::v3f64:    return "MVT::v3f64";
194   case MVT::v4f64:    return "MVT::v4f64";
195   case MVT::v8f64:    return "MVT::v8f64";
196   case MVT::v16f64:   return "MVT::v16f64";
197   case MVT::v32f64:   return "MVT::v32f64";
198   case MVT::v64f64:   return "MVT::v64f64";
199   case MVT::v128f64:  return "MVT::v128f64";
200   case MVT::v256f64:  return "MVT::v256f64";
201   case MVT::nxv1i1:   return "MVT::nxv1i1";
202   case MVT::nxv2i1:   return "MVT::nxv2i1";
203   case MVT::nxv4i1:   return "MVT::nxv4i1";
204   case MVT::nxv8i1:   return "MVT::nxv8i1";
205   case MVT::nxv16i1:  return "MVT::nxv16i1";
206   case MVT::nxv32i1:  return "MVT::nxv32i1";
207   case MVT::nxv64i1:  return "MVT::nxv64i1";
208   case MVT::nxv1i8:   return "MVT::nxv1i8";
209   case MVT::nxv2i8:   return "MVT::nxv2i8";
210   case MVT::nxv4i8:   return "MVT::nxv4i8";
211   case MVT::nxv8i8:   return "MVT::nxv8i8";
212   case MVT::nxv16i8:  return "MVT::nxv16i8";
213   case MVT::nxv32i8:  return "MVT::nxv32i8";
214   case MVT::nxv64i8:  return "MVT::nxv64i8";
215   case MVT::nxv1i16:  return "MVT::nxv1i16";
216   case MVT::nxv2i16:  return "MVT::nxv2i16";
217   case MVT::nxv4i16:  return "MVT::nxv4i16";
218   case MVT::nxv8i16:  return "MVT::nxv8i16";
219   case MVT::nxv16i16: return "MVT::nxv16i16";
220   case MVT::nxv32i16: return "MVT::nxv32i16";
221   case MVT::nxv1i32:  return "MVT::nxv1i32";
222   case MVT::nxv2i32:  return "MVT::nxv2i32";
223   case MVT::nxv4i32:  return "MVT::nxv4i32";
224   case MVT::nxv8i32:  return "MVT::nxv8i32";
225   case MVT::nxv16i32: return "MVT::nxv16i32";
226   case MVT::nxv32i32: return "MVT::nxv32i32";
227   case MVT::nxv1i64:  return "MVT::nxv1i64";
228   case MVT::nxv2i64:  return "MVT::nxv2i64";
229   case MVT::nxv4i64:  return "MVT::nxv4i64";
230   case MVT::nxv8i64:  return "MVT::nxv8i64";
231   case MVT::nxv16i64: return "MVT::nxv16i64";
232   case MVT::nxv32i64: return "MVT::nxv32i64";
233   case MVT::nxv1f16:  return "MVT::nxv1f16";
234   case MVT::nxv2f16:  return "MVT::nxv2f16";
235   case MVT::nxv4f16:  return "MVT::nxv4f16";
236   case MVT::nxv8f16:  return "MVT::nxv8f16";
237   case MVT::nxv16f16: return "MVT::nxv16f16";
238   case MVT::nxv32f16: return "MVT::nxv32f16";
239   case MVT::nxv1bf16:  return "MVT::nxv1bf16";
240   case MVT::nxv2bf16:  return "MVT::nxv2bf16";
241   case MVT::nxv4bf16:  return "MVT::nxv4bf16";
242   case MVT::nxv8bf16:  return "MVT::nxv8bf16";
243   case MVT::nxv16bf16: return "MVT::nxv16bf16";
244   case MVT::nxv32bf16: return "MVT::nxv32bf16";
245   case MVT::nxv1f32:   return "MVT::nxv1f32";
246   case MVT::nxv2f32:   return "MVT::nxv2f32";
247   case MVT::nxv4f32:   return "MVT::nxv4f32";
248   case MVT::nxv8f32:   return "MVT::nxv8f32";
249   case MVT::nxv16f32:  return "MVT::nxv16f32";
250   case MVT::nxv1f64:   return "MVT::nxv1f64";
251   case MVT::nxv2f64:   return "MVT::nxv2f64";
252   case MVT::nxv4f64:   return "MVT::nxv4f64";
253   case MVT::nxv8f64:   return "MVT::nxv8f64";
254   case MVT::token:     return "MVT::token";
255   case MVT::Metadata:  return "MVT::Metadata";
256   case MVT::iPTR:      return "MVT::iPTR";
257   case MVT::iPTRAny:   return "MVT::iPTRAny";
258   case MVT::Untyped:   return "MVT::Untyped";
259   case MVT::funcref:   return "MVT::funcref";
260   case MVT::externref: return "MVT::externref";
261   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
262   }
263   // clang-format on
264 }
265 
266 /// getQualifiedName - Return the name of the specified record, with a
267 /// namespace qualifier if the record contains one.
268 ///
269 std::string llvm::getQualifiedName(const Record *R) {
270   std::string Namespace;
271   if (R->getValue("Namespace"))
272     Namespace = std::string(R->getValueAsString("Namespace"));
273   if (Namespace.empty())
274     return std::string(R->getName());
275   return Namespace + "::" + R->getName().str();
276 }
277 
278 
279 /// getTarget - Return the current instance of the Target class.
280 ///
281 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
282   : Records(records), CGH(records) {
283   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
284   if (Targets.size() == 0)
285     PrintFatalError("No 'Target' subclasses defined!");
286   if (Targets.size() != 1)
287     PrintFatalError("Multiple subclasses of Target defined!");
288   TargetRec = Targets[0];
289 }
290 
291 CodeGenTarget::~CodeGenTarget() {
292 }
293 
294 StringRef CodeGenTarget::getName() const { return TargetRec->getName(); }
295 
296 /// getInstNamespace - Find and return the target machine's instruction
297 /// namespace. The namespace is cached because it is requested multiple times.
298 StringRef CodeGenTarget::getInstNamespace() const {
299   if (InstNamespace.empty()) {
300     for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
301       // We are not interested in the "TargetOpcode" namespace.
302       if (Inst->Namespace != "TargetOpcode") {
303         InstNamespace = Inst->Namespace;
304         break;
305       }
306     }
307   }
308 
309   return InstNamespace;
310 }
311 
312 StringRef CodeGenTarget::getRegNamespace() const {
313   auto &RegClasses = RegBank->getRegClasses();
314   return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
315 }
316 
317 Record *CodeGenTarget::getInstructionSet() const {
318   return TargetRec->getValueAsDef("InstructionSet");
319 }
320 
321 bool CodeGenTarget::getAllowRegisterRenaming() const {
322   return TargetRec->getValueAsInt("AllowRegisterRenaming");
323 }
324 
325 /// getAsmParser - Return the AssemblyParser definition for this target.
326 ///
327 Record *CodeGenTarget::getAsmParser() const {
328   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
329   if (AsmParserNum >= LI.size())
330     PrintFatalError("Target does not have an AsmParser #" +
331                     Twine(AsmParserNum) + "!");
332   return LI[AsmParserNum];
333 }
334 
335 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
336 /// this target.
337 ///
338 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
339   std::vector<Record*> LI =
340     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
341   if (i >= LI.size())
342     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
343                     "!");
344   return LI[i];
345 }
346 
347 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
348 /// available for this target.
349 ///
350 unsigned CodeGenTarget::getAsmParserVariantCount() const {
351   std::vector<Record*> LI =
352     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
353   return LI.size();
354 }
355 
356 /// getAsmWriter - Return the AssemblyWriter definition for this target.
357 ///
358 Record *CodeGenTarget::getAsmWriter() const {
359   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
360   if (AsmWriterNum >= LI.size())
361     PrintFatalError("Target does not have an AsmWriter #" +
362                     Twine(AsmWriterNum) + "!");
363   return LI[AsmWriterNum];
364 }
365 
366 CodeGenRegBank &CodeGenTarget::getRegBank() const {
367   if (!RegBank)
368     RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
369   return *RegBank;
370 }
371 
372 std::optional<CodeGenRegisterClass *> CodeGenTarget::getSuperRegForSubReg(
373     const ValueTypeByHwMode &ValueTy, CodeGenRegBank &RegBank,
374     const CodeGenSubRegIndex *SubIdx, bool MustBeAllocatable) const {
375   std::vector<CodeGenRegisterClass *> Candidates;
376   auto &RegClasses = RegBank.getRegClasses();
377 
378   // Try to find a register class which supports ValueTy, and also contains
379   // SubIdx.
380   for (CodeGenRegisterClass &RC : RegClasses) {
381     // Is there a subclass of this class which contains this subregister index?
382     CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
383     if (!SubClassWithSubReg)
384       continue;
385 
386     // We have a class. Check if it supports this value type.
387     if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
388       continue;
389 
390     // If necessary, check that it is allocatable.
391     if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
392       continue;
393 
394     // We have a register class which supports both the value type and
395     // subregister index. Remember it.
396     Candidates.push_back(SubClassWithSubReg);
397   }
398 
399   // If we didn't find anything, we're done.
400   if (Candidates.empty())
401     return std::nullopt;
402 
403   // Find and return the largest of our candidate classes.
404   llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
405                                     const CodeGenRegisterClass *B) {
406     if (A->getMembers().size() > B->getMembers().size())
407       return true;
408 
409     if (A->getMembers().size() < B->getMembers().size())
410       return false;
411 
412     // Order by name as a tie-breaker.
413     return StringRef(A->getName()) < B->getName();
414   });
415 
416   return Candidates[0];
417 }
418 
419 void CodeGenTarget::ReadRegAltNameIndices() const {
420   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
421   llvm::sort(RegAltNameIndices, LessRecord());
422 }
423 
424 /// getRegisterByName - If there is a register with the specific AsmName,
425 /// return it.
426 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
427   return getRegBank().getRegistersByName().lookup(Name);
428 }
429 
430 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
431       const {
432   const CodeGenRegister *Reg = getRegBank().getReg(R);
433   std::vector<ValueTypeByHwMode> Result;
434   for (const auto &RC : getRegBank().getRegClasses()) {
435     if (RC.contains(Reg)) {
436       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
437       llvm::append_range(Result, InVTs);
438     }
439   }
440 
441   // Remove duplicates.
442   llvm::sort(Result);
443   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
444   return Result;
445 }
446 
447 
448 void CodeGenTarget::ReadLegalValueTypes() const {
449   for (const auto &RC : getRegBank().getRegClasses())
450     llvm::append_range(LegalValueTypes, RC.VTs);
451 
452   // Remove duplicates.
453   llvm::sort(LegalValueTypes);
454   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
455                                     LegalValueTypes.end()),
456                         LegalValueTypes.end());
457 }
458 
459 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
460   if (!SchedModels)
461     SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
462   return *SchedModels;
463 }
464 
465 void CodeGenTarget::ReadInstructions() const {
466   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
467   if (Insts.size() <= 2)
468     PrintFatalError("No 'Instruction' subclasses defined!");
469 
470   // Parse the instructions defined in the .td file.
471   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
472     Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
473 }
474 
475 static const CodeGenInstruction *
476 GetInstByName(const char *Name,
477               const DenseMap<const Record*,
478                              std::unique_ptr<CodeGenInstruction>> &Insts,
479               RecordKeeper &Records) {
480   const Record *Rec = Records.getDef(Name);
481 
482   const auto I = Insts.find(Rec);
483   if (!Rec || I == Insts.end())
484     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
485   return I->second.get();
486 }
487 
488 static const char *FixedInstrs[] = {
489 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
490 #include "llvm/Support/TargetOpcodes.def"
491     nullptr};
492 
493 unsigned CodeGenTarget::getNumFixedInstructions() {
494   return std::size(FixedInstrs) - 1;
495 }
496 
497 /// Return all of the instructions defined by the target, ordered by
498 /// their enum value.
499 void CodeGenTarget::ComputeInstrsByEnum() const {
500   const auto &Insts = getInstructions();
501   for (const char *const *p = FixedInstrs; *p; ++p) {
502     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
503     assert(Instr && "Missing target independent instruction");
504     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
505     InstrsByEnum.push_back(Instr);
506   }
507   unsigned EndOfPredefines = InstrsByEnum.size();
508   assert(EndOfPredefines == getNumFixedInstructions() &&
509          "Missing generic opcode");
510 
511   for (const auto &I : Insts) {
512     const CodeGenInstruction *CGI = I.second.get();
513     if (CGI->Namespace != "TargetOpcode") {
514       InstrsByEnum.push_back(CGI);
515       if (CGI->TheDef->getValueAsBit("isPseudo"))
516         ++NumPseudoInstructions;
517     }
518   }
519 
520   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
521 
522   // All of the instructions are now in random order based on the map iteration.
523   llvm::sort(
524       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
525       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
526         const auto &D1 = *Rec1->TheDef;
527         const auto &D2 = *Rec2->TheDef;
528         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
529                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
530       });
531 }
532 
533 
534 /// isLittleEndianEncoding - Return whether this target encodes its instruction
535 /// in little-endian format, i.e. bits laid out in the order [0..n]
536 ///
537 bool CodeGenTarget::isLittleEndianEncoding() const {
538   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
539 }
540 
541 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
542 /// encodings, reverse the bit order of all instructions.
543 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
544   if (!isLittleEndianEncoding())
545     return;
546 
547   std::vector<Record *> Insts =
548       Records.getAllDerivedDefinitions("InstructionEncoding");
549   for (Record *R : Insts) {
550     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
551         R->getValueAsBit("isPseudo"))
552       continue;
553 
554     BitsInit *BI = R->getValueAsBitsInit("Inst");
555 
556     unsigned numBits = BI->getNumBits();
557 
558     SmallVector<Init *, 16> NewBits(numBits);
559 
560     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
561       unsigned bitSwapIdx = numBits - bit - 1;
562       Init *OrigBit = BI->getBit(bit);
563       Init *BitSwap = BI->getBit(bitSwapIdx);
564       NewBits[bit]        = BitSwap;
565       NewBits[bitSwapIdx] = OrigBit;
566     }
567     if (numBits % 2) {
568       unsigned middle = (numBits + 1) / 2;
569       NewBits[middle] = BI->getBit(middle);
570     }
571 
572     BitsInit *NewBI = BitsInit::get(Records, NewBits);
573 
574     // Update the bits in reversed order so that emitInstrOpBits will get the
575     // correct endianness.
576     R->getValue("Inst")->setValue(NewBI);
577   }
578 }
579 
580 /// guessInstructionProperties - Return true if it's OK to guess instruction
581 /// properties instead of raising an error.
582 ///
583 /// This is configurable as a temporary migration aid. It will eventually be
584 /// permanently false.
585 bool CodeGenTarget::guessInstructionProperties() const {
586   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
587 }
588 
589 //===----------------------------------------------------------------------===//
590 // ComplexPattern implementation
591 //
592 ComplexPattern::ComplexPattern(Record *R) {
593   Ty          = R->getValueAsDef("Ty");
594   NumOperands = R->getValueAsInt("NumOperands");
595   SelectFunc = std::string(R->getValueAsString("SelectFunc"));
596   RootNodes   = R->getValueAsListOfDefs("RootNodes");
597 
598   // FIXME: This is a hack to statically increase the priority of patterns which
599   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
600   // possible pattern match we'll need to dynamically calculate the complexity
601   // of all patterns a dag can potentially map to.
602   int64_t RawComplexity = R->getValueAsInt("Complexity");
603   if (RawComplexity == -1)
604     Complexity = NumOperands * 3;
605   else
606     Complexity = RawComplexity;
607 
608   // FIXME: Why is this different from parseSDPatternOperatorProperties?
609   // Parse the properties.
610   Properties = 0;
611   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
612   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
613     if (PropList[i]->getName() == "SDNPHasChain") {
614       Properties |= 1 << SDNPHasChain;
615     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
616       Properties |= 1 << SDNPOptInGlue;
617     } else if (PropList[i]->getName() == "SDNPMayStore") {
618       Properties |= 1 << SDNPMayStore;
619     } else if (PropList[i]->getName() == "SDNPMayLoad") {
620       Properties |= 1 << SDNPMayLoad;
621     } else if (PropList[i]->getName() == "SDNPSideEffect") {
622       Properties |= 1 << SDNPSideEffect;
623     } else if (PropList[i]->getName() == "SDNPMemOperand") {
624       Properties |= 1 << SDNPMemOperand;
625     } else if (PropList[i]->getName() == "SDNPVariadic") {
626       Properties |= 1 << SDNPVariadic;
627     } else if (PropList[i]->getName() == "SDNPWantRoot") {
628       Properties |= 1 << SDNPWantRoot;
629     } else if (PropList[i]->getName() == "SDNPWantParent") {
630       Properties |= 1 << SDNPWantParent;
631     } else {
632       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
633                                        PropList[i]->getName() +
634                                        "' on ComplexPattern '" + R->getName() +
635                                        "'!");
636     }
637 }
638 
639 //===----------------------------------------------------------------------===//
640 // CodeGenIntrinsic Implementation
641 //===----------------------------------------------------------------------===//
642 
643 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
644   std::vector<Record *> IntrProperties =
645       RC.getAllDerivedDefinitions("IntrinsicProperty");
646 
647   std::vector<Record *> DefaultProperties;
648   for (Record *Rec : IntrProperties)
649     if (Rec->getValueAsBit("IsDefault"))
650       DefaultProperties.push_back(Rec);
651 
652   std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
653   Intrinsics.reserve(Defs.size());
654 
655   for (unsigned I = 0, e = Defs.size(); I != e; ++I)
656     Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
657 
658   llvm::sort(Intrinsics,
659              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
660                return std::tie(LHS.TargetPrefix, LHS.Name) <
661                       std::tie(RHS.TargetPrefix, RHS.Name);
662              });
663   Targets.push_back({"", 0, 0});
664   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
665     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
666       Targets.back().Count = I - Targets.back().Offset;
667       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
668     }
669   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
670 }
671 
672 CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
673                                    std::vector<Record *> DefaultProperties) {
674   TheDef = R;
675   std::string DefName = std::string(R->getName());
676   ArrayRef<SMLoc> DefLoc = R->getLoc();
677   Properties = 0;
678   isOverloaded = false;
679   isCommutative = false;
680   canThrow = false;
681   isNoReturn = false;
682   isNoCallback = false;
683   isNoSync = false;
684   isNoFree = false;
685   isWillReturn = false;
686   isCold = false;
687   isNoDuplicate = false;
688   isNoMerge = false;
689   isConvergent = false;
690   isSpeculatable = false;
691   hasSideEffects = false;
692 
693   if (DefName.size() <= 4 || DefName.substr(0, 4) != "int_")
694     PrintFatalError(DefLoc,
695                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
696 
697   EnumName = DefName.substr(4);
698 
699   if (R->getValue("ClangBuiltinName"))  // Ignore a missing ClangBuiltinName field.
700     ClangBuiltinName = std::string(R->getValueAsString("ClangBuiltinName"));
701   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
702     MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
703 
704   TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
705   Name = std::string(R->getValueAsString("LLVMName"));
706 
707   if (Name == "") {
708     // If an explicit name isn't specified, derive one from the DefName.
709     Name = "llvm.";
710 
711     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
712       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
713   } else {
714     // Verify it starts with "llvm.".
715     if (Name.size() <= 5 || Name.substr(0, 5) != "llvm.")
716       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
717                                   "'s name does not start with 'llvm.'!");
718   }
719 
720   // If TargetPrefix is specified, make sure that Name starts with
721   // "llvm.<targetprefix>.".
722   if (!TargetPrefix.empty()) {
723     if (Name.size() < 6+TargetPrefix.size() ||
724         Name.substr(5, 1 + TargetPrefix.size()) != (TargetPrefix + "."))
725       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
726                                   "' does not start with 'llvm." +
727                                   TargetPrefix + ".'!");
728   }
729 
730   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
731   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
732 
733   // First collate a list of overloaded types.
734   std::vector<MVT::SimpleValueType> OverloadedVTs;
735   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
736     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
737       Record *TyEl = TypeList->getElementAsRecord(i);
738       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
739 
740       if (TyEl->isSubClassOf("LLVMMatchType"))
741         continue;
742 
743       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
744       if (MVT(VT).isOverloaded()) {
745         OverloadedVTs.push_back(VT);
746         isOverloaded = true;
747       }
748     }
749   }
750 
751   // Parse the list of return types.
752   ListInit *TypeList = RetTypes;
753   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
754     Record *TyEl = TypeList->getElementAsRecord(i);
755     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
756     MVT::SimpleValueType VT;
757     if (TyEl->isSubClassOf("LLVMMatchType")) {
758       unsigned MatchTy = TyEl->getValueAsInt("Number");
759       assert(MatchTy < OverloadedVTs.size() &&
760              "Invalid matching number!");
761       VT = OverloadedVTs[MatchTy];
762       // It only makes sense to use the extended and truncated vector element
763       // variants with iAny types; otherwise, if the intrinsic is not
764       // overloaded, all the types can be specified directly.
765       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
766                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
767               VT == MVT::iAny || VT == MVT::vAny) &&
768              "Expected iAny or vAny type");
769     } else {
770       VT = getValueType(TyEl->getValueAsDef("VT"));
771     }
772 
773     // Reject invalid types.
774     if (VT == MVT::isVoid)
775       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
776                                   " has void in result type list!");
777 
778     IS.RetVTs.push_back(VT);
779     IS.RetTypeDefs.push_back(TyEl);
780   }
781 
782   // Parse the list of parameter types.
783   TypeList = ParamTypes;
784   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
785     Record *TyEl = TypeList->getElementAsRecord(i);
786     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
787     MVT::SimpleValueType VT;
788     if (TyEl->isSubClassOf("LLVMMatchType")) {
789       unsigned MatchTy = TyEl->getValueAsInt("Number");
790       if (MatchTy >= OverloadedVTs.size()) {
791         PrintError(R->getLoc(),
792                    "Parameter #" + Twine(i) + " has out of bounds matching "
793                    "number " + Twine(MatchTy));
794         PrintFatalError(DefLoc,
795                         Twine("ParamTypes is ") + TypeList->getAsString());
796       }
797       VT = OverloadedVTs[MatchTy];
798       // It only makes sense to use the extended and truncated vector element
799       // variants with iAny types; otherwise, if the intrinsic is not
800       // overloaded, all the types can be specified directly.
801       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
802                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
803               VT == MVT::iAny || VT == MVT::vAny) &&
804              "Expected iAny or vAny type");
805     } else
806       VT = getValueType(TyEl->getValueAsDef("VT"));
807 
808     // Reject invalid types.
809     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
810       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
811                                   " has void in result type list!");
812 
813     IS.ParamVTs.push_back(VT);
814     IS.ParamTypeDefs.push_back(TyEl);
815   }
816 
817   // Parse the intrinsic properties.
818   ListInit *PropList = R->getValueAsListInit("IntrProperties");
819   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
820     Record *Property = PropList->getElementAsRecord(i);
821     assert(Property->isSubClassOf("IntrinsicProperty") &&
822            "Expected a property!");
823 
824     setProperty(Property);
825   }
826 
827   // Set default properties to true.
828   setDefaultProperties(R, DefaultProperties);
829 
830   // Also record the SDPatternOperator Properties.
831   Properties = parseSDPatternOperatorProperties(R);
832 
833   // Sort the argument attributes for later benefit.
834   for (auto &Attrs : ArgumentAttributes)
835     llvm::sort(Attrs);
836 }
837 
838 void CodeGenIntrinsic::setDefaultProperties(
839     Record *R, std::vector<Record *> DefaultProperties) {
840   // opt-out of using default attributes.
841   if (R->getValueAsBit("DisableDefaultAttributes"))
842     return;
843 
844   for (Record *Rec : DefaultProperties)
845     setProperty(Rec);
846 }
847 
848 void CodeGenIntrinsic::setProperty(Record *R) {
849   if (R->getName() == "IntrNoMem")
850     ME = MemoryEffects::none();
851   else if (R->getName() == "IntrReadMem") {
852     if (ME.onlyWritesMemory())
853       PrintFatalError(TheDef->getLoc(),
854                       Twine("IntrReadMem cannot be used after IntrNoMem or "
855                             "IntrWriteMem. Default is ReadWrite"));
856     ME &= MemoryEffects::readOnly();
857   } else if (R->getName() == "IntrWriteMem") {
858     if (ME.onlyReadsMemory())
859       PrintFatalError(TheDef->getLoc(),
860                       Twine("IntrWriteMem cannot be used after IntrNoMem or "
861                             "IntrReadMem. Default is ReadWrite"));
862     ME &= MemoryEffects::writeOnly();
863   } else if (R->getName() == "IntrArgMemOnly")
864     ME &= MemoryEffects::argMemOnly();
865   else if (R->getName() == "IntrInaccessibleMemOnly")
866     ME &= MemoryEffects::inaccessibleMemOnly();
867   else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
868     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
869   else if (R->getName() == "Commutative")
870     isCommutative = true;
871   else if (R->getName() == "Throws")
872     canThrow = true;
873   else if (R->getName() == "IntrNoDuplicate")
874     isNoDuplicate = true;
875   else if (R->getName() == "IntrNoMerge")
876     isNoMerge = true;
877   else if (R->getName() == "IntrConvergent")
878     isConvergent = true;
879   else if (R->getName() == "IntrNoReturn")
880     isNoReturn = true;
881   else if (R->getName() == "IntrNoCallback")
882     isNoCallback = true;
883   else if (R->getName() == "IntrNoSync")
884     isNoSync = true;
885   else if (R->getName() == "IntrNoFree")
886     isNoFree = true;
887   else if (R->getName() == "IntrWillReturn")
888     isWillReturn = !isNoReturn;
889   else if (R->getName() == "IntrCold")
890     isCold = true;
891   else if (R->getName() == "IntrSpeculatable")
892     isSpeculatable = true;
893   else if (R->getName() == "IntrHasSideEffects")
894     hasSideEffects = true;
895   else if (R->isSubClassOf("NoCapture")) {
896     unsigned ArgNo = R->getValueAsInt("ArgNo");
897     addArgAttribute(ArgNo, NoCapture);
898   } else if (R->isSubClassOf("NoAlias")) {
899     unsigned ArgNo = R->getValueAsInt("ArgNo");
900     addArgAttribute(ArgNo, NoAlias);
901   } else if (R->isSubClassOf("NoUndef")) {
902     unsigned ArgNo = R->getValueAsInt("ArgNo");
903     addArgAttribute(ArgNo, NoUndef);
904   } else if (R->isSubClassOf("NonNull")) {
905     unsigned ArgNo = R->getValueAsInt("ArgNo");
906     addArgAttribute(ArgNo, NonNull);
907   } else if (R->isSubClassOf("Returned")) {
908     unsigned ArgNo = R->getValueAsInt("ArgNo");
909     addArgAttribute(ArgNo, Returned);
910   } else if (R->isSubClassOf("ReadOnly")) {
911     unsigned ArgNo = R->getValueAsInt("ArgNo");
912     addArgAttribute(ArgNo, ReadOnly);
913   } else if (R->isSubClassOf("WriteOnly")) {
914     unsigned ArgNo = R->getValueAsInt("ArgNo");
915     addArgAttribute(ArgNo, WriteOnly);
916   } else if (R->isSubClassOf("ReadNone")) {
917     unsigned ArgNo = R->getValueAsInt("ArgNo");
918     addArgAttribute(ArgNo, ReadNone);
919   } else if (R->isSubClassOf("ImmArg")) {
920     unsigned ArgNo = R->getValueAsInt("ArgNo");
921     addArgAttribute(ArgNo, ImmArg);
922   } else if (R->isSubClassOf("Align")) {
923     unsigned ArgNo = R->getValueAsInt("ArgNo");
924     uint64_t Align = R->getValueAsInt("Align");
925     addArgAttribute(ArgNo, Alignment, Align);
926   } else
927     llvm_unreachable("Unknown property!");
928 }
929 
930 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
931   if (ParamIdx >= IS.ParamVTs.size())
932     return false;
933   MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
934   return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
935 }
936 
937 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
938   // Convert argument index to attribute index starting from `FirstArgIndex`.
939   ++ParamIdx;
940   if (ParamIdx >= ArgumentAttributes.size())
941     return false;
942   ArgAttribute Val{ImmArg, 0};
943   return std::binary_search(ArgumentAttributes[ParamIdx].begin(),
944                             ArgumentAttributes[ParamIdx].end(), Val);
945 }
946 
947 void CodeGenIntrinsic::addArgAttribute(unsigned Idx, ArgAttrKind AK,
948                                        uint64_t V) {
949   if (Idx >= ArgumentAttributes.size())
950     ArgumentAttributes.resize(Idx + 1);
951   ArgumentAttributes[Idx].emplace_back(AK, V);
952 }
953