1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTarget.h"
14 #include "CodeGenSchedule.h"
15 #include "PredicateExpander.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/MC/SubtargetFeature.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <iterator>
33 #include <map>
34 #include <string>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "subtarget-emitter"
40 
41 namespace {
42 
43 class SubtargetEmitter {
44   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
45   // The SchedClassDesc table indexes into a global write resource table, write
46   // latency table, and read advance table.
47   struct SchedClassTables {
48     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
49     std::vector<MCWriteProcResEntry> WriteProcResources;
50     std::vector<MCWriteLatencyEntry> WriteLatencies;
51     std::vector<std::string> WriterNames;
52     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
53 
54     // Reserve an invalid entry at index 0
55     SchedClassTables() {
56       ProcSchedClasses.resize(1);
57       WriteProcResources.resize(1);
58       WriteLatencies.resize(1);
59       WriterNames.push_back("InvalidWrite");
60       ReadAdvanceEntries.resize(1);
61     }
62   };
63 
64   struct LessWriteProcResources {
65     bool operator()(const MCWriteProcResEntry &LHS,
66                     const MCWriteProcResEntry &RHS) {
67       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
68     }
69   };
70 
71   const CodeGenTarget &TGT;
72   RecordKeeper &Records;
73   CodeGenSchedModels &SchedModels;
74   std::string Target;
75 
76   void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
77   unsigned FeatureKeyValues(raw_ostream &OS,
78                             const DenseMap<Record *, unsigned> &FeatureMap);
79   unsigned CPUKeyValues(raw_ostream &OS,
80                         const DenseMap<Record *, unsigned> &FeatureMap);
81   void FormItineraryStageString(const std::string &Names,
82                                 Record *ItinData, std::string &ItinString,
83                                 unsigned &NStages);
84   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
85                                        unsigned &NOperandCycles);
86   void FormItineraryBypassString(const std::string &Names,
87                                  Record *ItinData,
88                                  std::string &ItinString, unsigned NOperandCycles);
89   void EmitStageAndOperandCycleData(raw_ostream &OS,
90                                     std::vector<std::vector<InstrItinerary>>
91                                       &ProcItinLists);
92   void EmitItineraries(raw_ostream &OS,
93                        std::vector<std::vector<InstrItinerary>>
94                          &ProcItinLists);
95   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
96                                   raw_ostream &OS);
97   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
98                               raw_ostream &OS);
99   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
100                               raw_ostream &OS);
101   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
102                          char Separator);
103   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
104                                      raw_ostream &OS);
105   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
106                               raw_ostream &OS);
107   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
108                              const CodeGenProcModel &ProcModel);
109   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
110                           const CodeGenProcModel &ProcModel);
111   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
112                            const CodeGenProcModel &ProcModel);
113   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
114                            SchedClassTables &SchedTables);
115   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
116   void EmitProcessorModels(raw_ostream &OS);
117   void EmitProcessorLookup(raw_ostream &OS);
118   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
119   void emitSchedModelHelpersImpl(raw_ostream &OS,
120                                  bool OnlyExpandMCInstPredicates = false);
121   void emitGenMCSubtargetInfo(raw_ostream &OS);
122   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
123 
124   void EmitSchedModel(raw_ostream &OS);
125   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
126   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
127                              unsigned NumProcs);
128 
129 public:
130   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
131       : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
132         Target(TGT.getName()) {}
133 
134   void run(raw_ostream &o);
135 };
136 
137 } // end anonymous namespace
138 
139 //
140 // Enumeration - Emit the specified class as an enumeration.
141 //
142 void SubtargetEmitter::Enumeration(raw_ostream &OS,
143                                    DenseMap<Record *, unsigned> &FeatureMap) {
144   // Get all records of class and sort
145   std::vector<Record*> DefList =
146     Records.getAllDerivedDefinitions("SubtargetFeature");
147   llvm::sort(DefList, LessRecord());
148 
149   unsigned N = DefList.size();
150   if (N == 0)
151     return;
152   if (N + 1 > MAX_SUBTARGET_FEATURES)
153     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
154 
155   OS << "namespace " << Target << " {\n";
156 
157   // Open enumeration.
158   OS << "enum {\n";
159 
160   // For each record
161   for (unsigned i = 0; i < N; ++i) {
162     // Next record
163     Record *Def = DefList[i];
164 
165     // Get and emit name
166     OS << "  " << Def->getName() << " = " << i << ",\n";
167 
168     // Save the index for this feature.
169     FeatureMap[Def] = i;
170   }
171 
172   OS << "  "
173      << "NumSubtargetFeatures = " << N << "\n";
174 
175   // Close enumeration and namespace
176   OS << "};\n";
177   OS << "} // end namespace " << Target << "\n";
178 }
179 
180 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
181                              const DenseMap<Record *, unsigned> &FeatureMap) {
182   std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
183   for (unsigned j = 0, M = FeatureList.size(); j < M; ++j) {
184     unsigned Bit = FeatureMap.lookup(FeatureList[j]);
185     Mask[Bit / 64] |= 1ULL << (Bit % 64);
186   }
187 
188   OS << "{ { { ";
189   for (unsigned i = 0; i != Mask.size(); ++i) {
190     OS << "0x";
191     OS.write_hex(Mask[i]);
192     OS << "ULL, ";
193   }
194   OS << "} } }";
195 }
196 
197 //
198 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
199 // command line.
200 //
201 unsigned SubtargetEmitter::FeatureKeyValues(
202     raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
203   // Gather and sort all the features
204   std::vector<Record*> FeatureList =
205                            Records.getAllDerivedDefinitions("SubtargetFeature");
206 
207   if (FeatureList.empty())
208     return 0;
209 
210   llvm::sort(FeatureList, LessRecordFieldName());
211 
212   // Begin feature table
213   OS << "// Sorted (by key) array of values for CPU features.\n"
214      << "extern const llvm::SubtargetFeatureKV " << Target
215      << "FeatureKV[] = {\n";
216 
217   // For each feature
218   unsigned NumFeatures = 0;
219   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
220     // Next feature
221     Record *Feature = FeatureList[i];
222 
223     StringRef Name = Feature->getName();
224     StringRef CommandLineName = Feature->getValueAsString("Name");
225     StringRef Desc = Feature->getValueAsString("Desc");
226 
227     if (CommandLineName.empty()) continue;
228 
229     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
230     OS << "  { "
231        << "\"" << CommandLineName << "\", "
232        << "\"" << Desc << "\", "
233        << Target << "::" << Name << ", ";
234 
235     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
236 
237     printFeatureMask(OS, ImpliesList, FeatureMap);
238 
239     OS << " },\n";
240     ++NumFeatures;
241   }
242 
243   // End feature table
244   OS << "};\n";
245 
246   return NumFeatures;
247 }
248 
249 //
250 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
251 // line.
252 //
253 unsigned
254 SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
255                                const DenseMap<Record *, unsigned> &FeatureMap) {
256   // Gather and sort processor information
257   std::vector<Record*> ProcessorList =
258                           Records.getAllDerivedDefinitions("Processor");
259   llvm::sort(ProcessorList, LessRecordFieldName());
260 
261   // Begin processor table
262   OS << "// Sorted (by key) array of values for CPU subtype.\n"
263      << "extern const llvm::SubtargetSubTypeKV " << Target
264      << "SubTypeKV[] = {\n";
265 
266   // For each processor
267   for (Record *Processor : ProcessorList) {
268     StringRef Name = Processor->getValueAsString("Name");
269     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
270 
271     // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
272     OS << " { "
273        << "\"" << Name << "\", ";
274 
275     printFeatureMask(OS, FeatureList, FeatureMap);
276 
277     // Emit the scheduler model pointer.
278     const std::string &ProcModelName =
279       SchedModels.getModelForProc(Processor).ModelName;
280     OS << ", &" << ProcModelName << " },\n";
281   }
282 
283   // End processor table
284   OS << "};\n";
285 
286   return ProcessorList.size();
287 }
288 
289 //
290 // FormItineraryStageString - Compose a string containing the stage
291 // data initialization for the specified itinerary.  N is the number
292 // of stages.
293 //
294 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
295                                                 Record *ItinData,
296                                                 std::string &ItinString,
297                                                 unsigned &NStages) {
298   // Get states list
299   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
300 
301   // For each stage
302   unsigned N = NStages = StageList.size();
303   for (unsigned i = 0; i < N;) {
304     // Next stage
305     const Record *Stage = StageList[i];
306 
307     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
308     int Cycles = Stage->getValueAsInt("Cycles");
309     ItinString += "  { " + itostr(Cycles) + ", ";
310 
311     // Get unit list
312     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
313 
314     // For each unit
315     for (unsigned j = 0, M = UnitList.size(); j < M;) {
316       // Add name and bitwise or
317       ItinString += Name + "FU::" + UnitList[j]->getName().str();
318       if (++j < M) ItinString += " | ";
319     }
320 
321     int TimeInc = Stage->getValueAsInt("TimeInc");
322     ItinString += ", " + itostr(TimeInc);
323 
324     int Kind = Stage->getValueAsInt("Kind");
325     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
326 
327     // Close off stage
328     ItinString += " }";
329     if (++i < N) ItinString += ", ";
330   }
331 }
332 
333 //
334 // FormItineraryOperandCycleString - Compose a string containing the
335 // operand cycle initialization for the specified itinerary.  N is the
336 // number of operands that has cycles specified.
337 //
338 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
339                          std::string &ItinString, unsigned &NOperandCycles) {
340   // Get operand cycle list
341   std::vector<int64_t> OperandCycleList =
342     ItinData->getValueAsListOfInts("OperandCycles");
343 
344   // For each operand cycle
345   unsigned N = NOperandCycles = OperandCycleList.size();
346   for (unsigned i = 0; i < N;) {
347     // Next operand cycle
348     const int OCycle = OperandCycleList[i];
349 
350     ItinString += "  " + itostr(OCycle);
351     if (++i < N) ItinString += ", ";
352   }
353 }
354 
355 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
356                                                  Record *ItinData,
357                                                  std::string &ItinString,
358                                                  unsigned NOperandCycles) {
359   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
360   unsigned N = BypassList.size();
361   unsigned i = 0;
362   for (; i < N;) {
363     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
364     if (++i < NOperandCycles) ItinString += ", ";
365   }
366   for (; i < NOperandCycles;) {
367     ItinString += " 0";
368     if (++i < NOperandCycles) ItinString += ", ";
369   }
370 }
371 
372 //
373 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
374 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
375 // by CodeGenSchedClass::Index.
376 //
377 void SubtargetEmitter::
378 EmitStageAndOperandCycleData(raw_ostream &OS,
379                              std::vector<std::vector<InstrItinerary>>
380                                &ProcItinLists) {
381   // Multiple processor models may share an itinerary record. Emit it once.
382   SmallPtrSet<Record*, 8> ItinsDefSet;
383 
384   // Emit functional units for all the itineraries.
385   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
386 
387     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
388       continue;
389 
390     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
391     if (FUs.empty())
392       continue;
393 
394     StringRef Name = ProcModel.ItinsDef->getName();
395     OS << "\n// Functional units for \"" << Name << "\"\n"
396        << "namespace " << Name << "FU {\n";
397 
398     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
399       OS << "  const InstrStage::FuncUnits " << FUs[j]->getName()
400          << " = 1ULL << " << j << ";\n";
401 
402     OS << "} // end namespace " << Name << "FU\n";
403 
404     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
405     if (!BPs.empty()) {
406       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
407          << "\"\n" << "namespace " << Name << "Bypass {\n";
408 
409       OS << "  const unsigned NoBypass = 0;\n";
410       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
411         OS << "  const unsigned " << BPs[j]->getName()
412            << " = 1 << " << j << ";\n";
413 
414       OS << "} // end namespace " << Name << "Bypass\n";
415     }
416   }
417 
418   // Begin stages table
419   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
420                            "Stages[] = {\n";
421   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
422 
423   // Begin operand cycle table
424   std::string OperandCycleTable = "extern const unsigned " + Target +
425     "OperandCycles[] = {\n";
426   OperandCycleTable += "  0, // No itinerary\n";
427 
428   // Begin pipeline bypass table
429   std::string BypassTable = "extern const unsigned " + Target +
430     "ForwardingPaths[] = {\n";
431   BypassTable += " 0, // No itinerary\n";
432 
433   // For each Itinerary across all processors, add a unique entry to the stages,
434   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
435   // object with computed offsets to the ProcItinLists result.
436   unsigned StageCount = 1, OperandCycleCount = 1;
437   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
438   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
439     // Add process itinerary to the list.
440     ProcItinLists.resize(ProcItinLists.size()+1);
441 
442     // If this processor defines no itineraries, then leave the itinerary list
443     // empty.
444     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
445     if (!ProcModel.hasItineraries())
446       continue;
447 
448     StringRef Name = ProcModel.ItinsDef->getName();
449 
450     ItinList.resize(SchedModels.numInstrSchedClasses());
451     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
452 
453     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
454          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
455 
456       // Next itinerary data
457       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
458 
459       // Get string and stage count
460       std::string ItinStageString;
461       unsigned NStages = 0;
462       if (ItinData)
463         FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
464                                  NStages);
465 
466       // Get string and operand cycle count
467       std::string ItinOperandCycleString;
468       unsigned NOperandCycles = 0;
469       std::string ItinBypassString;
470       if (ItinData) {
471         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
472                                         NOperandCycles);
473 
474         FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
475                                   NOperandCycles);
476       }
477 
478       // Check to see if stage already exists and create if it doesn't
479       uint16_t FindStage = 0;
480       if (NStages > 0) {
481         FindStage = ItinStageMap[ItinStageString];
482         if (FindStage == 0) {
483           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
484           StageTable += ItinStageString + ", // " + itostr(StageCount);
485           if (NStages > 1)
486             StageTable += "-" + itostr(StageCount + NStages - 1);
487           StageTable += "\n";
488           // Record Itin class number.
489           ItinStageMap[ItinStageString] = FindStage = StageCount;
490           StageCount += NStages;
491         }
492       }
493 
494       // Check to see if operand cycle already exists and create if it doesn't
495       uint16_t FindOperandCycle = 0;
496       if (NOperandCycles > 0) {
497         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
498         FindOperandCycle = ItinOperandMap[ItinOperandString];
499         if (FindOperandCycle == 0) {
500           // Emit as  cycle, // index
501           OperandCycleTable += ItinOperandCycleString + ", // ";
502           std::string OperandIdxComment = itostr(OperandCycleCount);
503           if (NOperandCycles > 1)
504             OperandIdxComment += "-"
505               + itostr(OperandCycleCount + NOperandCycles - 1);
506           OperandCycleTable += OperandIdxComment + "\n";
507           // Record Itin class number.
508           ItinOperandMap[ItinOperandCycleString] =
509             FindOperandCycle = OperandCycleCount;
510           // Emit as bypass, // index
511           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
512           OperandCycleCount += NOperandCycles;
513         }
514       }
515 
516       // Set up itinerary as location and location + stage count
517       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
518       InstrItinerary Intinerary = {
519           NumUOps,
520           FindStage,
521           uint16_t(FindStage + NStages),
522           FindOperandCycle,
523           uint16_t(FindOperandCycle + NOperandCycles),
524       };
525 
526       // Inject - empty slots will be 0, 0
527       ItinList[SchedClassIdx] = Intinerary;
528     }
529   }
530 
531   // Closing stage
532   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
533   StageTable += "};\n";
534 
535   // Closing operand cycles
536   OperandCycleTable += "  0 // End operand cycles\n";
537   OperandCycleTable += "};\n";
538 
539   BypassTable += " 0 // End bypass tables\n";
540   BypassTable += "};\n";
541 
542   // Emit tables.
543   OS << StageTable;
544   OS << OperandCycleTable;
545   OS << BypassTable;
546 }
547 
548 //
549 // EmitProcessorData - Generate data for processor itineraries that were
550 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
551 // Itineraries for each processor. The Itinerary lists are indexed on
552 // CodeGenSchedClass::Index.
553 //
554 void SubtargetEmitter::
555 EmitItineraries(raw_ostream &OS,
556                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
557   // Multiple processor models may share an itinerary record. Emit it once.
558   SmallPtrSet<Record*, 8> ItinsDefSet;
559 
560   // For each processor's machine model
561   std::vector<std::vector<InstrItinerary>>::iterator
562       ProcItinListsIter = ProcItinLists.begin();
563   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
564          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
565 
566     Record *ItinsDef = PI->ItinsDef;
567     if (!ItinsDefSet.insert(ItinsDef).second)
568       continue;
569 
570     // Get the itinerary list for the processor.
571     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
572     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
573 
574     // Empty itineraries aren't referenced anywhere in the tablegen output
575     // so don't emit them.
576     if (ItinList.empty())
577       continue;
578 
579     OS << "\n";
580     OS << "static const llvm::InstrItinerary ";
581 
582     // Begin processor itinerary table
583     OS << ItinsDef->getName() << "[] = {\n";
584 
585     // For each itinerary class in CodeGenSchedClass::Index order.
586     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
587       InstrItinerary &Intinerary = ItinList[j];
588 
589       // Emit Itinerary in the form of
590       // { firstStage, lastStage, firstCycle, lastCycle } // index
591       OS << "  { " <<
592         Intinerary.NumMicroOps << ", " <<
593         Intinerary.FirstStage << ", " <<
594         Intinerary.LastStage << ", " <<
595         Intinerary.FirstOperandCycle << ", " <<
596         Intinerary.LastOperandCycle << " }" <<
597         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
598     }
599     // End processor itinerary table
600     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
601           "// end marker\n";
602     OS << "};\n";
603   }
604 }
605 
606 // Emit either the value defined in the TableGen Record, or the default
607 // value defined in the C++ header. The Record is null if the processor does not
608 // define a model.
609 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
610                                          StringRef Name, char Separator) {
611   OS << "  ";
612   int V = R ? R->getValueAsInt(Name) : -1;
613   if (V >= 0)
614     OS << V << Separator << " // " << Name;
615   else
616     OS << "MCSchedModel::Default" << Name << Separator;
617   OS << '\n';
618 }
619 
620 void SubtargetEmitter::EmitProcessorResourceSubUnits(
621     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
622   OS << "\nstatic const unsigned " << ProcModel.ModelName
623      << "ProcResourceSubUnits[] = {\n"
624      << "  0,  // Invalid\n";
625 
626   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
627     Record *PRDef = ProcModel.ProcResourceDefs[i];
628     if (!PRDef->isSubClassOf("ProcResGroup"))
629       continue;
630     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
631     for (Record *RUDef : ResUnits) {
632       Record *const RU =
633           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
634       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
635         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
636       }
637     }
638     OS << "  // " << PRDef->getName() << "\n";
639   }
640   OS << "};\n";
641 }
642 
643 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
644                                       raw_ostream &OS) {
645   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
646   if (Record *RCU = ProcModel.RetireControlUnit) {
647     ReorderBufferSize =
648         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
649     MaxRetirePerCycle =
650         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
651   }
652 
653   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
654   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
655 }
656 
657 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
658                                  unsigned NumRegisterFiles,
659                                  unsigned NumCostEntries, raw_ostream &OS) {
660   if (NumRegisterFiles)
661     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
662   else
663     OS << "nullptr,\n  0";
664 
665   OS << ", // Number of register files.\n  ";
666   if (NumCostEntries)
667     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
668   else
669     OS << "nullptr,\n  ";
670   OS << NumCostEntries << ", // Number of register cost entries.\n";
671 }
672 
673 unsigned
674 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
675                                          raw_ostream &OS) {
676   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
677         return RF.hasDefaultCosts();
678       }))
679     return 0;
680 
681   // Print the RegisterCost table first.
682   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
683   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
684      << "RegisterCosts"
685      << "[] = {\n";
686 
687   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
688     // Skip register files with a default cost table.
689     if (RF.hasDefaultCosts())
690       continue;
691     // Add entries to the cost table.
692     for (const CodeGenRegisterCost &RC : RF.Costs) {
693       OS << "  { ";
694       Record *Rec = RC.RCDef;
695       if (Rec->getValue("Namespace"))
696         OS << Rec->getValueAsString("Namespace") << "::";
697       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
698          << RC.AllowMoveElimination << "},\n";
699     }
700   }
701   OS << "};\n";
702 
703   // Now generate a table with register file info.
704   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
705      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
706   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
707      << "RegisterFiles"
708      << "[] = {\n"
709      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
710   unsigned CostTblIndex = 0;
711 
712   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
713     OS << "  { ";
714     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
715     unsigned NumCostEntries = RD.Costs.size();
716     OS << NumCostEntries << ", " << CostTblIndex << ", "
717        << RD.MaxMovesEliminatedPerCycle << ", "
718        << RD.AllowZeroMoveEliminationOnly << "},\n";
719     CostTblIndex += NumCostEntries;
720   }
721   OS << "};\n";
722 
723   return CostTblIndex;
724 }
725 
726 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
727                                               raw_ostream &OS) {
728   unsigned QueueID = 0;
729   if (ProcModel.LoadQueue) {
730     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
731     QueueID =
732         1 + std::distance(ProcModel.ProcResourceDefs.begin(),
733                           std::find(ProcModel.ProcResourceDefs.begin(),
734                                     ProcModel.ProcResourceDefs.end(), Queue));
735   }
736   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
737 
738   QueueID = 0;
739   if (ProcModel.StoreQueue) {
740     const Record *Queue =
741         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
742     QueueID =
743         1 + std::distance(ProcModel.ProcResourceDefs.begin(),
744                           std::find(ProcModel.ProcResourceDefs.begin(),
745                                     ProcModel.ProcResourceDefs.end(), Queue));
746   }
747   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
748 }
749 
750 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
751                                               raw_ostream &OS) {
752   // Generate a table of register file descriptors (one entry per each user
753   // defined register file), and a table of register costs.
754   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
755 
756   // Now generate a table for the extra processor info.
757   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
758      << "ExtraInfo = {\n  ";
759 
760   // Add information related to the retire control unit.
761   EmitRetireControlUnitInfo(ProcModel, OS);
762 
763   // Add information related to the register files (i.e. where to find register
764   // file descriptors and register costs).
765   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
766                        NumCostEntries, OS);
767 
768   // Add information about load/store queues.
769   EmitLoadStoreQueueInfo(ProcModel, OS);
770 
771   OS << "};\n";
772 }
773 
774 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
775                                               raw_ostream &OS) {
776   EmitProcessorResourceSubUnits(ProcModel, OS);
777 
778   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
779   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
780      << "ProcResources"
781      << "[] = {\n"
782      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
783 
784   unsigned SubUnitsOffset = 1;
785   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
786     Record *PRDef = ProcModel.ProcResourceDefs[i];
787 
788     Record *SuperDef = nullptr;
789     unsigned SuperIdx = 0;
790     unsigned NumUnits = 0;
791     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
792     int BufferSize = PRDef->getValueAsInt("BufferSize");
793     if (PRDef->isSubClassOf("ProcResGroup")) {
794       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
795       for (Record *RU : ResUnits) {
796         NumUnits += RU->getValueAsInt("NumUnits");
797         SubUnitsOffset += RU->getValueAsInt("NumUnits");
798       }
799     }
800     else {
801       // Find the SuperIdx
802       if (PRDef->getValueInit("Super")->isComplete()) {
803         SuperDef =
804             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
805                                          ProcModel, PRDef->getLoc());
806         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
807       }
808       NumUnits = PRDef->getValueAsInt("NumUnits");
809     }
810     // Emit the ProcResourceDesc
811     OS << "  {\"" << PRDef->getName() << "\", ";
812     if (PRDef->getName().size() < 15)
813       OS.indent(15 - PRDef->getName().size());
814     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
815     if (SubUnitsBeginOffset != SubUnitsOffset) {
816       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
817          << SubUnitsBeginOffset;
818     } else {
819       OS << "nullptr";
820     }
821     OS << "}, // #" << i+1;
822     if (SuperDef)
823       OS << ", Super=" << SuperDef->getName();
824     OS << "\n";
825   }
826   OS << "};\n";
827 }
828 
829 // Find the WriteRes Record that defines processor resources for this
830 // SchedWrite.
831 Record *SubtargetEmitter::FindWriteResources(
832   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
833 
834   // Check if the SchedWrite is already subtarget-specific and directly
835   // specifies a set of processor resources.
836   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
837     return SchedWrite.TheDef;
838 
839   Record *AliasDef = nullptr;
840   for (Record *A : SchedWrite.Aliases) {
841     const CodeGenSchedRW &AliasRW =
842       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
843     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
844       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
845       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
846         continue;
847     }
848     if (AliasDef)
849       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
850                     "defined for processor " + ProcModel.ModelName +
851                     " Ensure only one SchedAlias exists per RW.");
852     AliasDef = AliasRW.TheDef;
853   }
854   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
855     return AliasDef;
856 
857   // Check this processor's list of write resources.
858   Record *ResDef = nullptr;
859   for (Record *WR : ProcModel.WriteResDefs) {
860     if (!WR->isSubClassOf("WriteRes"))
861       continue;
862     if (AliasDef == WR->getValueAsDef("WriteType")
863         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
864       if (ResDef) {
865         PrintFatalError(WR->getLoc(), "Resources are defined for both "
866                       "SchedWrite and its alias on processor " +
867                       ProcModel.ModelName);
868       }
869       ResDef = WR;
870     }
871   }
872   // TODO: If ProcModel has a base model (previous generation processor),
873   // then call FindWriteResources recursively with that model here.
874   if (!ResDef) {
875     PrintFatalError(ProcModel.ModelDef->getLoc(),
876                     Twine("Processor does not define resources for ") +
877                     SchedWrite.TheDef->getName());
878   }
879   return ResDef;
880 }
881 
882 /// Find the ReadAdvance record for the given SchedRead on this processor or
883 /// return NULL.
884 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
885                                           const CodeGenProcModel &ProcModel) {
886   // Check for SchedReads that directly specify a ReadAdvance.
887   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
888     return SchedRead.TheDef;
889 
890   // Check this processor's list of aliases for SchedRead.
891   Record *AliasDef = nullptr;
892   for (Record *A : SchedRead.Aliases) {
893     const CodeGenSchedRW &AliasRW =
894       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
895     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
896       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
897       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
898         continue;
899     }
900     if (AliasDef)
901       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
902                     "defined for processor " + ProcModel.ModelName +
903                     " Ensure only one SchedAlias exists per RW.");
904     AliasDef = AliasRW.TheDef;
905   }
906   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
907     return AliasDef;
908 
909   // Check this processor's ReadAdvanceList.
910   Record *ResDef = nullptr;
911   for (Record *RA : ProcModel.ReadAdvanceDefs) {
912     if (!RA->isSubClassOf("ReadAdvance"))
913       continue;
914     if (AliasDef == RA->getValueAsDef("ReadType")
915         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
916       if (ResDef) {
917         PrintFatalError(RA->getLoc(), "Resources are defined for both "
918                       "SchedRead and its alias on processor " +
919                       ProcModel.ModelName);
920       }
921       ResDef = RA;
922     }
923   }
924   // TODO: If ProcModel has a base model (previous generation processor),
925   // then call FindReadAdvance recursively with that model here.
926   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
927     PrintFatalError(ProcModel.ModelDef->getLoc(),
928                     Twine("Processor does not define resources for ") +
929                     SchedRead.TheDef->getName());
930   }
931   return ResDef;
932 }
933 
934 // Expand an explicit list of processor resources into a full list of implied
935 // resource groups and super resources that cover them.
936 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
937                                            std::vector<int64_t> &Cycles,
938                                            const CodeGenProcModel &PM) {
939   assert(PRVec.size() == Cycles.size() && "failed precondition");
940   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
941     Record *PRDef = PRVec[i];
942     RecVec SubResources;
943     if (PRDef->isSubClassOf("ProcResGroup"))
944       SubResources = PRDef->getValueAsListOfDefs("Resources");
945     else {
946       SubResources.push_back(PRDef);
947       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
948       for (Record *SubDef = PRDef;
949            SubDef->getValueInit("Super")->isComplete();) {
950         if (SubDef->isSubClassOf("ProcResGroup")) {
951           // Disallow this for simplicitly.
952           PrintFatalError(SubDef->getLoc(), "Processor resource group "
953                           " cannot be a super resources.");
954         }
955         Record *SuperDef =
956             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
957                                          SubDef->getLoc());
958         PRVec.push_back(SuperDef);
959         Cycles.push_back(Cycles[i]);
960         SubDef = SuperDef;
961       }
962     }
963     for (Record *PR : PM.ProcResourceDefs) {
964       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
965         continue;
966       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
967       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
968       for( ; SubI != SubE; ++SubI) {
969         if (!is_contained(SuperResources, *SubI)) {
970           break;
971         }
972       }
973       if (SubI == SubE) {
974         PRVec.push_back(PR);
975         Cycles.push_back(Cycles[i]);
976       }
977     }
978   }
979 }
980 
981 // Generate the SchedClass table for this processor and update global
982 // tables. Must be called for each processor in order.
983 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
984                                            SchedClassTables &SchedTables) {
985   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
986   if (!ProcModel.hasInstrSchedModel())
987     return;
988 
989   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
990   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
991   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
992     LLVM_DEBUG(SC.dump(&SchedModels));
993 
994     SCTab.resize(SCTab.size() + 1);
995     MCSchedClassDesc &SCDesc = SCTab.back();
996     // SCDesc.Name is guarded by NDEBUG
997     SCDesc.NumMicroOps = 0;
998     SCDesc.BeginGroup = false;
999     SCDesc.EndGroup = false;
1000     SCDesc.WriteProcResIdx = 0;
1001     SCDesc.WriteLatencyIdx = 0;
1002     SCDesc.ReadAdvanceIdx = 0;
1003 
1004     // A Variant SchedClass has no resources of its own.
1005     bool HasVariants = false;
1006     for (const CodeGenSchedTransition &CGT :
1007            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1008       if (CGT.ProcIndices[0] == 0 ||
1009           is_contained(CGT.ProcIndices, ProcModel.Index)) {
1010         HasVariants = true;
1011         break;
1012       }
1013     }
1014     if (HasVariants) {
1015       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1016       continue;
1017     }
1018 
1019     // Determine if the SchedClass is actually reachable on this processor. If
1020     // not don't try to locate the processor resources, it will fail.
1021     // If ProcIndices contains 0, this class applies to all processors.
1022     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1023     if (SC.ProcIndices[0] != 0) {
1024       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1025         continue;
1026     }
1027     IdxVec Writes = SC.Writes;
1028     IdxVec Reads = SC.Reads;
1029     if (!SC.InstRWs.empty()) {
1030       // This class has a default ReadWrite list which can be overridden by
1031       // InstRW definitions.
1032       Record *RWDef = nullptr;
1033       for (Record *RW : SC.InstRWs) {
1034         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1035         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1036           RWDef = RW;
1037           break;
1038         }
1039       }
1040       if (RWDef) {
1041         Writes.clear();
1042         Reads.clear();
1043         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1044                             Writes, Reads);
1045       }
1046     }
1047     if (Writes.empty()) {
1048       // Check this processor's itinerary class resources.
1049       for (Record *I : ProcModel.ItinRWDefs) {
1050         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1051         if (is_contained(Matched, SC.ItinClassDef)) {
1052           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1053                               Writes, Reads);
1054           break;
1055         }
1056       }
1057       if (Writes.empty()) {
1058         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1059                           << " does not have resources for class " << SC.Name
1060                           << '\n');
1061         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1062       }
1063     }
1064     // Sum resources across all operand writes.
1065     std::vector<MCWriteProcResEntry> WriteProcResources;
1066     std::vector<MCWriteLatencyEntry> WriteLatencies;
1067     std::vector<std::string> WriterNames;
1068     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1069     for (unsigned W : Writes) {
1070       IdxVec WriteSeq;
1071       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1072                                      ProcModel);
1073 
1074       // For each operand, create a latency entry.
1075       MCWriteLatencyEntry WLEntry;
1076       WLEntry.Cycles = 0;
1077       unsigned WriteID = WriteSeq.back();
1078       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1079       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1080       // from other WriteLatency entries.
1081       if (!SchedModels.hasReadOfWrite(
1082             SchedModels.getSchedWrite(WriteID).TheDef)) {
1083         WriteID = 0;
1084       }
1085       WLEntry.WriteResourceID = WriteID;
1086 
1087       for (unsigned WS : WriteSeq) {
1088 
1089         Record *WriteRes =
1090           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1091 
1092         // Mark the parent class as invalid for unsupported write types.
1093         if (WriteRes->getValueAsBit("Unsupported")) {
1094           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1095           break;
1096         }
1097         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1098         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1099         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1100         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1101         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1102         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1103 
1104         // Create an entry for each ProcResource listed in WriteRes.
1105         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1106         std::vector<int64_t> Cycles =
1107           WriteRes->getValueAsListOfInts("ResourceCycles");
1108 
1109         if (Cycles.empty()) {
1110           // If ResourceCycles is not provided, default to one cycle per
1111           // resource.
1112           Cycles.resize(PRVec.size(), 1);
1113         } else if (Cycles.size() != PRVec.size()) {
1114           // If ResourceCycles is provided, check consistency.
1115           PrintFatalError(
1116               WriteRes->getLoc(),
1117               Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
1118                     "!size(ProcResources): ")
1119                   .concat(Twine(PRVec.size()))
1120                   .concat(" vs ")
1121                   .concat(Twine(Cycles.size())));
1122         }
1123 
1124         ExpandProcResources(PRVec, Cycles, ProcModel);
1125 
1126         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1127              PRIdx != PREnd; ++PRIdx) {
1128           MCWriteProcResEntry WPREntry;
1129           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1130           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1131           WPREntry.Cycles = Cycles[PRIdx];
1132           // If this resource is already used in this sequence, add the current
1133           // entry's cycles so that the same resource appears to be used
1134           // serially, rather than multiple parallel uses. This is important for
1135           // in-order machine where the resource consumption is a hazard.
1136           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1137           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1138             if (WriteProcResources[WPRIdx].ProcResourceIdx
1139                 == WPREntry.ProcResourceIdx) {
1140               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1141               break;
1142             }
1143           }
1144           if (WPRIdx == WPREnd)
1145             WriteProcResources.push_back(WPREntry);
1146         }
1147       }
1148       WriteLatencies.push_back(WLEntry);
1149     }
1150     // Create an entry for each operand Read in this SchedClass.
1151     // Entries must be sorted first by UseIdx then by WriteResourceID.
1152     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1153          UseIdx != EndIdx; ++UseIdx) {
1154       Record *ReadAdvance =
1155         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1156       if (!ReadAdvance)
1157         continue;
1158 
1159       // Mark the parent class as invalid for unsupported write types.
1160       if (ReadAdvance->getValueAsBit("Unsupported")) {
1161         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1162         break;
1163       }
1164       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1165       IdxVec WriteIDs;
1166       if (ValidWrites.empty())
1167         WriteIDs.push_back(0);
1168       else {
1169         for (Record *VW : ValidWrites) {
1170           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1171         }
1172       }
1173       llvm::sort(WriteIDs);
1174       for(unsigned W : WriteIDs) {
1175         MCReadAdvanceEntry RAEntry;
1176         RAEntry.UseIdx = UseIdx;
1177         RAEntry.WriteResourceID = W;
1178         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1179         ReadAdvanceEntries.push_back(RAEntry);
1180       }
1181     }
1182     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1183       WriteProcResources.clear();
1184       WriteLatencies.clear();
1185       ReadAdvanceEntries.clear();
1186     }
1187     // Add the information for this SchedClass to the global tables using basic
1188     // compression.
1189     //
1190     // WritePrecRes entries are sorted by ProcResIdx.
1191     llvm::sort(WriteProcResources, LessWriteProcResources());
1192 
1193     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1194     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1195       std::search(SchedTables.WriteProcResources.begin(),
1196                   SchedTables.WriteProcResources.end(),
1197                   WriteProcResources.begin(), WriteProcResources.end());
1198     if (WPRPos != SchedTables.WriteProcResources.end())
1199       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1200     else {
1201       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1202       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1203                                             WriteProcResources.end());
1204     }
1205     // Latency entries must remain in operand order.
1206     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1207     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1208       std::search(SchedTables.WriteLatencies.begin(),
1209                   SchedTables.WriteLatencies.end(),
1210                   WriteLatencies.begin(), WriteLatencies.end());
1211     if (WLPos != SchedTables.WriteLatencies.end()) {
1212       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1213       SCDesc.WriteLatencyIdx = idx;
1214       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1215         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1216             std::string::npos) {
1217           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1218         }
1219     }
1220     else {
1221       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1222       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1223                                         WriteLatencies.begin(),
1224                                         WriteLatencies.end());
1225       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1226                                      WriterNames.begin(), WriterNames.end());
1227     }
1228     // ReadAdvanceEntries must remain in operand order.
1229     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1230     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1231       std::search(SchedTables.ReadAdvanceEntries.begin(),
1232                   SchedTables.ReadAdvanceEntries.end(),
1233                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1234     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1235       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1236     else {
1237       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1238       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1239                                             ReadAdvanceEntries.end());
1240     }
1241   }
1242 }
1243 
1244 // Emit SchedClass tables for all processors and associated global tables.
1245 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1246                                             raw_ostream &OS) {
1247   // Emit global WriteProcResTable.
1248   OS << "\n// {ProcResourceIdx, Cycles}\n"
1249      << "extern const llvm::MCWriteProcResEntry "
1250      << Target << "WriteProcResTable[] = {\n"
1251      << "  { 0,  0}, // Invalid\n";
1252   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1253        WPRIdx != WPREnd; ++WPRIdx) {
1254     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1255     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1256        << format("%2d", WPREntry.Cycles) << "}";
1257     if (WPRIdx + 1 < WPREnd)
1258       OS << ',';
1259     OS << " // #" << WPRIdx << '\n';
1260   }
1261   OS << "}; // " << Target << "WriteProcResTable\n";
1262 
1263   // Emit global WriteLatencyTable.
1264   OS << "\n// {Cycles, WriteResourceID}\n"
1265      << "extern const llvm::MCWriteLatencyEntry "
1266      << Target << "WriteLatencyTable[] = {\n"
1267      << "  { 0,  0}, // Invalid\n";
1268   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1269        WLIdx != WLEnd; ++WLIdx) {
1270     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1271     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1272        << format("%2d", WLEntry.WriteResourceID) << "}";
1273     if (WLIdx + 1 < WLEnd)
1274       OS << ',';
1275     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1276   }
1277   OS << "}; // " << Target << "WriteLatencyTable\n";
1278 
1279   // Emit global ReadAdvanceTable.
1280   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1281      << "extern const llvm::MCReadAdvanceEntry "
1282      << Target << "ReadAdvanceTable[] = {\n"
1283      << "  {0,  0,  0}, // Invalid\n";
1284   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1285        RAIdx != RAEnd; ++RAIdx) {
1286     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1287     OS << "  {" << RAEntry.UseIdx << ", "
1288        << format("%2d", RAEntry.WriteResourceID) << ", "
1289        << format("%2d", RAEntry.Cycles) << "}";
1290     if (RAIdx + 1 < RAEnd)
1291       OS << ',';
1292     OS << " // #" << RAIdx << '\n';
1293   }
1294   OS << "}; // " << Target << "ReadAdvanceTable\n";
1295 
1296   // Emit a SchedClass table for each processor.
1297   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1298          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1299     if (!PI->hasInstrSchedModel())
1300       continue;
1301 
1302     std::vector<MCSchedClassDesc> &SCTab =
1303       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1304 
1305     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1306        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1307     OS << "static const llvm::MCSchedClassDesc "
1308        << PI->ModelName << "SchedClasses[] = {\n";
1309 
1310     // The first class is always invalid. We no way to distinguish it except by
1311     // name and position.
1312     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1313            && "invalid class not first");
1314     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1315        << MCSchedClassDesc::InvalidNumMicroOps
1316        << ", false, false,  0, 0,  0, 0,  0, 0},\n";
1317 
1318     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1319       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1320       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1321       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1322       if (SchedClass.Name.size() < 18)
1323         OS.indent(18 - SchedClass.Name.size());
1324       OS << MCDesc.NumMicroOps
1325          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1326          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1327          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1328          << ", " << MCDesc.NumWriteProcResEntries
1329          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1330          << ", " << MCDesc.NumWriteLatencyEntries
1331          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1332          << ", " << MCDesc.NumReadAdvanceEntries
1333          << "}, // #" << SCIdx << '\n';
1334     }
1335     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1336   }
1337 }
1338 
1339 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1340   // For each processor model.
1341   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1342     // Emit extra processor info if available.
1343     if (PM.hasExtraProcessorInfo())
1344       EmitExtraProcessorInfo(PM, OS);
1345     // Emit processor resource table.
1346     if (PM.hasInstrSchedModel())
1347       EmitProcessorResources(PM, OS);
1348     else if(!PM.ProcResourceDefs.empty())
1349       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1350                     "ProcResources without defining WriteRes SchedWriteRes");
1351 
1352     // Begin processor itinerary properties
1353     OS << "\n";
1354     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1355     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1356     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1357     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1358     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1359     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1360     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1361 
1362     bool PostRAScheduler =
1363       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1364 
1365     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1366        << "PostRAScheduler\n";
1367 
1368     bool CompleteModel =
1369       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1370 
1371     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1372        << "CompleteModel\n";
1373 
1374     OS << "  " << PM.Index << ", // Processor ID\n";
1375     if (PM.hasInstrSchedModel())
1376       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1377          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1378          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1379          << "  " << (SchedModels.schedClassEnd()
1380                      - SchedModels.schedClassBegin()) << ",\n";
1381     else
1382       OS << "  nullptr, nullptr, 0, 0,"
1383          << " // No instruction-level machine model.\n";
1384     if (PM.hasItineraries())
1385       OS << "  " << PM.ItinsDef->getName() << ",\n";
1386     else
1387       OS << "  nullptr, // No Itinerary\n";
1388     if (PM.hasExtraProcessorInfo())
1389       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1390     else
1391       OS << "  nullptr // No extra processor descriptor\n";
1392     OS << "};\n";
1393   }
1394 }
1395 
1396 //
1397 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1398 //
1399 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1400   OS << "#ifdef DBGFIELD\n"
1401      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1402      << "#endif\n"
1403      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1404      << "#define DBGFIELD(x) x,\n"
1405      << "#else\n"
1406      << "#define DBGFIELD(x)\n"
1407      << "#endif\n";
1408 
1409   if (SchedModels.hasItineraries()) {
1410     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1411     // Emit the stage data
1412     EmitStageAndOperandCycleData(OS, ProcItinLists);
1413     EmitItineraries(OS, ProcItinLists);
1414   }
1415   OS << "\n// ===============================================================\n"
1416      << "// Data tables for the new per-operand machine model.\n";
1417 
1418   SchedClassTables SchedTables;
1419   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1420     GenSchedClassTables(ProcModel, SchedTables);
1421   }
1422   EmitSchedClassTables(SchedTables, OS);
1423 
1424   OS << "\n#undef DBGFIELD\n";
1425 
1426   // Emit the processor machine model
1427   EmitProcessorModels(OS);
1428 }
1429 
1430 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1431   std::string Buffer;
1432   raw_string_ostream Stream(Buffer);
1433 
1434   // Collect all the PredicateProlog records and print them to the output
1435   // stream.
1436   std::vector<Record *> Prologs =
1437       Records.getAllDerivedDefinitions("PredicateProlog");
1438   llvm::sort(Prologs, LessRecord());
1439   for (Record *P : Prologs)
1440     Stream << P->getValueAsString("Code") << '\n';
1441 
1442   Stream.flush();
1443   OS << Buffer;
1444 }
1445 
1446 static void emitPredicates(const CodeGenSchedTransition &T,
1447                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1448                            raw_ostream &OS) {
1449   std::string Buffer;
1450   raw_string_ostream SS(Buffer);
1451 
1452   auto IsTruePredicate = [](const Record *Rec) {
1453     return Rec->isSubClassOf("MCSchedPredicate") &&
1454            Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1455   };
1456 
1457   // If not all predicates are MCTrue, then we need an if-stmt.
1458   unsigned NumNonTruePreds =
1459       T.PredTerm.size() - count_if(T.PredTerm, IsTruePredicate);
1460 
1461   SS.indent(PE.getIndentLevel() * 2);
1462 
1463   if (NumNonTruePreds) {
1464     bool FirstNonTruePredicate = true;
1465     SS << "if (";
1466 
1467     PE.setIndentLevel(PE.getIndentLevel() + 2);
1468 
1469     for (const Record *Rec : T.PredTerm) {
1470       // Skip predicates that evaluate to "true".
1471       if (IsTruePredicate(Rec))
1472         continue;
1473 
1474       if (FirstNonTruePredicate) {
1475         FirstNonTruePredicate = false;
1476       } else {
1477         SS << "\n";
1478         SS.indent(PE.getIndentLevel() * 2);
1479         SS << "&& ";
1480       }
1481 
1482       if (Rec->isSubClassOf("MCSchedPredicate")) {
1483         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1484         continue;
1485       }
1486 
1487       // Expand this legacy predicate and wrap it around braces if there is more
1488       // than one predicate to expand.
1489       SS << ((NumNonTruePreds > 1) ? "(" : "")
1490          << Rec->getValueAsString("Predicate")
1491          << ((NumNonTruePreds > 1) ? ")" : "");
1492     }
1493 
1494     SS << ")\n"; // end of if-stmt
1495     PE.decreaseIndentLevel();
1496     SS.indent(PE.getIndentLevel() * 2);
1497     PE.decreaseIndentLevel();
1498   }
1499 
1500   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1501   SS.flush();
1502   OS << Buffer;
1503 }
1504 
1505 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1506 // epilogue code for the auto-generated helper.
1507 void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) {
1508   if (ShouldReturnZero) {
1509     OS << "  // Don't know how to resolve this scheduling class.\n"
1510        << "  return 0;\n";
1511     return;
1512   }
1513 
1514   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1515 }
1516 
1517 bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1518   return all_of(T.PredTerm, [](const Record *Rec) {
1519     return Rec->isSubClassOf("MCSchedPredicate");
1520   });
1521 }
1522 
1523 void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1524                            IdxVec &VariantClasses,
1525                            bool OnlyExpandMCInstPredicates) {
1526   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1527     // Ignore non-variant scheduling classes.
1528     if (SC.Transitions.empty())
1529       continue;
1530 
1531     if (OnlyExpandMCInstPredicates) {
1532       // Ignore this variant scheduling class no transitions use any meaningful
1533       // MCSchedPredicate definitions.
1534       if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) {
1535             return hasMCSchedPredicates(T);
1536           }))
1537         continue;
1538     }
1539 
1540     VariantClasses.push_back(SC.Index);
1541   }
1542 }
1543 
1544 void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) {
1545   // A variant scheduling class may define transitions for multiple
1546   // processors.  This function identifies wich processors are associated with
1547   // transition rules specified by variant class `SC`.
1548   for (const CodeGenSchedTransition &T : SC.Transitions) {
1549     IdxVec PI;
1550     std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(),
1551                    ProcIndices.begin(), ProcIndices.end(),
1552                    std::back_inserter(PI));
1553     ProcIndices.swap(PI);
1554   }
1555 }
1556 
1557 void SubtargetEmitter::emitSchedModelHelpersImpl(
1558     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1559   IdxVec VariantClasses;
1560   collectVariantClasses(SchedModels, VariantClasses,
1561                         OnlyExpandMCInstPredicates);
1562 
1563   if (VariantClasses.empty()) {
1564     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1565     return;
1566   }
1567 
1568   // Construct a switch statement where the condition is a check on the
1569   // scheduling class identifier. There is a `case` for every variant class
1570   // defined by the processor models of this target.
1571   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1572   // a variant scheduling class to another scheduling class.  Rules are
1573   // described by instances of CodeGenSchedTransition. Note that transitions may
1574   // not be valid for all processors.
1575   OS << "  switch (SchedClass) {\n";
1576   for (unsigned VC : VariantClasses) {
1577     IdxVec ProcIndices;
1578     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1579     collectProcessorIndices(SC, ProcIndices);
1580 
1581     OS << "  case " << VC << ": // " << SC.Name << '\n';
1582 
1583     PredicateExpander PE(Target);
1584     PE.setByRef(false);
1585     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1586     for (unsigned PI : ProcIndices) {
1587       OS << "    ";
1588 
1589       // Emit a guard on the processor ID.
1590       if (PI != 0) {
1591         OS << (OnlyExpandMCInstPredicates
1592                    ? "if (CPUID == "
1593                    : "if (SchedModel->getProcessorID() == ");
1594         OS << PI << ") ";
1595         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1596       }
1597 
1598       // Now emit transitions associated with processor PI.
1599       for (const CodeGenSchedTransition &T : SC.Transitions) {
1600         if (PI != 0 && !count(T.ProcIndices, PI))
1601           continue;
1602 
1603         // Emit only transitions based on MCSchedPredicate, if it's the case.
1604         // At least the transition specified by NoSchedPred is emitted,
1605         // which becomes the default transition for those variants otherwise
1606         // not based on MCSchedPredicate.
1607         // FIXME: preferably, llvm-mca should instead assume a reasonable
1608         // default when a variant transition is not based on MCSchedPredicate
1609         // for a given processor.
1610         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1611           continue;
1612 
1613         PE.setIndentLevel(3);
1614         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1615       }
1616 
1617       OS << "    }\n";
1618 
1619       if (PI == 0)
1620         break;
1621     }
1622 
1623     if (SC.isInferred())
1624       OS << "    return " << SC.Index << ";\n";
1625     OS << "    break;\n";
1626   }
1627 
1628   OS << "  };\n";
1629 
1630   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1631 }
1632 
1633 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1634                                              raw_ostream &OS) {
1635   OS << "unsigned " << ClassName
1636      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1637      << " const TargetSchedModel *SchedModel) const {\n";
1638 
1639   // Emit the predicate prolog code.
1640   emitPredicateProlog(Records, OS);
1641 
1642   // Emit target predicates.
1643   emitSchedModelHelpersImpl(OS);
1644 
1645   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1646 
1647   OS << "unsigned " << ClassName
1648      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1649      << " unsigned CPUID) const {\n"
1650      << "  return " << Target << "_MC"
1651      << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID);\n"
1652      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1653 
1654   STIPredicateExpander PE(Target);
1655   PE.setClassPrefix(ClassName);
1656   PE.setExpandDefinition(true);
1657   PE.setByRef(false);
1658   PE.setIndentLevel(0);
1659 
1660   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1661     PE.expandSTIPredicate(OS, Fn);
1662 }
1663 
1664 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1665                                        raw_ostream &OS) {
1666   const CodeGenHwModes &CGH = TGT.getHwModes();
1667   assert(CGH.getNumModeIds() > 0);
1668   if (CGH.getNumModeIds() == 1)
1669     return;
1670 
1671   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1672   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1673     const HwMode &HM = CGH.getMode(M);
1674     OS << "  if (checkFeatures(\"" << HM.Features
1675        << "\")) return " << M << ";\n";
1676   }
1677   OS << "  return 0;\n}\n";
1678 }
1679 
1680 //
1681 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1682 // the subtarget features string.
1683 //
1684 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1685                                              unsigned NumFeatures,
1686                                              unsigned NumProcs) {
1687   std::vector<Record*> Features =
1688                        Records.getAllDerivedDefinitions("SubtargetFeature");
1689   llvm::sort(Features, LessRecord());
1690 
1691   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1692      << "// subtarget options.\n"
1693      << "void llvm::";
1694   OS << Target;
1695   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1696      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1697      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1698 
1699   if (Features.empty()) {
1700     OS << "}\n";
1701     return;
1702   }
1703 
1704   OS << "  InitMCProcessorInfo(CPU, FS);\n"
1705      << "  const FeatureBitset& Bits = getFeatureBits();\n";
1706 
1707   for (Record *R : Features) {
1708     // Next record
1709     StringRef Instance = R->getName();
1710     StringRef Value = R->getValueAsString("Value");
1711     StringRef Attribute = R->getValueAsString("Attribute");
1712 
1713     if (Value=="true" || Value=="false")
1714       OS << "  if (Bits[" << Target << "::"
1715          << Instance << "]) "
1716          << Attribute << " = " << Value << ";\n";
1717     else
1718       OS << "  if (Bits[" << Target << "::"
1719          << Instance << "] && "
1720          << Attribute << " < " << Value << ") "
1721          << Attribute << " = " << Value << ";\n";
1722   }
1723 
1724   OS << "}\n";
1725 }
1726 
1727 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1728   OS << "namespace " << Target << "_MC {\n"
1729      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1730      << "    const MCInst *MI, unsigned CPUID) {\n";
1731   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1732   OS << "}\n";
1733   OS << "} // end namespace " << Target << "_MC\n\n";
1734 
1735   OS << "struct " << Target
1736      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1737   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT, \n"
1738      << "    StringRef CPU, StringRef FS, ArrayRef<SubtargetFeatureKV> PF,\n"
1739      << "    ArrayRef<SubtargetSubTypeKV> PD,\n"
1740      << "    const MCWriteProcResEntry *WPR,\n"
1741      << "    const MCWriteLatencyEntry *WL,\n"
1742      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1743      << "    const unsigned *OC, const unsigned *FP) :\n"
1744      << "      MCSubtargetInfo(TT, CPU, FS, PF, PD,\n"
1745      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1746      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1747      << "      const MCInst *MI, unsigned CPUID) const override {\n"
1748      << "    return " << Target << "_MC"
1749      << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID); \n";
1750   OS << "  }\n";
1751   if (TGT.getHwModes().getNumModeIds() > 1)
1752     OS << "  unsigned getHwMode() const override;\n";
1753   OS << "};\n";
1754   EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1755 }
1756 
1757 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1758   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1759   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1760 
1761   STIPredicateExpander PE(Target);
1762   PE.setExpandForMC(true);
1763   PE.setByRef(true);
1764   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1765     PE.expandSTIPredicate(OS, Fn);
1766 
1767   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1768 
1769   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1770   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1771 
1772   std::string ClassPrefix = Target + "MCInstrAnalysis";
1773   PE.setExpandDefinition(true);
1774   PE.setClassPrefix(ClassPrefix);
1775   PE.setIndentLevel(0);
1776   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1777     PE.expandSTIPredicate(OS, Fn);
1778 
1779   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1780 }
1781 
1782 //
1783 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1784 //
1785 void SubtargetEmitter::run(raw_ostream &OS) {
1786   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1787 
1788   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1789   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1790 
1791   DenseMap<Record *, unsigned> FeatureMap;
1792 
1793   OS << "namespace llvm {\n";
1794   Enumeration(OS, FeatureMap);
1795   OS << "} // end namespace llvm\n\n";
1796   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1797 
1798   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1799   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
1800 
1801   OS << "namespace llvm {\n";
1802 #if 0
1803   OS << "namespace {\n";
1804 #endif
1805   unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
1806   OS << "\n";
1807   EmitSchedModel(OS);
1808   OS << "\n";
1809   unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
1810   OS << "\n";
1811 #if 0
1812   OS << "} // end anonymous namespace\n\n";
1813 #endif
1814 
1815   // MCInstrInfo initialization routine.
1816   emitGenMCSubtargetInfo(OS);
1817 
1818   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1819      << "MCSubtargetInfoImpl("
1820      << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1821   OS << "  return new " << Target << "GenMCSubtargetInfo(TT, CPU, FS, ";
1822   if (NumFeatures)
1823     OS << Target << "FeatureKV, ";
1824   else
1825     OS << "None, ";
1826   if (NumProcs)
1827     OS << Target << "SubTypeKV, ";
1828   else
1829     OS << "None, ";
1830   OS << '\n'; OS.indent(22);
1831   OS << Target << "WriteProcResTable, "
1832      << Target << "WriteLatencyTable, "
1833      << Target << "ReadAdvanceTable, ";
1834   OS << '\n'; OS.indent(22);
1835   if (SchedModels.hasItineraries()) {
1836     OS << Target << "Stages, "
1837        << Target << "OperandCycles, "
1838        << Target << "ForwardingPaths";
1839   } else
1840     OS << "nullptr, nullptr, nullptr";
1841   OS << ");\n}\n\n";
1842 
1843   OS << "} // end namespace llvm\n\n";
1844 
1845   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1846 
1847   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1848   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1849 
1850   OS << "#include \"llvm/Support/Debug.h\"\n";
1851   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1852   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1853 
1854   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1855 
1856   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1857   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1858   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1859 
1860   std::string ClassName = Target + "GenSubtargetInfo";
1861   OS << "namespace llvm {\n";
1862   OS << "class DFAPacketizer;\n";
1863   OS << "namespace " << Target << "_MC {\n"
1864      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1865      << " const MCInst *MI, unsigned CPUID);\n"
1866      << "} // end namespace " << Target << "_MC\n\n";
1867   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1868      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1869      << "StringRef FS);\n"
1870      << "public:\n"
1871      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1872      << " const MachineInstr *DefMI,"
1873      << " const TargetSchedModel *SchedModel) const override;\n"
1874      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1875      << " const MCInst *MI, unsigned CPUID) const override;\n"
1876      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1877      << " const;\n";
1878   if (TGT.getHwModes().getNumModeIds() > 1)
1879     OS << "  unsigned getHwMode() const override;\n";
1880 
1881   STIPredicateExpander PE(Target);
1882   PE.setByRef(false);
1883   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1884     PE.expandSTIPredicate(OS, Fn);
1885 
1886   OS << "};\n"
1887      << "} // end namespace llvm\n\n";
1888 
1889   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1890 
1891   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1892   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1893 
1894   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1895   OS << "namespace llvm {\n";
1896   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1897   OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
1898   OS << "extern const llvm::MCWriteProcResEntry "
1899      << Target << "WriteProcResTable[];\n";
1900   OS << "extern const llvm::MCWriteLatencyEntry "
1901      << Target << "WriteLatencyTable[];\n";
1902   OS << "extern const llvm::MCReadAdvanceEntry "
1903      << Target << "ReadAdvanceTable[];\n";
1904 
1905   if (SchedModels.hasItineraries()) {
1906     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1907     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1908     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1909   }
1910 
1911   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1912      << "StringRef FS)\n"
1913      << "  : TargetSubtargetInfo(TT, CPU, FS, ";
1914   if (NumFeatures)
1915     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1916   else
1917     OS << "None, ";
1918   if (NumProcs)
1919     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1920   else
1921     OS << "None, ";
1922   OS << '\n'; OS.indent(24);
1923   OS << Target << "WriteProcResTable, "
1924      << Target << "WriteLatencyTable, "
1925      << Target << "ReadAdvanceTable, ";
1926   OS << '\n'; OS.indent(24);
1927   if (SchedModels.hasItineraries()) {
1928     OS << Target << "Stages, "
1929        << Target << "OperandCycles, "
1930        << Target << "ForwardingPaths";
1931   } else
1932     OS << "nullptr, nullptr, nullptr";
1933   OS << ") {}\n\n";
1934 
1935   EmitSchedModelHelpers(ClassName, OS);
1936   EmitHwModeCheck(ClassName, OS);
1937 
1938   OS << "} // end namespace llvm\n\n";
1939 
1940   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1941 
1942   EmitMCInstrAnalysisPredicateFunctions(OS);
1943 }
1944 
1945 namespace llvm {
1946 
1947 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1948   CodeGenTarget CGTarget(RK);
1949   SubtargetEmitter(RK, CGTarget).run(OS);
1950 }
1951 
1952 } // end namespace llvm
1953