1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 
30 // The machine topology
31 kmp_topology_t *__kmp_topology = nullptr;
32 // KMP_HW_SUBSET environment variable
33 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
34 
35 // Store the real or imagined machine hierarchy here
36 static hierarchy_info machine_hierarchy;
37 
38 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
39 
40 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
41   kmp_uint32 depth;
42   // The test below is true if affinity is available, but set to "none". Need to
43   // init on first use of hierarchical barrier.
44   if (TCR_1(machine_hierarchy.uninitialized))
45     machine_hierarchy.init(nproc);
46 
47   // Adjust the hierarchy in case num threads exceeds original
48   if (nproc > machine_hierarchy.base_num_threads)
49     machine_hierarchy.resize(nproc);
50 
51   depth = machine_hierarchy.depth;
52   KMP_DEBUG_ASSERT(depth > 0);
53 
54   thr_bar->depth = depth;
55   __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
56                      &(thr_bar->base_leaf_kids));
57   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
58 }
59 
60 static int nCoresPerPkg, nPackages;
61 static int __kmp_nThreadsPerCore;
62 #ifndef KMP_DFLT_NTH_CORES
63 static int __kmp_ncores;
64 #endif
65 
66 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
67   switch (type) {
68   case KMP_HW_SOCKET:
69     return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
70   case KMP_HW_DIE:
71     return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
72   case KMP_HW_MODULE:
73     return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
74   case KMP_HW_TILE:
75     return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
76   case KMP_HW_NUMA:
77     return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
78   case KMP_HW_L3:
79     return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
80   case KMP_HW_L2:
81     return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
82   case KMP_HW_L1:
83     return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
84   case KMP_HW_LLC:
85     return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
86   case KMP_HW_CORE:
87     return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
88   case KMP_HW_THREAD:
89     return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
90   case KMP_HW_PROC_GROUP:
91     return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
92   }
93   return KMP_I18N_STR(Unknown);
94 }
95 
96 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
97   switch (type) {
98   case KMP_HW_SOCKET:
99     return ((plural) ? "sockets" : "socket");
100   case KMP_HW_DIE:
101     return ((plural) ? "dice" : "die");
102   case KMP_HW_MODULE:
103     return ((plural) ? "modules" : "module");
104   case KMP_HW_TILE:
105     return ((plural) ? "tiles" : "tile");
106   case KMP_HW_NUMA:
107     return ((plural) ? "numa_domains" : "numa_domain");
108   case KMP_HW_L3:
109     return ((plural) ? "l3_caches" : "l3_cache");
110   case KMP_HW_L2:
111     return ((plural) ? "l2_caches" : "l2_cache");
112   case KMP_HW_L1:
113     return ((plural) ? "l1_caches" : "l1_cache");
114   case KMP_HW_LLC:
115     return ((plural) ? "ll_caches" : "ll_cache");
116   case KMP_HW_CORE:
117     return ((plural) ? "cores" : "core");
118   case KMP_HW_THREAD:
119     return ((plural) ? "threads" : "thread");
120   case KMP_HW_PROC_GROUP:
121     return ((plural) ? "proc_groups" : "proc_group");
122   }
123   return ((plural) ? "unknowns" : "unknown");
124 }
125 
126 ////////////////////////////////////////////////////////////////////////////////
127 // kmp_hw_thread_t methods
128 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
129   const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
130   const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
131   int depth = __kmp_topology->get_depth();
132   for (int level = 0; level < depth; ++level) {
133     if (ahwthread->ids[level] < bhwthread->ids[level])
134       return -1;
135     else if (ahwthread->ids[level] > bhwthread->ids[level])
136       return 1;
137   }
138   if (ahwthread->os_id < bhwthread->os_id)
139     return -1;
140   else if (ahwthread->os_id > bhwthread->os_id)
141     return 1;
142   return 0;
143 }
144 
145 #if KMP_AFFINITY_SUPPORTED
146 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
147   int i;
148   const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
149   const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
150   int depth = __kmp_topology->get_depth();
151   KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
152   KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
153   for (i = 0; i < __kmp_affinity_compact; i++) {
154     int j = depth - i - 1;
155     if (aa->sub_ids[j] < bb->sub_ids[j])
156       return -1;
157     if (aa->sub_ids[j] > bb->sub_ids[j])
158       return 1;
159   }
160   for (; i < depth; i++) {
161     int j = i - __kmp_affinity_compact;
162     if (aa->sub_ids[j] < bb->sub_ids[j])
163       return -1;
164     if (aa->sub_ids[j] > bb->sub_ids[j])
165       return 1;
166   }
167   return 0;
168 }
169 #endif
170 
171 void kmp_hw_thread_t::print() const {
172   int depth = __kmp_topology->get_depth();
173   printf("%4d ", os_id);
174   for (int i = 0; i < depth; ++i) {
175     printf("%4d ", ids[i]);
176   }
177   printf("\n");
178 }
179 
180 ////////////////////////////////////////////////////////////////////////////////
181 // kmp_topology_t methods
182 
183 // Remove layers that don't add information to the topology.
184 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
185 void kmp_topology_t::_remove_radix1_layers() {
186   int preference[KMP_HW_LAST];
187   int top_index1, top_index2;
188   // Set up preference associative array
189   preference[KMP_HW_PROC_GROUP] = 110;
190   preference[KMP_HW_SOCKET] = 100;
191   preference[KMP_HW_CORE] = 95;
192   preference[KMP_HW_THREAD] = 90;
193   preference[KMP_HW_NUMA] = 85;
194   preference[KMP_HW_DIE] = 80;
195   preference[KMP_HW_TILE] = 75;
196   preference[KMP_HW_MODULE] = 73;
197   preference[KMP_HW_L3] = 70;
198   preference[KMP_HW_L2] = 65;
199   preference[KMP_HW_L1] = 60;
200   preference[KMP_HW_LLC] = 5;
201   top_index1 = 0;
202   top_index2 = 1;
203   while (top_index1 < depth - 1 && top_index2 < depth) {
204     kmp_hw_t type1 = types[top_index1];
205     kmp_hw_t type2 = types[top_index2];
206     KMP_ASSERT_VALID_HW_TYPE(type1);
207     KMP_ASSERT_VALID_HW_TYPE(type2);
208     // Do not allow the three main topology levels (sockets, cores, threads) to
209     // be compacted down
210     if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
211          type1 == KMP_HW_SOCKET) &&
212         (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
213          type2 == KMP_HW_SOCKET)) {
214       top_index1 = top_index2++;
215       continue;
216     }
217     bool radix1 = true;
218     bool all_same = true;
219     int id1 = hw_threads[0].ids[top_index1];
220     int id2 = hw_threads[0].ids[top_index2];
221     int pref1 = preference[type1];
222     int pref2 = preference[type2];
223     for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
224       if (hw_threads[hwidx].ids[top_index1] == id1 &&
225           hw_threads[hwidx].ids[top_index2] != id2) {
226         radix1 = false;
227         break;
228       }
229       if (hw_threads[hwidx].ids[top_index2] != id2)
230         all_same = false;
231       id1 = hw_threads[hwidx].ids[top_index1];
232       id2 = hw_threads[hwidx].ids[top_index2];
233     }
234     if (radix1) {
235       // Select the layer to remove based on preference
236       kmp_hw_t remove_type, keep_type;
237       int remove_layer, remove_layer_ids;
238       if (pref1 > pref2) {
239         remove_type = type2;
240         remove_layer = remove_layer_ids = top_index2;
241         keep_type = type1;
242       } else {
243         remove_type = type1;
244         remove_layer = remove_layer_ids = top_index1;
245         keep_type = type2;
246       }
247       // If all the indexes for the second (deeper) layer are the same.
248       // e.g., all are zero, then make sure to keep the first layer's ids
249       if (all_same)
250         remove_layer_ids = top_index2;
251       // Remove radix one type by setting the equivalence, removing the id from
252       // the hw threads and removing the layer from types and depth
253       set_equivalent_type(remove_type, keep_type);
254       for (int idx = 0; idx < num_hw_threads; ++idx) {
255         kmp_hw_thread_t &hw_thread = hw_threads[idx];
256         for (int d = remove_layer_ids; d < depth - 1; ++d)
257           hw_thread.ids[d] = hw_thread.ids[d + 1];
258       }
259       for (int idx = remove_layer; idx < depth - 1; ++idx)
260         types[idx] = types[idx + 1];
261       depth--;
262     } else {
263       top_index1 = top_index2++;
264     }
265   }
266   KMP_ASSERT(depth > 0);
267 }
268 
269 void kmp_topology_t::_set_last_level_cache() {
270   if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
271     set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
272   else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
273     set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
274 #if KMP_MIC_SUPPORTED
275   else if (__kmp_mic_type == mic3) {
276     if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
277       set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
278     else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
279       set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
280     // L2/Tile wasn't detected so just say L1
281     else
282       set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
283   }
284 #endif
285   else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
286     set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
287   // Fallback is to set last level cache to socket or core
288   if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
289     if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
290       set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
291     else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
292       set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
293   }
294   KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
295 }
296 
297 // Gather the count of each topology layer and the ratio
298 void kmp_topology_t::_gather_enumeration_information() {
299   int previous_id[KMP_HW_LAST];
300   int max[KMP_HW_LAST];
301 
302   for (int i = 0; i < depth; ++i) {
303     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
304     max[i] = 0;
305     count[i] = 0;
306     ratio[i] = 0;
307   }
308   for (int i = 0; i < num_hw_threads; ++i) {
309     kmp_hw_thread_t &hw_thread = hw_threads[i];
310     for (int layer = 0; layer < depth; ++layer) {
311       int id = hw_thread.ids[layer];
312       if (id != previous_id[layer]) {
313         // Add an additional increment to each count
314         for (int l = layer; l < depth; ++l)
315           count[l]++;
316         // Keep track of topology layer ratio statistics
317         max[layer]++;
318         for (int l = layer + 1; l < depth; ++l) {
319           if (max[l] > ratio[l])
320             ratio[l] = max[l];
321           max[l] = 1;
322         }
323         break;
324       }
325     }
326     for (int layer = 0; layer < depth; ++layer) {
327       previous_id[layer] = hw_thread.ids[layer];
328     }
329   }
330   for (int layer = 0; layer < depth; ++layer) {
331     if (max[layer] > ratio[layer])
332       ratio[layer] = max[layer];
333   }
334 }
335 
336 // Find out if the topology is uniform
337 void kmp_topology_t::_discover_uniformity() {
338   int num = 1;
339   for (int level = 0; level < depth; ++level)
340     num *= ratio[level];
341   flags.uniform = (num == count[depth - 1]);
342 }
343 
344 // Set all the sub_ids for each hardware thread
345 void kmp_topology_t::_set_sub_ids() {
346   int previous_id[KMP_HW_LAST];
347   int sub_id[KMP_HW_LAST];
348 
349   for (int i = 0; i < depth; ++i) {
350     previous_id[i] = -1;
351     sub_id[i] = -1;
352   }
353   for (int i = 0; i < num_hw_threads; ++i) {
354     kmp_hw_thread_t &hw_thread = hw_threads[i];
355     // Setup the sub_id
356     for (int j = 0; j < depth; ++j) {
357       if (hw_thread.ids[j] != previous_id[j]) {
358         sub_id[j]++;
359         for (int k = j + 1; k < depth; ++k) {
360           sub_id[k] = 0;
361         }
362         break;
363       }
364     }
365     // Set previous_id
366     for (int j = 0; j < depth; ++j) {
367       previous_id[j] = hw_thread.ids[j];
368     }
369     // Set the sub_ids field
370     for (int j = 0; j < depth; ++j) {
371       hw_thread.sub_ids[j] = sub_id[j];
372     }
373   }
374 }
375 
376 void kmp_topology_t::_set_globals() {
377   // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
378   int core_level, thread_level, package_level;
379   package_level = get_level(KMP_HW_SOCKET);
380 #if KMP_GROUP_AFFINITY
381   if (package_level == -1)
382     package_level = get_level(KMP_HW_PROC_GROUP);
383 #endif
384   core_level = get_level(KMP_HW_CORE);
385   thread_level = get_level(KMP_HW_THREAD);
386 
387   KMP_ASSERT(core_level != -1);
388   KMP_ASSERT(thread_level != -1);
389 
390   __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
391   if (package_level != -1) {
392     nCoresPerPkg = calculate_ratio(core_level, package_level);
393     nPackages = get_count(package_level);
394   } else {
395     // assume one socket
396     nCoresPerPkg = get_count(core_level);
397     nPackages = 1;
398   }
399 #ifndef KMP_DFLT_NTH_CORES
400   __kmp_ncores = get_count(core_level);
401 #endif
402 }
403 
404 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
405                                          const kmp_hw_t *types) {
406   kmp_topology_t *retval;
407   // Allocate all data in one large allocation
408   size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
409                 sizeof(int) * ndepth * 3;
410   char *bytes = (char *)__kmp_allocate(size);
411   retval = (kmp_topology_t *)bytes;
412   if (nproc > 0) {
413     retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
414   } else {
415     retval->hw_threads = nullptr;
416   }
417   retval->num_hw_threads = nproc;
418   retval->depth = ndepth;
419   int *arr =
420       (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
421   retval->types = (kmp_hw_t *)arr;
422   retval->ratio = arr + ndepth;
423   retval->count = arr + 2 * ndepth;
424   KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
425   for (int i = 0; i < ndepth; ++i) {
426     retval->types[i] = types[i];
427     retval->equivalent[types[i]] = types[i];
428   }
429   return retval;
430 }
431 
432 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
433   if (topology)
434     __kmp_free(topology);
435 }
436 
437 bool kmp_topology_t::check_ids() const {
438   // Assume ids have been sorted
439   if (num_hw_threads == 0)
440     return true;
441   for (int i = 1; i < num_hw_threads; ++i) {
442     kmp_hw_thread_t &current_thread = hw_threads[i];
443     kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
444     bool unique = false;
445     for (int j = 0; j < depth; ++j) {
446       if (previous_thread.ids[j] != current_thread.ids[j]) {
447         unique = true;
448         break;
449       }
450     }
451     if (unique)
452       continue;
453     return false;
454   }
455   return true;
456 }
457 
458 void kmp_topology_t::dump() const {
459   printf("***********************\n");
460   printf("*** __kmp_topology: ***\n");
461   printf("***********************\n");
462   printf("* depth: %d\n", depth);
463 
464   printf("* types: ");
465   for (int i = 0; i < depth; ++i)
466     printf("%15s ", __kmp_hw_get_keyword(types[i]));
467   printf("\n");
468 
469   printf("* ratio: ");
470   for (int i = 0; i < depth; ++i) {
471     printf("%15d ", ratio[i]);
472   }
473   printf("\n");
474 
475   printf("* count: ");
476   for (int i = 0; i < depth; ++i) {
477     printf("%15d ", count[i]);
478   }
479   printf("\n");
480 
481   printf("* equivalent map:\n");
482   KMP_FOREACH_HW_TYPE(i) {
483     const char *key = __kmp_hw_get_keyword(i);
484     const char *value = __kmp_hw_get_keyword(equivalent[i]);
485     printf("%-15s -> %-15s\n", key, value);
486   }
487 
488   printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
489 
490   printf("* num_hw_threads: %d\n", num_hw_threads);
491   printf("* hw_threads:\n");
492   for (int i = 0; i < num_hw_threads; ++i) {
493     hw_threads[i].print();
494   }
495   printf("***********************\n");
496 }
497 
498 void kmp_topology_t::print(const char *env_var) const {
499   kmp_str_buf_t buf;
500   int print_types_depth;
501   __kmp_str_buf_init(&buf);
502   kmp_hw_t print_types[KMP_HW_LAST + 2];
503 
504   // Num Available Threads
505   KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
506 
507   // Uniform or not
508   if (is_uniform()) {
509     KMP_INFORM(Uniform, env_var);
510   } else {
511     KMP_INFORM(NonUniform, env_var);
512   }
513 
514   // Equivalent types
515   KMP_FOREACH_HW_TYPE(type) {
516     kmp_hw_t eq_type = equivalent[type];
517     if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
518       KMP_INFORM(AffEqualTopologyTypes, env_var,
519                  __kmp_hw_get_catalog_string(type),
520                  __kmp_hw_get_catalog_string(eq_type));
521     }
522   }
523 
524   // Quick topology
525   KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
526   // Create a print types array that always guarantees printing
527   // the core and thread level
528   print_types_depth = 0;
529   for (int level = 0; level < depth; ++level)
530     print_types[print_types_depth++] = types[level];
531   if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
532     // Force in the core level for quick topology
533     if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
534       // Force core before thread e.g., 1 socket X 2 threads/socket
535       // becomes 1 socket X 1 core/socket X 2 threads/socket
536       print_types[print_types_depth - 1] = KMP_HW_CORE;
537       print_types[print_types_depth++] = KMP_HW_THREAD;
538     } else {
539       print_types[print_types_depth++] = KMP_HW_CORE;
540     }
541   }
542   // Always put threads at very end of quick topology
543   if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
544     print_types[print_types_depth++] = KMP_HW_THREAD;
545 
546   __kmp_str_buf_clear(&buf);
547   kmp_hw_t numerator_type;
548   kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
549   int core_level = get_level(KMP_HW_CORE);
550   int ncores = get_count(core_level);
551 
552   for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
553     int c;
554     bool plural;
555     numerator_type = print_types[plevel];
556     KMP_ASSERT_VALID_HW_TYPE(numerator_type);
557     if (equivalent[numerator_type] != numerator_type)
558       c = 1;
559     else
560       c = get_ratio(level++);
561     plural = (c > 1);
562     if (plevel == 0) {
563       __kmp_str_buf_print(&buf, "%d %s", c,
564                           __kmp_hw_get_catalog_string(numerator_type, plural));
565     } else {
566       __kmp_str_buf_print(&buf, " x %d %s/%s", c,
567                           __kmp_hw_get_catalog_string(numerator_type, plural),
568                           __kmp_hw_get_catalog_string(denominator_type));
569     }
570     denominator_type = numerator_type;
571   }
572   KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
573 
574   if (num_hw_threads <= 0) {
575     __kmp_str_buf_free(&buf);
576     return;
577   }
578 
579   // Full OS proc to hardware thread map
580   KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
581   for (int i = 0; i < num_hw_threads; i++) {
582     __kmp_str_buf_clear(&buf);
583     for (int level = 0; level < depth; ++level) {
584       kmp_hw_t type = types[level];
585       __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
586       __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
587     }
588     KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
589   }
590 
591   __kmp_str_buf_free(&buf);
592 }
593 
594 void kmp_topology_t::canonicalize() {
595   _remove_radix1_layers();
596   _gather_enumeration_information();
597   _discover_uniformity();
598   _set_sub_ids();
599   _set_globals();
600   _set_last_level_cache();
601 
602 #if KMP_MIC_SUPPORTED
603   // Manually Add L2 = Tile equivalence
604   if (__kmp_mic_type == mic3) {
605     if (get_level(KMP_HW_L2) != -1)
606       set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
607     else if (get_level(KMP_HW_TILE) != -1)
608       set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
609   }
610 #endif
611 
612   // Perform post canonicalization checking
613   KMP_ASSERT(depth > 0);
614   for (int level = 0; level < depth; ++level) {
615     // All counts, ratios, and types must be valid
616     KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
617     KMP_ASSERT_VALID_HW_TYPE(types[level]);
618     // Detected types must point to themselves
619     KMP_ASSERT(equivalent[types[level]] == types[level]);
620   }
621 
622 #if KMP_AFFINITY_SUPPORTED
623   // Set the number of affinity granularity levels
624   if (__kmp_affinity_gran_levels < 0) {
625     kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
626     // Check if user's granularity request is valid
627     if (gran_type == KMP_HW_UNKNOWN) {
628       // First try core, then thread, then package
629       kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
630       for (auto g : gran_types) {
631         if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) {
632           gran_type = g;
633           break;
634         }
635       }
636       KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
637       // Warn user what granularity setting will be used instead
638       KMP_WARNING(AffGranularityBad, "KMP_AFFINITY",
639                   __kmp_hw_get_catalog_string(__kmp_affinity_gran),
640                   __kmp_hw_get_catalog_string(gran_type));
641       __kmp_affinity_gran = gran_type;
642     }
643     __kmp_affinity_gran_levels = 0;
644     for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
645       __kmp_affinity_gran_levels++;
646   }
647 #endif // KMP_AFFINITY_SUPPORTED
648 }
649 
650 // Canonicalize an explicit packages X cores/pkg X threads/core topology
651 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
652                                   int nthreads_per_core, int ncores) {
653   int ndepth = 3;
654   depth = ndepth;
655   KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
656   for (int level = 0; level < depth; ++level) {
657     count[level] = 0;
658     ratio[level] = 0;
659   }
660   count[0] = npackages;
661   count[1] = ncores;
662   count[2] = __kmp_xproc;
663   ratio[0] = npackages;
664   ratio[1] = ncores_per_pkg;
665   ratio[2] = nthreads_per_core;
666   equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
667   equivalent[KMP_HW_CORE] = KMP_HW_CORE;
668   equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
669   types[0] = KMP_HW_SOCKET;
670   types[1] = KMP_HW_CORE;
671   types[2] = KMP_HW_THREAD;
672   //__kmp_avail_proc = __kmp_xproc;
673   _discover_uniformity();
674 }
675 
676 // Apply the KMP_HW_SUBSET envirable to the topology
677 // Returns true if KMP_HW_SUBSET filtered any processors
678 // otherwise, returns false
679 bool kmp_topology_t::filter_hw_subset() {
680   // If KMP_HW_SUBSET wasn't requested, then do nothing.
681   if (!__kmp_hw_subset)
682     return false;
683 
684   // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
685   int hw_subset_depth = __kmp_hw_subset->get_depth();
686   kmp_hw_t specified[KMP_HW_LAST];
687   KMP_ASSERT(hw_subset_depth > 0);
688   KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
689   for (int i = 0; i < hw_subset_depth; ++i) {
690     int max_count;
691     int num = __kmp_hw_subset->at(i).num;
692     int offset = __kmp_hw_subset->at(i).offset;
693     kmp_hw_t type = __kmp_hw_subset->at(i).type;
694     kmp_hw_t equivalent_type = equivalent[type];
695     int level = get_level(type);
696 
697     // Check to see if current layer is in detected machine topology
698     if (equivalent_type != KMP_HW_UNKNOWN) {
699       __kmp_hw_subset->at(i).type = equivalent_type;
700     } else {
701       KMP_WARNING(AffHWSubsetNotExistGeneric,
702                   __kmp_hw_get_catalog_string(type));
703       return false;
704     }
705 
706     // Check to see if current layer has already been specified
707     // either directly or through an equivalent type
708     if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
709       KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
710                   __kmp_hw_get_catalog_string(specified[equivalent_type]));
711       return false;
712     }
713     specified[equivalent_type] = type;
714 
715     // Check to see if layers are in order
716     if (i + 1 < hw_subset_depth) {
717       kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type);
718       if (next_type == KMP_HW_UNKNOWN) {
719         KMP_WARNING(
720             AffHWSubsetNotExistGeneric,
721             __kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type));
722         return false;
723       }
724       int next_topology_level = get_level(next_type);
725       if (level > next_topology_level) {
726         KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type),
727                     __kmp_hw_get_catalog_string(next_type));
728         return false;
729       }
730     }
731 
732     // Check to see if each layer's num & offset parameters are valid
733     max_count = get_ratio(level);
734     if (max_count < 0 || num + offset > max_count) {
735       bool plural = (num > 1);
736       KMP_WARNING(AffHWSubsetManyGeneric,
737                   __kmp_hw_get_catalog_string(type, plural));
738       return false;
739     }
740   }
741 
742   // Apply the filtered hardware subset
743   int new_index = 0;
744   for (int i = 0; i < num_hw_threads; ++i) {
745     kmp_hw_thread_t &hw_thread = hw_threads[i];
746     // Check to see if this hardware thread should be filtered
747     bool should_be_filtered = false;
748     for (int level = 0, hw_subset_index = 0;
749          level < depth && hw_subset_index < hw_subset_depth; ++level) {
750       kmp_hw_t topology_type = types[level];
751       auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
752       kmp_hw_t hw_subset_type = hw_subset_item.type;
753       if (topology_type != hw_subset_type)
754         continue;
755       int num = hw_subset_item.num;
756       int offset = hw_subset_item.offset;
757       hw_subset_index++;
758       if (hw_thread.sub_ids[level] < offset ||
759           hw_thread.sub_ids[level] >= offset + num) {
760         should_be_filtered = true;
761         break;
762       }
763     }
764     if (!should_be_filtered) {
765       if (i != new_index)
766         hw_threads[new_index] = hw_thread;
767       new_index++;
768     } else {
769 #if KMP_AFFINITY_SUPPORTED
770       KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask);
771 #endif
772       __kmp_avail_proc--;
773     }
774   }
775   KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
776   num_hw_threads = new_index;
777 
778   // Post hardware subset canonicalization
779   _gather_enumeration_information();
780   _discover_uniformity();
781   _set_globals();
782   _set_last_level_cache();
783   return true;
784 }
785 
786 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
787   if (hw_level >= depth)
788     return true;
789   bool retval = true;
790   const kmp_hw_thread_t &t1 = hw_threads[hwt1];
791   const kmp_hw_thread_t &t2 = hw_threads[hwt2];
792   for (int i = 0; i < (depth - hw_level); ++i) {
793     if (t1.ids[i] != t2.ids[i])
794       return false;
795   }
796   return retval;
797 }
798 
799 ////////////////////////////////////////////////////////////////////////////////
800 
801 #if KMP_AFFINITY_SUPPORTED
802 class kmp_affinity_raii_t {
803   kmp_affin_mask_t *mask;
804   bool restored;
805 
806 public:
807   kmp_affinity_raii_t() : restored(false) {
808     KMP_CPU_ALLOC(mask);
809     KMP_ASSERT(mask != NULL);
810     __kmp_get_system_affinity(mask, TRUE);
811   }
812   void restore() {
813     __kmp_set_system_affinity(mask, TRUE);
814     KMP_CPU_FREE(mask);
815     restored = true;
816   }
817   ~kmp_affinity_raii_t() {
818     if (!restored) {
819       __kmp_set_system_affinity(mask, TRUE);
820       KMP_CPU_FREE(mask);
821     }
822   }
823 };
824 
825 bool KMPAffinity::picked_api = false;
826 
827 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
828 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
829 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
830 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
831 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
832 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
833 
834 void KMPAffinity::pick_api() {
835   KMPAffinity *affinity_dispatch;
836   if (picked_api)
837     return;
838 #if KMP_USE_HWLOC
839   // Only use Hwloc if affinity isn't explicitly disabled and
840   // user requests Hwloc topology method
841   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
842       __kmp_affinity_type != affinity_disabled) {
843     affinity_dispatch = new KMPHwlocAffinity();
844   } else
845 #endif
846   {
847     affinity_dispatch = new KMPNativeAffinity();
848   }
849   __kmp_affinity_dispatch = affinity_dispatch;
850   picked_api = true;
851 }
852 
853 void KMPAffinity::destroy_api() {
854   if (__kmp_affinity_dispatch != NULL) {
855     delete __kmp_affinity_dispatch;
856     __kmp_affinity_dispatch = NULL;
857     picked_api = false;
858   }
859 }
860 
861 #define KMP_ADVANCE_SCAN(scan)                                                 \
862   while (*scan != '\0') {                                                      \
863     scan++;                                                                    \
864   }
865 
866 // Print the affinity mask to the character array in a pretty format.
867 // The format is a comma separated list of non-negative integers or integer
868 // ranges: e.g., 1,2,3-5,7,9-15
869 // The format can also be the string "{<empty>}" if no bits are set in mask
870 char *__kmp_affinity_print_mask(char *buf, int buf_len,
871                                 kmp_affin_mask_t *mask) {
872   int start = 0, finish = 0, previous = 0;
873   bool first_range;
874   KMP_ASSERT(buf);
875   KMP_ASSERT(buf_len >= 40);
876   KMP_ASSERT(mask);
877   char *scan = buf;
878   char *end = buf + buf_len - 1;
879 
880   // Check for empty set.
881   if (mask->begin() == mask->end()) {
882     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
883     KMP_ADVANCE_SCAN(scan);
884     KMP_ASSERT(scan <= end);
885     return buf;
886   }
887 
888   first_range = true;
889   start = mask->begin();
890   while (1) {
891     // Find next range
892     // [start, previous] is inclusive range of contiguous bits in mask
893     for (finish = mask->next(start), previous = start;
894          finish == previous + 1 && finish != mask->end();
895          finish = mask->next(finish)) {
896       previous = finish;
897     }
898 
899     // The first range does not need a comma printed before it, but the rest
900     // of the ranges do need a comma beforehand
901     if (!first_range) {
902       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
903       KMP_ADVANCE_SCAN(scan);
904     } else {
905       first_range = false;
906     }
907     // Range with three or more contiguous bits in the affinity mask
908     if (previous - start > 1) {
909       KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
910     } else {
911       // Range with one or two contiguous bits in the affinity mask
912       KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
913       KMP_ADVANCE_SCAN(scan);
914       if (previous - start > 0) {
915         KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
916       }
917     }
918     KMP_ADVANCE_SCAN(scan);
919     // Start over with new start point
920     start = finish;
921     if (start == mask->end())
922       break;
923     // Check for overflow
924     if (end - scan < 2)
925       break;
926   }
927 
928   // Check for overflow
929   KMP_ASSERT(scan <= end);
930   return buf;
931 }
932 #undef KMP_ADVANCE_SCAN
933 
934 // Print the affinity mask to the string buffer object in a pretty format
935 // The format is a comma separated list of non-negative integers or integer
936 // ranges: e.g., 1,2,3-5,7,9-15
937 // The format can also be the string "{<empty>}" if no bits are set in mask
938 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
939                                            kmp_affin_mask_t *mask) {
940   int start = 0, finish = 0, previous = 0;
941   bool first_range;
942   KMP_ASSERT(buf);
943   KMP_ASSERT(mask);
944 
945   __kmp_str_buf_clear(buf);
946 
947   // Check for empty set.
948   if (mask->begin() == mask->end()) {
949     __kmp_str_buf_print(buf, "%s", "{<empty>}");
950     return buf;
951   }
952 
953   first_range = true;
954   start = mask->begin();
955   while (1) {
956     // Find next range
957     // [start, previous] is inclusive range of contiguous bits in mask
958     for (finish = mask->next(start), previous = start;
959          finish == previous + 1 && finish != mask->end();
960          finish = mask->next(finish)) {
961       previous = finish;
962     }
963 
964     // The first range does not need a comma printed before it, but the rest
965     // of the ranges do need a comma beforehand
966     if (!first_range) {
967       __kmp_str_buf_print(buf, "%s", ",");
968     } else {
969       first_range = false;
970     }
971     // Range with three or more contiguous bits in the affinity mask
972     if (previous - start > 1) {
973       __kmp_str_buf_print(buf, "%u-%u", start, previous);
974     } else {
975       // Range with one or two contiguous bits in the affinity mask
976       __kmp_str_buf_print(buf, "%u", start);
977       if (previous - start > 0) {
978         __kmp_str_buf_print(buf, ",%u", previous);
979       }
980     }
981     // Start over with new start point
982     start = finish;
983     if (start == mask->end())
984       break;
985   }
986   return buf;
987 }
988 
989 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
990   KMP_CPU_ZERO(mask);
991 
992 #if KMP_GROUP_AFFINITY
993 
994   if (__kmp_num_proc_groups > 1) {
995     int group;
996     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
997     for (group = 0; group < __kmp_num_proc_groups; group++) {
998       int i;
999       int num = __kmp_GetActiveProcessorCount(group);
1000       for (i = 0; i < num; i++) {
1001         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1002       }
1003     }
1004   } else
1005 
1006 #endif /* KMP_GROUP_AFFINITY */
1007 
1008   {
1009     int proc;
1010     for (proc = 0; proc < __kmp_xproc; proc++) {
1011       KMP_CPU_SET(proc, mask);
1012     }
1013   }
1014 }
1015 
1016 // All of the __kmp_affinity_create_*_map() routines should allocate the
1017 // internal topology object and set the layer ids for it.  Each routine
1018 // returns a boolean on whether it was successful at doing so.
1019 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1020 
1021 #if KMP_USE_HWLOC
1022 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1023 #if HWLOC_API_VERSION >= 0x00020000
1024   return hwloc_obj_type_is_cache(obj->type);
1025 #else
1026   return obj->type == HWLOC_OBJ_CACHE;
1027 #endif
1028 }
1029 
1030 // Returns KMP_HW_* type derived from HWLOC_* type
1031 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1032 
1033   if (__kmp_hwloc_is_cache_type(obj)) {
1034     if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1035       return KMP_HW_UNKNOWN;
1036     switch (obj->attr->cache.depth) {
1037     case 1:
1038       return KMP_HW_L1;
1039     case 2:
1040 #if KMP_MIC_SUPPORTED
1041       if (__kmp_mic_type == mic3) {
1042         return KMP_HW_TILE;
1043       }
1044 #endif
1045       return KMP_HW_L2;
1046     case 3:
1047       return KMP_HW_L3;
1048     }
1049     return KMP_HW_UNKNOWN;
1050   }
1051 
1052   switch (obj->type) {
1053   case HWLOC_OBJ_PACKAGE:
1054     return KMP_HW_SOCKET;
1055   case HWLOC_OBJ_NUMANODE:
1056     return KMP_HW_NUMA;
1057   case HWLOC_OBJ_CORE:
1058     return KMP_HW_CORE;
1059   case HWLOC_OBJ_PU:
1060     return KMP_HW_THREAD;
1061   case HWLOC_OBJ_GROUP:
1062     if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1063       return KMP_HW_DIE;
1064     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1065       return KMP_HW_TILE;
1066     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1067       return KMP_HW_MODULE;
1068     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1069       return KMP_HW_PROC_GROUP;
1070     return KMP_HW_UNKNOWN;
1071 #if HWLOC_API_VERSION >= 0x00020100
1072   case HWLOC_OBJ_DIE:
1073     return KMP_HW_DIE;
1074 #endif
1075   }
1076   return KMP_HW_UNKNOWN;
1077 }
1078 
1079 // Returns the number of objects of type 'type' below 'obj' within the topology
1080 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1081 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1082 // object.
1083 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1084                                            hwloc_obj_type_t type) {
1085   int retval = 0;
1086   hwloc_obj_t first;
1087   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1088                                            obj->logical_index, type, 0);
1089        first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1090                                                        obj->type, first) == obj;
1091        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1092                                           first)) {
1093     ++retval;
1094   }
1095   return retval;
1096 }
1097 
1098 // This gets the sub_id for a lower object under a higher object in the
1099 // topology tree
1100 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1101                                   hwloc_obj_t lower) {
1102   hwloc_obj_t obj;
1103   hwloc_obj_type_t ltype = lower->type;
1104   int lindex = lower->logical_index - 1;
1105   int sub_id = 0;
1106   // Get the previous lower object
1107   obj = hwloc_get_obj_by_type(t, ltype, lindex);
1108   while (obj && lindex >= 0 &&
1109          hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1110     if (obj->userdata) {
1111       sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1112       break;
1113     }
1114     sub_id++;
1115     lindex--;
1116     obj = hwloc_get_obj_by_type(t, ltype, lindex);
1117   }
1118   // store sub_id + 1 so that 0 is differed from NULL
1119   lower->userdata = RCAST(void *, sub_id + 1);
1120   return sub_id;
1121 }
1122 
1123 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1124   kmp_hw_t type;
1125   int hw_thread_index, sub_id;
1126   int depth;
1127   hwloc_obj_t pu, obj, root, prev;
1128   kmp_hw_t types[KMP_HW_LAST];
1129   hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1130 
1131   hwloc_topology_t tp = __kmp_hwloc_topology;
1132   *msg_id = kmp_i18n_null;
1133   if (__kmp_affinity_verbose) {
1134     KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1135   }
1136 
1137   if (!KMP_AFFINITY_CAPABLE()) {
1138     // Hack to try and infer the machine topology using only the data
1139     // available from hwloc on the current thread, and __kmp_xproc.
1140     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1141     // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1142     hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1143     if (o != NULL)
1144       nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1145     else
1146       nCoresPerPkg = 1; // no PACKAGE found
1147     o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1148     if (o != NULL)
1149       __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1150     else
1151       __kmp_nThreadsPerCore = 1; // no CORE found
1152     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1153     if (nCoresPerPkg == 0)
1154       nCoresPerPkg = 1; // to prevent possible division by 0
1155     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1156     return true;
1157   }
1158 
1159   root = hwloc_get_root_obj(tp);
1160 
1161   // Figure out the depth and types in the topology
1162   depth = 0;
1163   pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1164   KMP_ASSERT(pu);
1165   obj = pu;
1166   types[depth] = KMP_HW_THREAD;
1167   hwloc_types[depth] = obj->type;
1168   depth++;
1169   while (obj != root && obj != NULL) {
1170     obj = obj->parent;
1171 #if HWLOC_API_VERSION >= 0x00020000
1172     if (obj->memory_arity) {
1173       hwloc_obj_t memory;
1174       for (memory = obj->memory_first_child; memory;
1175            memory = hwloc_get_next_child(tp, obj, memory)) {
1176         if (memory->type == HWLOC_OBJ_NUMANODE)
1177           break;
1178       }
1179       if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1180         types[depth] = KMP_HW_NUMA;
1181         hwloc_types[depth] = memory->type;
1182         depth++;
1183       }
1184     }
1185 #endif
1186     type = __kmp_hwloc_type_2_topology_type(obj);
1187     if (type != KMP_HW_UNKNOWN) {
1188       types[depth] = type;
1189       hwloc_types[depth] = obj->type;
1190       depth++;
1191     }
1192   }
1193   KMP_ASSERT(depth > 0);
1194 
1195   // Get the order for the types correct
1196   for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1197     hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1198     kmp_hw_t temp = types[i];
1199     types[i] = types[j];
1200     types[j] = temp;
1201     hwloc_types[i] = hwloc_types[j];
1202     hwloc_types[j] = hwloc_temp;
1203   }
1204 
1205   // Allocate the data structure to be returned.
1206   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1207 
1208   hw_thread_index = 0;
1209   pu = NULL;
1210   while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) {
1211     int index = depth - 1;
1212     bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1213     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1214     if (included) {
1215       hw_thread.clear();
1216       hw_thread.ids[index] = pu->logical_index;
1217       hw_thread.os_id = pu->os_index;
1218       index--;
1219     }
1220     obj = pu;
1221     prev = obj;
1222     while (obj != root && obj != NULL) {
1223       obj = obj->parent;
1224 #if HWLOC_API_VERSION >= 0x00020000
1225       // NUMA Nodes are handled differently since they are not within the
1226       // parent/child structure anymore.  They are separate children
1227       // of obj (memory_first_child points to first memory child)
1228       if (obj->memory_arity) {
1229         hwloc_obj_t memory;
1230         for (memory = obj->memory_first_child; memory;
1231              memory = hwloc_get_next_child(tp, obj, memory)) {
1232           if (memory->type == HWLOC_OBJ_NUMANODE)
1233             break;
1234         }
1235         if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1236           sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1237           if (included) {
1238             hw_thread.ids[index] = memory->logical_index;
1239             hw_thread.ids[index + 1] = sub_id;
1240             index--;
1241           }
1242           prev = memory;
1243         }
1244         prev = obj;
1245       }
1246 #endif
1247       type = __kmp_hwloc_type_2_topology_type(obj);
1248       if (type != KMP_HW_UNKNOWN) {
1249         sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1250         if (included) {
1251           hw_thread.ids[index] = obj->logical_index;
1252           hw_thread.ids[index + 1] = sub_id;
1253           index--;
1254         }
1255         prev = obj;
1256       }
1257     }
1258     if (included)
1259       hw_thread_index++;
1260   }
1261   __kmp_topology->sort_ids();
1262   return true;
1263 }
1264 #endif // KMP_USE_HWLOC
1265 
1266 // If we don't know how to retrieve the machine's processor topology, or
1267 // encounter an error in doing so, this routine is called to form a "flat"
1268 // mapping of os thread id's <-> processor id's.
1269 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1270   *msg_id = kmp_i18n_null;
1271   int depth = 3;
1272   kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1273 
1274   if (__kmp_affinity_verbose) {
1275     KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1276   }
1277 
1278   // Even if __kmp_affinity_type == affinity_none, this routine might still
1279   // called to set __kmp_ncores, as well as
1280   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1281   if (!KMP_AFFINITY_CAPABLE()) {
1282     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1283     __kmp_ncores = nPackages = __kmp_xproc;
1284     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1285     return true;
1286   }
1287 
1288   // When affinity is off, this routine will still be called to set
1289   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1290   // Make sure all these vars are set correctly, and return now if affinity is
1291   // not enabled.
1292   __kmp_ncores = nPackages = __kmp_avail_proc;
1293   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1294 
1295   // Construct the data structure to be returned.
1296   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1297   int avail_ct = 0;
1298   int i;
1299   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1300     // Skip this proc if it is not included in the machine model.
1301     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1302       continue;
1303     }
1304     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1305     hw_thread.clear();
1306     hw_thread.os_id = i;
1307     hw_thread.ids[0] = i;
1308     hw_thread.ids[1] = 0;
1309     hw_thread.ids[2] = 0;
1310     avail_ct++;
1311   }
1312   if (__kmp_affinity_verbose) {
1313     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
1314   }
1315   return true;
1316 }
1317 
1318 #if KMP_GROUP_AFFINITY
1319 // If multiple Windows* OS processor groups exist, we can create a 2-level
1320 // topology map with the groups at level 0 and the individual procs at level 1.
1321 // This facilitates letting the threads float among all procs in a group,
1322 // if granularity=group (the default when there are multiple groups).
1323 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1324   *msg_id = kmp_i18n_null;
1325   int depth = 3;
1326   kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1327   const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
1328 
1329   if (__kmp_affinity_verbose) {
1330     KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
1331   }
1332 
1333   // If we aren't affinity capable, then use flat topology
1334   if (!KMP_AFFINITY_CAPABLE()) {
1335     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1336     nPackages = __kmp_num_proc_groups;
1337     __kmp_nThreadsPerCore = 1;
1338     __kmp_ncores = __kmp_xproc;
1339     nCoresPerPkg = nPackages / __kmp_ncores;
1340     return true;
1341   }
1342 
1343   // Construct the data structure to be returned.
1344   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1345   int avail_ct = 0;
1346   int i;
1347   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1348     // Skip this proc if it is not included in the machine model.
1349     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1350       continue;
1351     }
1352     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1353     hw_thread.clear();
1354     hw_thread.os_id = i;
1355     hw_thread.ids[0] = i / BITS_PER_GROUP;
1356     hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1357   }
1358   return true;
1359 }
1360 #endif /* KMP_GROUP_AFFINITY */
1361 
1362 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1363 
1364 template <kmp_uint32 LSB, kmp_uint32 MSB>
1365 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1366   const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1367   const kmp_uint32 SHIFT_RIGHT = LSB;
1368   kmp_uint32 retval = v;
1369   retval <<= SHIFT_LEFT;
1370   retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1371   return retval;
1372 }
1373 
1374 static int __kmp_cpuid_mask_width(int count) {
1375   int r = 0;
1376 
1377   while ((1 << r) < count)
1378     ++r;
1379   return r;
1380 }
1381 
1382 class apicThreadInfo {
1383 public:
1384   unsigned osId; // param to __kmp_affinity_bind_thread
1385   unsigned apicId; // from cpuid after binding
1386   unsigned maxCoresPerPkg; //      ""
1387   unsigned maxThreadsPerPkg; //      ""
1388   unsigned pkgId; // inferred from above values
1389   unsigned coreId; //      ""
1390   unsigned threadId; //      ""
1391 };
1392 
1393 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1394                                                      const void *b) {
1395   const apicThreadInfo *aa = (const apicThreadInfo *)a;
1396   const apicThreadInfo *bb = (const apicThreadInfo *)b;
1397   if (aa->pkgId < bb->pkgId)
1398     return -1;
1399   if (aa->pkgId > bb->pkgId)
1400     return 1;
1401   if (aa->coreId < bb->coreId)
1402     return -1;
1403   if (aa->coreId > bb->coreId)
1404     return 1;
1405   if (aa->threadId < bb->threadId)
1406     return -1;
1407   if (aa->threadId > bb->threadId)
1408     return 1;
1409   return 0;
1410 }
1411 
1412 class kmp_cache_info_t {
1413 public:
1414   struct info_t {
1415     unsigned level, mask;
1416   };
1417   kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
1418   size_t get_depth() const { return depth; }
1419   info_t &operator[](size_t index) { return table[index]; }
1420   const info_t &operator[](size_t index) const { return table[index]; }
1421 
1422   static kmp_hw_t get_topology_type(unsigned level) {
1423     KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
1424     switch (level) {
1425     case 1:
1426       return KMP_HW_L1;
1427     case 2:
1428       return KMP_HW_L2;
1429     case 3:
1430       return KMP_HW_L3;
1431     }
1432     return KMP_HW_UNKNOWN;
1433   }
1434 
1435 private:
1436   static const int MAX_CACHE_LEVEL = 3;
1437 
1438   size_t depth;
1439   info_t table[MAX_CACHE_LEVEL];
1440 
1441   void get_leaf4_levels() {
1442     unsigned level = 0;
1443     while (depth < MAX_CACHE_LEVEL) {
1444       unsigned cache_type, max_threads_sharing;
1445       unsigned cache_level, cache_mask_width;
1446       kmp_cpuid buf2;
1447       __kmp_x86_cpuid(4, level, &buf2);
1448       cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
1449       if (!cache_type)
1450         break;
1451       // Skip instruction caches
1452       if (cache_type == 2) {
1453         level++;
1454         continue;
1455       }
1456       max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
1457       cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
1458       cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
1459       table[depth].level = cache_level;
1460       table[depth].mask = ((-1) << cache_mask_width);
1461       depth++;
1462       level++;
1463     }
1464   }
1465 };
1466 
1467 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1468 // an algorithm which cycles through the available os threads, setting
1469 // the current thread's affinity mask to that thread, and then retrieves
1470 // the Apic Id for each thread context using the cpuid instruction.
1471 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
1472   kmp_cpuid buf;
1473   *msg_id = kmp_i18n_null;
1474 
1475   if (__kmp_affinity_verbose) {
1476     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
1477   }
1478 
1479   // Check if cpuid leaf 4 is supported.
1480   __kmp_x86_cpuid(0, 0, &buf);
1481   if (buf.eax < 4) {
1482     *msg_id = kmp_i18n_str_NoLeaf4Support;
1483     return false;
1484   }
1485 
1486   // The algorithm used starts by setting the affinity to each available thread
1487   // and retrieving info from the cpuid instruction, so if we are not capable of
1488   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1489   // need to do something else - use the defaults that we calculated from
1490   // issuing cpuid without binding to each proc.
1491   if (!KMP_AFFINITY_CAPABLE()) {
1492     // Hack to try and infer the machine topology using only the data
1493     // available from cpuid on the current thread, and __kmp_xproc.
1494     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1495 
1496     // Get an upper bound on the number of threads per package using cpuid(1).
1497     // On some OS/chps combinations where HT is supported by the chip but is
1498     // disabled, this value will be 2 on a single core chip. Usually, it will be
1499     // 2 if HT is enabled and 1 if HT is disabled.
1500     __kmp_x86_cpuid(1, 0, &buf);
1501     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1502     if (maxThreadsPerPkg == 0) {
1503       maxThreadsPerPkg = 1;
1504     }
1505 
1506     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1507     // value.
1508     //
1509     // The author of cpu_count.cpp treated this only an upper bound on the
1510     // number of cores, but I haven't seen any cases where it was greater than
1511     // the actual number of cores, so we will treat it as exact in this block of
1512     // code.
1513     //
1514     // First, we need to check if cpuid(4) is supported on this chip. To see if
1515     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1516     // greater.
1517     __kmp_x86_cpuid(0, 0, &buf);
1518     if (buf.eax >= 4) {
1519       __kmp_x86_cpuid(4, 0, &buf);
1520       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1521     } else {
1522       nCoresPerPkg = 1;
1523     }
1524 
1525     // There is no way to reliably tell if HT is enabled without issuing the
1526     // cpuid instruction from every thread, can correlating the cpuid info, so
1527     // if the machine is not affinity capable, we assume that HT is off. We have
1528     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1529     // does not support HT.
1530     //
1531     // - Older OSes are usually found on machines with older chips, which do not
1532     //   support HT.
1533     // - The performance penalty for mistakenly identifying a machine as HT when
1534     //   it isn't (which results in blocktime being incorrectly set to 0) is
1535     //   greater than the penalty when for mistakenly identifying a machine as
1536     //   being 1 thread/core when it is really HT enabled (which results in
1537     //   blocktime being incorrectly set to a positive value).
1538     __kmp_ncores = __kmp_xproc;
1539     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1540     __kmp_nThreadsPerCore = 1;
1541     return true;
1542   }
1543 
1544   // From here on, we can assume that it is safe to call
1545   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1546   // __kmp_affinity_type = affinity_none.
1547 
1548   // Save the affinity mask for the current thread.
1549   kmp_affinity_raii_t previous_affinity;
1550 
1551   // Run through each of the available contexts, binding the current thread
1552   // to it, and obtaining the pertinent information using the cpuid instr.
1553   //
1554   // The relevant information is:
1555   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1556   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1557   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1558   //     of this field determines the width of the core# + thread# fields in the
1559   //     Apic Id. It is also an upper bound on the number of threads per
1560   //     package, but it has been verified that situations happen were it is not
1561   //     exact. In particular, on certain OS/chip combinations where Intel(R)
1562   //     Hyper-Threading Technology is supported by the chip but has been
1563   //     disabled, the value of this field will be 2 (for a single core chip).
1564   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
1565   //     Technology, the value of this field will be 1 when Intel(R)
1566   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
1567   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
1568   //     of this field (+1) determines the width of the core# field in the Apic
1569   //     Id. The comments in "cpucount.cpp" say that this value is an upper
1570   //     bound, but the IA-32 architecture manual says that it is exactly the
1571   //     number of cores per package, and I haven't seen any case where it
1572   //     wasn't.
1573   //
1574   // From this information, deduce the package Id, core Id, and thread Id,
1575   // and set the corresponding fields in the apicThreadInfo struct.
1576   unsigned i;
1577   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1578       __kmp_avail_proc * sizeof(apicThreadInfo));
1579   unsigned nApics = 0;
1580   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1581     // Skip this proc if it is not included in the machine model.
1582     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1583       continue;
1584     }
1585     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1586 
1587     __kmp_affinity_dispatch->bind_thread(i);
1588     threadInfo[nApics].osId = i;
1589 
1590     // The apic id and max threads per pkg come from cpuid(1).
1591     __kmp_x86_cpuid(1, 0, &buf);
1592     if (((buf.edx >> 9) & 1) == 0) {
1593       __kmp_free(threadInfo);
1594       *msg_id = kmp_i18n_str_ApicNotPresent;
1595       return false;
1596     }
1597     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1598     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1599     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1600       threadInfo[nApics].maxThreadsPerPkg = 1;
1601     }
1602 
1603     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1604     // value.
1605     //
1606     // First, we need to check if cpuid(4) is supported on this chip. To see if
1607     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1608     // or greater.
1609     __kmp_x86_cpuid(0, 0, &buf);
1610     if (buf.eax >= 4) {
1611       __kmp_x86_cpuid(4, 0, &buf);
1612       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1613     } else {
1614       threadInfo[nApics].maxCoresPerPkg = 1;
1615     }
1616 
1617     // Infer the pkgId / coreId / threadId using only the info obtained locally.
1618     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1619     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1620 
1621     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1622     int widthT = widthCT - widthC;
1623     if (widthT < 0) {
1624       // I've never seen this one happen, but I suppose it could, if the cpuid
1625       // instruction on a chip was really screwed up. Make sure to restore the
1626       // affinity mask before the tail call.
1627       __kmp_free(threadInfo);
1628       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1629       return false;
1630     }
1631 
1632     int maskC = (1 << widthC) - 1;
1633     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1634 
1635     int maskT = (1 << widthT) - 1;
1636     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1637 
1638     nApics++;
1639   }
1640 
1641   // We've collected all the info we need.
1642   // Restore the old affinity mask for this thread.
1643   previous_affinity.restore();
1644 
1645   // Sort the threadInfo table by physical Id.
1646   qsort(threadInfo, nApics, sizeof(*threadInfo),
1647         __kmp_affinity_cmp_apicThreadInfo_phys_id);
1648 
1649   // The table is now sorted by pkgId / coreId / threadId, but we really don't
1650   // know the radix of any of the fields. pkgId's may be sparsely assigned among
1651   // the chips on a system. Although coreId's are usually assigned
1652   // [0 .. coresPerPkg-1] and threadId's are usually assigned
1653   // [0..threadsPerCore-1], we don't want to make any such assumptions.
1654   //
1655   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1656   // total # packages) are at this point - we want to determine that now. We
1657   // only have an upper bound on the first two figures.
1658   //
1659   // We also perform a consistency check at this point: the values returned by
1660   // the cpuid instruction for any thread bound to a given package had better
1661   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1662   nPackages = 1;
1663   nCoresPerPkg = 1;
1664   __kmp_nThreadsPerCore = 1;
1665   unsigned nCores = 1;
1666 
1667   unsigned pkgCt = 1; // to determine radii
1668   unsigned lastPkgId = threadInfo[0].pkgId;
1669   unsigned coreCt = 1;
1670   unsigned lastCoreId = threadInfo[0].coreId;
1671   unsigned threadCt = 1;
1672   unsigned lastThreadId = threadInfo[0].threadId;
1673 
1674   // intra-pkg consist checks
1675   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1676   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1677 
1678   for (i = 1; i < nApics; i++) {
1679     if (threadInfo[i].pkgId != lastPkgId) {
1680       nCores++;
1681       pkgCt++;
1682       lastPkgId = threadInfo[i].pkgId;
1683       if ((int)coreCt > nCoresPerPkg)
1684         nCoresPerPkg = coreCt;
1685       coreCt = 1;
1686       lastCoreId = threadInfo[i].coreId;
1687       if ((int)threadCt > __kmp_nThreadsPerCore)
1688         __kmp_nThreadsPerCore = threadCt;
1689       threadCt = 1;
1690       lastThreadId = threadInfo[i].threadId;
1691 
1692       // This is a different package, so go on to the next iteration without
1693       // doing any consistency checks. Reset the consistency check vars, though.
1694       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1695       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1696       continue;
1697     }
1698 
1699     if (threadInfo[i].coreId != lastCoreId) {
1700       nCores++;
1701       coreCt++;
1702       lastCoreId = threadInfo[i].coreId;
1703       if ((int)threadCt > __kmp_nThreadsPerCore)
1704         __kmp_nThreadsPerCore = threadCt;
1705       threadCt = 1;
1706       lastThreadId = threadInfo[i].threadId;
1707     } else if (threadInfo[i].threadId != lastThreadId) {
1708       threadCt++;
1709       lastThreadId = threadInfo[i].threadId;
1710     } else {
1711       __kmp_free(threadInfo);
1712       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1713       return false;
1714     }
1715 
1716     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1717     // fields agree between all the threads bounds to a given package.
1718     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1719         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1720       __kmp_free(threadInfo);
1721       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1722       return false;
1723     }
1724   }
1725   // When affinity is off, this routine will still be called to set
1726   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1727   // Make sure all these vars are set correctly
1728   nPackages = pkgCt;
1729   if ((int)coreCt > nCoresPerPkg)
1730     nCoresPerPkg = coreCt;
1731   if ((int)threadCt > __kmp_nThreadsPerCore)
1732     __kmp_nThreadsPerCore = threadCt;
1733   __kmp_ncores = nCores;
1734   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1735 
1736   // Now that we've determined the number of packages, the number of cores per
1737   // package, and the number of threads per core, we can construct the data
1738   // structure that is to be returned.
1739   int idx = 0;
1740   int pkgLevel = 0;
1741   int coreLevel = 1;
1742   int threadLevel = 2;
1743   //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1744   int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1745   kmp_hw_t types[3];
1746   if (pkgLevel >= 0)
1747     types[idx++] = KMP_HW_SOCKET;
1748   if (coreLevel >= 0)
1749     types[idx++] = KMP_HW_CORE;
1750   if (threadLevel >= 0)
1751     types[idx++] = KMP_HW_THREAD;
1752 
1753   KMP_ASSERT(depth > 0);
1754   __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
1755 
1756   for (i = 0; i < nApics; ++i) {
1757     idx = 0;
1758     unsigned os = threadInfo[i].osId;
1759     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
1760     hw_thread.clear();
1761 
1762     if (pkgLevel >= 0) {
1763       hw_thread.ids[idx++] = threadInfo[i].pkgId;
1764     }
1765     if (coreLevel >= 0) {
1766       hw_thread.ids[idx++] = threadInfo[i].coreId;
1767     }
1768     if (threadLevel >= 0) {
1769       hw_thread.ids[idx++] = threadInfo[i].threadId;
1770     }
1771     hw_thread.os_id = os;
1772   }
1773 
1774   __kmp_free(threadInfo);
1775   __kmp_topology->sort_ids();
1776   if (!__kmp_topology->check_ids()) {
1777     kmp_topology_t::deallocate(__kmp_topology);
1778     __kmp_topology = nullptr;
1779     *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1780     return false;
1781   }
1782   return true;
1783 }
1784 
1785 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1786 // architectures support a newer interface for specifying the x2APIC Ids,
1787 // based on CPUID.B or CPUID.1F
1788 /*
1789  * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
1790     Bits            Bits            Bits           Bits
1791     31-16           15-8            7-4            4-0
1792 ---+-----------+--------------+-------------+-----------------+
1793 EAX| reserved  |   reserved   |   reserved  |  Bits to Shift  |
1794 ---+-----------|--------------+-------------+-----------------|
1795 EBX| reserved  | Num logical processors at level (16 bits)    |
1796 ---+-----------|--------------+-------------------------------|
1797 ECX| reserved  |   Level Type |      Level Number (8 bits)    |
1798 ---+-----------+--------------+-------------------------------|
1799 EDX|                    X2APIC ID (32 bits)                   |
1800 ---+----------------------------------------------------------+
1801 */
1802 
1803 enum {
1804   INTEL_LEVEL_TYPE_INVALID = 0, // Package level
1805   INTEL_LEVEL_TYPE_SMT = 1,
1806   INTEL_LEVEL_TYPE_CORE = 2,
1807   INTEL_LEVEL_TYPE_TILE = 3,
1808   INTEL_LEVEL_TYPE_MODULE = 4,
1809   INTEL_LEVEL_TYPE_DIE = 5,
1810   INTEL_LEVEL_TYPE_LAST = 6,
1811 };
1812 
1813 struct cpuid_level_info_t {
1814   unsigned level_type, mask, mask_width, nitems, cache_mask;
1815 };
1816 
1817 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
1818   switch (intel_type) {
1819   case INTEL_LEVEL_TYPE_INVALID:
1820     return KMP_HW_SOCKET;
1821   case INTEL_LEVEL_TYPE_SMT:
1822     return KMP_HW_THREAD;
1823   case INTEL_LEVEL_TYPE_CORE:
1824     return KMP_HW_CORE;
1825   case INTEL_LEVEL_TYPE_TILE:
1826     return KMP_HW_TILE;
1827   case INTEL_LEVEL_TYPE_MODULE:
1828     return KMP_HW_MODULE;
1829   case INTEL_LEVEL_TYPE_DIE:
1830     return KMP_HW_DIE;
1831   }
1832   return KMP_HW_UNKNOWN;
1833 }
1834 
1835 // This function takes the topology leaf, a levels array to store the levels
1836 // detected and a bitmap of the known levels.
1837 // Returns the number of levels in the topology
1838 static unsigned
1839 __kmp_x2apicid_get_levels(int leaf,
1840                           cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
1841                           kmp_uint64 known_levels) {
1842   unsigned level, levels_index;
1843   unsigned level_type, mask_width, nitems;
1844   kmp_cpuid buf;
1845 
1846   // New algorithm has known topology layers act as highest unknown topology
1847   // layers when unknown topology layers exist.
1848   // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
1849   // are unknown topology layers, Then SMT will take the characteristics of
1850   // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
1851   // This eliminates unknown portions of the topology while still keeping the
1852   // correct structure.
1853   level = levels_index = 0;
1854   do {
1855     __kmp_x86_cpuid(leaf, level, &buf);
1856     level_type = __kmp_extract_bits<8, 15>(buf.ecx);
1857     mask_width = __kmp_extract_bits<0, 4>(buf.eax);
1858     nitems = __kmp_extract_bits<0, 15>(buf.ebx);
1859     if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
1860       return 0;
1861 
1862     if (known_levels & (1ull << level_type)) {
1863       // Add a new level to the topology
1864       KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
1865       levels[levels_index].level_type = level_type;
1866       levels[levels_index].mask_width = mask_width;
1867       levels[levels_index].nitems = nitems;
1868       levels_index++;
1869     } else {
1870       // If it is an unknown level, then logically move the previous layer up
1871       if (levels_index > 0) {
1872         levels[levels_index - 1].mask_width = mask_width;
1873         levels[levels_index - 1].nitems = nitems;
1874       }
1875     }
1876     level++;
1877   } while (level_type != INTEL_LEVEL_TYPE_INVALID);
1878 
1879   // Set the masks to & with apicid
1880   for (unsigned i = 0; i < levels_index; ++i) {
1881     if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
1882       levels[i].mask = ~((-1) << levels[i].mask_width);
1883       levels[i].cache_mask = (-1) << levels[i].mask_width;
1884       for (unsigned j = 0; j < i; ++j)
1885         levels[i].mask ^= levels[j].mask;
1886     } else {
1887       KMP_DEBUG_ASSERT(levels_index > 0);
1888       levels[i].mask = (-1) << levels[i - 1].mask_width;
1889       levels[i].cache_mask = 0;
1890     }
1891   }
1892   return levels_index;
1893 }
1894 
1895 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
1896 
1897   cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
1898   kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
1899   unsigned levels_index;
1900   kmp_cpuid buf;
1901   kmp_uint64 known_levels;
1902   int topology_leaf, highest_leaf, apic_id;
1903   int num_leaves;
1904   static int leaves[] = {0, 0};
1905 
1906   kmp_i18n_id_t leaf_message_id;
1907 
1908   KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
1909 
1910   *msg_id = kmp_i18n_null;
1911   if (__kmp_affinity_verbose) {
1912     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
1913   }
1914 
1915   // Figure out the known topology levels
1916   known_levels = 0ull;
1917   for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
1918     if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
1919       known_levels |= (1ull << i);
1920     }
1921   }
1922 
1923   // Get the highest cpuid leaf supported
1924   __kmp_x86_cpuid(0, 0, &buf);
1925   highest_leaf = buf.eax;
1926 
1927   // If a specific topology method was requested, only allow that specific leaf
1928   // otherwise, try both leaves 31 and 11 in that order
1929   num_leaves = 0;
1930   if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
1931     num_leaves = 1;
1932     leaves[0] = 11;
1933     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
1934   } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
1935     num_leaves = 1;
1936     leaves[0] = 31;
1937     leaf_message_id = kmp_i18n_str_NoLeaf31Support;
1938   } else {
1939     num_leaves = 2;
1940     leaves[0] = 31;
1941     leaves[1] = 11;
1942     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
1943   }
1944 
1945   // Check to see if cpuid leaf 31 or 11 is supported.
1946   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1947   topology_leaf = -1;
1948   for (int i = 0; i < num_leaves; ++i) {
1949     int leaf = leaves[i];
1950     if (highest_leaf < leaf)
1951       continue;
1952     __kmp_x86_cpuid(leaf, 0, &buf);
1953     if (buf.ebx == 0)
1954       continue;
1955     topology_leaf = leaf;
1956     levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
1957     if (levels_index == 0)
1958       continue;
1959     break;
1960   }
1961   if (topology_leaf == -1 || levels_index == 0) {
1962     *msg_id = leaf_message_id;
1963     return false;
1964   }
1965   KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
1966 
1967   // The algorithm used starts by setting the affinity to each available thread
1968   // and retrieving info from the cpuid instruction, so if we are not capable of
1969   // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
1970   // we need to do something else - use the defaults that we calculated from
1971   // issuing cpuid without binding to each proc.
1972   if (!KMP_AFFINITY_CAPABLE()) {
1973     // Hack to try and infer the machine topology using only the data
1974     // available from cpuid on the current thread, and __kmp_xproc.
1975     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1976     for (unsigned i = 0; i < levels_index; ++i) {
1977       if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
1978         __kmp_nThreadsPerCore = levels[i].nitems;
1979       } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
1980         nCoresPerPkg = levels[i].nitems;
1981       }
1982     }
1983     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1984     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1985     return true;
1986   }
1987 
1988   // Allocate the data structure to be returned.
1989   int depth = levels_index;
1990   for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
1991     types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
1992   __kmp_topology =
1993       kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
1994 
1995   // Insert equivalent cache types if they exist
1996   kmp_cache_info_t cache_info;
1997   for (size_t i = 0; i < cache_info.get_depth(); ++i) {
1998     const kmp_cache_info_t::info_t &info = cache_info[i];
1999     unsigned cache_mask = info.mask;
2000     unsigned cache_level = info.level;
2001     for (unsigned j = 0; j < levels_index; ++j) {
2002       unsigned hw_cache_mask = levels[j].cache_mask;
2003       kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2004       if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2005         kmp_hw_t type =
2006             __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2007         __kmp_topology->set_equivalent_type(cache_type, type);
2008       }
2009     }
2010   }
2011 
2012   // From here on, we can assume that it is safe to call
2013   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2014   // __kmp_affinity_type = affinity_none.
2015 
2016   // Save the affinity mask for the current thread.
2017   kmp_affinity_raii_t previous_affinity;
2018 
2019   // Run through each of the available contexts, binding the current thread
2020   // to it, and obtaining the pertinent information using the cpuid instr.
2021   unsigned int proc;
2022   int hw_thread_index = 0;
2023   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2024     cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2025     unsigned my_levels_index;
2026 
2027     // Skip this proc if it is not included in the machine model.
2028     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2029       continue;
2030     }
2031     KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2032 
2033     __kmp_affinity_dispatch->bind_thread(proc);
2034 
2035     // New algorithm
2036     __kmp_x86_cpuid(topology_leaf, 0, &buf);
2037     apic_id = buf.edx;
2038     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2039     my_levels_index =
2040         __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2041     if (my_levels_index == 0 || my_levels_index != levels_index) {
2042       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2043       return false;
2044     }
2045     hw_thread.clear();
2046     hw_thread.os_id = proc;
2047     // Put in topology information
2048     for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2049       hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2050       if (j > 0) {
2051         hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2052       }
2053     }
2054     hw_thread_index++;
2055   }
2056   KMP_ASSERT(hw_thread_index > 0);
2057   __kmp_topology->sort_ids();
2058   if (!__kmp_topology->check_ids()) {
2059     kmp_topology_t::deallocate(__kmp_topology);
2060     __kmp_topology = nullptr;
2061     *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2062     return false;
2063   }
2064   return true;
2065 }
2066 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2067 
2068 #define osIdIndex 0
2069 #define threadIdIndex 1
2070 #define coreIdIndex 2
2071 #define pkgIdIndex 3
2072 #define nodeIdIndex 4
2073 
2074 typedef unsigned *ProcCpuInfo;
2075 static unsigned maxIndex = pkgIdIndex;
2076 
2077 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2078                                                   const void *b) {
2079   unsigned i;
2080   const unsigned *aa = *(unsigned *const *)a;
2081   const unsigned *bb = *(unsigned *const *)b;
2082   for (i = maxIndex;; i--) {
2083     if (aa[i] < bb[i])
2084       return -1;
2085     if (aa[i] > bb[i])
2086       return 1;
2087     if (i == osIdIndex)
2088       break;
2089   }
2090   return 0;
2091 }
2092 
2093 #if KMP_USE_HIER_SCHED
2094 // Set the array sizes for the hierarchy layers
2095 static void __kmp_dispatch_set_hierarchy_values() {
2096   // Set the maximum number of L1's to number of cores
2097   // Set the maximum number of L2's to to either number of cores / 2 for
2098   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2099   // Or the number of cores for Intel(R) Xeon(R) processors
2100   // Set the maximum number of NUMA nodes and L3's to number of packages
2101   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2102       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2103   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2104 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2105     KMP_MIC_SUPPORTED
2106   if (__kmp_mic_type >= mic3)
2107     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2108   else
2109 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2110     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2111   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2112   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2113   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2114   // Set the number of threads per unit
2115   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2116   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2117   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2118       __kmp_nThreadsPerCore;
2119 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2120     KMP_MIC_SUPPORTED
2121   if (__kmp_mic_type >= mic3)
2122     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2123         2 * __kmp_nThreadsPerCore;
2124   else
2125 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2126     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2127         __kmp_nThreadsPerCore;
2128   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2129       nCoresPerPkg * __kmp_nThreadsPerCore;
2130   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2131       nCoresPerPkg * __kmp_nThreadsPerCore;
2132   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2133       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2134 }
2135 
2136 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2137 // i.e., this thread's L1 or this thread's L2, etc.
2138 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2139   int index = type + 1;
2140   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2141   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2142   if (type == kmp_hier_layer_e::LAYER_THREAD)
2143     return tid;
2144   else if (type == kmp_hier_layer_e::LAYER_LOOP)
2145     return 0;
2146   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2147   if (tid >= num_hw_threads)
2148     tid = tid % num_hw_threads;
2149   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2150 }
2151 
2152 // Return the number of t1's per t2
2153 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2154   int i1 = t1 + 1;
2155   int i2 = t2 + 1;
2156   KMP_DEBUG_ASSERT(i1 <= i2);
2157   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2158   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2159   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2160   // (nthreads/t2) / (nthreads/t1) = t1 / t2
2161   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2162 }
2163 #endif // KMP_USE_HIER_SCHED
2164 
2165 static inline const char *__kmp_cpuinfo_get_filename() {
2166   const char *filename;
2167   if (__kmp_cpuinfo_file != nullptr)
2168     filename = __kmp_cpuinfo_file;
2169   else
2170     filename = "/proc/cpuinfo";
2171   return filename;
2172 }
2173 
2174 static inline const char *__kmp_cpuinfo_get_envvar() {
2175   const char *envvar = nullptr;
2176   if (__kmp_cpuinfo_file != nullptr)
2177     envvar = "KMP_CPUINFO_FILE";
2178   return envvar;
2179 }
2180 
2181 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2182 // affinity map.
2183 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2184                                               kmp_i18n_id_t *const msg_id) {
2185   const char *filename = __kmp_cpuinfo_get_filename();
2186   const char *envvar = __kmp_cpuinfo_get_envvar();
2187   *msg_id = kmp_i18n_null;
2188 
2189   if (__kmp_affinity_verbose) {
2190     KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2191   }
2192 
2193   kmp_safe_raii_file_t f(filename, "r", envvar);
2194 
2195   // Scan of the file, and count the number of "processor" (osId) fields,
2196   // and find the highest value of <n> for a node_<n> field.
2197   char buf[256];
2198   unsigned num_records = 0;
2199   while (!feof(f)) {
2200     buf[sizeof(buf) - 1] = 1;
2201     if (!fgets(buf, sizeof(buf), f)) {
2202       // Read errors presumably because of EOF
2203       break;
2204     }
2205 
2206     char s1[] = "processor";
2207     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2208       num_records++;
2209       continue;
2210     }
2211 
2212     // FIXME - this will match "node_<n> <garbage>"
2213     unsigned level;
2214     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2215       // validate the input fisrt:
2216       if (level > (unsigned)__kmp_xproc) { // level is too big
2217         level = __kmp_xproc;
2218       }
2219       if (nodeIdIndex + level >= maxIndex) {
2220         maxIndex = nodeIdIndex + level;
2221       }
2222       continue;
2223     }
2224   }
2225 
2226   // Check for empty file / no valid processor records, or too many. The number
2227   // of records can't exceed the number of valid bits in the affinity mask.
2228   if (num_records == 0) {
2229     *msg_id = kmp_i18n_str_NoProcRecords;
2230     return false;
2231   }
2232   if (num_records > (unsigned)__kmp_xproc) {
2233     *msg_id = kmp_i18n_str_TooManyProcRecords;
2234     return false;
2235   }
2236 
2237   // Set the file pointer back to the beginning, so that we can scan the file
2238   // again, this time performing a full parse of the data. Allocate a vector of
2239   // ProcCpuInfo object, where we will place the data. Adding an extra element
2240   // at the end allows us to remove a lot of extra checks for termination
2241   // conditions.
2242   if (fseek(f, 0, SEEK_SET) != 0) {
2243     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2244     return false;
2245   }
2246 
2247   // Allocate the array of records to store the proc info in.  The dummy
2248   // element at the end makes the logic in filling them out easier to code.
2249   unsigned **threadInfo =
2250       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2251   unsigned i;
2252   for (i = 0; i <= num_records; i++) {
2253     threadInfo[i] =
2254         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2255   }
2256 
2257 #define CLEANUP_THREAD_INFO                                                    \
2258   for (i = 0; i <= num_records; i++) {                                         \
2259     __kmp_free(threadInfo[i]);                                                 \
2260   }                                                                            \
2261   __kmp_free(threadInfo);
2262 
2263   // A value of UINT_MAX means that we didn't find the field
2264   unsigned __index;
2265 
2266 #define INIT_PROC_INFO(p)                                                      \
2267   for (__index = 0; __index <= maxIndex; __index++) {                          \
2268     (p)[__index] = UINT_MAX;                                                   \
2269   }
2270 
2271   for (i = 0; i <= num_records; i++) {
2272     INIT_PROC_INFO(threadInfo[i]);
2273   }
2274 
2275   unsigned num_avail = 0;
2276   *line = 0;
2277   while (!feof(f)) {
2278     // Create an inner scoping level, so that all the goto targets at the end of
2279     // the loop appear in an outer scoping level. This avoids warnings about
2280     // jumping past an initialization to a target in the same block.
2281     {
2282       buf[sizeof(buf) - 1] = 1;
2283       bool long_line = false;
2284       if (!fgets(buf, sizeof(buf), f)) {
2285         // Read errors presumably because of EOF
2286         // If there is valid data in threadInfo[num_avail], then fake
2287         // a blank line in ensure that the last address gets parsed.
2288         bool valid = false;
2289         for (i = 0; i <= maxIndex; i++) {
2290           if (threadInfo[num_avail][i] != UINT_MAX) {
2291             valid = true;
2292           }
2293         }
2294         if (!valid) {
2295           break;
2296         }
2297         buf[0] = 0;
2298       } else if (!buf[sizeof(buf) - 1]) {
2299         // The line is longer than the buffer.  Set a flag and don't
2300         // emit an error if we were going to ignore the line, anyway.
2301         long_line = true;
2302 
2303 #define CHECK_LINE                                                             \
2304   if (long_line) {                                                             \
2305     CLEANUP_THREAD_INFO;                                                       \
2306     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
2307     return false;                                                              \
2308   }
2309       }
2310       (*line)++;
2311 
2312       char s1[] = "processor";
2313       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2314         CHECK_LINE;
2315         char *p = strchr(buf + sizeof(s1) - 1, ':');
2316         unsigned val;
2317         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2318           goto no_val;
2319         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2320 #if KMP_ARCH_AARCH64
2321           // Handle the old AArch64 /proc/cpuinfo layout differently,
2322           // it contains all of the 'processor' entries listed in a
2323           // single 'Processor' section, therefore the normal looking
2324           // for duplicates in that section will always fail.
2325           num_avail++;
2326 #else
2327           goto dup_field;
2328 #endif
2329         threadInfo[num_avail][osIdIndex] = val;
2330 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2331         char path[256];
2332         KMP_SNPRINTF(
2333             path, sizeof(path),
2334             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2335             threadInfo[num_avail][osIdIndex]);
2336         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2337 
2338         KMP_SNPRINTF(path, sizeof(path),
2339                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
2340                      threadInfo[num_avail][osIdIndex]);
2341         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2342         continue;
2343 #else
2344       }
2345       char s2[] = "physical id";
2346       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2347         CHECK_LINE;
2348         char *p = strchr(buf + sizeof(s2) - 1, ':');
2349         unsigned val;
2350         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2351           goto no_val;
2352         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2353           goto dup_field;
2354         threadInfo[num_avail][pkgIdIndex] = val;
2355         continue;
2356       }
2357       char s3[] = "core id";
2358       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2359         CHECK_LINE;
2360         char *p = strchr(buf + sizeof(s3) - 1, ':');
2361         unsigned val;
2362         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2363           goto no_val;
2364         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2365           goto dup_field;
2366         threadInfo[num_avail][coreIdIndex] = val;
2367         continue;
2368 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2369       }
2370       char s4[] = "thread id";
2371       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2372         CHECK_LINE;
2373         char *p = strchr(buf + sizeof(s4) - 1, ':');
2374         unsigned val;
2375         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2376           goto no_val;
2377         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2378           goto dup_field;
2379         threadInfo[num_avail][threadIdIndex] = val;
2380         continue;
2381       }
2382       unsigned level;
2383       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2384         CHECK_LINE;
2385         char *p = strchr(buf + sizeof(s4) - 1, ':');
2386         unsigned val;
2387         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2388           goto no_val;
2389         KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2390         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2391           goto dup_field;
2392         threadInfo[num_avail][nodeIdIndex + level] = val;
2393         continue;
2394       }
2395 
2396       // We didn't recognize the leading token on the line. There are lots of
2397       // leading tokens that we don't recognize - if the line isn't empty, go on
2398       // to the next line.
2399       if ((*buf != 0) && (*buf != '\n')) {
2400         // If the line is longer than the buffer, read characters
2401         // until we find a newline.
2402         if (long_line) {
2403           int ch;
2404           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2405             ;
2406         }
2407         continue;
2408       }
2409 
2410       // A newline has signalled the end of the processor record.
2411       // Check that there aren't too many procs specified.
2412       if ((int)num_avail == __kmp_xproc) {
2413         CLEANUP_THREAD_INFO;
2414         *msg_id = kmp_i18n_str_TooManyEntries;
2415         return false;
2416       }
2417 
2418       // Check for missing fields.  The osId field must be there, and we
2419       // currently require that the physical id field is specified, also.
2420       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2421         CLEANUP_THREAD_INFO;
2422         *msg_id = kmp_i18n_str_MissingProcField;
2423         return false;
2424       }
2425       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2426         CLEANUP_THREAD_INFO;
2427         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2428         return false;
2429       }
2430 
2431       // Skip this proc if it is not included in the machine model.
2432       if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2433                          __kmp_affin_fullMask)) {
2434         INIT_PROC_INFO(threadInfo[num_avail]);
2435         continue;
2436       }
2437 
2438       // We have a successful parse of this proc's info.
2439       // Increment the counter, and prepare for the next proc.
2440       num_avail++;
2441       KMP_ASSERT(num_avail <= num_records);
2442       INIT_PROC_INFO(threadInfo[num_avail]);
2443     }
2444     continue;
2445 
2446   no_val:
2447     CLEANUP_THREAD_INFO;
2448     *msg_id = kmp_i18n_str_MissingValCpuinfo;
2449     return false;
2450 
2451   dup_field:
2452     CLEANUP_THREAD_INFO;
2453     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2454     return false;
2455   }
2456   *line = 0;
2457 
2458 #if KMP_MIC && REDUCE_TEAM_SIZE
2459   unsigned teamSize = 0;
2460 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2461 
2462   // check for num_records == __kmp_xproc ???
2463 
2464   // If it is configured to omit the package level when there is only a single
2465   // package, the logic at the end of this routine won't work if there is only a
2466   // single thread
2467   KMP_ASSERT(num_avail > 0);
2468   KMP_ASSERT(num_avail <= num_records);
2469 
2470   // Sort the threadInfo table by physical Id.
2471   qsort(threadInfo, num_avail, sizeof(*threadInfo),
2472         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2473 
2474   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2475   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2476   // the chips on a system. Although coreId's are usually assigned
2477   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2478   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2479   //
2480   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2481   // total # packages) are at this point - we want to determine that now. We
2482   // only have an upper bound on the first two figures.
2483   unsigned *counts =
2484       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2485   unsigned *maxCt =
2486       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2487   unsigned *totals =
2488       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2489   unsigned *lastId =
2490       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2491 
2492   bool assign_thread_ids = false;
2493   unsigned threadIdCt;
2494   unsigned index;
2495 
2496 restart_radix_check:
2497   threadIdCt = 0;
2498 
2499   // Initialize the counter arrays with data from threadInfo[0].
2500   if (assign_thread_ids) {
2501     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2502       threadInfo[0][threadIdIndex] = threadIdCt++;
2503     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2504       threadIdCt = threadInfo[0][threadIdIndex] + 1;
2505     }
2506   }
2507   for (index = 0; index <= maxIndex; index++) {
2508     counts[index] = 1;
2509     maxCt[index] = 1;
2510     totals[index] = 1;
2511     lastId[index] = threadInfo[0][index];
2512     ;
2513   }
2514 
2515   // Run through the rest of the OS procs.
2516   for (i = 1; i < num_avail; i++) {
2517     // Find the most significant index whose id differs from the id for the
2518     // previous OS proc.
2519     for (index = maxIndex; index >= threadIdIndex; index--) {
2520       if (assign_thread_ids && (index == threadIdIndex)) {
2521         // Auto-assign the thread id field if it wasn't specified.
2522         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2523           threadInfo[i][threadIdIndex] = threadIdCt++;
2524         }
2525         // Apparently the thread id field was specified for some entries and not
2526         // others. Start the thread id counter off at the next higher thread id.
2527         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2528           threadIdCt = threadInfo[i][threadIdIndex] + 1;
2529         }
2530       }
2531       if (threadInfo[i][index] != lastId[index]) {
2532         // Run through all indices which are less significant, and reset the
2533         // counts to 1. At all levels up to and including index, we need to
2534         // increment the totals and record the last id.
2535         unsigned index2;
2536         for (index2 = threadIdIndex; index2 < index; index2++) {
2537           totals[index2]++;
2538           if (counts[index2] > maxCt[index2]) {
2539             maxCt[index2] = counts[index2];
2540           }
2541           counts[index2] = 1;
2542           lastId[index2] = threadInfo[i][index2];
2543         }
2544         counts[index]++;
2545         totals[index]++;
2546         lastId[index] = threadInfo[i][index];
2547 
2548         if (assign_thread_ids && (index > threadIdIndex)) {
2549 
2550 #if KMP_MIC && REDUCE_TEAM_SIZE
2551           // The default team size is the total #threads in the machine
2552           // minus 1 thread for every core that has 3 or more threads.
2553           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2554 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2555 
2556           // Restart the thread counter, as we are on a new core.
2557           threadIdCt = 0;
2558 
2559           // Auto-assign the thread id field if it wasn't specified.
2560           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2561             threadInfo[i][threadIdIndex] = threadIdCt++;
2562           }
2563 
2564           // Apparently the thread id field was specified for some entries and
2565           // not others. Start the thread id counter off at the next higher
2566           // thread id.
2567           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2568             threadIdCt = threadInfo[i][threadIdIndex] + 1;
2569           }
2570         }
2571         break;
2572       }
2573     }
2574     if (index < threadIdIndex) {
2575       // If thread ids were specified, it is an error if they are not unique.
2576       // Also, check that we waven't already restarted the loop (to be safe -
2577       // shouldn't need to).
2578       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2579         __kmp_free(lastId);
2580         __kmp_free(totals);
2581         __kmp_free(maxCt);
2582         __kmp_free(counts);
2583         CLEANUP_THREAD_INFO;
2584         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2585         return false;
2586       }
2587 
2588       // If the thread ids were not specified and we see entries entries that
2589       // are duplicates, start the loop over and assign the thread ids manually.
2590       assign_thread_ids = true;
2591       goto restart_radix_check;
2592     }
2593   }
2594 
2595 #if KMP_MIC && REDUCE_TEAM_SIZE
2596   // The default team size is the total #threads in the machine
2597   // minus 1 thread for every core that has 3 or more threads.
2598   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2599 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2600 
2601   for (index = threadIdIndex; index <= maxIndex; index++) {
2602     if (counts[index] > maxCt[index]) {
2603       maxCt[index] = counts[index];
2604     }
2605   }
2606 
2607   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2608   nCoresPerPkg = maxCt[coreIdIndex];
2609   nPackages = totals[pkgIdIndex];
2610 
2611   // When affinity is off, this routine will still be called to set
2612   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2613   // Make sure all these vars are set correctly, and return now if affinity is
2614   // not enabled.
2615   __kmp_ncores = totals[coreIdIndex];
2616   if (!KMP_AFFINITY_CAPABLE()) {
2617     KMP_ASSERT(__kmp_affinity_type == affinity_none);
2618     return true;
2619   }
2620 
2621 #if KMP_MIC && REDUCE_TEAM_SIZE
2622   // Set the default team size.
2623   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2624     __kmp_dflt_team_nth = teamSize;
2625     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2626                   "__kmp_dflt_team_nth = %d\n",
2627                   __kmp_dflt_team_nth));
2628   }
2629 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2630 
2631   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2632 
2633   // Count the number of levels which have more nodes at that level than at the
2634   // parent's level (with there being an implicit root node of the top level).
2635   // This is equivalent to saying that there is at least one node at this level
2636   // which has a sibling. These levels are in the map, and the package level is
2637   // always in the map.
2638   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2639   for (index = threadIdIndex; index < maxIndex; index++) {
2640     KMP_ASSERT(totals[index] >= totals[index + 1]);
2641     inMap[index] = (totals[index] > totals[index + 1]);
2642   }
2643   inMap[maxIndex] = (totals[maxIndex] > 1);
2644   inMap[pkgIdIndex] = true;
2645   inMap[coreIdIndex] = true;
2646   inMap[threadIdIndex] = true;
2647 
2648   int depth = 0;
2649   int idx = 0;
2650   kmp_hw_t types[KMP_HW_LAST];
2651   int pkgLevel = -1;
2652   int coreLevel = -1;
2653   int threadLevel = -1;
2654   for (index = threadIdIndex; index <= maxIndex; index++) {
2655     if (inMap[index]) {
2656       depth++;
2657     }
2658   }
2659   if (inMap[pkgIdIndex]) {
2660     pkgLevel = idx;
2661     types[idx++] = KMP_HW_SOCKET;
2662   }
2663   if (inMap[coreIdIndex]) {
2664     coreLevel = idx;
2665     types[idx++] = KMP_HW_CORE;
2666   }
2667   if (inMap[threadIdIndex]) {
2668     threadLevel = idx;
2669     types[idx++] = KMP_HW_THREAD;
2670   }
2671   KMP_ASSERT(depth > 0);
2672 
2673   // Construct the data structure that is to be returned.
2674   __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
2675 
2676   for (i = 0; i < num_avail; ++i) {
2677     unsigned os = threadInfo[i][osIdIndex];
2678     int src_index;
2679     int dst_index = 0;
2680     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2681     hw_thread.clear();
2682     hw_thread.os_id = os;
2683 
2684     idx = 0;
2685     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2686       if (!inMap[src_index]) {
2687         continue;
2688       }
2689       if (src_index == pkgIdIndex) {
2690         hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
2691       } else if (src_index == coreIdIndex) {
2692         hw_thread.ids[coreLevel] = threadInfo[i][src_index];
2693       } else if (src_index == threadIdIndex) {
2694         hw_thread.ids[threadLevel] = threadInfo[i][src_index];
2695       }
2696       dst_index++;
2697     }
2698   }
2699 
2700   __kmp_free(inMap);
2701   __kmp_free(lastId);
2702   __kmp_free(totals);
2703   __kmp_free(maxCt);
2704   __kmp_free(counts);
2705   CLEANUP_THREAD_INFO;
2706   __kmp_topology->sort_ids();
2707   if (!__kmp_topology->check_ids()) {
2708     kmp_topology_t::deallocate(__kmp_topology);
2709     __kmp_topology = nullptr;
2710     *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2711     return false;
2712   }
2713   return true;
2714 }
2715 
2716 // Create and return a table of affinity masks, indexed by OS thread ID.
2717 // This routine handles OR'ing together all the affinity masks of threads
2718 // that are sufficiently close, if granularity > fine.
2719 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2720                                             unsigned *numUnique) {
2721   // First form a table of affinity masks in order of OS thread id.
2722   int maxOsId;
2723   int i;
2724   int numAddrs = __kmp_topology->get_num_hw_threads();
2725   int depth = __kmp_topology->get_depth();
2726   KMP_ASSERT(numAddrs);
2727   KMP_ASSERT(depth);
2728 
2729   maxOsId = 0;
2730   for (i = numAddrs - 1;; --i) {
2731     int osId = __kmp_topology->at(i).os_id;
2732     if (osId > maxOsId) {
2733       maxOsId = osId;
2734     }
2735     if (i == 0)
2736       break;
2737   }
2738   kmp_affin_mask_t *osId2Mask;
2739   KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2740   KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2741   if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2742     KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2743   }
2744   if (__kmp_affinity_gran_levels >= (int)depth) {
2745     if (__kmp_affinity_verbose ||
2746         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2747       KMP_WARNING(AffThreadsMayMigrate);
2748     }
2749   }
2750 
2751   // Run through the table, forming the masks for all threads on each core.
2752   // Threads on the same core will have identical kmp_hw_thread_t objects, not
2753   // considering the last level, which must be the thread id. All threads on a
2754   // core will appear consecutively.
2755   int unique = 0;
2756   int j = 0; // index of 1st thread on core
2757   int leader = 0;
2758   kmp_affin_mask_t *sum;
2759   KMP_CPU_ALLOC_ON_STACK(sum);
2760   KMP_CPU_ZERO(sum);
2761   KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
2762   for (i = 1; i < numAddrs; i++) {
2763     // If this thread is sufficiently close to the leader (within the
2764     // granularity setting), then set the bit for this os thread in the
2765     // affinity mask for this group, and go on to the next thread.
2766     if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
2767       KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
2768       continue;
2769     }
2770 
2771     // For every thread in this group, copy the mask to the thread's entry in
2772     // the osId2Mask table.  Mark the first address as a leader.
2773     for (; j < i; j++) {
2774       int osId = __kmp_topology->at(j).os_id;
2775       KMP_DEBUG_ASSERT(osId <= maxOsId);
2776       kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2777       KMP_CPU_COPY(mask, sum);
2778       __kmp_topology->at(j).leader = (j == leader);
2779     }
2780     unique++;
2781 
2782     // Start a new mask.
2783     leader = i;
2784     KMP_CPU_ZERO(sum);
2785     KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
2786   }
2787 
2788   // For every thread in last group, copy the mask to the thread's
2789   // entry in the osId2Mask table.
2790   for (; j < i; j++) {
2791     int osId = __kmp_topology->at(j).os_id;
2792     KMP_DEBUG_ASSERT(osId <= maxOsId);
2793     kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2794     KMP_CPU_COPY(mask, sum);
2795     __kmp_topology->at(j).leader = (j == leader);
2796   }
2797   unique++;
2798   KMP_CPU_FREE_FROM_STACK(sum);
2799 
2800   *maxIndex = maxOsId;
2801   *numUnique = unique;
2802   return osId2Mask;
2803 }
2804 
2805 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
2806 // as file-static than to try and pass them through the calling sequence of
2807 // the recursive-descent OMP_PLACES parser.
2808 static kmp_affin_mask_t *newMasks;
2809 static int numNewMasks;
2810 static int nextNewMask;
2811 
2812 #define ADD_MASK(_mask)                                                        \
2813   {                                                                            \
2814     if (nextNewMask >= numNewMasks) {                                          \
2815       int i;                                                                   \
2816       numNewMasks *= 2;                                                        \
2817       kmp_affin_mask_t *temp;                                                  \
2818       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
2819       for (i = 0; i < numNewMasks / 2; i++) {                                  \
2820         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
2821         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
2822         KMP_CPU_COPY(dest, src);                                               \
2823       }                                                                        \
2824       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
2825       newMasks = temp;                                                         \
2826     }                                                                          \
2827     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
2828     nextNewMask++;                                                             \
2829   }
2830 
2831 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
2832   {                                                                            \
2833     if (((_osId) > _maxOsId) ||                                                \
2834         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
2835       if (__kmp_affinity_verbose ||                                            \
2836           (__kmp_affinity_warnings &&                                          \
2837            (__kmp_affinity_type != affinity_none))) {                          \
2838         KMP_WARNING(AffIgnoreInvalidProcID, _osId);                            \
2839       }                                                                        \
2840     } else {                                                                   \
2841       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
2842     }                                                                          \
2843   }
2844 
2845 // Re-parse the proclist (for the explicit affinity type), and form the list
2846 // of affinity newMasks indexed by gtid.
2847 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2848                                             unsigned int *out_numMasks,
2849                                             const char *proclist,
2850                                             kmp_affin_mask_t *osId2Mask,
2851                                             int maxOsId) {
2852   int i;
2853   const char *scan = proclist;
2854   const char *next = proclist;
2855 
2856   // We use malloc() for the temporary mask vector, so that we can use
2857   // realloc() to extend it.
2858   numNewMasks = 2;
2859   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2860   nextNewMask = 0;
2861   kmp_affin_mask_t *sumMask;
2862   KMP_CPU_ALLOC(sumMask);
2863   int setSize = 0;
2864 
2865   for (;;) {
2866     int start, end, stride;
2867 
2868     SKIP_WS(scan);
2869     next = scan;
2870     if (*next == '\0') {
2871       break;
2872     }
2873 
2874     if (*next == '{') {
2875       int num;
2876       setSize = 0;
2877       next++; // skip '{'
2878       SKIP_WS(next);
2879       scan = next;
2880 
2881       // Read the first integer in the set.
2882       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2883       SKIP_DIGITS(next);
2884       num = __kmp_str_to_int(scan, *next);
2885       KMP_ASSERT2(num >= 0, "bad explicit proc list");
2886 
2887       // Copy the mask for that osId to the sum (union) mask.
2888       if ((num > maxOsId) ||
2889           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2890         if (__kmp_affinity_verbose ||
2891             (__kmp_affinity_warnings &&
2892              (__kmp_affinity_type != affinity_none))) {
2893           KMP_WARNING(AffIgnoreInvalidProcID, num);
2894         }
2895         KMP_CPU_ZERO(sumMask);
2896       } else {
2897         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2898         setSize = 1;
2899       }
2900 
2901       for (;;) {
2902         // Check for end of set.
2903         SKIP_WS(next);
2904         if (*next == '}') {
2905           next++; // skip '}'
2906           break;
2907         }
2908 
2909         // Skip optional comma.
2910         if (*next == ',') {
2911           next++;
2912         }
2913         SKIP_WS(next);
2914 
2915         // Read the next integer in the set.
2916         scan = next;
2917         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2918 
2919         SKIP_DIGITS(next);
2920         num = __kmp_str_to_int(scan, *next);
2921         KMP_ASSERT2(num >= 0, "bad explicit proc list");
2922 
2923         // Add the mask for that osId to the sum mask.
2924         if ((num > maxOsId) ||
2925             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2926           if (__kmp_affinity_verbose ||
2927               (__kmp_affinity_warnings &&
2928                (__kmp_affinity_type != affinity_none))) {
2929             KMP_WARNING(AffIgnoreInvalidProcID, num);
2930           }
2931         } else {
2932           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2933           setSize++;
2934         }
2935       }
2936       if (setSize > 0) {
2937         ADD_MASK(sumMask);
2938       }
2939 
2940       SKIP_WS(next);
2941       if (*next == ',') {
2942         next++;
2943       }
2944       scan = next;
2945       continue;
2946     }
2947 
2948     // Read the first integer.
2949     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2950     SKIP_DIGITS(next);
2951     start = __kmp_str_to_int(scan, *next);
2952     KMP_ASSERT2(start >= 0, "bad explicit proc list");
2953     SKIP_WS(next);
2954 
2955     // If this isn't a range, then add a mask to the list and go on.
2956     if (*next != '-') {
2957       ADD_MASK_OSID(start, osId2Mask, maxOsId);
2958 
2959       // Skip optional comma.
2960       if (*next == ',') {
2961         next++;
2962       }
2963       scan = next;
2964       continue;
2965     }
2966 
2967     // This is a range.  Skip over the '-' and read in the 2nd int.
2968     next++; // skip '-'
2969     SKIP_WS(next);
2970     scan = next;
2971     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2972     SKIP_DIGITS(next);
2973     end = __kmp_str_to_int(scan, *next);
2974     KMP_ASSERT2(end >= 0, "bad explicit proc list");
2975 
2976     // Check for a stride parameter
2977     stride = 1;
2978     SKIP_WS(next);
2979     if (*next == ':') {
2980       // A stride is specified.  Skip over the ':" and read the 3rd int.
2981       int sign = +1;
2982       next++; // skip ':'
2983       SKIP_WS(next);
2984       scan = next;
2985       if (*next == '-') {
2986         sign = -1;
2987         next++;
2988         SKIP_WS(next);
2989         scan = next;
2990       }
2991       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2992       SKIP_DIGITS(next);
2993       stride = __kmp_str_to_int(scan, *next);
2994       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2995       stride *= sign;
2996     }
2997 
2998     // Do some range checks.
2999     KMP_ASSERT2(stride != 0, "bad explicit proc list");
3000     if (stride > 0) {
3001       KMP_ASSERT2(start <= end, "bad explicit proc list");
3002     } else {
3003       KMP_ASSERT2(start >= end, "bad explicit proc list");
3004     }
3005     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3006 
3007     // Add the mask for each OS proc # to the list.
3008     if (stride > 0) {
3009       do {
3010         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3011         start += stride;
3012       } while (start <= end);
3013     } else {
3014       do {
3015         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3016         start += stride;
3017       } while (start >= end);
3018     }
3019 
3020     // Skip optional comma.
3021     SKIP_WS(next);
3022     if (*next == ',') {
3023       next++;
3024     }
3025     scan = next;
3026   }
3027 
3028   *out_numMasks = nextNewMask;
3029   if (nextNewMask == 0) {
3030     *out_masks = NULL;
3031     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3032     return;
3033   }
3034   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3035   for (i = 0; i < nextNewMask; i++) {
3036     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3037     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3038     KMP_CPU_COPY(dest, src);
3039   }
3040   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3041   KMP_CPU_FREE(sumMask);
3042 }
3043 
3044 /*-----------------------------------------------------------------------------
3045 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3046 places.  Again, Here is the grammar:
3047 
3048 place_list := place
3049 place_list := place , place_list
3050 place := num
3051 place := place : num
3052 place := place : num : signed
3053 place := { subplacelist }
3054 place := ! place                  // (lowest priority)
3055 subplace_list := subplace
3056 subplace_list := subplace , subplace_list
3057 subplace := num
3058 subplace := num : num
3059 subplace := num : num : signed
3060 signed := num
3061 signed := + signed
3062 signed := - signed
3063 -----------------------------------------------------------------------------*/
3064 static void __kmp_process_subplace_list(const char **scan,
3065                                         kmp_affin_mask_t *osId2Mask,
3066                                         int maxOsId, kmp_affin_mask_t *tempMask,
3067                                         int *setSize) {
3068   const char *next;
3069 
3070   for (;;) {
3071     int start, count, stride, i;
3072 
3073     // Read in the starting proc id
3074     SKIP_WS(*scan);
3075     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3076     next = *scan;
3077     SKIP_DIGITS(next);
3078     start = __kmp_str_to_int(*scan, *next);
3079     KMP_ASSERT(start >= 0);
3080     *scan = next;
3081 
3082     // valid follow sets are ',' ':' and '}'
3083     SKIP_WS(*scan);
3084     if (**scan == '}' || **scan == ',') {
3085       if ((start > maxOsId) ||
3086           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3087         if (__kmp_affinity_verbose ||
3088             (__kmp_affinity_warnings &&
3089              (__kmp_affinity_type != affinity_none))) {
3090           KMP_WARNING(AffIgnoreInvalidProcID, start);
3091         }
3092       } else {
3093         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3094         (*setSize)++;
3095       }
3096       if (**scan == '}') {
3097         break;
3098       }
3099       (*scan)++; // skip ','
3100       continue;
3101     }
3102     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3103     (*scan)++; // skip ':'
3104 
3105     // Read count parameter
3106     SKIP_WS(*scan);
3107     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3108     next = *scan;
3109     SKIP_DIGITS(next);
3110     count = __kmp_str_to_int(*scan, *next);
3111     KMP_ASSERT(count >= 0);
3112     *scan = next;
3113 
3114     // valid follow sets are ',' ':' and '}'
3115     SKIP_WS(*scan);
3116     if (**scan == '}' || **scan == ',') {
3117       for (i = 0; i < count; i++) {
3118         if ((start > maxOsId) ||
3119             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3120           if (__kmp_affinity_verbose ||
3121               (__kmp_affinity_warnings &&
3122                (__kmp_affinity_type != affinity_none))) {
3123             KMP_WARNING(AffIgnoreInvalidProcID, start);
3124           }
3125           break; // don't proliferate warnings for large count
3126         } else {
3127           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3128           start++;
3129           (*setSize)++;
3130         }
3131       }
3132       if (**scan == '}') {
3133         break;
3134       }
3135       (*scan)++; // skip ','
3136       continue;
3137     }
3138     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3139     (*scan)++; // skip ':'
3140 
3141     // Read stride parameter
3142     int sign = +1;
3143     for (;;) {
3144       SKIP_WS(*scan);
3145       if (**scan == '+') {
3146         (*scan)++; // skip '+'
3147         continue;
3148       }
3149       if (**scan == '-') {
3150         sign *= -1;
3151         (*scan)++; // skip '-'
3152         continue;
3153       }
3154       break;
3155     }
3156     SKIP_WS(*scan);
3157     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3158     next = *scan;
3159     SKIP_DIGITS(next);
3160     stride = __kmp_str_to_int(*scan, *next);
3161     KMP_ASSERT(stride >= 0);
3162     *scan = next;
3163     stride *= sign;
3164 
3165     // valid follow sets are ',' and '}'
3166     SKIP_WS(*scan);
3167     if (**scan == '}' || **scan == ',') {
3168       for (i = 0; i < count; i++) {
3169         if ((start > maxOsId) ||
3170             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3171           if (__kmp_affinity_verbose ||
3172               (__kmp_affinity_warnings &&
3173                (__kmp_affinity_type != affinity_none))) {
3174             KMP_WARNING(AffIgnoreInvalidProcID, start);
3175           }
3176           break; // don't proliferate warnings for large count
3177         } else {
3178           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3179           start += stride;
3180           (*setSize)++;
3181         }
3182       }
3183       if (**scan == '}') {
3184         break;
3185       }
3186       (*scan)++; // skip ','
3187       continue;
3188     }
3189 
3190     KMP_ASSERT2(0, "bad explicit places list");
3191   }
3192 }
3193 
3194 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3195                                 int maxOsId, kmp_affin_mask_t *tempMask,
3196                                 int *setSize) {
3197   const char *next;
3198 
3199   // valid follow sets are '{' '!' and num
3200   SKIP_WS(*scan);
3201   if (**scan == '{') {
3202     (*scan)++; // skip '{'
3203     __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3204     KMP_ASSERT2(**scan == '}', "bad explicit places list");
3205     (*scan)++; // skip '}'
3206   } else if (**scan == '!') {
3207     (*scan)++; // skip '!'
3208     __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3209     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3210   } else if ((**scan >= '0') && (**scan <= '9')) {
3211     next = *scan;
3212     SKIP_DIGITS(next);
3213     int num = __kmp_str_to_int(*scan, *next);
3214     KMP_ASSERT(num >= 0);
3215     if ((num > maxOsId) ||
3216         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3217       if (__kmp_affinity_verbose ||
3218           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3219         KMP_WARNING(AffIgnoreInvalidProcID, num);
3220       }
3221     } else {
3222       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3223       (*setSize)++;
3224     }
3225     *scan = next; // skip num
3226   } else {
3227     KMP_ASSERT2(0, "bad explicit places list");
3228   }
3229 }
3230 
3231 // static void
3232 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3233                                       unsigned int *out_numMasks,
3234                                       const char *placelist,
3235                                       kmp_affin_mask_t *osId2Mask,
3236                                       int maxOsId) {
3237   int i, j, count, stride, sign;
3238   const char *scan = placelist;
3239   const char *next = placelist;
3240 
3241   numNewMasks = 2;
3242   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3243   nextNewMask = 0;
3244 
3245   // tempMask is modified based on the previous or initial
3246   //   place to form the current place
3247   // previousMask contains the previous place
3248   kmp_affin_mask_t *tempMask;
3249   kmp_affin_mask_t *previousMask;
3250   KMP_CPU_ALLOC(tempMask);
3251   KMP_CPU_ZERO(tempMask);
3252   KMP_CPU_ALLOC(previousMask);
3253   KMP_CPU_ZERO(previousMask);
3254   int setSize = 0;
3255 
3256   for (;;) {
3257     __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3258 
3259     // valid follow sets are ',' ':' and EOL
3260     SKIP_WS(scan);
3261     if (*scan == '\0' || *scan == ',') {
3262       if (setSize > 0) {
3263         ADD_MASK(tempMask);
3264       }
3265       KMP_CPU_ZERO(tempMask);
3266       setSize = 0;
3267       if (*scan == '\0') {
3268         break;
3269       }
3270       scan++; // skip ','
3271       continue;
3272     }
3273 
3274     KMP_ASSERT2(*scan == ':', "bad explicit places list");
3275     scan++; // skip ':'
3276 
3277     // Read count parameter
3278     SKIP_WS(scan);
3279     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3280     next = scan;
3281     SKIP_DIGITS(next);
3282     count = __kmp_str_to_int(scan, *next);
3283     KMP_ASSERT(count >= 0);
3284     scan = next;
3285 
3286     // valid follow sets are ',' ':' and EOL
3287     SKIP_WS(scan);
3288     if (*scan == '\0' || *scan == ',') {
3289       stride = +1;
3290     } else {
3291       KMP_ASSERT2(*scan == ':', "bad explicit places list");
3292       scan++; // skip ':'
3293 
3294       // Read stride parameter
3295       sign = +1;
3296       for (;;) {
3297         SKIP_WS(scan);
3298         if (*scan == '+') {
3299           scan++; // skip '+'
3300           continue;
3301         }
3302         if (*scan == '-') {
3303           sign *= -1;
3304           scan++; // skip '-'
3305           continue;
3306         }
3307         break;
3308       }
3309       SKIP_WS(scan);
3310       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3311       next = scan;
3312       SKIP_DIGITS(next);
3313       stride = __kmp_str_to_int(scan, *next);
3314       KMP_DEBUG_ASSERT(stride >= 0);
3315       scan = next;
3316       stride *= sign;
3317     }
3318 
3319     // Add places determined by initial_place : count : stride
3320     for (i = 0; i < count; i++) {
3321       if (setSize == 0) {
3322         break;
3323       }
3324       // Add the current place, then build the next place (tempMask) from that
3325       KMP_CPU_COPY(previousMask, tempMask);
3326       ADD_MASK(previousMask);
3327       KMP_CPU_ZERO(tempMask);
3328       setSize = 0;
3329       KMP_CPU_SET_ITERATE(j, previousMask) {
3330         if (!KMP_CPU_ISSET(j, previousMask)) {
3331           continue;
3332         }
3333         if ((j + stride > maxOsId) || (j + stride < 0) ||
3334             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3335             (!KMP_CPU_ISSET(j + stride,
3336                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3337           if ((__kmp_affinity_verbose ||
3338                (__kmp_affinity_warnings &&
3339                 (__kmp_affinity_type != affinity_none))) &&
3340               i < count - 1) {
3341             KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3342           }
3343           continue;
3344         }
3345         KMP_CPU_SET(j + stride, tempMask);
3346         setSize++;
3347       }
3348     }
3349     KMP_CPU_ZERO(tempMask);
3350     setSize = 0;
3351 
3352     // valid follow sets are ',' and EOL
3353     SKIP_WS(scan);
3354     if (*scan == '\0') {
3355       break;
3356     }
3357     if (*scan == ',') {
3358       scan++; // skip ','
3359       continue;
3360     }
3361 
3362     KMP_ASSERT2(0, "bad explicit places list");
3363   }
3364 
3365   *out_numMasks = nextNewMask;
3366   if (nextNewMask == 0) {
3367     *out_masks = NULL;
3368     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3369     return;
3370   }
3371   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3372   KMP_CPU_FREE(tempMask);
3373   KMP_CPU_FREE(previousMask);
3374   for (i = 0; i < nextNewMask; i++) {
3375     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3376     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3377     KMP_CPU_COPY(dest, src);
3378   }
3379   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3380 }
3381 
3382 #undef ADD_MASK
3383 #undef ADD_MASK_OSID
3384 
3385 // This function figures out the deepest level at which there is at least one
3386 // cluster/core with more than one processing unit bound to it.
3387 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
3388   int core_level = 0;
3389 
3390   for (int i = 0; i < nprocs; i++) {
3391     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3392     for (int j = bottom_level; j > 0; j--) {
3393       if (hw_thread.ids[j] > 0) {
3394         if (core_level < (j - 1)) {
3395           core_level = j - 1;
3396         }
3397       }
3398     }
3399   }
3400   return core_level;
3401 }
3402 
3403 // This function counts number of clusters/cores at given level.
3404 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
3405                                          int core_level) {
3406   return __kmp_topology->get_count(core_level);
3407 }
3408 // This function finds to which cluster/core given processing unit is bound.
3409 static int __kmp_affinity_find_core(int proc, int bottom_level,
3410                                     int core_level) {
3411   int core = 0;
3412   KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
3413   for (int i = 0; i <= proc; ++i) {
3414     if (i + 1 <= proc) {
3415       for (int j = 0; j <= core_level; ++j) {
3416         if (__kmp_topology->at(i + 1).sub_ids[j] !=
3417             __kmp_topology->at(i).sub_ids[j]) {
3418           core++;
3419           break;
3420         }
3421       }
3422     }
3423   }
3424   return core;
3425 }
3426 
3427 // This function finds maximal number of processing units bound to a
3428 // cluster/core at given level.
3429 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
3430                                             int core_level) {
3431   if (core_level >= bottom_level)
3432     return 1;
3433   int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
3434   return __kmp_topology->calculate_ratio(thread_level, core_level);
3435 }
3436 
3437 static int *procarr = NULL;
3438 static int __kmp_aff_depth = 0;
3439 
3440 // Create a one element mask array (set of places) which only contains the
3441 // initial process's affinity mask
3442 static void __kmp_create_affinity_none_places() {
3443   KMP_ASSERT(__kmp_affin_fullMask != NULL);
3444   KMP_ASSERT(__kmp_affinity_type == affinity_none);
3445   __kmp_affinity_num_masks = 1;
3446   KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3447   kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
3448   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
3449 }
3450 
3451 static void __kmp_aux_affinity_initialize(void) {
3452   if (__kmp_affinity_masks != NULL) {
3453     KMP_ASSERT(__kmp_affin_fullMask != NULL);
3454     return;
3455   }
3456 
3457   // Create the "full" mask - this defines all of the processors that we
3458   // consider to be in the machine model. If respect is set, then it is the
3459   // initialization thread's affinity mask. Otherwise, it is all processors that
3460   // we know about on the machine.
3461   if (__kmp_affin_fullMask == NULL) {
3462     KMP_CPU_ALLOC(__kmp_affin_fullMask);
3463   }
3464   if (KMP_AFFINITY_CAPABLE()) {
3465     __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
3466     if (__kmp_affinity_respect_mask) {
3467       // Count the number of available processors.
3468       unsigned i;
3469       __kmp_avail_proc = 0;
3470       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
3471         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
3472           continue;
3473         }
3474         __kmp_avail_proc++;
3475       }
3476       if (__kmp_avail_proc > __kmp_xproc) {
3477         if (__kmp_affinity_verbose ||
3478             (__kmp_affinity_warnings &&
3479              (__kmp_affinity_type != affinity_none))) {
3480           KMP_WARNING(ErrorInitializeAffinity);
3481         }
3482         __kmp_affinity_type = affinity_none;
3483         KMP_AFFINITY_DISABLE();
3484         return;
3485       }
3486 
3487       if (__kmp_affinity_verbose) {
3488         char buf[KMP_AFFIN_MASK_PRINT_LEN];
3489         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3490                                   __kmp_affin_fullMask);
3491         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
3492       }
3493     } else {
3494       if (__kmp_affinity_verbose) {
3495         char buf[KMP_AFFIN_MASK_PRINT_LEN];
3496         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3497                                   __kmp_affin_fullMask);
3498         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
3499       }
3500       __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
3501       __kmp_avail_proc = __kmp_xproc;
3502 #if KMP_OS_WINDOWS
3503       // Set the process affinity mask since threads' affinity
3504       // masks must be subset of process mask in Windows* OS
3505       __kmp_affin_fullMask->set_process_affinity(true);
3506 #endif
3507     }
3508   }
3509 
3510   kmp_i18n_id_t msg_id = kmp_i18n_null;
3511 
3512   // For backward compatibility, setting KMP_CPUINFO_FILE =>
3513   // KMP_TOPOLOGY_METHOD=cpuinfo
3514   if ((__kmp_cpuinfo_file != NULL) &&
3515       (__kmp_affinity_top_method == affinity_top_method_all)) {
3516     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3517   }
3518 
3519   bool success = false;
3520   if (__kmp_affinity_top_method == affinity_top_method_all) {
3521 // In the default code path, errors are not fatal - we just try using
3522 // another method. We only emit a warning message if affinity is on, or the
3523 // verbose flag is set, an the nowarnings flag was not set.
3524 #if KMP_USE_HWLOC
3525     if (!success &&
3526         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3527       if (!__kmp_hwloc_error) {
3528         success = __kmp_affinity_create_hwloc_map(&msg_id);
3529         if (!success && __kmp_affinity_verbose) {
3530           KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3531         }
3532       } else if (__kmp_affinity_verbose) {
3533         KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3534       }
3535     }
3536 #endif
3537 
3538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3539     if (!success) {
3540       success = __kmp_affinity_create_x2apicid_map(&msg_id);
3541       if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3542         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3543       }
3544     }
3545     if (!success) {
3546       success = __kmp_affinity_create_apicid_map(&msg_id);
3547       if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3548         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3549       }
3550     }
3551 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3552 
3553 #if KMP_OS_LINUX
3554     if (!success) {
3555       int line = 0;
3556       success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
3557       if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3558         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3559       }
3560     }
3561 #endif /* KMP_OS_LINUX */
3562 
3563 #if KMP_GROUP_AFFINITY
3564     if (!success && (__kmp_num_proc_groups > 1)) {
3565       success = __kmp_affinity_create_proc_group_map(&msg_id);
3566       if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3567         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3568       }
3569     }
3570 #endif /* KMP_GROUP_AFFINITY */
3571 
3572     if (!success) {
3573       success = __kmp_affinity_create_flat_map(&msg_id);
3574       if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3575         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3576       }
3577       KMP_ASSERT(success);
3578     }
3579   }
3580 
3581 // If the user has specified that a paricular topology discovery method is to be
3582 // used, then we abort if that method fails. The exception is group affinity,
3583 // which might have been implicitly set.
3584 #if KMP_USE_HWLOC
3585   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
3586     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
3587     success = __kmp_affinity_create_hwloc_map(&msg_id);
3588     if (!success) {
3589       KMP_ASSERT(msg_id != kmp_i18n_null);
3590       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3591     }
3592   }
3593 #endif // KMP_USE_HWLOC
3594 
3595 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3596   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
3597            __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
3598     success = __kmp_affinity_create_x2apicid_map(&msg_id);
3599     if (!success) {
3600       KMP_ASSERT(msg_id != kmp_i18n_null);
3601       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3602     }
3603   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
3604     success = __kmp_affinity_create_apicid_map(&msg_id);
3605     if (!success) {
3606       KMP_ASSERT(msg_id != kmp_i18n_null);
3607       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3608     }
3609   }
3610 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3611 
3612   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
3613     int line = 0;
3614     success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
3615     if (!success) {
3616       KMP_ASSERT(msg_id != kmp_i18n_null);
3617       const char *filename = __kmp_cpuinfo_get_filename();
3618       if (line > 0) {
3619         KMP_FATAL(FileLineMsgExiting, filename, line,
3620                   __kmp_i18n_catgets(msg_id));
3621       } else {
3622         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
3623       }
3624     }
3625   }
3626 
3627 #if KMP_GROUP_AFFINITY
3628   else if (__kmp_affinity_top_method == affinity_top_method_group) {
3629     success = __kmp_affinity_create_proc_group_map(&msg_id);
3630     KMP_ASSERT(success);
3631     if (!success) {
3632       KMP_ASSERT(msg_id != kmp_i18n_null);
3633       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3634     }
3635   }
3636 #endif /* KMP_GROUP_AFFINITY */
3637 
3638   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
3639     success = __kmp_affinity_create_flat_map(&msg_id);
3640     // should not fail
3641     KMP_ASSERT(success);
3642   }
3643 
3644   // Early exit if topology could not be created
3645   if (!__kmp_topology) {
3646     if (KMP_AFFINITY_CAPABLE() &&
3647         (__kmp_affinity_verbose ||
3648          (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
3649       KMP_WARNING(ErrorInitializeAffinity);
3650     }
3651     if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
3652         __kmp_ncores > 0) {
3653       __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
3654       __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
3655                                    __kmp_nThreadsPerCore, __kmp_ncores);
3656       if (__kmp_affinity_verbose) {
3657         __kmp_topology->print("KMP_AFFINITY");
3658       }
3659     }
3660     __kmp_affinity_type = affinity_none;
3661     __kmp_create_affinity_none_places();
3662 #if KMP_USE_HIER_SCHED
3663     __kmp_dispatch_set_hierarchy_values();
3664 #endif
3665     KMP_AFFINITY_DISABLE();
3666     return;
3667   }
3668 
3669   // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
3670   // initialize other data structures which depend on the topology
3671   __kmp_topology->canonicalize();
3672   if (__kmp_affinity_verbose)
3673     __kmp_topology->print("KMP_AFFINITY");
3674   bool filtered = __kmp_topology->filter_hw_subset();
3675   if (filtered && __kmp_affinity_verbose)
3676     __kmp_topology->print("KMP_HW_SUBSET");
3677   machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
3678   KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
3679   // If KMP_AFFINITY=none, then only create the single "none" place
3680   // which is the process's initial affinity mask or the number of
3681   // hardware threads depending on respect,norespect
3682   if (__kmp_affinity_type == affinity_none) {
3683     __kmp_create_affinity_none_places();
3684 #if KMP_USE_HIER_SCHED
3685     __kmp_dispatch_set_hierarchy_values();
3686 #endif
3687     return;
3688   }
3689   int depth = __kmp_topology->get_depth();
3690 
3691   // Create the table of masks, indexed by thread Id.
3692   unsigned maxIndex;
3693   unsigned numUnique;
3694   kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
3695   if (__kmp_affinity_gran_levels == 0) {
3696     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
3697   }
3698 
3699   switch (__kmp_affinity_type) {
3700 
3701   case affinity_explicit:
3702     KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
3703     if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
3704       __kmp_affinity_process_proclist(
3705           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
3706           __kmp_affinity_proclist, osId2Mask, maxIndex);
3707     } else {
3708       __kmp_affinity_process_placelist(
3709           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
3710           __kmp_affinity_proclist, osId2Mask, maxIndex);
3711     }
3712     if (__kmp_affinity_num_masks == 0) {
3713       if (__kmp_affinity_verbose ||
3714           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3715         KMP_WARNING(AffNoValidProcID);
3716       }
3717       __kmp_affinity_type = affinity_none;
3718       __kmp_create_affinity_none_places();
3719       return;
3720     }
3721     break;
3722 
3723   // The other affinity types rely on sorting the hardware threads according to
3724   // some permutation of the machine topology tree. Set __kmp_affinity_compact
3725   // and __kmp_affinity_offset appropriately, then jump to a common code
3726   // fragment to do the sort and create the array of affinity masks.
3727   case affinity_logical:
3728     __kmp_affinity_compact = 0;
3729     if (__kmp_affinity_offset) {
3730       __kmp_affinity_offset =
3731           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
3732     }
3733     goto sortTopology;
3734 
3735   case affinity_physical:
3736     if (__kmp_nThreadsPerCore > 1) {
3737       __kmp_affinity_compact = 1;
3738       if (__kmp_affinity_compact >= depth) {
3739         __kmp_affinity_compact = 0;
3740       }
3741     } else {
3742       __kmp_affinity_compact = 0;
3743     }
3744     if (__kmp_affinity_offset) {
3745       __kmp_affinity_offset =
3746           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
3747     }
3748     goto sortTopology;
3749 
3750   case affinity_scatter:
3751     if (__kmp_affinity_compact >= depth) {
3752       __kmp_affinity_compact = 0;
3753     } else {
3754       __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
3755     }
3756     goto sortTopology;
3757 
3758   case affinity_compact:
3759     if (__kmp_affinity_compact >= depth) {
3760       __kmp_affinity_compact = depth - 1;
3761     }
3762     goto sortTopology;
3763 
3764   case affinity_balanced:
3765     if (depth <= 1) {
3766       if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
3767         KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
3768       }
3769       __kmp_affinity_type = affinity_none;
3770       __kmp_create_affinity_none_places();
3771       return;
3772     } else if (!__kmp_topology->is_uniform()) {
3773       // Save the depth for further usage
3774       __kmp_aff_depth = depth;
3775 
3776       int core_level =
3777           __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
3778       int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
3779                                                  core_level);
3780       int maxprocpercore = __kmp_affinity_max_proc_per_core(
3781           __kmp_avail_proc, depth - 1, core_level);
3782 
3783       int nproc = ncores * maxprocpercore;
3784       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
3785         if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
3786           KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
3787         }
3788         __kmp_affinity_type = affinity_none;
3789         return;
3790       }
3791 
3792       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
3793       for (int i = 0; i < nproc; i++) {
3794         procarr[i] = -1;
3795       }
3796 
3797       int lastcore = -1;
3798       int inlastcore = 0;
3799       for (int i = 0; i < __kmp_avail_proc; i++) {
3800         int proc = __kmp_topology->at(i).os_id;
3801         int core = __kmp_affinity_find_core(i, depth - 1, core_level);
3802 
3803         if (core == lastcore) {
3804           inlastcore++;
3805         } else {
3806           inlastcore = 0;
3807         }
3808         lastcore = core;
3809 
3810         procarr[core * maxprocpercore + inlastcore] = proc;
3811       }
3812     }
3813     if (__kmp_affinity_compact >= depth) {
3814       __kmp_affinity_compact = depth - 1;
3815     }
3816 
3817   sortTopology:
3818     // Allocate the gtid->affinity mask table.
3819     if (__kmp_affinity_dups) {
3820       __kmp_affinity_num_masks = __kmp_avail_proc;
3821     } else {
3822       __kmp_affinity_num_masks = numUnique;
3823     }
3824 
3825     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
3826         (__kmp_affinity_num_places > 0) &&
3827         ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
3828       __kmp_affinity_num_masks = __kmp_affinity_num_places;
3829     }
3830 
3831     KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3832 
3833     // Sort the topology table according to the current setting of
3834     // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
3835     __kmp_topology->sort_compact();
3836     {
3837       int i;
3838       unsigned j;
3839       int num_hw_threads = __kmp_topology->get_num_hw_threads();
3840       for (i = 0, j = 0; i < num_hw_threads; i++) {
3841         if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
3842           continue;
3843         }
3844         int osId = __kmp_topology->at(i).os_id;
3845 
3846         kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
3847         kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
3848         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
3849         KMP_CPU_COPY(dest, src);
3850         if (++j >= __kmp_affinity_num_masks) {
3851           break;
3852         }
3853       }
3854       KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
3855     }
3856     // Sort the topology back using ids
3857     __kmp_topology->sort_ids();
3858     break;
3859 
3860   default:
3861     KMP_ASSERT2(0, "Unexpected affinity setting");
3862   }
3863 
3864   KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
3865 }
3866 
3867 void __kmp_affinity_initialize(void) {
3868   // Much of the code above was written assuming that if a machine was not
3869   // affinity capable, then __kmp_affinity_type == affinity_none.  We now
3870   // explicitly represent this as __kmp_affinity_type == affinity_disabled.
3871   // There are too many checks for __kmp_affinity_type == affinity_none
3872   // in this code.  Instead of trying to change them all, check if
3873   // __kmp_affinity_type == affinity_disabled, and if so, slam it with
3874   // affinity_none, call the real initialization routine, then restore
3875   // __kmp_affinity_type to affinity_disabled.
3876   int disabled = (__kmp_affinity_type == affinity_disabled);
3877   if (!KMP_AFFINITY_CAPABLE()) {
3878     KMP_ASSERT(disabled);
3879   }
3880   if (disabled) {
3881     __kmp_affinity_type = affinity_none;
3882   }
3883   __kmp_aux_affinity_initialize();
3884   if (disabled) {
3885     __kmp_affinity_type = affinity_disabled;
3886   }
3887 }
3888 
3889 void __kmp_affinity_uninitialize(void) {
3890   if (__kmp_affinity_masks != NULL) {
3891     KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3892     __kmp_affinity_masks = NULL;
3893   }
3894   if (__kmp_affin_fullMask != NULL) {
3895     KMP_CPU_FREE(__kmp_affin_fullMask);
3896     __kmp_affin_fullMask = NULL;
3897   }
3898   __kmp_affinity_num_masks = 0;
3899   __kmp_affinity_type = affinity_default;
3900   __kmp_affinity_num_places = 0;
3901   if (__kmp_affinity_proclist != NULL) {
3902     __kmp_free(__kmp_affinity_proclist);
3903     __kmp_affinity_proclist = NULL;
3904   }
3905   if (procarr != NULL) {
3906     __kmp_free(procarr);
3907     procarr = NULL;
3908   }
3909 #if KMP_USE_HWLOC
3910   if (__kmp_hwloc_topology != NULL) {
3911     hwloc_topology_destroy(__kmp_hwloc_topology);
3912     __kmp_hwloc_topology = NULL;
3913   }
3914 #endif
3915   if (__kmp_hw_subset) {
3916     kmp_hw_subset_t::deallocate(__kmp_hw_subset);
3917     __kmp_hw_subset = nullptr;
3918   }
3919   if (__kmp_topology) {
3920     kmp_topology_t::deallocate(__kmp_topology);
3921     __kmp_topology = nullptr;
3922   }
3923   KMPAffinity::destroy_api();
3924 }
3925 
3926 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
3927   if (!KMP_AFFINITY_CAPABLE()) {
3928     return;
3929   }
3930 
3931   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
3932   if (th->th.th_affin_mask == NULL) {
3933     KMP_CPU_ALLOC(th->th.th_affin_mask);
3934   } else {
3935     KMP_CPU_ZERO(th->th.th_affin_mask);
3936   }
3937 
3938   // Copy the thread mask to the kmp_info_t structure. If
3939   // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
3940   // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
3941   // then the full mask is the same as the mask of the initialization thread.
3942   kmp_affin_mask_t *mask;
3943   int i;
3944 
3945   if (KMP_AFFINITY_NON_PROC_BIND) {
3946     if ((__kmp_affinity_type == affinity_none) ||
3947         (__kmp_affinity_type == affinity_balanced) ||
3948         KMP_HIDDEN_HELPER_THREAD(gtid)) {
3949 #if KMP_GROUP_AFFINITY
3950       if (__kmp_num_proc_groups > 1) {
3951         return;
3952       }
3953 #endif
3954       KMP_ASSERT(__kmp_affin_fullMask != NULL);
3955       i = 0;
3956       mask = __kmp_affin_fullMask;
3957     } else {
3958       int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
3959       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
3960       i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
3961       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
3962     }
3963   } else {
3964     if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
3965         (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
3966 #if KMP_GROUP_AFFINITY
3967       if (__kmp_num_proc_groups > 1) {
3968         return;
3969       }
3970 #endif
3971       KMP_ASSERT(__kmp_affin_fullMask != NULL);
3972       i = KMP_PLACE_ALL;
3973       mask = __kmp_affin_fullMask;
3974     } else {
3975       // int i = some hash function or just a counter that doesn't
3976       // always start at 0.  Use adjusted gtid for now.
3977       int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
3978       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
3979       i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
3980       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
3981     }
3982   }
3983 
3984   th->th.th_current_place = i;
3985   if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
3986     th->th.th_new_place = i;
3987     th->th.th_first_place = 0;
3988     th->th.th_last_place = __kmp_affinity_num_masks - 1;
3989   } else if (KMP_AFFINITY_NON_PROC_BIND) {
3990     // When using a Non-OMP_PROC_BIND affinity method,
3991     // set all threads' place-partition-var to the entire place list
3992     th->th.th_first_place = 0;
3993     th->th.th_last_place = __kmp_affinity_num_masks - 1;
3994   }
3995 
3996   if (i == KMP_PLACE_ALL) {
3997     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
3998                    gtid));
3999   } else {
4000     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4001                    gtid, i));
4002   }
4003 
4004   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4005 
4006   if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
4007       /* to avoid duplicate printing (will be correctly printed on barrier) */
4008       && (__kmp_affinity_type == affinity_none ||
4009           (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4010     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4011     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4012                               th->th.th_affin_mask);
4013     KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4014                __kmp_gettid(), gtid, buf);
4015   }
4016 
4017 #if KMP_DEBUG
4018   // Hidden helper thread affinity only printed for debug builds
4019   if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
4020     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4021     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4022                               th->th.th_affin_mask);
4023     KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
4024                (kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
4025   }
4026 #endif
4027 
4028 #if KMP_OS_WINDOWS
4029   // On Windows* OS, the process affinity mask might have changed. If the user
4030   // didn't request affinity and this call fails, just continue silently.
4031   // See CQ171393.
4032   if (__kmp_affinity_type == affinity_none) {
4033     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4034   } else
4035 #endif
4036     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4037 }
4038 
4039 void __kmp_affinity_set_place(int gtid) {
4040   if (!KMP_AFFINITY_CAPABLE()) {
4041     return;
4042   }
4043 
4044   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4045 
4046   KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4047                  "place = %d)\n",
4048                  gtid, th->th.th_new_place, th->th.th_current_place));
4049 
4050   // Check that the new place is within this thread's partition.
4051   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4052   KMP_ASSERT(th->th.th_new_place >= 0);
4053   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4054   if (th->th.th_first_place <= th->th.th_last_place) {
4055     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4056                (th->th.th_new_place <= th->th.th_last_place));
4057   } else {
4058     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4059                (th->th.th_new_place >= th->th.th_last_place));
4060   }
4061 
4062   // Copy the thread mask to the kmp_info_t structure,
4063   // and set this thread's affinity.
4064   kmp_affin_mask_t *mask =
4065       KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4066   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4067   th->th.th_current_place = th->th.th_new_place;
4068 
4069   if (__kmp_affinity_verbose) {
4070     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4071     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4072                               th->th.th_affin_mask);
4073     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4074                __kmp_gettid(), gtid, buf);
4075   }
4076   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4077 }
4078 
4079 int __kmp_aux_set_affinity(void **mask) {
4080   int gtid;
4081   kmp_info_t *th;
4082   int retval;
4083 
4084   if (!KMP_AFFINITY_CAPABLE()) {
4085     return -1;
4086   }
4087 
4088   gtid = __kmp_entry_gtid();
4089   KA_TRACE(
4090       1000, (""); {
4091         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4092         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4093                                   (kmp_affin_mask_t *)(*mask));
4094         __kmp_debug_printf(
4095             "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4096             gtid, buf);
4097       });
4098 
4099   if (__kmp_env_consistency_check) {
4100     if ((mask == NULL) || (*mask == NULL)) {
4101       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4102     } else {
4103       unsigned proc;
4104       int num_procs = 0;
4105 
4106       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4107         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4108           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4109         }
4110         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4111           continue;
4112         }
4113         num_procs++;
4114       }
4115       if (num_procs == 0) {
4116         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4117       }
4118 
4119 #if KMP_GROUP_AFFINITY
4120       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4121         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4122       }
4123 #endif /* KMP_GROUP_AFFINITY */
4124     }
4125   }
4126 
4127   th = __kmp_threads[gtid];
4128   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4129   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4130   if (retval == 0) {
4131     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4132   }
4133 
4134   th->th.th_current_place = KMP_PLACE_UNDEFINED;
4135   th->th.th_new_place = KMP_PLACE_UNDEFINED;
4136   th->th.th_first_place = 0;
4137   th->th.th_last_place = __kmp_affinity_num_masks - 1;
4138 
4139   // Turn off 4.0 affinity for the current tread at this parallel level.
4140   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4141 
4142   return retval;
4143 }
4144 
4145 int __kmp_aux_get_affinity(void **mask) {
4146   int gtid;
4147   int retval;
4148   kmp_info_t *th;
4149 
4150   if (!KMP_AFFINITY_CAPABLE()) {
4151     return -1;
4152   }
4153 
4154   gtid = __kmp_entry_gtid();
4155   th = __kmp_threads[gtid];
4156   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4157 
4158   KA_TRACE(
4159       1000, (""); {
4160         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4161         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4162                                   th->th.th_affin_mask);
4163         __kmp_printf(
4164             "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
4165             buf);
4166       });
4167 
4168   if (__kmp_env_consistency_check) {
4169     if ((mask == NULL) || (*mask == NULL)) {
4170       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4171     }
4172   }
4173 
4174 #if !KMP_OS_WINDOWS
4175 
4176   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4177   KA_TRACE(
4178       1000, (""); {
4179         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4180         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4181                                   (kmp_affin_mask_t *)(*mask));
4182         __kmp_printf(
4183             "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
4184             buf);
4185       });
4186   return retval;
4187 
4188 #else
4189   (void)retval;
4190 
4191   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4192   return 0;
4193 
4194 #endif /* KMP_OS_WINDOWS */
4195 }
4196 
4197 int __kmp_aux_get_affinity_max_proc() {
4198   if (!KMP_AFFINITY_CAPABLE()) {
4199     return 0;
4200   }
4201 #if KMP_GROUP_AFFINITY
4202   if (__kmp_num_proc_groups > 1) {
4203     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4204   }
4205 #endif
4206   return __kmp_xproc;
4207 }
4208 
4209 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4210   if (!KMP_AFFINITY_CAPABLE()) {
4211     return -1;
4212   }
4213 
4214   KA_TRACE(
4215       1000, (""); {
4216         int gtid = __kmp_entry_gtid();
4217         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4218         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4219                                   (kmp_affin_mask_t *)(*mask));
4220         __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4221                            "affinity mask for thread %d = %s\n",
4222                            proc, gtid, buf);
4223       });
4224 
4225   if (__kmp_env_consistency_check) {
4226     if ((mask == NULL) || (*mask == NULL)) {
4227       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4228     }
4229   }
4230 
4231   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4232     return -1;
4233   }
4234   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4235     return -2;
4236   }
4237 
4238   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4239   return 0;
4240 }
4241 
4242 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4243   if (!KMP_AFFINITY_CAPABLE()) {
4244     return -1;
4245   }
4246 
4247   KA_TRACE(
4248       1000, (""); {
4249         int gtid = __kmp_entry_gtid();
4250         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4251         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4252                                   (kmp_affin_mask_t *)(*mask));
4253         __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4254                            "affinity mask for thread %d = %s\n",
4255                            proc, gtid, buf);
4256       });
4257 
4258   if (__kmp_env_consistency_check) {
4259     if ((mask == NULL) || (*mask == NULL)) {
4260       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4261     }
4262   }
4263 
4264   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4265     return -1;
4266   }
4267   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4268     return -2;
4269   }
4270 
4271   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4272   return 0;
4273 }
4274 
4275 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4276   if (!KMP_AFFINITY_CAPABLE()) {
4277     return -1;
4278   }
4279 
4280   KA_TRACE(
4281       1000, (""); {
4282         int gtid = __kmp_entry_gtid();
4283         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4284         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4285                                   (kmp_affin_mask_t *)(*mask));
4286         __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4287                            "affinity mask for thread %d = %s\n",
4288                            proc, gtid, buf);
4289       });
4290 
4291   if (__kmp_env_consistency_check) {
4292     if ((mask == NULL) || (*mask == NULL)) {
4293       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4294     }
4295   }
4296 
4297   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4298     return -1;
4299   }
4300   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4301     return 0;
4302   }
4303 
4304   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4305 }
4306 
4307 // Dynamic affinity settings - Affinity balanced
4308 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4309   KMP_DEBUG_ASSERT(th);
4310   bool fine_gran = true;
4311   int tid = th->th.th_info.ds.ds_tid;
4312 
4313   // Do not perform balanced affinity for the hidden helper threads
4314   if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
4315     return;
4316 
4317   switch (__kmp_affinity_gran) {
4318   case KMP_HW_THREAD:
4319     break;
4320   case KMP_HW_CORE:
4321     if (__kmp_nThreadsPerCore > 1) {
4322       fine_gran = false;
4323     }
4324     break;
4325   case KMP_HW_SOCKET:
4326     if (nCoresPerPkg > 1) {
4327       fine_gran = false;
4328     }
4329     break;
4330   default:
4331     fine_gran = false;
4332   }
4333 
4334   if (__kmp_topology->is_uniform()) {
4335     int coreID;
4336     int threadID;
4337     // Number of hyper threads per core in HT machine
4338     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4339     // Number of cores
4340     int ncores = __kmp_ncores;
4341     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4342       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4343       ncores = nPackages;
4344     }
4345     // How many threads will be bound to each core
4346     int chunk = nthreads / ncores;
4347     // How many cores will have an additional thread bound to it - "big cores"
4348     int big_cores = nthreads % ncores;
4349     // Number of threads on the big cores
4350     int big_nth = (chunk + 1) * big_cores;
4351     if (tid < big_nth) {
4352       coreID = tid / (chunk + 1);
4353       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
4354     } else { // tid >= big_nth
4355       coreID = (tid - big_cores) / chunk;
4356       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
4357     }
4358     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4359                       "Illegal set affinity operation when not capable");
4360 
4361     kmp_affin_mask_t *mask = th->th.th_affin_mask;
4362     KMP_CPU_ZERO(mask);
4363 
4364     if (fine_gran) {
4365       int osID =
4366           __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
4367       KMP_CPU_SET(osID, mask);
4368     } else {
4369       for (int i = 0; i < __kmp_nth_per_core; i++) {
4370         int osID;
4371         osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
4372         KMP_CPU_SET(osID, mask);
4373       }
4374     }
4375     if (__kmp_affinity_verbose) {
4376       char buf[KMP_AFFIN_MASK_PRINT_LEN];
4377       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4378       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4379                  __kmp_gettid(), tid, buf);
4380     }
4381     __kmp_set_system_affinity(mask, TRUE);
4382   } else { // Non-uniform topology
4383 
4384     kmp_affin_mask_t *mask = th->th.th_affin_mask;
4385     KMP_CPU_ZERO(mask);
4386 
4387     int core_level =
4388         __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
4389     int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
4390                                                __kmp_aff_depth - 1, core_level);
4391     int nth_per_core = __kmp_affinity_max_proc_per_core(
4392         __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
4393 
4394     // For performance gain consider the special case nthreads ==
4395     // __kmp_avail_proc
4396     if (nthreads == __kmp_avail_proc) {
4397       if (fine_gran) {
4398         int osID = __kmp_topology->at(tid).os_id;
4399         KMP_CPU_SET(osID, mask);
4400       } else {
4401         int core =
4402             __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
4403         for (int i = 0; i < __kmp_avail_proc; i++) {
4404           int osID = __kmp_topology->at(i).os_id;
4405           if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
4406               core) {
4407             KMP_CPU_SET(osID, mask);
4408           }
4409         }
4410       }
4411     } else if (nthreads <= ncores) {
4412 
4413       int core = 0;
4414       for (int i = 0; i < ncores; i++) {
4415         // Check if this core from procarr[] is in the mask
4416         int in_mask = 0;
4417         for (int j = 0; j < nth_per_core; j++) {
4418           if (procarr[i * nth_per_core + j] != -1) {
4419             in_mask = 1;
4420             break;
4421           }
4422         }
4423         if (in_mask) {
4424           if (tid == core) {
4425             for (int j = 0; j < nth_per_core; j++) {
4426               int osID = procarr[i * nth_per_core + j];
4427               if (osID != -1) {
4428                 KMP_CPU_SET(osID, mask);
4429                 // For fine granularity it is enough to set the first available
4430                 // osID for this core
4431                 if (fine_gran) {
4432                   break;
4433                 }
4434               }
4435             }
4436             break;
4437           } else {
4438             core++;
4439           }
4440         }
4441       }
4442     } else { // nthreads > ncores
4443       // Array to save the number of processors at each core
4444       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
4445       // Array to save the number of cores with "x" available processors;
4446       int *ncores_with_x_procs =
4447           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4448       // Array to save the number of cores with # procs from x to nth_per_core
4449       int *ncores_with_x_to_max_procs =
4450           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4451 
4452       for (int i = 0; i <= nth_per_core; i++) {
4453         ncores_with_x_procs[i] = 0;
4454         ncores_with_x_to_max_procs[i] = 0;
4455       }
4456 
4457       for (int i = 0; i < ncores; i++) {
4458         int cnt = 0;
4459         for (int j = 0; j < nth_per_core; j++) {
4460           if (procarr[i * nth_per_core + j] != -1) {
4461             cnt++;
4462           }
4463         }
4464         nproc_at_core[i] = cnt;
4465         ncores_with_x_procs[cnt]++;
4466       }
4467 
4468       for (int i = 0; i <= nth_per_core; i++) {
4469         for (int j = i; j <= nth_per_core; j++) {
4470           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
4471         }
4472       }
4473 
4474       // Max number of processors
4475       int nproc = nth_per_core * ncores;
4476       // An array to keep number of threads per each context
4477       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4478       for (int i = 0; i < nproc; i++) {
4479         newarr[i] = 0;
4480       }
4481 
4482       int nth = nthreads;
4483       int flag = 0;
4484       while (nth > 0) {
4485         for (int j = 1; j <= nth_per_core; j++) {
4486           int cnt = ncores_with_x_to_max_procs[j];
4487           for (int i = 0; i < ncores; i++) {
4488             // Skip the core with 0 processors
4489             if (nproc_at_core[i] == 0) {
4490               continue;
4491             }
4492             for (int k = 0; k < nth_per_core; k++) {
4493               if (procarr[i * nth_per_core + k] != -1) {
4494                 if (newarr[i * nth_per_core + k] == 0) {
4495                   newarr[i * nth_per_core + k] = 1;
4496                   cnt--;
4497                   nth--;
4498                   break;
4499                 } else {
4500                   if (flag != 0) {
4501                     newarr[i * nth_per_core + k]++;
4502                     cnt--;
4503                     nth--;
4504                     break;
4505                   }
4506                 }
4507               }
4508             }
4509             if (cnt == 0 || nth == 0) {
4510               break;
4511             }
4512           }
4513           if (nth == 0) {
4514             break;
4515           }
4516         }
4517         flag = 1;
4518       }
4519       int sum = 0;
4520       for (int i = 0; i < nproc; i++) {
4521         sum += newarr[i];
4522         if (sum > tid) {
4523           if (fine_gran) {
4524             int osID = procarr[i];
4525             KMP_CPU_SET(osID, mask);
4526           } else {
4527             int coreID = i / nth_per_core;
4528             for (int ii = 0; ii < nth_per_core; ii++) {
4529               int osID = procarr[coreID * nth_per_core + ii];
4530               if (osID != -1) {
4531                 KMP_CPU_SET(osID, mask);
4532               }
4533             }
4534           }
4535           break;
4536         }
4537       }
4538       __kmp_free(newarr);
4539     }
4540 
4541     if (__kmp_affinity_verbose) {
4542       char buf[KMP_AFFIN_MASK_PRINT_LEN];
4543       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4544       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4545                  __kmp_gettid(), tid, buf);
4546     }
4547     __kmp_set_system_affinity(mask, TRUE);
4548   }
4549 }
4550 
4551 #if KMP_OS_LINUX || KMP_OS_FREEBSD
4552 // We don't need this entry for Windows because
4553 // there is GetProcessAffinityMask() api
4554 //
4555 // The intended usage is indicated by these steps:
4556 // 1) The user gets the current affinity mask
4557 // 2) Then sets the affinity by calling this function
4558 // 3) Error check the return value
4559 // 4) Use non-OpenMP parallelization
4560 // 5) Reset the affinity to what was stored in step 1)
4561 #ifdef __cplusplus
4562 extern "C"
4563 #endif
4564     int
4565     kmp_set_thread_affinity_mask_initial()
4566 // the function returns 0 on success,
4567 //   -1 if we cannot bind thread
4568 //   >0 (errno) if an error happened during binding
4569 {
4570   int gtid = __kmp_get_gtid();
4571   if (gtid < 0) {
4572     // Do not touch non-omp threads
4573     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
4574                   "non-omp thread, returning\n"));
4575     return -1;
4576   }
4577   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
4578     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
4579                   "affinity not initialized, returning\n"));
4580     return -1;
4581   }
4582   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
4583                 "set full mask for thread %d\n",
4584                 gtid));
4585   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
4586   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
4587 }
4588 #endif
4589 
4590 #endif // KMP_AFFINITY_SUPPORTED
4591