1 /*! \file */
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22    the Altix.  Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel.  Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72    Microsoft library. Some macros provided below to replace these functions  */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #if HWLOC_API_VERSION >= 0x00020000
104 // hwloc 2.0 changed type of depth of object from unsigned to int
105 typedef int kmp_hwloc_depth_t;
106 #else
107 typedef unsigned int kmp_hwloc_depth_t;
108 #endif
109 #endif
110 
111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
112 #include <xmmintrin.h>
113 #endif
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #if USE_DEBUGGER
119 #include "kmp_debugger.h"
120 #endif
121 #include "kmp_i18n.h"
122 
123 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
124 
125 #include "kmp_wrapper_malloc.h"
126 #if KMP_OS_UNIX
127 #include <unistd.h>
128 #if !defined NSIG && defined _NSIG
129 #define NSIG _NSIG
130 #endif
131 #endif
132 
133 #if KMP_OS_LINUX
134 #pragma weak clock_gettime
135 #endif
136 
137 #if OMPT_SUPPORT
138 #include "ompt-internal.h"
139 #endif
140 
141 #ifndef UNLIKELY
142 #define UNLIKELY(x) (x)
143 #endif
144 
145 // Affinity format function
146 #include "kmp_str.h"
147 
148 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
149 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
150 // free lists of limited size.
151 #ifndef USE_FAST_MEMORY
152 #define USE_FAST_MEMORY 3
153 #endif
154 
155 #ifndef KMP_NESTED_HOT_TEAMS
156 #define KMP_NESTED_HOT_TEAMS 0
157 #define USE_NESTED_HOT_ARG(x)
158 #else
159 #if KMP_NESTED_HOT_TEAMS
160 #define USE_NESTED_HOT_ARG(x) , x
161 #else
162 #define USE_NESTED_HOT_ARG(x)
163 #endif
164 #endif
165 
166 // Assume using BGET compare_exchange instruction instead of lock by default.
167 #ifndef USE_CMP_XCHG_FOR_BGET
168 #define USE_CMP_XCHG_FOR_BGET 1
169 #endif
170 
171 // Test to see if queuing lock is better than bootstrap lock for bget
172 // #ifndef USE_QUEUING_LOCK_FOR_BGET
173 // #define USE_QUEUING_LOCK_FOR_BGET
174 // #endif
175 
176 #define KMP_NSEC_PER_SEC 1000000000L
177 #define KMP_USEC_PER_SEC 1000000L
178 
179 /*!
180 @ingroup BASIC_TYPES
181 @{
182 */
183 
184 /*!
185 Values for bit flags used in the ident_t to describe the fields.
186 */
187 enum {
188   /*! Use trampoline for internal microtasks */
189   KMP_IDENT_IMB = 0x01,
190   /*! Use c-style ident structure */
191   KMP_IDENT_KMPC = 0x02,
192   /* 0x04 is no longer used */
193   /*! Entry point generated by auto-parallelization */
194   KMP_IDENT_AUTOPAR = 0x08,
195   /*! Compiler generates atomic reduction option for kmpc_reduce* */
196   KMP_IDENT_ATOMIC_REDUCE = 0x10,
197   /*! To mark a 'barrier' directive in user code */
198   KMP_IDENT_BARRIER_EXPL = 0x20,
199   /*! To Mark implicit barriers. */
200   KMP_IDENT_BARRIER_IMPL = 0x0040,
201   KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
202   KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
203   KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
204 
205   KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
206   KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
207 
208   /*! To mark a static loop in OMPT callbacks */
209   KMP_IDENT_WORK_LOOP = 0x200,
210   /*! To mark a sections directive in OMPT callbacks */
211   KMP_IDENT_WORK_SECTIONS = 0x400,
212   /*! To mark a distribute construct in OMPT callbacks */
213   KMP_IDENT_WORK_DISTRIBUTE = 0x800,
214   /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
215       not currently used. If one day we need more bits, then we can use
216       an invalid combination of hints to mean that another, larger field
217       should be used in a different flag. */
218   KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
219   KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
220   KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
221   KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
222   KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
223   KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
224 };
225 
226 /*!
227  * The ident structure that describes a source location.
228  */
229 typedef struct ident {
230   kmp_int32 reserved_1; /**<  might be used in Fortran; see above  */
231   kmp_int32 flags; /**<  also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
232                       identifies this union member  */
233   kmp_int32 reserved_2; /**<  not really used in Fortran any more; see above */
234 #if USE_ITT_BUILD
235 /*  but currently used for storing region-specific ITT */
236 /*  contextual information. */
237 #endif /* USE_ITT_BUILD */
238   kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++  */
239   char const *psource; /**< String describing the source location.
240                        The string is composed of semi-colon separated fields
241                        which describe the source file, the function and a pair
242                        of line numbers that delimit the construct. */
243   // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
244   kmp_int32 get_openmp_version() {
245     return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
246   }
247 } ident_t;
248 /*!
249 @}
250 */
251 
252 // Some forward declarations.
253 typedef union kmp_team kmp_team_t;
254 typedef struct kmp_taskdata kmp_taskdata_t;
255 typedef union kmp_task_team kmp_task_team_t;
256 typedef union kmp_team kmp_team_p;
257 typedef union kmp_info kmp_info_p;
258 typedef union kmp_root kmp_root_p;
259 
260 template <bool C = false, bool S = true> class kmp_flag_32;
261 template <bool C = false, bool S = true> class kmp_flag_64;
262 class kmp_flag_oncore;
263 
264 #ifdef __cplusplus
265 extern "C" {
266 #endif
267 
268 /* ------------------------------------------------------------------------ */
269 
270 /* Pack two 32-bit signed integers into a 64-bit signed integer */
271 /* ToDo: Fix word ordering for big-endian machines. */
272 #define KMP_PACK_64(HIGH_32, LOW_32)                                           \
273   ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
274 
275 // Generic string manipulation macros. Assume that _x is of type char *
276 #define SKIP_WS(_x)                                                            \
277   {                                                                            \
278     while (*(_x) == ' ' || *(_x) == '\t')                                      \
279       (_x)++;                                                                  \
280   }
281 #define SKIP_DIGITS(_x)                                                        \
282   {                                                                            \
283     while (*(_x) >= '0' && *(_x) <= '9')                                       \
284       (_x)++;                                                                  \
285   }
286 #define SKIP_TOKEN(_x)                                                         \
287   {                                                                            \
288     while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
289            (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_')                     \
290       (_x)++;                                                                  \
291   }
292 #define SKIP_TO(_x, _c)                                                        \
293   {                                                                            \
294     while (*(_x) != '\0' && *(_x) != (_c))                                     \
295       (_x)++;                                                                  \
296   }
297 
298 /* ------------------------------------------------------------------------ */
299 
300 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
301 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
302 
303 /* ------------------------------------------------------------------------ */
304 /* Enumeration types */
305 
306 enum kmp_state_timer {
307   ts_stop,
308   ts_start,
309   ts_pause,
310 
311   ts_last_state
312 };
313 
314 enum dynamic_mode {
315   dynamic_default,
316 #ifdef USE_LOAD_BALANCE
317   dynamic_load_balance,
318 #endif /* USE_LOAD_BALANCE */
319   dynamic_random,
320   dynamic_thread_limit,
321   dynamic_max
322 };
323 
324 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
325  * not include it here */
326 #ifndef KMP_SCHED_TYPE_DEFINED
327 #define KMP_SCHED_TYPE_DEFINED
328 typedef enum kmp_sched {
329   kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
330   // Note: need to adjust __kmp_sch_map global array in case enum is changed
331   kmp_sched_static = 1, // mapped to kmp_sch_static_chunked           (33)
332   kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked          (35)
333   kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked           (36)
334   kmp_sched_auto = 4, // mapped to kmp_sch_auto                     (38)
335   kmp_sched_upper_std = 5, // upper bound for standard schedules
336   kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
337   kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
338 #if KMP_STATIC_STEAL_ENABLED
339   kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
340 #endif
341   kmp_sched_upper,
342   kmp_sched_default = kmp_sched_static, // default scheduling
343   kmp_sched_monotonic = 0x80000000
344 } kmp_sched_t;
345 #endif
346 
347 /*!
348  @ingroup WORK_SHARING
349  * Describes the loop schedule to be used for a parallel for loop.
350  */
351 enum sched_type : kmp_int32 {
352   kmp_sch_lower = 32, /**< lower bound for unordered values */
353   kmp_sch_static_chunked = 33,
354   kmp_sch_static = 34, /**< static unspecialized */
355   kmp_sch_dynamic_chunked = 35,
356   kmp_sch_guided_chunked = 36, /**< guided unspecialized */
357   kmp_sch_runtime = 37,
358   kmp_sch_auto = 38, /**< auto */
359   kmp_sch_trapezoidal = 39,
360 
361   /* accessible only through KMP_SCHEDULE environment variable */
362   kmp_sch_static_greedy = 40,
363   kmp_sch_static_balanced = 41,
364   /* accessible only through KMP_SCHEDULE environment variable */
365   kmp_sch_guided_iterative_chunked = 42,
366   kmp_sch_guided_analytical_chunked = 43,
367   /* accessible only through KMP_SCHEDULE environment variable */
368   kmp_sch_static_steal = 44,
369 
370   /* static with chunk adjustment (e.g., simd) */
371   kmp_sch_static_balanced_chunked = 45,
372   kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
373   kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
374 
375   /* accessible only through KMP_SCHEDULE environment variable */
376   kmp_sch_upper, /**< upper bound for unordered values */
377 
378   kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
379   kmp_ord_static_chunked = 65,
380   kmp_ord_static = 66, /**< ordered static unspecialized */
381   kmp_ord_dynamic_chunked = 67,
382   kmp_ord_guided_chunked = 68,
383   kmp_ord_runtime = 69,
384   kmp_ord_auto = 70, /**< ordered auto */
385   kmp_ord_trapezoidal = 71,
386   kmp_ord_upper, /**< upper bound for ordered values */
387 
388   /* Schedules for Distribute construct */
389   kmp_distribute_static_chunked = 91, /**< distribute static chunked */
390   kmp_distribute_static = 92, /**< distribute static unspecialized */
391 
392   /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
393      single iteration/chunk, even if the loop is serialized. For the schedule
394      types listed above, the entire iteration vector is returned if the loop is
395      serialized. This doesn't work for gcc/gcomp sections. */
396   kmp_nm_lower = 160, /**< lower bound for nomerge values */
397 
398   kmp_nm_static_chunked =
399       (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
400   kmp_nm_static = 162, /**< static unspecialized */
401   kmp_nm_dynamic_chunked = 163,
402   kmp_nm_guided_chunked = 164, /**< guided unspecialized */
403   kmp_nm_runtime = 165,
404   kmp_nm_auto = 166, /**< auto */
405   kmp_nm_trapezoidal = 167,
406 
407   /* accessible only through KMP_SCHEDULE environment variable */
408   kmp_nm_static_greedy = 168,
409   kmp_nm_static_balanced = 169,
410   /* accessible only through KMP_SCHEDULE environment variable */
411   kmp_nm_guided_iterative_chunked = 170,
412   kmp_nm_guided_analytical_chunked = 171,
413   kmp_nm_static_steal =
414       172, /* accessible only through OMP_SCHEDULE environment variable */
415 
416   kmp_nm_ord_static_chunked = 193,
417   kmp_nm_ord_static = 194, /**< ordered static unspecialized */
418   kmp_nm_ord_dynamic_chunked = 195,
419   kmp_nm_ord_guided_chunked = 196,
420   kmp_nm_ord_runtime = 197,
421   kmp_nm_ord_auto = 198, /**< auto */
422   kmp_nm_ord_trapezoidal = 199,
423   kmp_nm_upper, /**< upper bound for nomerge values */
424 
425   /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
426      we need to distinguish the three possible cases (no modifier, monotonic
427      modifier, nonmonotonic modifier), we need separate bits for each modifier.
428      The absence of monotonic does not imply nonmonotonic, especially since 4.5
429      says that the behaviour of the "no modifier" case is implementation defined
430      in 4.5, but will become "nonmonotonic" in 5.0.
431 
432      Since we're passing a full 32 bit value, we can use a couple of high bits
433      for these flags; out of paranoia we avoid the sign bit.
434 
435      These modifiers can be or-ed into non-static schedules by the compiler to
436      pass the additional information. They will be stripped early in the
437      processing in __kmp_dispatch_init when setting up schedules, so most of the
438      code won't ever see schedules with these bits set.  */
439   kmp_sch_modifier_monotonic =
440       (1 << 29), /**< Set if the monotonic schedule modifier was present */
441   kmp_sch_modifier_nonmonotonic =
442       (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
443 
444 #define SCHEDULE_WITHOUT_MODIFIERS(s)                                          \
445   (enum sched_type)(                                                           \
446       (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
447 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
448 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
449 #define SCHEDULE_HAS_NO_MODIFIERS(s)                                           \
450   (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
451 #define SCHEDULE_GET_MODIFIERS(s)                                              \
452   ((enum sched_type)(                                                          \
453       (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
454 #define SCHEDULE_SET_MODIFIERS(s, m)                                           \
455   (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
456 #define SCHEDULE_NONMONOTONIC 0
457 #define SCHEDULE_MONOTONIC 1
458 
459   kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
460 };
461 
462 // Apply modifiers on internal kind to standard kind
463 static inline void
464 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
465                                enum sched_type internal_kind) {
466   if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
467     *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
468   }
469 }
470 
471 // Apply modifiers on standard kind to internal kind
472 static inline void
473 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
474                                enum sched_type *internal_kind) {
475   if ((int)kind & (int)kmp_sched_monotonic) {
476     *internal_kind = (enum sched_type)((int)*internal_kind |
477                                        (int)kmp_sch_modifier_monotonic);
478   }
479 }
480 
481 // Get standard schedule without modifiers
482 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
483   return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
484 }
485 
486 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
487 typedef union kmp_r_sched {
488   struct {
489     enum sched_type r_sched_type;
490     int chunk;
491   };
492   kmp_int64 sched;
493 } kmp_r_sched_t;
494 
495 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
496 // internal schedule types
497 
498 enum library_type {
499   library_none,
500   library_serial,
501   library_turnaround,
502   library_throughput
503 };
504 
505 #if KMP_OS_LINUX
506 enum clock_function_type {
507   clock_function_gettimeofday,
508   clock_function_clock_gettime
509 };
510 #endif /* KMP_OS_LINUX */
511 
512 #if KMP_MIC_SUPPORTED
513 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
514 #endif
515 
516 /* -- fast reduction stuff ------------------------------------------------ */
517 
518 #undef KMP_FAST_REDUCTION_BARRIER
519 #define KMP_FAST_REDUCTION_BARRIER 1
520 
521 #undef KMP_FAST_REDUCTION_CORE_DUO
522 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
523 #define KMP_FAST_REDUCTION_CORE_DUO 1
524 #endif
525 
526 enum _reduction_method {
527   reduction_method_not_defined = 0,
528   critical_reduce_block = (1 << 8),
529   atomic_reduce_block = (2 << 8),
530   tree_reduce_block = (3 << 8),
531   empty_reduce_block = (4 << 8)
532 };
533 
534 // Description of the packed_reduction_method variable:
535 // The packed_reduction_method variable consists of two enum types variables
536 // that are packed together into 0-th byte and 1-st byte:
537 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
538 // barrier that will be used in fast reduction: bs_plain_barrier or
539 // bs_reduction_barrier
540 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
541 // be used in fast reduction;
542 // Reduction method is of 'enum _reduction_method' type and it's defined the way
543 // so that the bits of 0-th byte are empty, so no need to execute a shift
544 // instruction while packing/unpacking
545 
546 #if KMP_FAST_REDUCTION_BARRIER
547 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
548   ((reduction_method) | (barrier_type))
549 
550 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
551   ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
552 
553 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method)                      \
554   ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
555 #else
556 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
557   (reduction_method)
558 
559 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
560   (packed_reduction_method)
561 
562 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
563 #endif
564 
565 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block)  \
566   ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) ==                       \
567    (which_reduction_block))
568 
569 #if KMP_FAST_REDUCTION_BARRIER
570 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER                               \
571   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
572 
573 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER                                   \
574   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
575 #endif
576 
577 typedef int PACKED_REDUCTION_METHOD_T;
578 
579 /* -- end of fast reduction stuff ----------------------------------------- */
580 
581 #if KMP_OS_WINDOWS
582 #define USE_CBLKDATA
583 #if KMP_MSVC_COMPAT
584 #pragma warning(push)
585 #pragma warning(disable : 271 310)
586 #endif
587 #include <windows.h>
588 #if KMP_MSVC_COMPAT
589 #pragma warning(pop)
590 #endif
591 #endif
592 
593 #if KMP_OS_UNIX
594 #include <dlfcn.h>
595 #include <pthread.h>
596 #endif
597 
598 /* Only Linux* OS and Windows* OS support thread affinity. */
599 #if KMP_AFFINITY_SUPPORTED
600 
601 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
602 #if KMP_OS_WINDOWS
603 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
604 typedef struct GROUP_AFFINITY {
605   KAFFINITY Mask;
606   WORD Group;
607   WORD Reserved[3];
608 } GROUP_AFFINITY;
609 #endif /* _MSC_VER < 1600 */
610 #if KMP_GROUP_AFFINITY
611 extern int __kmp_num_proc_groups;
612 #else
613 static const int __kmp_num_proc_groups = 1;
614 #endif /* KMP_GROUP_AFFINITY */
615 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
616 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
617 
618 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
619 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
620 
621 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
622 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
623 
624 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
625                                              GROUP_AFFINITY *);
626 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
627 #endif /* KMP_OS_WINDOWS */
628 
629 #if KMP_USE_HWLOC
630 extern hwloc_topology_t __kmp_hwloc_topology;
631 extern int __kmp_hwloc_error;
632 extern int __kmp_numa_detected;
633 extern int __kmp_tile_depth;
634 #endif
635 
636 extern size_t __kmp_affin_mask_size;
637 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
638 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
639 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
640 #define KMP_CPU_SET_ITERATE(i, mask)                                           \
641   for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
642 #define KMP_CPU_SET(i, mask) (mask)->set(i)
643 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
644 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
645 #define KMP_CPU_ZERO(mask) (mask)->zero()
646 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
647 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
648 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
649 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
650 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
651 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
652 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
653 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
654 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
655 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
656 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
657 #define KMP_CPU_ALLOC_ARRAY(arr, n)                                            \
658   (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
659 #define KMP_CPU_FREE_ARRAY(arr, n)                                             \
660   __kmp_affinity_dispatch->deallocate_mask_array(arr)
661 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
662 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
663 #define __kmp_get_system_affinity(mask, abort_bool)                            \
664   (mask)->get_system_affinity(abort_bool)
665 #define __kmp_set_system_affinity(mask, abort_bool)                            \
666   (mask)->set_system_affinity(abort_bool)
667 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
668 
669 class KMPAffinity {
670 public:
671   class Mask {
672   public:
673     void *operator new(size_t n);
674     void operator delete(void *p);
675     void *operator new[](size_t n);
676     void operator delete[](void *p);
677     virtual ~Mask() {}
678     // Set bit i to 1
679     virtual void set(int i) {}
680     // Return bit i
681     virtual bool is_set(int i) const { return false; }
682     // Set bit i to 0
683     virtual void clear(int i) {}
684     // Zero out entire mask
685     virtual void zero() {}
686     // Copy src into this mask
687     virtual void copy(const Mask *src) {}
688     // this &= rhs
689     virtual void bitwise_and(const Mask *rhs) {}
690     // this |= rhs
691     virtual void bitwise_or(const Mask *rhs) {}
692     // this = ~this
693     virtual void bitwise_not() {}
694     // API for iterating over an affinity mask
695     // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
696     virtual int begin() const { return 0; }
697     virtual int end() const { return 0; }
698     virtual int next(int previous) const { return 0; }
699 #if KMP_OS_WINDOWS
700     virtual int set_process_affinity(bool abort_on_error) const { return -1; }
701 #endif
702     // Set the system's affinity to this affinity mask's value
703     virtual int set_system_affinity(bool abort_on_error) const { return -1; }
704     // Set this affinity mask to the current system affinity
705     virtual int get_system_affinity(bool abort_on_error) { return -1; }
706     // Only 1 DWORD in the mask should have any procs set.
707     // Return the appropriate index, or -1 for an invalid mask.
708     virtual int get_proc_group() const { return -1; }
709   };
710   void *operator new(size_t n);
711   void operator delete(void *p);
712   // Need virtual destructor
713   virtual ~KMPAffinity() = default;
714   // Determine if affinity is capable
715   virtual void determine_capable(const char *env_var) {}
716   // Bind the current thread to os proc
717   virtual void bind_thread(int proc) {}
718   // Factory functions to allocate/deallocate a mask
719   virtual Mask *allocate_mask() { return nullptr; }
720   virtual void deallocate_mask(Mask *m) {}
721   virtual Mask *allocate_mask_array(int num) { return nullptr; }
722   virtual void deallocate_mask_array(Mask *m) {}
723   virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
724   static void pick_api();
725   static void destroy_api();
726   enum api_type {
727     NATIVE_OS
728 #if KMP_USE_HWLOC
729     ,
730     HWLOC
731 #endif
732   };
733   virtual api_type get_api_type() const {
734     KMP_ASSERT(0);
735     return NATIVE_OS;
736   }
737 
738 private:
739   static bool picked_api;
740 };
741 
742 typedef KMPAffinity::Mask kmp_affin_mask_t;
743 extern KMPAffinity *__kmp_affinity_dispatch;
744 
745 // Declare local char buffers with this size for printing debug and info
746 // messages, using __kmp_affinity_print_mask().
747 #define KMP_AFFIN_MASK_PRINT_LEN 1024
748 
749 enum affinity_type {
750   affinity_none = 0,
751   affinity_physical,
752   affinity_logical,
753   affinity_compact,
754   affinity_scatter,
755   affinity_explicit,
756   affinity_balanced,
757   affinity_disabled, // not used outsize the env var parser
758   affinity_default
759 };
760 
761 enum affinity_gran {
762   affinity_gran_fine = 0,
763   affinity_gran_thread,
764   affinity_gran_core,
765   affinity_gran_tile,
766   affinity_gran_numa,
767   affinity_gran_package,
768   affinity_gran_node,
769 #if KMP_GROUP_AFFINITY
770   // The "group" granularity isn't necesssarily coarser than all of the
771   // other levels, but we put it last in the enum.
772   affinity_gran_group,
773 #endif /* KMP_GROUP_AFFINITY */
774   affinity_gran_default
775 };
776 
777 enum affinity_top_method {
778   affinity_top_method_all = 0, // try all (supported) methods, in order
779 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
780   affinity_top_method_apicid,
781   affinity_top_method_x2apicid,
782 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
783   affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
784 #if KMP_GROUP_AFFINITY
785   affinity_top_method_group,
786 #endif /* KMP_GROUP_AFFINITY */
787   affinity_top_method_flat,
788 #if KMP_USE_HWLOC
789   affinity_top_method_hwloc,
790 #endif
791   affinity_top_method_default
792 };
793 
794 #define affinity_respect_mask_default (-1)
795 
796 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
797 extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
798 extern int __kmp_affinity_gran_levels; /* corresponding int value */
799 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
800 extern enum affinity_top_method __kmp_affinity_top_method;
801 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
802 extern int __kmp_affinity_offset; /* Affinity offset value  */
803 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
804 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
805 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
806 extern char *__kmp_affinity_proclist; /* proc ID list */
807 extern kmp_affin_mask_t *__kmp_affinity_masks;
808 extern unsigned __kmp_affinity_num_masks;
809 extern void __kmp_affinity_bind_thread(int which);
810 
811 extern kmp_affin_mask_t *__kmp_affin_fullMask;
812 extern char *__kmp_cpuinfo_file;
813 
814 #endif /* KMP_AFFINITY_SUPPORTED */
815 
816 // This needs to be kept in sync with the values in omp.h !!!
817 typedef enum kmp_proc_bind_t {
818   proc_bind_false = 0,
819   proc_bind_true,
820   proc_bind_master,
821   proc_bind_close,
822   proc_bind_spread,
823   proc_bind_intel, // use KMP_AFFINITY interface
824   proc_bind_default
825 } kmp_proc_bind_t;
826 
827 typedef struct kmp_nested_proc_bind_t {
828   kmp_proc_bind_t *bind_types;
829   int size;
830   int used;
831 } kmp_nested_proc_bind_t;
832 
833 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
834 
835 extern int __kmp_display_affinity;
836 extern char *__kmp_affinity_format;
837 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
838 
839 #if KMP_AFFINITY_SUPPORTED
840 #define KMP_PLACE_ALL (-1)
841 #define KMP_PLACE_UNDEFINED (-2)
842 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
843 #define KMP_AFFINITY_NON_PROC_BIND                                             \
844   ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false ||                 \
845     __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) &&                \
846    (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
847 #endif /* KMP_AFFINITY_SUPPORTED */
848 
849 extern int __kmp_affinity_num_places;
850 
851 typedef enum kmp_cancel_kind_t {
852   cancel_noreq = 0,
853   cancel_parallel = 1,
854   cancel_loop = 2,
855   cancel_sections = 3,
856   cancel_taskgroup = 4
857 } kmp_cancel_kind_t;
858 
859 // KMP_HW_SUBSET support:
860 typedef struct kmp_hws_item {
861   int num;
862   int offset;
863 } kmp_hws_item_t;
864 
865 extern kmp_hws_item_t __kmp_hws_socket;
866 extern kmp_hws_item_t __kmp_hws_node;
867 extern kmp_hws_item_t __kmp_hws_tile;
868 extern kmp_hws_item_t __kmp_hws_core;
869 extern kmp_hws_item_t __kmp_hws_proc;
870 extern int __kmp_hws_requested;
871 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
872 
873 /* ------------------------------------------------------------------------ */
874 
875 #define KMP_PAD(type, sz)                                                      \
876   (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
877 
878 // We need to avoid using -1 as a GTID as +1 is added to the gtid
879 // when storing it in a lock, and the value 0 is reserved.
880 #define KMP_GTID_DNE (-2) /* Does not exist */
881 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
882 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
883 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
884 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
885 
886 /* OpenMP 5.0 Memory Management support */
887 
888 #ifndef __OMP_H
889 // Duplicate type definitions from omp.h
890 typedef uintptr_t omp_uintptr_t;
891 
892 typedef enum {
893   omp_atk_sync_hint = 1,
894   omp_atk_alignment = 2,
895   omp_atk_access = 3,
896   omp_atk_pool_size = 4,
897   omp_atk_fallback = 5,
898   omp_atk_fb_data = 6,
899   omp_atk_pinned = 7,
900   omp_atk_partition = 8
901 } omp_alloctrait_key_t;
902 
903 typedef enum {
904   omp_atv_false = 0,
905   omp_atv_true = 1,
906   omp_atv_contended = 3,
907   omp_atv_uncontended = 4,
908   omp_atv_serialized = 5,
909   omp_atv_sequential = omp_atv_serialized, // (deprecated)
910   omp_atv_private = 6,
911   omp_atv_all = 7,
912   omp_atv_thread = 8,
913   omp_atv_pteam = 9,
914   omp_atv_cgroup = 10,
915   omp_atv_default_mem_fb = 11,
916   omp_atv_null_fb = 12,
917   omp_atv_abort_fb = 13,
918   omp_atv_allocator_fb = 14,
919   omp_atv_environment = 15,
920   omp_atv_nearest = 16,
921   omp_atv_blocked = 17,
922   omp_atv_interleaved = 18
923 } omp_alloctrait_value_t;
924 #define omp_atv_default ((omp_uintptr_t)-1)
925 
926 typedef void *omp_memspace_handle_t;
927 extern omp_memspace_handle_t const omp_default_mem_space;
928 extern omp_memspace_handle_t const omp_large_cap_mem_space;
929 extern omp_memspace_handle_t const omp_const_mem_space;
930 extern omp_memspace_handle_t const omp_high_bw_mem_space;
931 extern omp_memspace_handle_t const omp_low_lat_mem_space;
932 
933 typedef struct {
934   omp_alloctrait_key_t key;
935   omp_uintptr_t value;
936 } omp_alloctrait_t;
937 
938 typedef void *omp_allocator_handle_t;
939 extern omp_allocator_handle_t const omp_null_allocator;
940 extern omp_allocator_handle_t const omp_default_mem_alloc;
941 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
942 extern omp_allocator_handle_t const omp_const_mem_alloc;
943 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
944 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
945 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
946 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
947 extern omp_allocator_handle_t const omp_thread_mem_alloc;
948 extern omp_allocator_handle_t const kmp_max_mem_alloc;
949 extern omp_allocator_handle_t __kmp_def_allocator;
950 
951 // end of duplicate type definitions from omp.h
952 #endif
953 
954 extern int __kmp_memkind_available;
955 
956 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
957 
958 typedef struct kmp_allocator_t {
959   omp_memspace_handle_t memspace;
960   void **memkind; // pointer to memkind
961   int alignment;
962   omp_alloctrait_value_t fb;
963   kmp_allocator_t *fb_data;
964   kmp_uint64 pool_size;
965   kmp_uint64 pool_used;
966 } kmp_allocator_t;
967 
968 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
969                                                     omp_memspace_handle_t,
970                                                     int ntraits,
971                                                     omp_alloctrait_t traits[]);
972 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
973 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
974 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
975 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
976 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
977                            omp_allocator_handle_t al);
978 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
979                             omp_allocator_handle_t al,
980                             omp_allocator_handle_t free_al);
981 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
982 
983 extern void __kmp_init_memkind();
984 extern void __kmp_fini_memkind();
985 
986 /* ------------------------------------------------------------------------ */
987 
988 #define KMP_UINT64_MAX                                                         \
989   (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
990 
991 #define KMP_MIN_NTH 1
992 
993 #ifndef KMP_MAX_NTH
994 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
995 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
996 #else
997 #define KMP_MAX_NTH INT_MAX
998 #endif
999 #endif /* KMP_MAX_NTH */
1000 
1001 #ifdef PTHREAD_STACK_MIN
1002 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1003 #else
1004 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1005 #endif
1006 
1007 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1008 
1009 #if KMP_ARCH_X86
1010 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1011 #elif KMP_ARCH_X86_64
1012 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1013 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1014 #else
1015 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1016 #endif
1017 
1018 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1019 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1020 #define KMP_MAX_MALLOC_POOL_INCR                                               \
1021   (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1022 
1023 #define KMP_MIN_STKOFFSET (0)
1024 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1025 #if KMP_OS_DARWIN
1026 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1027 #else
1028 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1029 #endif
1030 
1031 #define KMP_MIN_STKPADDING (0)
1032 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1033 
1034 #define KMP_BLOCKTIME_MULTIPLIER                                               \
1035   (1000) /* number of blocktime units per second */
1036 #define KMP_MIN_BLOCKTIME (0)
1037 #define KMP_MAX_BLOCKTIME                                                      \
1038   (INT_MAX) /* Must be this for "infinite" setting the work */
1039 #define KMP_DEFAULT_BLOCKTIME (200) /*  __kmp_blocktime is in milliseconds  */
1040 
1041 #if KMP_USE_MONITOR
1042 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1043 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1044 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1045 
1046 /* Calculate new number of monitor wakeups for a specific block time based on
1047    previous monitor_wakeups. Only allow increasing number of wakeups */
1048 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups)                 \
1049   (((blocktime) == KMP_MAX_BLOCKTIME)                                          \
1050        ? (monitor_wakeups)                                                     \
1051        : ((blocktime) == KMP_MIN_BLOCKTIME)                                    \
1052              ? KMP_MAX_MONITOR_WAKEUPS                                         \
1053              : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime)))  \
1054                    ? (monitor_wakeups)                                         \
1055                    : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1056 
1057 /* Calculate number of intervals for a specific block time based on
1058    monitor_wakeups */
1059 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups)               \
1060   (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) /        \
1061    (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1062 #else
1063 #define KMP_BLOCKTIME(team, tid)                                               \
1064   (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1065 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1066 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1067 extern kmp_uint64 __kmp_ticks_per_msec;
1068 #if KMP_COMPILER_ICC
1069 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1070 #else
1071 #define KMP_NOW() __kmp_hardware_timestamp()
1072 #endif
1073 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1074 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1075   (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1076 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1077 #else
1078 // System time is retrieved sporadically while blocking.
1079 extern kmp_uint64 __kmp_now_nsec();
1080 #define KMP_NOW() __kmp_now_nsec()
1081 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1082 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1083   (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1084 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1085 #endif
1086 #endif // KMP_USE_MONITOR
1087 
1088 #define KMP_MIN_STATSCOLS 40
1089 #define KMP_MAX_STATSCOLS 4096
1090 #define KMP_DEFAULT_STATSCOLS 80
1091 
1092 #define KMP_MIN_INTERVAL 0
1093 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1094 #define KMP_DEFAULT_INTERVAL 0
1095 
1096 #define KMP_MIN_CHUNK 1
1097 #define KMP_MAX_CHUNK (INT_MAX - 1)
1098 #define KMP_DEFAULT_CHUNK 1
1099 
1100 #define KMP_DFLT_DISP_NUM_BUFF 7
1101 #define KMP_MAX_ORDERED 8
1102 
1103 #define KMP_MAX_FIELDS 32
1104 
1105 #define KMP_MAX_BRANCH_BITS 31
1106 
1107 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1108 
1109 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1110 
1111 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1112 
1113 /* Minimum number of threads before switch to TLS gtid (experimentally
1114    determined) */
1115 /* josh TODO: what about OS X* tuning? */
1116 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1117 #define KMP_TLS_GTID_MIN 5
1118 #else
1119 #define KMP_TLS_GTID_MIN INT_MAX
1120 #endif
1121 
1122 #define KMP_MASTER_TID(tid) (0 == (tid))
1123 #define KMP_WORKER_TID(tid) (0 != (tid))
1124 
1125 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1126 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1127 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1128 
1129 #ifndef TRUE
1130 #define FALSE 0
1131 #define TRUE (!FALSE)
1132 #endif
1133 
1134 /* NOTE: all of the following constants must be even */
1135 
1136 #if KMP_OS_WINDOWS
1137 #define KMP_INIT_WAIT 64U /* initial number of spin-tests   */
1138 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1139 #elif KMP_OS_LINUX
1140 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1141 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1142 #elif KMP_OS_DARWIN
1143 /* TODO: tune for KMP_OS_DARWIN */
1144 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1145 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1146 #elif KMP_OS_DRAGONFLY
1147 /* TODO: tune for KMP_OS_DRAGONFLY */
1148 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1149 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1150 #elif KMP_OS_FREEBSD
1151 /* TODO: tune for KMP_OS_FREEBSD */
1152 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1153 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1154 #elif KMP_OS_NETBSD
1155 /* TODO: tune for KMP_OS_NETBSD */
1156 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1157 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1158 #elif KMP_OS_HURD
1159 /* TODO: tune for KMP_OS_HURD */
1160 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1161 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1162 #elif KMP_OS_OPENBSD
1163 /* TODO: tune for KMP_OS_OPENBSD */
1164 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1165 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1166 #endif
1167 
1168 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1169 typedef struct kmp_cpuid {
1170   kmp_uint32 eax;
1171   kmp_uint32 ebx;
1172   kmp_uint32 ecx;
1173   kmp_uint32 edx;
1174 } kmp_cpuid_t;
1175 
1176 typedef struct kmp_cpuinfo {
1177   int initialized; // If 0, other fields are not initialized.
1178   int signature; // CPUID(1).EAX
1179   int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1180   int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1181   // Model << 4 ) + Model)
1182   int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1183   int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1184   int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1185   int cpu_stackoffset;
1186   int apic_id;
1187   int physical_id;
1188   int logical_id;
1189   kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1190   char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1191 } kmp_cpuinfo_t;
1192 
1193 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1194 
1195 #if KMP_OS_UNIX
1196 // subleaf is only needed for cache and topology discovery and can be set to
1197 // zero in most cases
1198 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1199   __asm__ __volatile__("cpuid"
1200                        : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1201                        : "a"(leaf), "c"(subleaf));
1202 }
1203 // Load p into FPU control word
1204 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1205   __asm__ __volatile__("fldcw %0" : : "m"(*p));
1206 }
1207 // Store FPU control word into p
1208 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1209   __asm__ __volatile__("fstcw %0" : "=m"(*p));
1210 }
1211 static inline void __kmp_clear_x87_fpu_status_word() {
1212 #if KMP_MIC
1213   // 32-bit protected mode x87 FPU state
1214   struct x87_fpu_state {
1215     unsigned cw;
1216     unsigned sw;
1217     unsigned tw;
1218     unsigned fip;
1219     unsigned fips;
1220     unsigned fdp;
1221     unsigned fds;
1222   };
1223   struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1224   __asm__ __volatile__("fstenv %0\n\t" // store FP env
1225                        "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1226                        "fldenv %0\n\t" // load FP env back
1227                        : "+m"(fpu_state), "+m"(fpu_state.sw));
1228 #else
1229   __asm__ __volatile__("fnclex");
1230 #endif // KMP_MIC
1231 }
1232 #if __SSE__
1233 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1234 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1235 #else
1236 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1237 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1238 #endif
1239 #else
1240 // Windows still has these as external functions in assembly file
1241 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1242 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1243 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1244 extern void __kmp_clear_x87_fpu_status_word();
1245 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1246 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1247 #endif // KMP_OS_UNIX
1248 
1249 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1250 
1251 #if KMP_ARCH_X86
1252 extern void __kmp_x86_pause(void);
1253 #elif KMP_MIC
1254 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1255 // regression after removal of extra PAUSE from spin loops. Changing
1256 // the delay from 100 to 300 showed even better performance than double PAUSE
1257 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1258 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1259 #else
1260 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1261 #endif
1262 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1263 #elif KMP_ARCH_PPC64
1264 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1265 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1266 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1267 #define KMP_CPU_PAUSE()                                                        \
1268   do {                                                                         \
1269     KMP_PPC64_PRI_LOW();                                                       \
1270     KMP_PPC64_PRI_MED();                                                       \
1271     KMP_PPC64_PRI_LOC_MB();                                                    \
1272   } while (0)
1273 #else
1274 #define KMP_CPU_PAUSE() /* nothing to do */
1275 #endif
1276 
1277 #define KMP_INIT_YIELD(count)                                                  \
1278   { (count) = __kmp_yield_init; }
1279 
1280 #define KMP_OVERSUBSCRIBED                                                     \
1281   (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1282 
1283 #define KMP_TRY_YIELD                                                          \
1284   ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1285 
1286 #define KMP_TRY_YIELD_OVERSUB                                                  \
1287   ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1288 
1289 #define KMP_YIELD(cond)                                                        \
1290   {                                                                            \
1291     KMP_CPU_PAUSE();                                                           \
1292     if ((cond) && (KMP_TRY_YIELD))                                             \
1293       __kmp_yield();                                                           \
1294   }
1295 
1296 #define KMP_YIELD_OVERSUB()                                                    \
1297   {                                                                            \
1298     KMP_CPU_PAUSE();                                                           \
1299     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1300       __kmp_yield();                                                           \
1301   }
1302 
1303 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1304 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1305 #define KMP_YIELD_SPIN(count)                                                  \
1306   {                                                                            \
1307     KMP_CPU_PAUSE();                                                           \
1308     if (KMP_TRY_YIELD) {                                                       \
1309       (count) -= 2;                                                            \
1310       if (!(count)) {                                                          \
1311         __kmp_yield();                                                         \
1312         (count) = __kmp_yield_next;                                            \
1313       }                                                                        \
1314     }                                                                          \
1315   }
1316 
1317 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count)                                     \
1318   {                                                                            \
1319     KMP_CPU_PAUSE();                                                           \
1320     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1321       __kmp_yield();                                                           \
1322     else if (__kmp_use_yield == 1) {                                           \
1323       (count) -= 2;                                                            \
1324       if (!(count)) {                                                          \
1325         __kmp_yield();                                                         \
1326         (count) = __kmp_yield_next;                                            \
1327       }                                                                        \
1328     }                                                                          \
1329   }
1330 
1331 // User-level Monitor/Mwait
1332 #if KMP_HAVE_UMWAIT
1333 // We always try for UMWAIT first
1334 #if KMP_HAVE_WAITPKG_INTRINSICS
1335 #if KMP_HAVE_IMMINTRIN_H
1336 #include <immintrin.h>
1337 #elif KMP_HAVE_INTRIN_H
1338 #include <intrin.h>
1339 #endif
1340 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1341 KMP_ATTRIBUTE_TARGET_WAITPKG
1342 static inline int
1343 __kmp_tpause(uint32_t hint, uint64_t counter) {
1344 #if !KMP_HAVE_WAITPKG_INTRINSICS
1345   uint32_t timeHi = uint32_t(counter >> 32);
1346   uint32_t timeLo = uint32_t(counter & 0xffffffff);
1347   char flag;
1348   __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1349                    "setb   %0"
1350                    : "=r"(flag)
1351                    : "a"(timeLo), "d"(timeHi), "c"(hint)
1352                    :);
1353   return flag;
1354 #else
1355   return _tpause(hint, counter);
1356 #endif
1357 }
1358 KMP_ATTRIBUTE_TARGET_WAITPKG
1359 static inline void
1360 __kmp_umonitor(void *cacheline) {
1361 #if !KMP_HAVE_WAITPKG_INTRINSICS
1362   __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1363                    :
1364                    : "a"(cacheline)
1365                    :);
1366 #else
1367   _umonitor(cacheline);
1368 #endif
1369 }
1370 KMP_ATTRIBUTE_TARGET_WAITPKG
1371 static inline int
1372 __kmp_umwait(uint32_t hint, uint64_t counter) {
1373 #if !KMP_HAVE_WAITPKG_INTRINSICS
1374   uint32_t timeHi = uint32_t(counter >> 32);
1375   uint32_t timeLo = uint32_t(counter & 0xffffffff);
1376   char flag;
1377   __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1378                    "setb   %0"
1379                    : "=r"(flag)
1380                    : "a"(timeLo), "d"(timeHi), "c"(hint)
1381                    :);
1382   return flag;
1383 #else
1384   return _umwait(hint, counter);
1385 #endif
1386 }
1387 #elif KMP_HAVE_MWAIT
1388 #if KMP_OS_UNIX
1389 #include <pmmintrin.h>
1390 #else
1391 #include <intrin.h>
1392 #endif
1393 #if KMP_OS_UNIX
1394 __attribute__((target("sse3")))
1395 #endif
1396 static inline void
1397 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1398   _mm_monitor(cacheline, extensions, hints);
1399 }
1400 #if KMP_OS_UNIX
1401 __attribute__((target("sse3")))
1402 #endif
1403 static inline void
1404 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1405   _mm_mwait(extensions, hints);
1406 }
1407 #endif // KMP_HAVE_UMWAIT
1408 
1409 /* ------------------------------------------------------------------------ */
1410 /* Support datatypes for the orphaned construct nesting checks.             */
1411 /* ------------------------------------------------------------------------ */
1412 
1413 enum cons_type {
1414   ct_none,
1415   ct_parallel,
1416   ct_pdo,
1417   ct_pdo_ordered,
1418   ct_psections,
1419   ct_psingle,
1420   ct_critical,
1421   ct_ordered_in_parallel,
1422   ct_ordered_in_pdo,
1423   ct_master,
1424   ct_reduce,
1425   ct_barrier
1426 };
1427 
1428 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1429 
1430 struct cons_data {
1431   ident_t const *ident;
1432   enum cons_type type;
1433   int prev;
1434   kmp_user_lock_p
1435       name; /* address exclusively for critical section name comparison */
1436 };
1437 
1438 struct cons_header {
1439   int p_top, w_top, s_top;
1440   int stack_size, stack_top;
1441   struct cons_data *stack_data;
1442 };
1443 
1444 struct kmp_region_info {
1445   char *text;
1446   int offset[KMP_MAX_FIELDS];
1447   int length[KMP_MAX_FIELDS];
1448 };
1449 
1450 /* ---------------------------------------------------------------------- */
1451 /* ---------------------------------------------------------------------- */
1452 
1453 #if KMP_OS_WINDOWS
1454 typedef HANDLE kmp_thread_t;
1455 typedef DWORD kmp_key_t;
1456 #endif /* KMP_OS_WINDOWS */
1457 
1458 #if KMP_OS_UNIX
1459 typedef pthread_t kmp_thread_t;
1460 typedef pthread_key_t kmp_key_t;
1461 #endif
1462 
1463 extern kmp_key_t __kmp_gtid_threadprivate_key;
1464 
1465 typedef struct kmp_sys_info {
1466   long maxrss; /* the maximum resident set size utilized (in kilobytes)     */
1467   long minflt; /* the number of page faults serviced without any I/O        */
1468   long majflt; /* the number of page faults serviced that required I/O      */
1469   long nswap; /* the number of times a process was "swapped" out of memory */
1470   long inblock; /* the number of times the file system had to perform input  */
1471   long oublock; /* the number of times the file system had to perform output */
1472   long nvcsw; /* the number of times a context switch was voluntarily      */
1473   long nivcsw; /* the number of times a context switch was forced           */
1474 } kmp_sys_info_t;
1475 
1476 #if USE_ITT_BUILD
1477 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1478 // required type here. Later we will check the type meets requirements.
1479 typedef int kmp_itt_mark_t;
1480 #define KMP_ITT_DEBUG 0
1481 #endif /* USE_ITT_BUILD */
1482 
1483 typedef kmp_int32 kmp_critical_name[8];
1484 
1485 /*!
1486 @ingroup PARALLEL
1487 The type for a microtask which gets passed to @ref __kmpc_fork_call().
1488 The arguments to the outlined function are
1489 @param global_tid the global thread identity of the thread executing the
1490 function.
1491 @param bound_tid  the local identity of the thread executing the function
1492 @param ... pointers to shared variables accessed by the function.
1493 */
1494 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1495 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1496                                  ...);
1497 
1498 /*!
1499 @ingroup THREADPRIVATE
1500 @{
1501 */
1502 /* ---------------------------------------------------------------------------
1503  */
1504 /* Threadprivate initialization/finalization function declarations */
1505 
1506 /*  for non-array objects:  __kmpc_threadprivate_register()  */
1507 
1508 /*!
1509  Pointer to the constructor function.
1510  The first argument is the <tt>this</tt> pointer
1511 */
1512 typedef void *(*kmpc_ctor)(void *);
1513 
1514 /*!
1515  Pointer to the destructor function.
1516  The first argument is the <tt>this</tt> pointer
1517 */
1518 typedef void (*kmpc_dtor)(
1519     void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1520                               compiler */
1521 /*!
1522  Pointer to an alternate constructor.
1523  The first argument is the <tt>this</tt> pointer.
1524 */
1525 typedef void *(*kmpc_cctor)(void *, void *);
1526 
1527 /* for array objects: __kmpc_threadprivate_register_vec() */
1528 /* First arg: "this" pointer */
1529 /* Last arg: number of array elements */
1530 /*!
1531  Array constructor.
1532  First argument is the <tt>this</tt> pointer
1533  Second argument the number of array elements.
1534 */
1535 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1536 /*!
1537  Pointer to the array destructor function.
1538  The first argument is the <tt>this</tt> pointer
1539  Second argument the number of array elements.
1540 */
1541 typedef void (*kmpc_dtor_vec)(void *, size_t);
1542 /*!
1543  Array constructor.
1544  First argument is the <tt>this</tt> pointer
1545  Third argument the number of array elements.
1546 */
1547 typedef void *(*kmpc_cctor_vec)(void *, void *,
1548                                 size_t); /* function unused by compiler */
1549 
1550 /*!
1551 @}
1552 */
1553 
1554 /* keeps tracked of threadprivate cache allocations for cleanup later */
1555 typedef struct kmp_cached_addr {
1556   void **addr; /* address of allocated cache */
1557   void ***compiler_cache; /* pointer to compiler's cache */
1558   void *data; /* pointer to global data */
1559   struct kmp_cached_addr *next; /* pointer to next cached address */
1560 } kmp_cached_addr_t;
1561 
1562 struct private_data {
1563   struct private_data *next; /* The next descriptor in the list      */
1564   void *data; /* The data buffer for this descriptor  */
1565   int more; /* The repeat count for this descriptor */
1566   size_t size; /* The data size for this descriptor    */
1567 };
1568 
1569 struct private_common {
1570   struct private_common *next;
1571   struct private_common *link;
1572   void *gbl_addr;
1573   void *par_addr; /* par_addr == gbl_addr for MASTER thread */
1574   size_t cmn_size;
1575 };
1576 
1577 struct shared_common {
1578   struct shared_common *next;
1579   struct private_data *pod_init;
1580   void *obj_init;
1581   void *gbl_addr;
1582   union {
1583     kmpc_ctor ctor;
1584     kmpc_ctor_vec ctorv;
1585   } ct;
1586   union {
1587     kmpc_cctor cctor;
1588     kmpc_cctor_vec cctorv;
1589   } cct;
1590   union {
1591     kmpc_dtor dtor;
1592     kmpc_dtor_vec dtorv;
1593   } dt;
1594   size_t vec_len;
1595   int is_vec;
1596   size_t cmn_size;
1597 };
1598 
1599 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1600 #define KMP_HASH_TABLE_SIZE                                                    \
1601   (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1602 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1603 #define KMP_HASH(x)                                                            \
1604   ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1605 
1606 struct common_table {
1607   struct private_common *data[KMP_HASH_TABLE_SIZE];
1608 };
1609 
1610 struct shared_table {
1611   struct shared_common *data[KMP_HASH_TABLE_SIZE];
1612 };
1613 
1614 /* ------------------------------------------------------------------------ */
1615 
1616 #if KMP_USE_HIER_SCHED
1617 // Shared barrier data that exists inside a single unit of the scheduling
1618 // hierarchy
1619 typedef struct kmp_hier_private_bdata_t {
1620   kmp_int32 num_active;
1621   kmp_uint64 index;
1622   kmp_uint64 wait_val[2];
1623 } kmp_hier_private_bdata_t;
1624 #endif
1625 
1626 typedef struct kmp_sched_flags {
1627   unsigned ordered : 1;
1628   unsigned nomerge : 1;
1629   unsigned contains_last : 1;
1630 #if KMP_USE_HIER_SCHED
1631   unsigned use_hier : 1;
1632   unsigned unused : 28;
1633 #else
1634   unsigned unused : 29;
1635 #endif
1636 } kmp_sched_flags_t;
1637 
1638 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1639 
1640 #if KMP_STATIC_STEAL_ENABLED
1641 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1642   kmp_int32 count;
1643   kmp_int32 ub;
1644   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1645   kmp_int32 lb;
1646   kmp_int32 st;
1647   kmp_int32 tc;
1648   kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put
1649                                      after ub */
1650   kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1651   // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
1652   //    a) parm3 is properly aligned and
1653   //    b) all parm1-4 are in the same cache line.
1654   // Because of parm1-4 are used together, performance seems to be better
1655   // if they are in the same line (not measured though).
1656 
1657   struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1658     kmp_int32 parm1; //     structures in kmp_dispatch.cpp. This should
1659     kmp_int32 parm2; //     make no real change at least while padding is off.
1660     kmp_int32 parm3;
1661     kmp_int32 parm4;
1662   };
1663 
1664   kmp_uint32 ordered_lower;
1665   kmp_uint32 ordered_upper;
1666 #if KMP_OS_WINDOWS
1667   // This var can be placed in the hole between 'tc' and 'parm1', instead of
1668   // 'static_steal_counter'. It would be nice to measure execution times.
1669   // Conditional if/endif can be removed at all.
1670   kmp_int32 last_upper;
1671 #endif /* KMP_OS_WINDOWS */
1672 } dispatch_private_info32_t;
1673 
1674 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1675   kmp_int64 count; // current chunk number for static & static-steal scheduling
1676   kmp_int64 ub; /* upper-bound */
1677   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1678   kmp_int64 lb; /* lower-bound */
1679   kmp_int64 st; /* stride */
1680   kmp_int64 tc; /* trip count (number of iterations) */
1681   kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put
1682                                      after ub */
1683   kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1684   /* parm[1-4] are used in different ways by different scheduling algorithms */
1685 
1686   // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1687   //    a) parm3 is properly aligned and
1688   //    b) all parm1-4 are in the same cache line.
1689   // Because of parm1-4 are used together, performance seems to be better
1690   // if they are in the same line (not measured though).
1691 
1692   struct KMP_ALIGN(32) {
1693     kmp_int64 parm1;
1694     kmp_int64 parm2;
1695     kmp_int64 parm3;
1696     kmp_int64 parm4;
1697   };
1698 
1699   kmp_uint64 ordered_lower;
1700   kmp_uint64 ordered_upper;
1701 #if KMP_OS_WINDOWS
1702   // This var can be placed in the hole between 'tc' and 'parm1', instead of
1703   // 'static_steal_counter'. It would be nice to measure execution times.
1704   // Conditional if/endif can be removed at all.
1705   kmp_int64 last_upper;
1706 #endif /* KMP_OS_WINDOWS */
1707 } dispatch_private_info64_t;
1708 #else /* KMP_STATIC_STEAL_ENABLED */
1709 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1710   kmp_int32 lb;
1711   kmp_int32 ub;
1712   kmp_int32 st;
1713   kmp_int32 tc;
1714 
1715   kmp_int32 parm1;
1716   kmp_int32 parm2;
1717   kmp_int32 parm3;
1718   kmp_int32 parm4;
1719 
1720   kmp_int32 count;
1721 
1722   kmp_uint32 ordered_lower;
1723   kmp_uint32 ordered_upper;
1724 #if KMP_OS_WINDOWS
1725   kmp_int32 last_upper;
1726 #endif /* KMP_OS_WINDOWS */
1727 } dispatch_private_info32_t;
1728 
1729 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1730   kmp_int64 lb; /* lower-bound */
1731   kmp_int64 ub; /* upper-bound */
1732   kmp_int64 st; /* stride */
1733   kmp_int64 tc; /* trip count (number of iterations) */
1734 
1735   /* parm[1-4] are used in different ways by different scheduling algorithms */
1736   kmp_int64 parm1;
1737   kmp_int64 parm2;
1738   kmp_int64 parm3;
1739   kmp_int64 parm4;
1740 
1741   kmp_int64 count; /* current chunk number for static scheduling */
1742 
1743   kmp_uint64 ordered_lower;
1744   kmp_uint64 ordered_upper;
1745 #if KMP_OS_WINDOWS
1746   kmp_int64 last_upper;
1747 #endif /* KMP_OS_WINDOWS */
1748 } dispatch_private_info64_t;
1749 #endif /* KMP_STATIC_STEAL_ENABLED */
1750 
1751 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1752   union private_info {
1753     dispatch_private_info32_t p32;
1754     dispatch_private_info64_t p64;
1755   } u;
1756   enum sched_type schedule; /* scheduling algorithm */
1757   kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1758   kmp_int32 ordered_bumped;
1759   // To retain the structure size after making ordered_iteration scalar
1760   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
1761   // Stack of buffers for nest of serial regions
1762   struct dispatch_private_info *next;
1763   kmp_int32 type_size; /* the size of types in private_info */
1764 #if KMP_USE_HIER_SCHED
1765   kmp_int32 hier_id;
1766   void *parent; /* hierarchical scheduling parent pointer */
1767 #endif
1768   enum cons_type pushed_ws;
1769 } dispatch_private_info_t;
1770 
1771 typedef struct dispatch_shared_info32 {
1772   /* chunk index under dynamic, number of idle threads under static-steal;
1773      iteration index otherwise */
1774   volatile kmp_uint32 iteration;
1775   volatile kmp_uint32 num_done;
1776   volatile kmp_uint32 ordered_iteration;
1777   // Dummy to retain the structure size after making ordered_iteration scalar
1778   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1779 } dispatch_shared_info32_t;
1780 
1781 typedef struct dispatch_shared_info64 {
1782   /* chunk index under dynamic, number of idle threads under static-steal;
1783      iteration index otherwise */
1784   volatile kmp_uint64 iteration;
1785   volatile kmp_uint64 num_done;
1786   volatile kmp_uint64 ordered_iteration;
1787   // Dummy to retain the structure size after making ordered_iteration scalar
1788   kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1789 } dispatch_shared_info64_t;
1790 
1791 typedef struct dispatch_shared_info {
1792   union shared_info {
1793     dispatch_shared_info32_t s32;
1794     dispatch_shared_info64_t s64;
1795   } u;
1796   volatile kmp_uint32 buffer_index;
1797   volatile kmp_int32 doacross_buf_idx; // teamwise index
1798   volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1799   kmp_int32 doacross_num_done; // count finished threads
1800 #if KMP_USE_HIER_SCHED
1801   void *hier;
1802 #endif
1803 #if KMP_USE_HWLOC
1804   // When linking with libhwloc, the ORDERED EPCC test slows down on big
1805   // machines (> 48 cores). Performance analysis showed that a cache thrash
1806   // was occurring and this padding helps alleviate the problem.
1807   char padding[64];
1808 #endif
1809 } dispatch_shared_info_t;
1810 
1811 typedef struct kmp_disp {
1812   /* Vector for ORDERED SECTION */
1813   void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1814   /* Vector for END ORDERED SECTION */
1815   void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1816 
1817   dispatch_shared_info_t *th_dispatch_sh_current;
1818   dispatch_private_info_t *th_dispatch_pr_current;
1819 
1820   dispatch_private_info_t *th_disp_buffer;
1821   kmp_int32 th_disp_index;
1822   kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1823   volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1824   kmp_int64 *th_doacross_info; // info on loop bounds
1825 #if KMP_USE_INTERNODE_ALIGNMENT
1826   char more_padding[INTERNODE_CACHE_LINE];
1827 #endif
1828 } kmp_disp_t;
1829 
1830 /* ------------------------------------------------------------------------ */
1831 /* Barrier stuff */
1832 
1833 /* constants for barrier state update */
1834 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1835 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1836 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1837 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1838 
1839 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1840 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1841 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1842 
1843 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1844 #error "Barrier sleep bit must be smaller than barrier bump bit"
1845 #endif
1846 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1847 #error "Barrier unused bit must be smaller than barrier bump bit"
1848 #endif
1849 
1850 // Constants for release barrier wait state: currently, hierarchical only
1851 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1852 #define KMP_BARRIER_OWN_FLAG                                                   \
1853   1 // Normal state; worker waiting on own b_go flag in release
1854 #define KMP_BARRIER_PARENT_FLAG                                                \
1855   2 // Special state; worker waiting on parent's b_go flag in release
1856 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG                                         \
1857   3 // Special state; tells worker to shift from parent to own b_go
1858 #define KMP_BARRIER_SWITCHING                                                  \
1859   4 // Special state; worker resets appropriate flag on wake-up
1860 
1861 #define KMP_NOT_SAFE_TO_REAP                                                   \
1862   0 // Thread th_reap_state: not safe to reap (tasking)
1863 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1864 
1865 enum barrier_type {
1866   bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1867                            barriers if enabled) */
1868   bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1869 #if KMP_FAST_REDUCTION_BARRIER
1870   bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1871 #endif // KMP_FAST_REDUCTION_BARRIER
1872   bs_last_barrier /* Just a placeholder to mark the end */
1873 };
1874 
1875 // to work with reduction barriers just like with plain barriers
1876 #if !KMP_FAST_REDUCTION_BARRIER
1877 #define bs_reduction_barrier bs_plain_barrier
1878 #endif // KMP_FAST_REDUCTION_BARRIER
1879 
1880 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1881                            bp_linear_bar =
1882                                0, /* Single level (degenerate) tree */
1883                            bp_tree_bar =
1884                                1, /* Balanced tree with branching factor 2^n */
1885                            bp_hyper_bar =
1886                                2, /* Hypercube-embedded tree with min branching
1887                                      factor 2^n */
1888                            bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1889                            bp_last_bar /* Placeholder to mark the end */
1890 } kmp_bar_pat_e;
1891 
1892 #define KMP_BARRIER_ICV_PUSH 1
1893 
1894 /* Record for holding the values of the internal controls stack records */
1895 typedef struct kmp_internal_control {
1896   int serial_nesting_level; /* corresponds to the value of the
1897                                th_team_serialized field */
1898   kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1899                        thread) */
1900   kmp_int8
1901       bt_set; /* internal control for whether blocktime is explicitly set */
1902   int blocktime; /* internal control for blocktime */
1903 #if KMP_USE_MONITOR
1904   int bt_intervals; /* internal control for blocktime intervals */
1905 #endif
1906   int nproc; /* internal control for #threads for next parallel region (per
1907                 thread) */
1908   int thread_limit; /* internal control for thread-limit-var */
1909   int max_active_levels; /* internal control for max_active_levels */
1910   kmp_r_sched_t
1911       sched; /* internal control for runtime schedule {sched,chunk} pair */
1912   kmp_proc_bind_t proc_bind; /* internal control for affinity  */
1913   kmp_int32 default_device; /* internal control for default device */
1914   struct kmp_internal_control *next;
1915 } kmp_internal_control_t;
1916 
1917 static inline void copy_icvs(kmp_internal_control_t *dst,
1918                              kmp_internal_control_t *src) {
1919   *dst = *src;
1920 }
1921 
1922 /* Thread barrier needs volatile barrier fields */
1923 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1924   // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1925   // uses of it). It is not explicitly aligned below, because we *don't* want
1926   // it to be padded -- instead, we fit b_go into the same cache line with
1927   // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1928   kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1929   // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1930   // same NGO store
1931   volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1932   KMP_ALIGN_CACHE volatile kmp_uint64
1933       b_arrived; // STATE => task reached synch point.
1934   kmp_uint32 *skip_per_level;
1935   kmp_uint32 my_level;
1936   kmp_int32 parent_tid;
1937   kmp_int32 old_tid;
1938   kmp_uint32 depth;
1939   struct kmp_bstate *parent_bar;
1940   kmp_team_t *team;
1941   kmp_uint64 leaf_state;
1942   kmp_uint32 nproc;
1943   kmp_uint8 base_leaf_kids;
1944   kmp_uint8 leaf_kids;
1945   kmp_uint8 offset;
1946   kmp_uint8 wait_flag;
1947   kmp_uint8 use_oncore_barrier;
1948 #if USE_DEBUGGER
1949   // The following field is intended for the debugger solely. Only the worker
1950   // thread itself accesses this field: the worker increases it by 1 when it
1951   // arrives to a barrier.
1952   KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1953 #endif /* USE_DEBUGGER */
1954 } kmp_bstate_t;
1955 
1956 union KMP_ALIGN_CACHE kmp_barrier_union {
1957   double b_align; /* use worst case alignment */
1958   char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1959   kmp_bstate_t bb;
1960 };
1961 
1962 typedef union kmp_barrier_union kmp_balign_t;
1963 
1964 /* Team barrier needs only non-volatile arrived counter */
1965 union KMP_ALIGN_CACHE kmp_barrier_team_union {
1966   double b_align; /* use worst case alignment */
1967   char b_pad[CACHE_LINE];
1968   struct {
1969     kmp_uint64 b_arrived; /* STATE => task reached synch point. */
1970 #if USE_DEBUGGER
1971     // The following two fields are indended for the debugger solely. Only
1972     // master of the team accesses these fields: the first one is increased by
1973     // 1 when master arrives to a barrier, the second one is increased by one
1974     // when all the threads arrived.
1975     kmp_uint b_master_arrived;
1976     kmp_uint b_team_arrived;
1977 #endif
1978   };
1979 };
1980 
1981 typedef union kmp_barrier_team_union kmp_balign_team_t;
1982 
1983 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
1984    threads when a condition changes.  This is to workaround an NPTL bug where
1985    padding was added to pthread_cond_t which caused the initialization routine
1986    to write outside of the structure if compiled on pre-NPTL threads.  */
1987 #if KMP_OS_WINDOWS
1988 typedef struct kmp_win32_mutex {
1989   /* The Lock */
1990   CRITICAL_SECTION cs;
1991 } kmp_win32_mutex_t;
1992 
1993 typedef struct kmp_win32_cond {
1994   /* Count of the number of waiters. */
1995   int waiters_count_;
1996 
1997   /* Serialize access to <waiters_count_> */
1998   kmp_win32_mutex_t waiters_count_lock_;
1999 
2000   /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2001   int release_count_;
2002 
2003   /* Keeps track of the current "generation" so that we don't allow */
2004   /* one thread to steal all the "releases" from the broadcast. */
2005   int wait_generation_count_;
2006 
2007   /* A manual-reset event that's used to block and release waiting threads. */
2008   HANDLE event_;
2009 } kmp_win32_cond_t;
2010 #endif
2011 
2012 #if KMP_OS_UNIX
2013 
2014 union KMP_ALIGN_CACHE kmp_cond_union {
2015   double c_align;
2016   char c_pad[CACHE_LINE];
2017   pthread_cond_t c_cond;
2018 };
2019 
2020 typedef union kmp_cond_union kmp_cond_align_t;
2021 
2022 union KMP_ALIGN_CACHE kmp_mutex_union {
2023   double m_align;
2024   char m_pad[CACHE_LINE];
2025   pthread_mutex_t m_mutex;
2026 };
2027 
2028 typedef union kmp_mutex_union kmp_mutex_align_t;
2029 
2030 #endif /* KMP_OS_UNIX */
2031 
2032 typedef struct kmp_desc_base {
2033   void *ds_stackbase;
2034   size_t ds_stacksize;
2035   int ds_stackgrow;
2036   kmp_thread_t ds_thread;
2037   volatile int ds_tid;
2038   int ds_gtid;
2039 #if KMP_OS_WINDOWS
2040   volatile int ds_alive;
2041   DWORD ds_thread_id;
2042 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2043    However, debugger support (libomp_db) cannot work with handles, because they
2044    uncomparable. For example, debugger requests info about thread with handle h.
2045    h is valid within debugger process, and meaningless within debugee process.
2046    Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2047    within debugee process, but it is a *new* handle which does *not* equal to
2048    any other handle in debugee... The only way to compare handles is convert
2049    them to system-wide ids. GetThreadId() function is available only in
2050    Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2051    on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2052    thread id by call to GetCurrentThreadId() from within the thread and save it
2053    to let libomp_db identify threads.  */
2054 #endif /* KMP_OS_WINDOWS */
2055 } kmp_desc_base_t;
2056 
2057 typedef union KMP_ALIGN_CACHE kmp_desc {
2058   double ds_align; /* use worst case alignment */
2059   char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2060   kmp_desc_base_t ds;
2061 } kmp_desc_t;
2062 
2063 typedef struct kmp_local {
2064   volatile int this_construct; /* count of single's encountered by thread */
2065   void *reduce_data;
2066 #if KMP_USE_BGET
2067   void *bget_data;
2068   void *bget_list;
2069 #if !USE_CMP_XCHG_FOR_BGET
2070 #ifdef USE_QUEUING_LOCK_FOR_BGET
2071   kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2072 #else
2073   kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2074 // bootstrap lock so we can use it at library
2075 // shutdown.
2076 #endif /* USE_LOCK_FOR_BGET */
2077 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2078 #endif /* KMP_USE_BGET */
2079 
2080   PACKED_REDUCTION_METHOD_T
2081   packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2082                               __kmpc_end_reduce*() */
2083 
2084 } kmp_local_t;
2085 
2086 #define KMP_CHECK_UPDATE(a, b)                                                 \
2087   if ((a) != (b))                                                              \
2088   (a) = (b)
2089 #define KMP_CHECK_UPDATE_SYNC(a, b)                                            \
2090   if ((a) != (b))                                                              \
2091   TCW_SYNC_PTR((a), (b))
2092 
2093 #define get__blocktime(xteam, xtid)                                            \
2094   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2095 #define get__bt_set(xteam, xtid)                                               \
2096   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2097 #if KMP_USE_MONITOR
2098 #define get__bt_intervals(xteam, xtid)                                         \
2099   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2100 #endif
2101 
2102 #define get__dynamic_2(xteam, xtid)                                            \
2103   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2104 #define get__nproc_2(xteam, xtid)                                              \
2105   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2106 #define get__sched_2(xteam, xtid)                                              \
2107   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2108 
2109 #define set__blocktime_team(xteam, xtid, xval)                                 \
2110   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) =     \
2111        (xval))
2112 
2113 #if KMP_USE_MONITOR
2114 #define set__bt_intervals_team(xteam, xtid, xval)                              \
2115   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) =  \
2116        (xval))
2117 #endif
2118 
2119 #define set__bt_set_team(xteam, xtid, xval)                                    \
2120   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2121 
2122 #define set__dynamic(xthread, xval)                                            \
2123   (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2124 #define get__dynamic(xthread)                                                  \
2125   (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2126 
2127 #define set__nproc(xthread, xval)                                              \
2128   (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2129 
2130 #define set__thread_limit(xthread, xval)                                       \
2131   (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2132 
2133 #define set__max_active_levels(xthread, xval)                                  \
2134   (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2135 
2136 #define get__max_active_levels(xthread)                                        \
2137   ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2138 
2139 #define set__sched(xthread, xval)                                              \
2140   (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2141 
2142 #define set__proc_bind(xthread, xval)                                          \
2143   (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2144 #define get__proc_bind(xthread)                                                \
2145   ((xthread)->th.th_current_task->td_icvs.proc_bind)
2146 
2147 // OpenMP tasking data structures
2148 
2149 typedef enum kmp_tasking_mode {
2150   tskm_immediate_exec = 0,
2151   tskm_extra_barrier = 1,
2152   tskm_task_teams = 2,
2153   tskm_max = 2
2154 } kmp_tasking_mode_t;
2155 
2156 extern kmp_tasking_mode_t
2157     __kmp_tasking_mode; /* determines how/when to execute tasks */
2158 extern int __kmp_task_stealing_constraint;
2159 extern int __kmp_enable_task_throttling;
2160 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2161 // specified, defaults to 0 otherwise
2162 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2163 extern kmp_int32 __kmp_max_task_priority;
2164 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2165 extern kmp_uint64 __kmp_taskloop_min_tasks;
2166 
2167 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2168    taskdata first */
2169 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2170 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2171 
2172 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2173 // were spawned and queued since the previous barrier release.
2174 #define KMP_TASKING_ENABLED(task_team)                                         \
2175   (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2176 /*!
2177 @ingroup BASIC_TYPES
2178 @{
2179 */
2180 
2181 /*!
2182  */
2183 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2184 
2185 typedef union kmp_cmplrdata {
2186   kmp_int32 priority; /**< priority specified by user for the task */
2187   kmp_routine_entry_t
2188       destructors; /* pointer to function to invoke deconstructors of
2189                       firstprivate C++ objects */
2190   /* future data */
2191 } kmp_cmplrdata_t;
2192 
2193 /*  sizeof_kmp_task_t passed as arg to kmpc_omp_task call  */
2194 /*!
2195  */
2196 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2197   void *shareds; /**< pointer to block of pointers to shared vars   */
2198   kmp_routine_entry_t
2199       routine; /**< pointer to routine to call for executing task */
2200   kmp_int32 part_id; /**< part id for the task                          */
2201   kmp_cmplrdata_t
2202       data1; /* Two known optional additions: destructors and priority */
2203   kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2204   /* future data */
2205   /*  private vars  */
2206 } kmp_task_t;
2207 
2208 /*!
2209 @}
2210 */
2211 
2212 typedef struct kmp_taskgroup {
2213   std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2214   std::atomic<kmp_int32>
2215       cancel_request; // request for cancellation of this taskgroup
2216   struct kmp_taskgroup *parent; // parent taskgroup
2217   // Block of data to perform task reduction
2218   void *reduce_data; // reduction related info
2219   kmp_int32 reduce_num_data; // number of data items to reduce
2220 } kmp_taskgroup_t;
2221 
2222 // forward declarations
2223 typedef union kmp_depnode kmp_depnode_t;
2224 typedef struct kmp_depnode_list kmp_depnode_list_t;
2225 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2226 
2227 // Compiler sends us this info:
2228 typedef struct kmp_depend_info {
2229   kmp_intptr_t base_addr;
2230   size_t len;
2231   struct {
2232     bool in : 1;
2233     bool out : 1;
2234     bool mtx : 1;
2235   } flags;
2236 } kmp_depend_info_t;
2237 
2238 // Internal structures to work with task dependencies:
2239 struct kmp_depnode_list {
2240   kmp_depnode_t *node;
2241   kmp_depnode_list_t *next;
2242 };
2243 
2244 // Max number of mutexinoutset dependencies per node
2245 #define MAX_MTX_DEPS 4
2246 
2247 typedef struct kmp_base_depnode {
2248   kmp_depnode_list_t *successors; /* used under lock */
2249   kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2250   kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2251   kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2252   kmp_lock_t lock; /* guards shared fields: task, successors */
2253 #if KMP_SUPPORT_GRAPH_OUTPUT
2254   kmp_uint32 id;
2255 #endif
2256   std::atomic<kmp_int32> npredecessors;
2257   std::atomic<kmp_int32> nrefs;
2258 } kmp_base_depnode_t;
2259 
2260 union KMP_ALIGN_CACHE kmp_depnode {
2261   double dn_align; /* use worst case alignment */
2262   char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2263   kmp_base_depnode_t dn;
2264 };
2265 
2266 struct kmp_dephash_entry {
2267   kmp_intptr_t addr;
2268   kmp_depnode_t *last_out;
2269   kmp_depnode_list_t *last_ins;
2270   kmp_depnode_list_t *last_mtxs;
2271   kmp_int32 last_flag;
2272   kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2273   kmp_dephash_entry_t *next_in_bucket;
2274 };
2275 
2276 typedef struct kmp_dephash {
2277   kmp_dephash_entry_t **buckets;
2278   size_t size;
2279   size_t generation;
2280   kmp_uint32 nelements;
2281   kmp_uint32 nconflicts;
2282 } kmp_dephash_t;
2283 
2284 typedef struct kmp_task_affinity_info {
2285   kmp_intptr_t base_addr;
2286   size_t len;
2287   struct {
2288     bool flag1 : 1;
2289     bool flag2 : 1;
2290     kmp_int32 reserved : 30;
2291   } flags;
2292 } kmp_task_affinity_info_t;
2293 
2294 typedef enum kmp_event_type_t {
2295   KMP_EVENT_UNINITIALIZED = 0,
2296   KMP_EVENT_ALLOW_COMPLETION = 1
2297 } kmp_event_type_t;
2298 
2299 typedef struct {
2300   kmp_event_type_t type;
2301   kmp_tas_lock_t lock;
2302   union {
2303     kmp_task_t *task;
2304   } ed;
2305 } kmp_event_t;
2306 
2307 #ifdef BUILD_TIED_TASK_STACK
2308 
2309 /* Tied Task stack definitions */
2310 typedef struct kmp_stack_block {
2311   kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2312   struct kmp_stack_block *sb_next;
2313   struct kmp_stack_block *sb_prev;
2314 } kmp_stack_block_t;
2315 
2316 typedef struct kmp_task_stack {
2317   kmp_stack_block_t ts_first_block; // first block of stack entries
2318   kmp_taskdata_t **ts_top; // pointer to the top of stack
2319   kmp_int32 ts_entries; // number of entries on the stack
2320 } kmp_task_stack_t;
2321 
2322 #endif // BUILD_TIED_TASK_STACK
2323 
2324 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2325   /* Compiler flags */ /* Total compiler flags must be 16 bits */
2326   unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2327   unsigned final : 1; /* task is final(1) so execute immediately */
2328   unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2329                               code path */
2330   unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2331                                      invoke destructors from the runtime */
2332   unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2333                          context of the RTL) */
2334   unsigned priority_specified : 1; /* set if the compiler provides priority
2335                                       setting for the task */
2336   unsigned detachable : 1; /* 1 == can detach */
2337   unsigned hidden_helper : 1; /* 1 == hidden helper task */
2338   unsigned reserved : 8; /* reserved for compiler use */
2339 
2340   /* Library flags */ /* Total library flags must be 16 bits */
2341   unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2342   unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2343   unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2344   // (1) or may be deferred (0)
2345   unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2346   // (0) [>= 2 threads]
2347   /* If either team_serial or tasking_ser is set, task team may be NULL */
2348   /* Task State Flags: */
2349   unsigned started : 1; /* 1==started, 0==not started     */
2350   unsigned executing : 1; /* 1==executing, 0==not executing */
2351   unsigned complete : 1; /* 1==complete, 0==not complete   */
2352   unsigned freed : 1; /* 1==freed, 0==allocated        */
2353   unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2354   unsigned reserved31 : 7; /* reserved for library use */
2355 
2356 } kmp_tasking_flags_t;
2357 
2358 struct kmp_taskdata { /* aligned during dynamic allocation       */
2359   kmp_int32 td_task_id; /* id, assigned by debugger                */
2360   kmp_tasking_flags_t td_flags; /* task flags                              */
2361   kmp_team_t *td_team; /* team for this task                      */
2362   kmp_info_p *td_alloc_thread; /* thread that allocated data structures   */
2363   /* Currently not used except for perhaps IDB */
2364   kmp_taskdata_t *td_parent; /* parent task                             */
2365   kmp_int32 td_level; /* task nesting level                      */
2366   std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2367   ident_t *td_ident; /* task identifier                         */
2368   // Taskwait data.
2369   ident_t *td_taskwait_ident;
2370   kmp_uint32 td_taskwait_counter;
2371   kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2372   KMP_ALIGN_CACHE kmp_internal_control_t
2373       td_icvs; /* Internal control variables for the task */
2374   KMP_ALIGN_CACHE std::atomic<kmp_int32>
2375       td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2376                                    deallocated */
2377   std::atomic<kmp_int32>
2378       td_incomplete_child_tasks; /* Child tasks not yet complete */
2379   kmp_taskgroup_t
2380       *td_taskgroup; // Each task keeps pointer to its current taskgroup
2381   kmp_dephash_t
2382       *td_dephash; // Dependencies for children tasks are tracked from here
2383   kmp_depnode_t
2384       *td_depnode; // Pointer to graph node if this task has dependencies
2385   kmp_task_team_t *td_task_team;
2386   // The global thread id of the encountering thread. We need it because when a
2387   // regular task depends on a hidden helper task, and the hidden helper task
2388   // is finished on a hidden helper thread, it will call __kmp_release_deps to
2389   // release all dependences. If now the task is a regular task, we need to pass
2390   // the encountering gtid such that the task will be picked up and executed by
2391   // its encountering team instead of hidden helper team.
2392   kmp_int32 encountering_gtid;
2393   size_t td_size_alloc; // Size of task structure, including shareds etc.
2394 #if defined(KMP_GOMP_COMPAT)
2395   // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2396   kmp_int32 td_size_loop_bounds;
2397 #endif
2398   kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2399 #if defined(KMP_GOMP_COMPAT)
2400   // GOMP sends in a copy function for copy constructors
2401   void (*td_copy_func)(void *, void *);
2402 #endif
2403   kmp_event_t td_allow_completion_event;
2404 #if OMPT_SUPPORT
2405   ompt_task_info_t ompt_task_info;
2406 #endif
2407 }; // struct kmp_taskdata
2408 
2409 // Make sure padding above worked
2410 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2411 
2412 // Data for task team but per thread
2413 typedef struct kmp_base_thread_data {
2414   kmp_info_p *td_thr; // Pointer back to thread info
2415   // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2416   // queued?
2417   kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2418   kmp_taskdata_t *
2419       *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2420   kmp_int32 td_deque_size; // Size of deck
2421   kmp_uint32 td_deque_head; // Head of deque (will wrap)
2422   kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2423   kmp_int32 td_deque_ntasks; // Number of tasks in deque
2424   // GEH: shouldn't this be volatile since used in while-spin?
2425   kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2426 #ifdef BUILD_TIED_TASK_STACK
2427   kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2428 // scheduling constraint
2429 #endif // BUILD_TIED_TASK_STACK
2430 } kmp_base_thread_data_t;
2431 
2432 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2433 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2434 
2435 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2436 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2437 
2438 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2439   kmp_base_thread_data_t td;
2440   double td_align; /* use worst case alignment */
2441   char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2442 } kmp_thread_data_t;
2443 
2444 // Data for task teams which are used when tasking is enabled for the team
2445 typedef struct kmp_base_task_team {
2446   kmp_bootstrap_lock_t
2447       tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2448   /* must be bootstrap lock since used at library shutdown*/
2449   kmp_task_team_t *tt_next; /* For linking the task team free list */
2450   kmp_thread_data_t
2451       *tt_threads_data; /* Array of per-thread structures for task team */
2452   /* Data survives task team deallocation */
2453   kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2454                                executing this team? */
2455   /* TRUE means tt_threads_data is set up and initialized */
2456   kmp_int32 tt_nproc; /* #threads in team           */
2457   kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2458   kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2459   kmp_int32 tt_untied_task_encountered;
2460   // There is hidden helper thread encountered in this task team so that we must
2461   // wait when waiting on task team
2462   kmp_int32 tt_hidden_helper_task_encountered;
2463 
2464   KMP_ALIGN_CACHE
2465   std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2466 
2467   KMP_ALIGN_CACHE
2468   volatile kmp_uint32
2469       tt_active; /* is the team still actively executing tasks */
2470 } kmp_base_task_team_t;
2471 
2472 union KMP_ALIGN_CACHE kmp_task_team {
2473   kmp_base_task_team_t tt;
2474   double tt_align; /* use worst case alignment */
2475   char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2476 };
2477 
2478 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2479 // Free lists keep same-size free memory slots for fast memory allocation
2480 // routines
2481 typedef struct kmp_free_list {
2482   void *th_free_list_self; // Self-allocated tasks free list
2483   void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2484   // threads
2485   void *th_free_list_other; // Non-self free list (to be returned to owner's
2486   // sync list)
2487 } kmp_free_list_t;
2488 #endif
2489 #if KMP_NESTED_HOT_TEAMS
2490 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2491 // are not put in teams pool, and they don't put threads in threads pool.
2492 typedef struct kmp_hot_team_ptr {
2493   kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2494   kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2495 } kmp_hot_team_ptr_t;
2496 #endif
2497 typedef struct kmp_teams_size {
2498   kmp_int32 nteams; // number of teams in a league
2499   kmp_int32 nth; // number of threads in each team of the league
2500 } kmp_teams_size_t;
2501 
2502 // This struct stores a thread that acts as a "root" for a contention
2503 // group. Contention groups are rooted at kmp_root threads, but also at
2504 // each master thread of each team created in the teams construct.
2505 // This struct therefore also stores a thread_limit associated with
2506 // that contention group, and a counter to track the number of threads
2507 // active in that contention group. Each thread has a list of these: CG
2508 // root threads have an entry in their list in which cg_root refers to
2509 // the thread itself, whereas other workers in the CG will have a
2510 // single entry where cg_root is same as the entry containing their CG
2511 // root. When a thread encounters a teams construct, it will add a new
2512 // entry to the front of its list, because it now roots a new CG.
2513 typedef struct kmp_cg_root {
2514   kmp_info_p *cg_root; // "root" thread for a contention group
2515   // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2516   // thread_limit clause for teams masters
2517   kmp_int32 cg_thread_limit;
2518   kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2519   struct kmp_cg_root *up; // pointer to higher level CG root in list
2520 } kmp_cg_root_t;
2521 
2522 // OpenMP thread data structures
2523 
2524 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2525   /* Start with the readonly data which is cache aligned and padded. This is
2526      written before the thread starts working by the master. Uber masters may
2527      update themselves later. Usage does not consider serialized regions.  */
2528   kmp_desc_t th_info;
2529   kmp_team_p *th_team; /* team we belong to */
2530   kmp_root_p *th_root; /* pointer to root of task hierarchy */
2531   kmp_info_p *th_next_pool; /* next available thread in the pool */
2532   kmp_disp_t *th_dispatch; /* thread's dispatch data */
2533   int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2534 
2535   /* The following are cached from the team info structure */
2536   /* TODO use these in more places as determined to be needed via profiling */
2537   int th_team_nproc; /* number of threads in a team */
2538   kmp_info_p *th_team_master; /* the team's master thread */
2539   int th_team_serialized; /* team is serialized */
2540   microtask_t th_teams_microtask; /* save entry address for teams construct */
2541   int th_teams_level; /* save initial level of teams construct */
2542 /* it is 0 on device but may be any on host */
2543 
2544 /* The blocktime info is copied from the team struct to the thread struct */
2545 /* at the start of a barrier, and the values stored in the team are used  */
2546 /* at points in the code where the team struct is no longer guaranteed    */
2547 /* to exist (from the POV of worker threads).                             */
2548 #if KMP_USE_MONITOR
2549   int th_team_bt_intervals;
2550   int th_team_bt_set;
2551 #else
2552   kmp_uint64 th_team_bt_intervals;
2553 #endif
2554 
2555 #if KMP_AFFINITY_SUPPORTED
2556   kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2557 #endif
2558   omp_allocator_handle_t th_def_allocator; /* default allocator */
2559   /* The data set by the master at reinit, then R/W by the worker */
2560   KMP_ALIGN_CACHE int
2561       th_set_nproc; /* if > 0, then only use this request for the next fork */
2562 #if KMP_NESTED_HOT_TEAMS
2563   kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2564 #endif
2565   kmp_proc_bind_t
2566       th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2567   kmp_teams_size_t
2568       th_teams_size; /* number of teams/threads in teams construct */
2569 #if KMP_AFFINITY_SUPPORTED
2570   int th_current_place; /* place currently bound to */
2571   int th_new_place; /* place to bind to in par reg */
2572   int th_first_place; /* first place in partition */
2573   int th_last_place; /* last place in partition */
2574 #endif
2575   int th_prev_level; /* previous level for affinity format */
2576   int th_prev_num_threads; /* previous num_threads for affinity format */
2577 #if USE_ITT_BUILD
2578   kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2579   kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2580   kmp_uint64 th_frame_time; /* frame timestamp */
2581 #endif /* USE_ITT_BUILD */
2582   kmp_local_t th_local;
2583   struct private_common *th_pri_head;
2584 
2585   /* Now the data only used by the worker (after initial allocation) */
2586   /* TODO the first serial team should actually be stored in the info_t
2587      structure.  this will help reduce initial allocation overhead */
2588   KMP_ALIGN_CACHE kmp_team_p
2589       *th_serial_team; /*serialized team held in reserve*/
2590 
2591 #if OMPT_SUPPORT
2592   ompt_thread_info_t ompt_thread_info;
2593 #endif
2594 
2595   /* The following are also read by the master during reinit */
2596   struct common_table *th_pri_common;
2597 
2598   volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2599   /* while awaiting queuing lock acquire */
2600 
2601   volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2602 
2603   ident_t *th_ident;
2604   unsigned th_x; // Random number generator data
2605   unsigned th_a; // Random number generator data
2606 
2607   /* Tasking-related data for the thread */
2608   kmp_task_team_t *th_task_team; // Task team struct
2609   kmp_taskdata_t *th_current_task; // Innermost Task being executed
2610   kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2611   kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2612   // at nested levels
2613   kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2614   kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2615   kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2616   // tasking, thus safe to reap
2617 
2618   /* More stuff for keeping track of active/sleeping threads (this part is
2619      written by the worker thread) */
2620   kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2621   int th_active; // ! sleeping; 32 bits for TCR/TCW
2622   struct cons_header *th_cons; // used for consistency check
2623 #if KMP_USE_HIER_SCHED
2624   // used for hierarchical scheduling
2625   kmp_hier_private_bdata_t *th_hier_bar_data;
2626 #endif
2627 
2628   /* Add the syncronizing data which is cache aligned and padded. */
2629   KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2630 
2631   KMP_ALIGN_CACHE volatile kmp_int32
2632       th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2633 
2634 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2635 #define NUM_LISTS 4
2636   kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2637 // allocation routines
2638 #endif
2639 
2640 #if KMP_OS_WINDOWS
2641   kmp_win32_cond_t th_suspend_cv;
2642   kmp_win32_mutex_t th_suspend_mx;
2643   std::atomic<int> th_suspend_init;
2644 #endif
2645 #if KMP_OS_UNIX
2646   kmp_cond_align_t th_suspend_cv;
2647   kmp_mutex_align_t th_suspend_mx;
2648   std::atomic<int> th_suspend_init_count;
2649 #endif
2650 
2651 #if USE_ITT_BUILD
2652   kmp_itt_mark_t th_itt_mark_single;
2653 // alignment ???
2654 #endif /* USE_ITT_BUILD */
2655 #if KMP_STATS_ENABLED
2656   kmp_stats_list *th_stats;
2657 #endif
2658 #if KMP_OS_UNIX
2659   std::atomic<bool> th_blocking;
2660 #endif
2661   kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2662 } kmp_base_info_t;
2663 
2664 typedef union KMP_ALIGN_CACHE kmp_info {
2665   double th_align; /* use worst case alignment */
2666   char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2667   kmp_base_info_t th;
2668 } kmp_info_t;
2669 
2670 // OpenMP thread team data structures
2671 
2672 typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t;
2673 
2674 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2675   double dt_align; /* use worst case alignment */
2676   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2677   kmp_base_data_t dt;
2678 } kmp_sleep_team_t;
2679 
2680 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2681   double dt_align; /* use worst case alignment */
2682   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2683   kmp_base_data_t dt;
2684 } kmp_ordered_team_t;
2685 
2686 typedef int (*launch_t)(int gtid);
2687 
2688 /* Minimum number of ARGV entries to malloc if necessary */
2689 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2690 
2691 // Set up how many argv pointers will fit in cache lines containing
2692 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2693 // larger value for more space between the master write/worker read section and
2694 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2695 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2696 #define KMP_INLINE_ARGV_BYTES                                                  \
2697   (4 * CACHE_LINE -                                                            \
2698    ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) +               \
2699      sizeof(kmp_int16) + sizeof(kmp_uint32)) %                                 \
2700     CACHE_LINE))
2701 #else
2702 #define KMP_INLINE_ARGV_BYTES                                                  \
2703   (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2704 #endif
2705 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2706 
2707 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2708   // Synchronization Data
2709   // ---------------------------------------------------------------------------
2710   KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2711   kmp_balign_team_t t_bar[bs_last_barrier];
2712   std::atomic<int> t_construct; // count of single directive encountered by team
2713   char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2714 
2715   // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2716   std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2717   std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2718 
2719   // Master only
2720   // ---------------------------------------------------------------------------
2721   KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team
2722   int t_master_this_cons; // "this_construct" single counter of master in parent
2723   // team
2724   ident_t *t_ident; // if volatile, have to change too much other crud to
2725   // volatile too
2726   kmp_team_p *t_parent; // parent team
2727   kmp_team_p *t_next_pool; // next free team in the team pool
2728   kmp_disp_t *t_dispatch; // thread's dispatch data
2729   kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2730   kmp_proc_bind_t t_proc_bind; // bind type for par region
2731 #if USE_ITT_BUILD
2732   kmp_uint64 t_region_time; // region begin timestamp
2733 #endif /* USE_ITT_BUILD */
2734 
2735   // Master write, workers read
2736   // --------------------------------------------------------------------------
2737   KMP_ALIGN_CACHE void **t_argv;
2738   int t_argc;
2739   int t_nproc; // number of threads in team
2740   microtask_t t_pkfn;
2741   launch_t t_invoke; // procedure to launch the microtask
2742 
2743 #if OMPT_SUPPORT
2744   ompt_team_info_t ompt_team_info;
2745   ompt_lw_taskteam_t *ompt_serialized_team_info;
2746 #endif
2747 
2748 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2749   kmp_int8 t_fp_control_saved;
2750   kmp_int8 t_pad2b;
2751   kmp_int16 t_x87_fpu_control_word; // FP control regs
2752   kmp_uint32 t_mxcsr;
2753 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2754 
2755   void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2756 
2757   KMP_ALIGN_CACHE kmp_info_t **t_threads;
2758   kmp_taskdata_t
2759       *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2760   int t_level; // nested parallel level
2761 
2762   KMP_ALIGN_CACHE int t_max_argc;
2763   int t_max_nproc; // max threads this team can handle (dynamically expandable)
2764   int t_serialized; // levels deep of serialized teams
2765   dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2766   int t_id; // team's id, assigned by debugger.
2767   int t_active_level; // nested active parallel level
2768   kmp_r_sched_t t_sched; // run-time schedule for the team
2769 #if KMP_AFFINITY_SUPPORTED
2770   int t_first_place; // first & last place in parent thread's partition.
2771   int t_last_place; // Restore these values to master after par region.
2772 #endif // KMP_AFFINITY_SUPPORTED
2773   int t_display_affinity;
2774   int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2775   // omp_set_num_threads() call
2776   omp_allocator_handle_t t_def_allocator; /* default allocator */
2777 
2778 // Read/write by workers as well
2779 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2780   // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2781   // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2782   // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2783   // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2784   char dummy_padding[1024];
2785 #endif
2786   // Internal control stack for additional nested teams.
2787   KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2788   // for SERIALIZED teams nested 2 or more levels deep
2789   // typed flag to store request state of cancellation
2790   std::atomic<kmp_int32> t_cancel_request;
2791   int t_master_active; // save on fork, restore on join
2792   void *t_copypriv_data; // team specific pointer to copyprivate data array
2793 #if KMP_OS_WINDOWS
2794   std::atomic<kmp_uint32> t_copyin_counter;
2795 #endif
2796 #if USE_ITT_BUILD
2797   void *t_stack_id; // team specific stack stitching id (for ittnotify)
2798 #endif /* USE_ITT_BUILD */
2799 } kmp_base_team_t;
2800 
2801 union KMP_ALIGN_CACHE kmp_team {
2802   kmp_base_team_t t;
2803   double t_align; /* use worst case alignment */
2804   char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2805 };
2806 
2807 typedef union KMP_ALIGN_CACHE kmp_time_global {
2808   double dt_align; /* use worst case alignment */
2809   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2810   kmp_base_data_t dt;
2811 } kmp_time_global_t;
2812 
2813 typedef struct kmp_base_global {
2814   /* cache-aligned */
2815   kmp_time_global_t g_time;
2816 
2817   /* non cache-aligned */
2818   volatile int g_abort;
2819   volatile int g_done;
2820 
2821   int g_dynamic;
2822   enum dynamic_mode g_dynamic_mode;
2823 } kmp_base_global_t;
2824 
2825 typedef union KMP_ALIGN_CACHE kmp_global {
2826   kmp_base_global_t g;
2827   double g_align; /* use worst case alignment */
2828   char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2829 } kmp_global_t;
2830 
2831 typedef struct kmp_base_root {
2832   // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2833   // (r_in_parallel>= 0)
2834   // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2835   // the synch overhead or keeping r_active
2836   volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2837   // keeps a count of active parallel regions per root
2838   std::atomic<int> r_in_parallel;
2839   // GEH: This is misnamed, should be r_active_levels
2840   kmp_team_t *r_root_team;
2841   kmp_team_t *r_hot_team;
2842   kmp_info_t *r_uber_thread;
2843   kmp_lock_t r_begin_lock;
2844   volatile int r_begin;
2845   int r_blocktime; /* blocktime for this root and descendants */
2846 } kmp_base_root_t;
2847 
2848 typedef union KMP_ALIGN_CACHE kmp_root {
2849   kmp_base_root_t r;
2850   double r_align; /* use worst case alignment */
2851   char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2852 } kmp_root_t;
2853 
2854 struct fortran_inx_info {
2855   kmp_int32 data;
2856 };
2857 
2858 /* ------------------------------------------------------------------------ */
2859 
2860 extern int __kmp_settings;
2861 extern int __kmp_duplicate_library_ok;
2862 #if USE_ITT_BUILD
2863 extern int __kmp_forkjoin_frames;
2864 extern int __kmp_forkjoin_frames_mode;
2865 #endif
2866 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2867 extern int __kmp_determ_red;
2868 
2869 #ifdef KMP_DEBUG
2870 extern int kmp_a_debug;
2871 extern int kmp_b_debug;
2872 extern int kmp_c_debug;
2873 extern int kmp_d_debug;
2874 extern int kmp_e_debug;
2875 extern int kmp_f_debug;
2876 #endif /* KMP_DEBUG */
2877 
2878 /* For debug information logging using rotating buffer */
2879 #define KMP_DEBUG_BUF_LINES_INIT 512
2880 #define KMP_DEBUG_BUF_LINES_MIN 1
2881 
2882 #define KMP_DEBUG_BUF_CHARS_INIT 128
2883 #define KMP_DEBUG_BUF_CHARS_MIN 2
2884 
2885 extern int
2886     __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2887 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2888 extern int
2889     __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2890 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2891                                       entry pointer */
2892 
2893 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2894 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2895                                               printed in buffer so far */
2896 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2897                                           recommended in warnings */
2898 /* end rotating debug buffer */
2899 
2900 #ifdef KMP_DEBUG
2901 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2902 
2903 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2904 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2905 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2906 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2907 extern int __kmp_par_range_lb;
2908 extern int __kmp_par_range_ub;
2909 #endif
2910 
2911 /* For printing out dynamic storage map for threads and teams */
2912 extern int
2913     __kmp_storage_map; /* True means print storage map for threads and teams */
2914 extern int __kmp_storage_map_verbose; /* True means storage map includes
2915                                          placement info */
2916 extern int __kmp_storage_map_verbose_specified;
2917 
2918 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2919 extern kmp_cpuinfo_t __kmp_cpuinfo;
2920 #endif
2921 
2922 extern volatile int __kmp_init_serial;
2923 extern volatile int __kmp_init_gtid;
2924 extern volatile int __kmp_init_common;
2925 extern volatile int __kmp_init_middle;
2926 extern volatile int __kmp_init_parallel;
2927 #if KMP_USE_MONITOR
2928 extern volatile int __kmp_init_monitor;
2929 #endif
2930 extern volatile int __kmp_init_user_locks;
2931 extern volatile int __kmp_init_hidden_helper_threads;
2932 extern int __kmp_init_counter;
2933 extern int __kmp_root_counter;
2934 extern int __kmp_version;
2935 
2936 /* list of address of allocated caches for commons */
2937 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2938 
2939 /* Barrier algorithm types and options */
2940 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2941 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2942 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2943 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2944 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2945 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2946 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2947 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2948 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2949 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2950 extern char const *__kmp_barrier_type_name[bs_last_barrier];
2951 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2952 
2953 /* Global Locks */
2954 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2955 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2956 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2957 extern kmp_bootstrap_lock_t
2958     __kmp_exit_lock; /* exit() is not always thread-safe */
2959 #if KMP_USE_MONITOR
2960 extern kmp_bootstrap_lock_t
2961     __kmp_monitor_lock; /* control monitor thread creation */
2962 #endif
2963 extern kmp_bootstrap_lock_t
2964     __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
2965                              __kmp_threads expansion to co-exist */
2966 
2967 extern kmp_lock_t __kmp_global_lock; /* control OS/global access  */
2968 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access  */
2969 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
2970 
2971 extern enum library_type __kmp_library;
2972 
2973 extern enum sched_type __kmp_sched; /* default runtime scheduling */
2974 extern enum sched_type __kmp_static; /* default static scheduling method */
2975 extern enum sched_type __kmp_guided; /* default guided scheduling method */
2976 extern enum sched_type __kmp_auto; /* default auto scheduling method */
2977 extern int __kmp_chunk; /* default runtime chunk size */
2978 
2979 extern size_t __kmp_stksize; /* stack size per thread         */
2980 #if KMP_USE_MONITOR
2981 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
2982 #endif
2983 extern size_t __kmp_stkoffset; /* stack offset per thread       */
2984 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
2985 
2986 extern size_t
2987     __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
2988 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
2989 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
2990 extern int __kmp_env_checks; /* was KMP_CHECKS specified?    */
2991 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
2992 extern int __kmp_generate_warnings; /* should we issue warnings? */
2993 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
2994 
2995 #ifdef DEBUG_SUSPEND
2996 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
2997 #endif
2998 
2999 extern kmp_int32 __kmp_use_yield;
3000 extern kmp_int32 __kmp_use_yield_exp_set;
3001 extern kmp_uint32 __kmp_yield_init;
3002 extern kmp_uint32 __kmp_yield_next;
3003 
3004 /* ------------------------------------------------------------------------- */
3005 extern int __kmp_allThreadsSpecified;
3006 
3007 extern size_t __kmp_align_alloc;
3008 /* following data protected by initialization routines */
3009 extern int __kmp_xproc; /* number of processors in the system */
3010 extern int __kmp_avail_proc; /* number of processors available to the process */
3011 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3012 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3013 // maximum total number of concurrently-existing threads on device
3014 extern int __kmp_max_nth;
3015 // maximum total number of concurrently-existing threads in a contention group
3016 extern int __kmp_cg_max_nth;
3017 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3018 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3019                                       __kmp_root */
3020 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3021                                    region a la OMP_NUM_THREADS */
3022 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3023                                       initialization */
3024 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3025                                  used (fixed) */
3026 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3027                                (__kmpc_threadprivate_cached()) */
3028 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3029                                     blocking (env setting) */
3030 #if KMP_USE_MONITOR
3031 extern int
3032     __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3033 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3034                                   blocking */
3035 #endif
3036 #ifdef KMP_ADJUST_BLOCKTIME
3037 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3038 #endif /* KMP_ADJUST_BLOCKTIME */
3039 #ifdef KMP_DFLT_NTH_CORES
3040 extern int __kmp_ncores; /* Total number of cores for threads placement */
3041 #endif
3042 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3043 extern int __kmp_abort_delay;
3044 
3045 extern int __kmp_need_register_atfork_specified;
3046 extern int
3047     __kmp_need_register_atfork; /* At initialization, call pthread_atfork to
3048                                    install fork handler */
3049 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3050                                0 - not set, will be set at runtime
3051                                1 - using stack search
3052                                2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3053                                    X*) or TlsGetValue(Windows* OS))
3054                                3 - static TLS (__declspec(thread) __kmp_gtid),
3055                                    Linux* OS .so only.  */
3056 extern int
3057     __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3058 #ifdef KMP_TDATA_GTID
3059 extern KMP_THREAD_LOCAL int __kmp_gtid;
3060 #endif
3061 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3062 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3063 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3064 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3065 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3066 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3067 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3068 
3069 // max_active_levels for nested parallelism enabled by default via
3070 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3071 extern int __kmp_dflt_max_active_levels;
3072 // Indicates whether value of __kmp_dflt_max_active_levels was already
3073 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3074 extern bool __kmp_dflt_max_active_levels_set;
3075 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3076                                           concurrent execution per team */
3077 #if KMP_NESTED_HOT_TEAMS
3078 extern int __kmp_hot_teams_mode;
3079 extern int __kmp_hot_teams_max_level;
3080 #endif
3081 
3082 #if KMP_OS_LINUX
3083 extern enum clock_function_type __kmp_clock_function;
3084 extern int __kmp_clock_function_param;
3085 #endif /* KMP_OS_LINUX */
3086 
3087 #if KMP_MIC_SUPPORTED
3088 extern enum mic_type __kmp_mic_type;
3089 #endif
3090 
3091 #ifdef USE_LOAD_BALANCE
3092 extern double __kmp_load_balance_interval; // load balance algorithm interval
3093 #endif /* USE_LOAD_BALANCE */
3094 
3095 // OpenMP 3.1 - Nested num threads array
3096 typedef struct kmp_nested_nthreads_t {
3097   int *nth;
3098   int size;
3099   int used;
3100 } kmp_nested_nthreads_t;
3101 
3102 extern kmp_nested_nthreads_t __kmp_nested_nth;
3103 
3104 #if KMP_USE_ADAPTIVE_LOCKS
3105 
3106 // Parameters for the speculative lock backoff system.
3107 struct kmp_adaptive_backoff_params_t {
3108   // Number of soft retries before it counts as a hard retry.
3109   kmp_uint32 max_soft_retries;
3110   // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3111   // the right
3112   kmp_uint32 max_badness;
3113 };
3114 
3115 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3116 
3117 #if KMP_DEBUG_ADAPTIVE_LOCKS
3118 extern const char *__kmp_speculative_statsfile;
3119 #endif
3120 
3121 #endif // KMP_USE_ADAPTIVE_LOCKS
3122 
3123 extern int __kmp_display_env; /* TRUE or FALSE */
3124 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3125 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3126 
3127 /* ------------------------------------------------------------------------- */
3128 
3129 /* the following are protected by the fork/join lock */
3130 /* write: lock  read: anytime */
3131 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3132 /* read/write: lock */
3133 extern volatile kmp_team_t *__kmp_team_pool;
3134 extern volatile kmp_info_t *__kmp_thread_pool;
3135 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3136 
3137 // total num threads reachable from some root thread including all root threads
3138 extern volatile int __kmp_nth;
3139 /* total number of threads reachable from some root thread including all root
3140    threads, and those in the thread pool */
3141 extern volatile int __kmp_all_nth;
3142 extern std::atomic<int> __kmp_thread_pool_active_nth;
3143 
3144 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3145 /* end data protected by fork/join lock */
3146 /* ------------------------------------------------------------------------- */
3147 
3148 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3149 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3150 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3151 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3152 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3153 
3154 // AT: Which way is correct?
3155 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3156 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3157 #define __kmp_get_team_num_threads(gtid)                                       \
3158   (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3159 
3160 static inline bool KMP_UBER_GTID(int gtid) {
3161   KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3162   KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3163   return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3164           __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3165 }
3166 
3167 static inline int __kmp_tid_from_gtid(int gtid) {
3168   KMP_DEBUG_ASSERT(gtid >= 0);
3169   return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3170 }
3171 
3172 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3173   KMP_DEBUG_ASSERT(tid >= 0 && team);
3174   return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3175 }
3176 
3177 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3178   KMP_DEBUG_ASSERT(thr);
3179   return thr->th.th_info.ds.ds_gtid;
3180 }
3181 
3182 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3183   KMP_DEBUG_ASSERT(gtid >= 0);
3184   return __kmp_threads[gtid];
3185 }
3186 
3187 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3188   KMP_DEBUG_ASSERT(gtid >= 0);
3189   return __kmp_threads[gtid]->th.th_team;
3190 }
3191 
3192 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3193   if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3194     KMP_FATAL(ThreadIdentInvalid);
3195 }
3196 
3197 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3198 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3199 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3200 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3201 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3202 #endif
3203 
3204 /* ------------------------------------------------------------------------- */
3205 
3206 extern kmp_global_t __kmp_global; /* global status */
3207 
3208 extern kmp_info_t __kmp_monitor;
3209 // For Debugging Support Library
3210 extern std::atomic<kmp_int32> __kmp_team_counter;
3211 // For Debugging Support Library
3212 extern std::atomic<kmp_int32> __kmp_task_counter;
3213 
3214 #if USE_DEBUGGER
3215 #define _KMP_GEN_ID(counter)                                                   \
3216   (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3217 #else
3218 #define _KMP_GEN_ID(counter) (~0)
3219 #endif /* USE_DEBUGGER */
3220 
3221 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3222 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3223 
3224 /* ------------------------------------------------------------------------ */
3225 
3226 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3227                                          size_t size, char const *format, ...);
3228 
3229 extern void __kmp_serial_initialize(void);
3230 extern void __kmp_middle_initialize(void);
3231 extern void __kmp_parallel_initialize(void);
3232 
3233 extern void __kmp_internal_begin(void);
3234 extern void __kmp_internal_end_library(int gtid);
3235 extern void __kmp_internal_end_thread(int gtid);
3236 extern void __kmp_internal_end_atexit(void);
3237 extern void __kmp_internal_end_dtor(void);
3238 extern void __kmp_internal_end_dest(void *);
3239 
3240 extern int __kmp_register_root(int initial_thread);
3241 extern void __kmp_unregister_root(int gtid);
3242 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3243 
3244 extern int __kmp_ignore_mppbeg(void);
3245 extern int __kmp_ignore_mppend(void);
3246 
3247 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3248 extern void __kmp_exit_single(int gtid);
3249 
3250 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3251 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3252 
3253 #ifdef USE_LOAD_BALANCE
3254 extern int __kmp_get_load_balance(int);
3255 #endif
3256 
3257 extern int __kmp_get_global_thread_id(void);
3258 extern int __kmp_get_global_thread_id_reg(void);
3259 extern void __kmp_exit_thread(int exit_status);
3260 extern void __kmp_abort(char const *format, ...);
3261 extern void __kmp_abort_thread(void);
3262 KMP_NORETURN extern void __kmp_abort_process(void);
3263 extern void __kmp_warn(char const *format, ...);
3264 
3265 extern void __kmp_set_num_threads(int new_nth, int gtid);
3266 
3267 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3268 // registered.
3269 static inline kmp_info_t *__kmp_entry_thread() {
3270   int gtid = __kmp_entry_gtid();
3271 
3272   return __kmp_threads[gtid];
3273 }
3274 
3275 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3276 extern int __kmp_get_max_active_levels(int gtid);
3277 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3278 extern int __kmp_get_team_size(int gtid, int level);
3279 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3280 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3281 
3282 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3283 extern void __kmp_init_random(kmp_info_t *thread);
3284 
3285 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3286 extern void __kmp_adjust_num_threads(int new_nproc);
3287 extern void __kmp_check_stksize(size_t *val);
3288 
3289 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3290 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3291 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3292 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3293 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3294 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3295 
3296 #if USE_FAST_MEMORY
3297 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3298                                   size_t size KMP_SRC_LOC_DECL);
3299 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3300 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3301 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3302 #define __kmp_fast_allocate(this_thr, size)                                    \
3303   ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3304 #define __kmp_fast_free(this_thr, ptr)                                         \
3305   ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3306 #endif
3307 
3308 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3309 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3310                                   size_t elsize KMP_SRC_LOC_DECL);
3311 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3312                                    size_t size KMP_SRC_LOC_DECL);
3313 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3314 #define __kmp_thread_malloc(th, size)                                          \
3315   ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3316 #define __kmp_thread_calloc(th, nelem, elsize)                                 \
3317   ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3318 #define __kmp_thread_realloc(th, ptr, size)                                    \
3319   ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3320 #define __kmp_thread_free(th, ptr)                                             \
3321   ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3322 
3323 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3324 #define KMP_INTERNAL_FREE(p) free(p)
3325 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3326 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3327 
3328 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3329 
3330 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3331                                  kmp_proc_bind_t proc_bind);
3332 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3333                                  int num_threads);
3334 
3335 extern void __kmp_yield();
3336 
3337 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3338                                    enum sched_type schedule, kmp_int32 lb,
3339                                    kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3340 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3341                                     enum sched_type schedule, kmp_uint32 lb,
3342                                     kmp_uint32 ub, kmp_int32 st,
3343                                     kmp_int32 chunk);
3344 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3345                                    enum sched_type schedule, kmp_int64 lb,
3346                                    kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3347 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3348                                     enum sched_type schedule, kmp_uint64 lb,
3349                                     kmp_uint64 ub, kmp_int64 st,
3350                                     kmp_int64 chunk);
3351 
3352 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3353                                   kmp_int32 *p_last, kmp_int32 *p_lb,
3354                                   kmp_int32 *p_ub, kmp_int32 *p_st);
3355 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3356                                    kmp_int32 *p_last, kmp_uint32 *p_lb,
3357                                    kmp_uint32 *p_ub, kmp_int32 *p_st);
3358 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3359                                   kmp_int32 *p_last, kmp_int64 *p_lb,
3360                                   kmp_int64 *p_ub, kmp_int64 *p_st);
3361 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3362                                    kmp_int32 *p_last, kmp_uint64 *p_lb,
3363                                    kmp_uint64 *p_ub, kmp_int64 *p_st);
3364 
3365 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3366 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3367 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3368 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3369 
3370 #ifdef KMP_GOMP_COMPAT
3371 
3372 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3373                                       enum sched_type schedule, kmp_int32 lb,
3374                                       kmp_int32 ub, kmp_int32 st,
3375                                       kmp_int32 chunk, int push_ws);
3376 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3377                                        enum sched_type schedule, kmp_uint32 lb,
3378                                        kmp_uint32 ub, kmp_int32 st,
3379                                        kmp_int32 chunk, int push_ws);
3380 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3381                                       enum sched_type schedule, kmp_int64 lb,
3382                                       kmp_int64 ub, kmp_int64 st,
3383                                       kmp_int64 chunk, int push_ws);
3384 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3385                                        enum sched_type schedule, kmp_uint64 lb,
3386                                        kmp_uint64 ub, kmp_int64 st,
3387                                        kmp_int64 chunk, int push_ws);
3388 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3389 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3390 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3391 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3392 
3393 #endif /* KMP_GOMP_COMPAT */
3394 
3395 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3396 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3397 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3398 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3399 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3400 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3401                                kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3402                                void *obj);
3403 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3404                              kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3405 
3406 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3407                           int final_spin
3408 #if USE_ITT_BUILD
3409                           ,
3410                           void *itt_sync_obj
3411 #endif
3412                           );
3413 extern void __kmp_release_64(kmp_flag_64<> *flag);
3414 
3415 extern void __kmp_infinite_loop(void);
3416 
3417 extern void __kmp_cleanup(void);
3418 
3419 #if KMP_HANDLE_SIGNALS
3420 extern int __kmp_handle_signals;
3421 extern void __kmp_install_signals(int parallel_init);
3422 extern void __kmp_remove_signals(void);
3423 #endif
3424 
3425 extern void __kmp_clear_system_time(void);
3426 extern void __kmp_read_system_time(double *delta);
3427 
3428 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3429 
3430 extern void __kmp_expand_host_name(char *buffer, size_t size);
3431 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3432 
3433 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3434 extern void
3435 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3436 #endif
3437 
3438 extern void
3439 __kmp_runtime_initialize(void); /* machine specific initialization */
3440 extern void __kmp_runtime_destroy(void);
3441 
3442 #if KMP_AFFINITY_SUPPORTED
3443 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3444                                        kmp_affin_mask_t *mask);
3445 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3446                                                   kmp_affin_mask_t *mask);
3447 extern void __kmp_affinity_initialize(void);
3448 extern void __kmp_affinity_uninitialize(void);
3449 extern void __kmp_affinity_set_init_mask(
3450     int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3451 extern void __kmp_affinity_set_place(int gtid);
3452 extern void __kmp_affinity_determine_capable(const char *env_var);
3453 extern int __kmp_aux_set_affinity(void **mask);
3454 extern int __kmp_aux_get_affinity(void **mask);
3455 extern int __kmp_aux_get_affinity_max_proc();
3456 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3457 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3458 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3459 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3460 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3461 extern int kmp_set_thread_affinity_mask_initial(void);
3462 #endif
3463 #endif /* KMP_AFFINITY_SUPPORTED */
3464 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3465 // format string is for affinity, so platforms that do not support
3466 // affinity can still use the other fields, e.g., %n for num_threads
3467 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3468                                          kmp_str_buf_t *buffer);
3469 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3470 
3471 extern void __kmp_cleanup_hierarchy();
3472 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3473 
3474 #if KMP_USE_FUTEX
3475 
3476 extern int __kmp_futex_determine_capable(void);
3477 
3478 #endif // KMP_USE_FUTEX
3479 
3480 extern void __kmp_gtid_set_specific(int gtid);
3481 extern int __kmp_gtid_get_specific(void);
3482 
3483 extern double __kmp_read_cpu_time(void);
3484 
3485 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3486 
3487 #if KMP_USE_MONITOR
3488 extern void __kmp_create_monitor(kmp_info_t *th);
3489 #endif
3490 
3491 extern void *__kmp_launch_thread(kmp_info_t *thr);
3492 
3493 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3494 
3495 #if KMP_OS_WINDOWS
3496 extern int __kmp_still_running(kmp_info_t *th);
3497 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3498 extern void __kmp_free_handle(kmp_thread_t tHandle);
3499 #endif
3500 
3501 #if KMP_USE_MONITOR
3502 extern void __kmp_reap_monitor(kmp_info_t *th);
3503 #endif
3504 extern void __kmp_reap_worker(kmp_info_t *th);
3505 extern void __kmp_terminate_thread(int gtid);
3506 
3507 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3508 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3509 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3510 
3511 extern void __kmp_elapsed(double *);
3512 extern void __kmp_elapsed_tick(double *);
3513 
3514 extern void __kmp_enable(int old_state);
3515 extern void __kmp_disable(int *old_state);
3516 
3517 extern void __kmp_thread_sleep(int millis);
3518 
3519 extern void __kmp_common_initialize(void);
3520 extern void __kmp_common_destroy(void);
3521 extern void __kmp_common_destroy_gtid(int gtid);
3522 
3523 #if KMP_OS_UNIX
3524 extern void __kmp_register_atfork(void);
3525 #endif
3526 extern void __kmp_suspend_initialize(void);
3527 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3528 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3529 
3530 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3531                                          int tid);
3532 extern kmp_team_t *
3533 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3534 #if OMPT_SUPPORT
3535                     ompt_data_t ompt_parallel_data,
3536 #endif
3537                     kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3538                     int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3539 extern void __kmp_free_thread(kmp_info_t *);
3540 extern void __kmp_free_team(kmp_root_t *,
3541                             kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3542 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3543 
3544 /* ------------------------------------------------------------------------ */
3545 
3546 extern void __kmp_initialize_bget(kmp_info_t *th);
3547 extern void __kmp_finalize_bget(kmp_info_t *th);
3548 
3549 KMP_EXPORT void *kmpc_malloc(size_t size);
3550 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3551 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3552 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3553 KMP_EXPORT void kmpc_free(void *ptr);
3554 
3555 /* declarations for internal use */
3556 
3557 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3558                          size_t reduce_size, void *reduce_data,
3559                          void (*reduce)(void *, void *));
3560 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3561 extern int __kmp_barrier_gomp_cancel(int gtid);
3562 
3563 /*!
3564  * Tell the fork call which compiler generated the fork call, and therefore how
3565  * to deal with the call.
3566  */
3567 enum fork_context_e {
3568   fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
3569                        microtask internally. */
3570   fork_context_intel, /**< Called from Intel generated code.  */
3571   fork_context_last
3572 };
3573 extern int __kmp_fork_call(ident_t *loc, int gtid,
3574                            enum fork_context_e fork_context, kmp_int32 argc,
3575                            microtask_t microtask, launch_t invoker,
3576                            kmp_va_list ap);
3577 
3578 extern void __kmp_join_call(ident_t *loc, int gtid
3579 #if OMPT_SUPPORT
3580                             ,
3581                             enum fork_context_e fork_context
3582 #endif
3583                             ,
3584                             int exit_teams = 0);
3585 
3586 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3587 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3588 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3589 extern int __kmp_invoke_task_func(int gtid);
3590 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3591                                           kmp_info_t *this_thr,
3592                                           kmp_team_t *team);
3593 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3594                                          kmp_info_t *this_thr,
3595                                          kmp_team_t *team);
3596 
3597 // should never have been exported
3598 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3599 extern int __kmp_invoke_teams_master(int gtid);
3600 extern void __kmp_teams_master(int gtid);
3601 extern int __kmp_aux_get_team_num();
3602 extern int __kmp_aux_get_num_teams();
3603 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3604 extern void __kmp_user_set_library(enum library_type arg);
3605 extern void __kmp_aux_set_library(enum library_type arg);
3606 extern void __kmp_aux_set_stacksize(size_t arg);
3607 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3608 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3609 
3610 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3611 void kmpc_set_blocktime(int arg);
3612 void ompc_set_nested(int flag);
3613 void ompc_set_dynamic(int flag);
3614 void ompc_set_num_threads(int arg);
3615 
3616 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3617                                               kmp_team_t *team, int tid);
3618 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3619 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3620                                     kmp_tasking_flags_t *flags,
3621                                     size_t sizeof_kmp_task_t,
3622                                     size_t sizeof_shareds,
3623                                     kmp_routine_entry_t task_entry);
3624 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3625                                      kmp_team_t *team, int tid,
3626                                      int set_curr_task);
3627 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3628 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3629 
3630 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3631                                                        int gtid,
3632                                                        kmp_task_t *task);
3633 extern void __kmp_fulfill_event(kmp_event_t *event);
3634 
3635 extern void __kmp_free_task_team(kmp_info_t *thread,
3636                                  kmp_task_team_t *task_team);
3637 extern void __kmp_reap_task_teams(void);
3638 extern void __kmp_wait_to_unref_task_teams(void);
3639 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3640                                   int always);
3641 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3642 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3643 #if USE_ITT_BUILD
3644                                  ,
3645                                  void *itt_sync_obj
3646 #endif /* USE_ITT_BUILD */
3647                                  ,
3648                                  int wait = 1);
3649 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3650                                   int gtid);
3651 
3652 extern int __kmp_is_address_mapped(void *addr);
3653 extern kmp_uint64 __kmp_hardware_timestamp(void);
3654 
3655 #if KMP_OS_UNIX
3656 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3657 #endif
3658 
3659 /* ------------------------------------------------------------------------ */
3660 //
3661 // Assembly routines that have no compiler intrinsic replacement
3662 //
3663 
3664 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3665                                   void *argv[]
3666 #if OMPT_SUPPORT
3667                                   ,
3668                                   void **exit_frame_ptr
3669 #endif
3670                                   );
3671 
3672 /* ------------------------------------------------------------------------ */
3673 
3674 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3675 KMP_EXPORT void __kmpc_end(ident_t *);
3676 
3677 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3678                                                   kmpc_ctor_vec ctor,
3679                                                   kmpc_cctor_vec cctor,
3680                                                   kmpc_dtor_vec dtor,
3681                                                   size_t vector_length);
3682 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3683                                               kmpc_ctor ctor, kmpc_cctor cctor,
3684                                               kmpc_dtor dtor);
3685 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3686                                       void *data, size_t size);
3687 
3688 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3689 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3690 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3691 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3692 
3693 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3694 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3695                                  kmpc_micro microtask, ...);
3696 
3697 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3698 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3699 
3700 KMP_EXPORT void __kmpc_flush(ident_t *);
3701 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3702 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3703 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3704 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3705 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3706 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3707                                 kmp_critical_name *);
3708 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3709                                     kmp_critical_name *);
3710 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3711                                           kmp_critical_name *, uint32_t hint);
3712 
3713 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3714 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3715 
3716 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3717                                                   kmp_int32 global_tid);
3718 
3719 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3720 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3721 
3722 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3723                                      kmp_int32 schedtype, kmp_int32 *plastiter,
3724                                      kmp_int *plower, kmp_int *pupper,
3725                                      kmp_int *pstride, kmp_int incr,
3726                                      kmp_int chunk);
3727 
3728 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3729 
3730 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3731                                    size_t cpy_size, void *cpy_data,
3732                                    void (*cpy_func)(void *, void *),
3733                                    kmp_int32 didit);
3734 
3735 extern void KMPC_SET_NUM_THREADS(int arg);
3736 extern void KMPC_SET_DYNAMIC(int flag);
3737 extern void KMPC_SET_NESTED(int flag);
3738 
3739 /* OMP 3.0 tasking interface routines */
3740 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3741                                      kmp_task_t *new_task);
3742 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3743                                              kmp_int32 flags,
3744                                              size_t sizeof_kmp_task_t,
3745                                              size_t sizeof_shareds,
3746                                              kmp_routine_entry_t task_entry);
3747 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3748                                                     kmp_int32 flags,
3749                                                     size_t sizeof_kmp_task_t,
3750                                                     size_t sizeof_shareds,
3751                                                     kmp_routine_entry_t task_entry,
3752                                                     kmp_int64 device_id);
3753 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3754                                           kmp_task_t *task);
3755 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3756                                              kmp_task_t *task);
3757 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3758                                            kmp_task_t *new_task);
3759 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3760 
3761 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3762                                           int end_part);
3763 
3764 #if TASK_UNUSED
3765 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3766 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3767                               kmp_task_t *task);
3768 #endif // TASK_UNUSED
3769 
3770 /* ------------------------------------------------------------------------ */
3771 
3772 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3773 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3774 
3775 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3776     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3777     kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3778     kmp_depend_info_t *noalias_dep_list);
3779 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3780                                      kmp_int32 ndeps,
3781                                      kmp_depend_info_t *dep_list,
3782                                      kmp_int32 ndeps_noalias,
3783                                      kmp_depend_info_t *noalias_dep_list);
3784 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3785                                 bool serialize_immediate);
3786 
3787 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3788                                    kmp_int32 cncl_kind);
3789 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3790                                               kmp_int32 cncl_kind);
3791 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3792 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3793 
3794 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3795 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3796 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3797                                 kmp_int32 if_val, kmp_uint64 *lb,
3798                                 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3799                                 kmp_int32 sched, kmp_uint64 grainsize,
3800                                 void *task_dup);
3801 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3802                                   kmp_task_t *task, kmp_int32 if_val,
3803                                   kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3804                                   kmp_int32 nogroup, kmp_int32 sched,
3805                                   kmp_uint64 grainsize, kmp_int32 modifier,
3806                                   void *task_dup);
3807 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3808 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3809 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3810 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3811                                                      int is_ws, int num,
3812                                                      void *data);
3813 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3814                                               int num, void *data);
3815 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3816                                                     int is_ws);
3817 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3818     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3819     kmp_task_affinity_info_t *affin_list);
3820 
3821 /* Lock interface routines (fast versions with gtid passed in) */
3822 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3823                                  void **user_lock);
3824 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3825                                       void **user_lock);
3826 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3827                                     void **user_lock);
3828 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3829                                          void **user_lock);
3830 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3831 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3832                                      void **user_lock);
3833 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3834                                   void **user_lock);
3835 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3836                                        void **user_lock);
3837 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3838 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3839                                      void **user_lock);
3840 
3841 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3842                                            void **user_lock, uintptr_t hint);
3843 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3844                                                 void **user_lock,
3845                                                 uintptr_t hint);
3846 
3847 /* Interface to fast scalable reduce methods routines */
3848 
3849 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3850     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3851     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3852     kmp_critical_name *lck);
3853 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3854                                          kmp_critical_name *lck);
3855 KMP_EXPORT kmp_int32 __kmpc_reduce(
3856     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3857     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3858     kmp_critical_name *lck);
3859 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3860                                   kmp_critical_name *lck);
3861 
3862 /* Internal fast reduction routines */
3863 
3864 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3865     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3866     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3867     kmp_critical_name *lck);
3868 
3869 // this function is for testing set/get/determine reduce method
3870 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3871 
3872 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3873 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3874 
3875 // C++ port
3876 // missing 'extern "C"' declarations
3877 
3878 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3879 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3880 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3881                                         kmp_int32 num_threads);
3882 
3883 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3884                                       int proc_bind);
3885 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3886                                       kmp_int32 num_teams,
3887                                       kmp_int32 num_threads);
3888 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3889                                   kmpc_micro microtask, ...);
3890 struct kmp_dim { // loop bounds info casted to kmp_int64
3891   kmp_int64 lo; // lower
3892   kmp_int64 up; // upper
3893   kmp_int64 st; // stride
3894 };
3895 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3896                                      kmp_int32 num_dims,
3897                                      const struct kmp_dim *dims);
3898 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3899                                      const kmp_int64 *vec);
3900 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3901                                      const kmp_int64 *vec);
3902 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3903 
3904 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3905                                              void *data, size_t size,
3906                                              void ***cache);
3907 
3908 // Symbols for MS mutual detection.
3909 extern int _You_must_link_with_exactly_one_OpenMP_library;
3910 extern int _You_must_link_with_Intel_OpenMP_library;
3911 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3912 extern int _You_must_link_with_Microsoft_OpenMP_library;
3913 #endif
3914 
3915 // The routines below are not exported.
3916 // Consider making them 'static' in corresponding source files.
3917 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3918                                            void *data_addr, size_t pc_size);
3919 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3920                                                 void *data_addr,
3921                                                 size_t pc_size);
3922 void __kmp_threadprivate_resize_cache(int newCapacity);
3923 void __kmp_cleanup_threadprivate_caches();
3924 
3925 // ompc_, kmpc_ entries moved from omp.h.
3926 #if KMP_OS_WINDOWS
3927 #define KMPC_CONVENTION __cdecl
3928 #else
3929 #define KMPC_CONVENTION
3930 #endif
3931 
3932 #ifndef __OMP_H
3933 typedef enum omp_sched_t {
3934   omp_sched_static = 1,
3935   omp_sched_dynamic = 2,
3936   omp_sched_guided = 3,
3937   omp_sched_auto = 4
3938 } omp_sched_t;
3939 typedef void *kmp_affinity_mask_t;
3940 #endif
3941 
3942 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3943 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3944 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
3945 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
3946 KMP_EXPORT int KMPC_CONVENTION
3947 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
3948 KMP_EXPORT int KMPC_CONVENTION
3949 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
3950 KMP_EXPORT int KMPC_CONVENTION
3951 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
3952 
3953 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
3954 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
3955 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
3956 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
3957 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
3958 
3959 enum kmp_target_offload_kind {
3960   tgt_disabled = 0,
3961   tgt_default = 1,
3962   tgt_mandatory = 2
3963 };
3964 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
3965 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
3966 extern kmp_target_offload_kind_t __kmp_target_offload;
3967 extern int __kmpc_get_target_offload();
3968 
3969 // Constants used in libomptarget
3970 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
3971 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
3972 
3973 // OMP Pause Resource
3974 
3975 // The following enum is used both to set the status in __kmp_pause_status, and
3976 // as the internal equivalent of the externally-visible omp_pause_resource_t.
3977 typedef enum kmp_pause_status_t {
3978   kmp_not_paused = 0, // status is not paused, or, requesting resume
3979   kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
3980   kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
3981 } kmp_pause_status_t;
3982 
3983 // This stores the pause state of the runtime
3984 extern kmp_pause_status_t __kmp_pause_status;
3985 extern int __kmpc_pause_resource(kmp_pause_status_t level);
3986 extern int __kmp_pause_resource(kmp_pause_status_t level);
3987 // Soft resume sets __kmp_pause_status, and wakes up all threads.
3988 extern void __kmp_resume_if_soft_paused();
3989 // Hard resume simply resets the status to not paused. Library will appear to
3990 // be uninitialized after hard pause. Let OMP constructs trigger required
3991 // initializations.
3992 static inline void __kmp_resume_if_hard_paused() {
3993   if (__kmp_pause_status == kmp_hard_paused) {
3994     __kmp_pause_status = kmp_not_paused;
3995   }
3996 }
3997 
3998 extern void __kmp_omp_display_env(int verbose);
3999 
4000 // 1: it is initializing hidden helper team
4001 extern volatile int __kmp_init_hidden_helper;
4002 // 1: the hidden helper team is done
4003 extern volatile int __kmp_hidden_helper_team_done;
4004 // 1: enable hidden helper task
4005 extern kmp_int32 __kmp_enable_hidden_helper;
4006 // Main thread of hidden helper team
4007 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4008 // Descriptors for the hidden helper threads
4009 extern kmp_info_t **__kmp_hidden_helper_threads;
4010 // Number of hidden helper threads
4011 extern kmp_int32 __kmp_hidden_helper_threads_num;
4012 // Number of hidden helper tasks that have not been executed yet
4013 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4014 
4015 extern void __kmp_hidden_helper_initialize();
4016 extern void __kmp_hidden_helper_threads_initz_routine();
4017 extern void __kmp_do_initialize_hidden_helper_threads();
4018 extern void __kmp_hidden_helper_threads_initz_wait();
4019 extern void __kmp_hidden_helper_initz_release();
4020 extern void __kmp_hidden_helper_threads_deinitz_wait();
4021 extern void __kmp_hidden_helper_threads_deinitz_release();
4022 extern void __kmp_hidden_helper_main_thread_wait();
4023 extern void __kmp_hidden_helper_worker_thread_wait();
4024 extern void __kmp_hidden_helper_worker_thread_signal();
4025 extern void __kmp_hidden_helper_main_thread_release();
4026 
4027 // Check whether a given thread is a hidden helper thread
4028 #define KMP_HIDDEN_HELPER_THREAD(gtid)                                         \
4029   ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4030 
4031 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid)                                  \
4032   ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4033 
4034 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4035 // main thread, is skipped.
4036 #define KMP_GTID_TO_SHADOW_GTID(gtid)                                          \
4037   ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4038 
4039 #ifdef __cplusplus
4040 }
4041 #endif
4042 
4043 template <bool C, bool S>
4044 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4045 template <bool C, bool S>
4046 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4047 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4048 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4049 template <bool C, bool S>
4050 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4051 template <bool C, bool S>
4052 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4053 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4054 #endif
4055 template <bool C, bool S>
4056 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4057 template <bool C, bool S>
4058 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4059 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4060 
4061 template <bool C, bool S>
4062 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4063                            kmp_flag_32<C, S> *flag, int final_spin,
4064                            int *thread_finished,
4065 #if USE_ITT_BUILD
4066                            void *itt_sync_obj,
4067 #endif /* USE_ITT_BUILD */
4068                            kmp_int32 is_constrained);
4069 template <bool C, bool S>
4070 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4071                            kmp_flag_64<C, S> *flag, int final_spin,
4072                            int *thread_finished,
4073 #if USE_ITT_BUILD
4074                            void *itt_sync_obj,
4075 #endif /* USE_ITT_BUILD */
4076                            kmp_int32 is_constrained);
4077 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4078                                kmp_flag_oncore *flag, int final_spin,
4079                                int *thread_finished,
4080 #if USE_ITT_BUILD
4081                                void *itt_sync_obj,
4082 #endif /* USE_ITT_BUILD */
4083                                kmp_int32 is_constrained);
4084 
4085 /// This class safely opens and closes a C-style FILE* object using RAII
4086 /// semantics. There are also methods which allow using stdout or stderr as
4087 /// the underlying FILE* object. With the implicit conversion operator to
4088 /// FILE*, an object with this type can be used in any function which takes
4089 /// a FILE* object e.g., fprintf().
4090 /// No close method is needed at use sites.
4091 class kmp_safe_raii_file_t {
4092   FILE *f;
4093 
4094   void close() {
4095     if (f && f != stdout && f != stderr) {
4096       fclose(f);
4097       f = nullptr;
4098     }
4099   }
4100 
4101 public:
4102   kmp_safe_raii_file_t() : f(nullptr) {}
4103   kmp_safe_raii_file_t(const char *filename, const char *mode,
4104                        const char *env_var = nullptr)
4105       : f(nullptr) {
4106     open(filename, mode, env_var);
4107   }
4108   ~kmp_safe_raii_file_t() { close(); }
4109 
4110   /// Open filename using mode. This is automatically closed in the destructor.
4111   /// The env_var parameter indicates the environment variable the filename
4112   /// came from if != nullptr.
4113   void open(const char *filename, const char *mode,
4114             const char *env_var = nullptr) {
4115     KMP_ASSERT(!f);
4116     f = fopen(filename, mode);
4117     if (!f) {
4118       int code = errno;
4119       if (env_var) {
4120         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4121                     KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4122       } else {
4123         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4124                     __kmp_msg_null);
4125       }
4126     }
4127   }
4128   /// Set the FILE* object to stdout and output there
4129   /// No open call should happen before this call.
4130   void set_stdout() {
4131     KMP_ASSERT(!f);
4132     f = stdout;
4133   }
4134   /// Set the FILE* object to stderr and output there
4135   /// No open call should happen before this call.
4136   void set_stderr() {
4137     KMP_ASSERT(!f);
4138     f = stderr;
4139   }
4140   operator bool() { return bool(f); }
4141   operator FILE *() { return f; }
4142 };
4143 
4144 template <typename SourceType, typename TargetType,
4145           bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4146           bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4147           bool isSourceSigned = std::is_signed<SourceType>::value,
4148           bool isTargetSigned = std::is_signed<TargetType>::value>
4149 struct kmp_convert {};
4150 
4151 // Both types are signed; Source smaller
4152 template <typename SourceType, typename TargetType>
4153 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4154   static TargetType to(SourceType src) { return (TargetType)src; }
4155 };
4156 // Source equal
4157 template <typename SourceType, typename TargetType>
4158 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4159   static TargetType to(SourceType src) { return src; }
4160 };
4161 // Source bigger
4162 template <typename SourceType, typename TargetType>
4163 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4164   static TargetType to(SourceType src) {
4165     KMP_ASSERT(src <= static_cast<SourceType>(
4166                           (std::numeric_limits<TargetType>::max)()));
4167     KMP_ASSERT(src >= static_cast<SourceType>(
4168                           (std::numeric_limits<TargetType>::min)()));
4169     return (TargetType)src;
4170   }
4171 };
4172 
4173 // Source signed, Target unsigned
4174 // Source smaller
4175 template <typename SourceType, typename TargetType>
4176 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4177   static TargetType to(SourceType src) {
4178     KMP_ASSERT(src >= 0);
4179     return (TargetType)src;
4180   }
4181 };
4182 // Source equal
4183 template <typename SourceType, typename TargetType>
4184 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4185   static TargetType to(SourceType src) {
4186     KMP_ASSERT(src >= 0);
4187     return (TargetType)src;
4188   }
4189 };
4190 // Source bigger
4191 template <typename SourceType, typename TargetType>
4192 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4193   static TargetType to(SourceType src) {
4194     KMP_ASSERT(src >= 0);
4195     KMP_ASSERT(src <= static_cast<SourceType>(
4196                           (std::numeric_limits<TargetType>::max)()));
4197     return (TargetType)src;
4198   }
4199 };
4200 
4201 // Source unsigned, Target signed
4202 // Source smaller
4203 template <typename SourceType, typename TargetType>
4204 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4205   static TargetType to(SourceType src) { return (TargetType)src; }
4206 };
4207 // Source equal
4208 template <typename SourceType, typename TargetType>
4209 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4210   static TargetType to(SourceType src) {
4211     KMP_ASSERT(src <= static_cast<SourceType>(
4212                           (std::numeric_limits<TargetType>::max)()));
4213     return (TargetType)src;
4214   }
4215 };
4216 // Source bigger
4217 template <typename SourceType, typename TargetType>
4218 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4219   static TargetType to(SourceType src) {
4220     KMP_ASSERT(src <= static_cast<SourceType>(
4221                           (std::numeric_limits<TargetType>::max)()));
4222     return (TargetType)src;
4223   }
4224 };
4225 
4226 // Source unsigned, Target unsigned
4227 // Source smaller
4228 template <typename SourceType, typename TargetType>
4229 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4230   static TargetType to(SourceType src) { return (TargetType)src; }
4231 };
4232 // Source equal
4233 template <typename SourceType, typename TargetType>
4234 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4235   static TargetType to(SourceType src) { return src; }
4236 };
4237 // Source bigger
4238 template <typename SourceType, typename TargetType>
4239 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4240   static TargetType to(SourceType src) {
4241     KMP_ASSERT(src <= static_cast<SourceType>(
4242                           (std::numeric_limits<TargetType>::max)()));
4243     return (TargetType)src;
4244   }
4245 };
4246 
4247 template <typename T1, typename T2>
4248 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4249   *dest = kmp_convert<T1, T2>::to(src);
4250 }
4251 
4252 #endif /* KMP_H */
4253