xref: /freebsd/contrib/ntp/ntpd/refclock_datum.c (revision d184218c)
1 /*
2 ** refclock_datum - clock driver for the Datum Programmable Time Server
3 **
4 ** Important note: This driver assumes that you have termios. If you have
5 ** a system that does not have termios, you will have to modify this driver.
6 **
7 ** Sorry, I have only tested this driver on SUN and HP platforms.
8 */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #if defined(REFCLOCK) && defined(CLOCK_DATUM)
15 
16 /*
17 ** Include Files
18 */
19 
20 #include "ntpd.h"
21 #include "ntp_io.h"
22 #include "ntp_refclock.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 
26 #include <stdio.h>
27 #include <ctype.h>
28 
29 #if defined(HAVE_BSD_TTYS)
30 #include <sgtty.h>
31 #endif /* HAVE_BSD_TTYS */
32 
33 #if defined(HAVE_SYSV_TTYS)
34 #include <termio.h>
35 #endif /* HAVE_SYSV_TTYS */
36 
37 #if defined(HAVE_TERMIOS)
38 #include <termios.h>
39 #endif
40 #if defined(STREAM)
41 #include <stropts.h>
42 #if defined(WWVBCLK)
43 #include <sys/clkdefs.h>
44 #endif /* WWVBCLK */
45 #endif /* STREAM */
46 
47 #include "ntp_stdlib.h"
48 
49 /*
50 ** This driver supports the Datum Programmable Time System (PTS) clock.
51 ** The clock works in very straight forward manner. When it receives a
52 ** time code request (e.g., the ascii string "//k/mn"), it responds with
53 ** a seven byte BCD time code. This clock only responds with a
54 ** time code after it first receives the "//k/mn" message. It does not
55 ** periodically send time codes back at some rate once it is started.
56 ** the returned time code can be broken down into the following fields.
57 **
58 **            _______________________________
59 ** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
60 **            ===============================
61 ** byte 0:   | -   -   -   - |      H D      |
62 **            ===============================
63 ** byte 1:   |      T D      |      U D      |
64 **            ===============================
65 ** byte 2:   | -   - |  T H  |      U H      |
66 **            ===============================
67 ** byte 3:   | - |    T M    |      U M      |
68 **            ===============================
69 ** byte 4:   | - |    T S    |      U S      |
70 **            ===============================
71 ** byte 5:   |      t S      |      h S      |
72 **            ===============================
73 ** byte 6:   |      m S      | -   -   -   - |
74 **            ===============================
75 **
76 ** In the table above:
77 **
78 **	"-" means don't care
79 **	"H D", "T D", and "U D" means Hundreds, Tens, and Units of Days
80 **	"T H", and "UH" means Tens and Units of Hours
81 **	"T M", and "U M" means Tens and Units of Minutes
82 **	"T S", and "U S" means Tens and Units of Seconds
83 **	"t S", "h S", and "m S" means tenths, hundredths, and thousandths
84 **				of seconds
85 **
86 ** The Datum PTS communicates throught the RS232 port on your machine.
87 ** Right now, it assumes that you have termios. This driver has been tested
88 ** on SUN and HP workstations. The Datum PTS supports various IRIG and
89 ** NASA input codes. This driver assumes that the name of the device is
90 ** /dev/datum. You will need to make a soft link to your RS232 device or
91 ** create a new driver to use this refclock.
92 */
93 
94 /*
95 ** Datum PTS defines
96 */
97 
98 /*
99 ** Note that if GMT is defined, then the Datum PTS must use Greenwich
100 ** time. Otherwise, this driver allows the Datum PTS to use the current
101 ** wall clock for its time. It determines the time zone offset by minimizing
102 ** the error after trying several time zone offsets. If the Datum PTS
103 ** time is Greenwich time and GMT is not defined, everything should still
104 ** work since the time zone will be found to be 0. What this really means
105 ** is that your system time (at least to start with) must be within the
106 ** correct time by less than +- 30 minutes. The default is for GMT to not
107 ** defined. If you really want to force GMT without the funny +- 30 minute
108 ** stuff then you must define (uncomment) GMT below.
109 */
110 
111 /*
112 #define GMT
113 #define DEBUG_DATUM_PTC
114 #define LOG_TIME_ERRORS
115 */
116 
117 
118 #define	PRECISION	(-10)		/* precision assumed 1/1024 ms */
119 #define	REFID "DATM"			/* reference id */
120 #define DATUM_DISPERSION 0		/* fixed dispersion = 0 ms */
121 #define DATUM_MAX_ERROR 0.100		/* limits on sigma squared */
122 #define DATUM_DEV	"/dev/datum"	/* device name */
123 
124 #define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR)
125 
126 /*
127 ** The Datum PTS structure
128 */
129 
130 /*
131 ** I don't use a fixed array of MAXUNITS like everyone else just because
132 ** I don't like to program that way. Sorry if this bothers anyone. I assume
133 ** that you can use any id for your unit and I will search for it in a
134 ** dynamic array of units until I find it. I was worried that users might
135 ** enter a bad id in their configuration file (larger than MAXUNITS) and
136 ** besides, it is just cleaner not to have to assume that you have a fixed
137 ** number of anything in a program.
138 */
139 
140 struct datum_pts_unit {
141 	struct peer *peer;		/* peer used by ntp */
142 	struct refclockio io;		/* io structure used by ntp */
143 	int PTS_fd;			/* file descriptor for PTS */
144 	u_int unit;			/* id for unit */
145 	u_long timestarted;		/* time started */
146 	l_fp lastrec;			/* time tag for the receive time (system) */
147 	l_fp lastref;			/* reference time (Datum time) */
148 	u_long yearstart;		/* the year that this clock started */
149 	int coderecv;			/* number of time codes received */
150 	int day;			/* day */
151 	int hour;			/* hour */
152 	int minute;			/* minutes */
153 	int second;			/* seconds */
154 	int msec;			/* miliseconds */
155 	int usec;			/* miliseconds */
156 	u_char leap;			/* funny leap character code */
157 	char retbuf[8];		/* returned time from the datum pts */
158 	char nbytes;			/* number of bytes received from datum pts */
159 	double sigma2;		/* average squared error (roughly) */
160 	int tzoff;			/* time zone offest from GMT */
161 };
162 
163 /*
164 ** PTS static constant variables for internal use
165 */
166 
167 static char TIME_REQUEST[6];	/* request message sent to datum for time */
168 static int nunits;		/* number of active units */
169 static struct datum_pts_unit
170 **datum_pts_unit;	/* dynamic array of datum PTS structures */
171 
172 /*
173 ** Callback function prototypes that ntpd needs to know about.
174 */
175 
176 static	int	datum_pts_start		P((int, struct peer *));
177 static	void	datum_pts_shutdown	P((int, struct peer *));
178 static	void	datum_pts_poll		P((int, struct peer *));
179 static	void	datum_pts_control	P((int, struct refclockstat *,
180 					   struct refclockstat *, struct peer *));
181 static	void	datum_pts_init		P((void));
182 static	void	datum_pts_buginfo	P((int, struct refclockbug *, struct peer *));
183 
184 /*
185 ** This is the call back function structure that ntpd actually uses for
186 ** this refclock.
187 */
188 
189 struct	refclock refclock_datum = {
190 	datum_pts_start,		/* start up a new Datum refclock */
191 	datum_pts_shutdown,		/* shutdown a Datum refclock */
192 	datum_pts_poll,		/* sends out the time request */
193 	datum_pts_control,		/* not used */
194 	datum_pts_init,		/* initialization (called first) */
195 	datum_pts_buginfo,		/* not used */
196 	NOFLAGS			/* we are not setting any special flags */
197 };
198 
199 /*
200 ** The datum_pts_receive callback function is handled differently from the
201 ** rest. It is passed to the ntpd io data structure. Basically, every
202 ** 64 seconds, the datum_pts_poll() routine is called. It sends out the time
203 ** request message to the Datum Programmable Time System. Then, ntpd
204 ** waits on a select() call to receive data back. The datum_pts_receive()
205 ** function is called as data comes back. We expect a seven byte time
206 ** code to be returned but the datum_pts_receive() function may only get
207 ** a few bytes passed to it at a time. In other words, this routine may
208 ** get called by the io stuff in ntpd a few times before we get all seven
209 ** bytes. Once the last byte is received, we process it and then pass the
210 ** new time measurement to ntpd for updating the system time. For now,
211 ** there is no 3 state filtering done on the time measurements. The
212 ** jitter may be a little high but at least for its current use, it is not
213 ** a problem. We have tried to keep things as simple as possible. This
214 ** clock should not jitter more than 1 or 2 mseconds at the most once
215 ** things settle down. It is important to get the right drift calibrated
216 ** in the ntpd.drift file as well as getting the right tick set up right
217 ** using tickadj for SUNs. Tickadj is not used for the HP but you need to
218 ** remember to bring up the adjtime daemon because HP does not support
219 ** the adjtime() call.
220 */
221 
222 static	void	datum_pts_receive	P((struct recvbuf *));
223 
224 /*......................................................................*/
225 /*	datum_pts_start - start up the datum PTS. This means open the	*/
226 /*	RS232 device and set up the data structure for my unit.		*/
227 /*......................................................................*/
228 
229 static int
230 datum_pts_start(
231 	int unit,
232 	struct peer *peer
233 	)
234 {
235 	struct datum_pts_unit **temp_datum_pts_unit;
236 	struct datum_pts_unit *datum_pts;
237 	int fd;
238 #ifdef HAVE_TERMIOS
239 	struct termios arg;
240 #endif
241 
242 #ifdef DEBUG_DATUM_PTC
243 	if (debug)
244 	    printf("Starting Datum PTS unit %d\n", unit);
245 #endif
246 
247 	/*
248 	** Open the Datum PTS device
249 	*/
250 	fd = open(DATUM_DEV, O_RDWR);
251 
252 	if (fd < 0) {
253 		msyslog(LOG_ERR, "Datum_PTS: open(\"%s\", O_RDWR) failed: %m", DATUM_DEV);
254 		return 0;
255 	}
256 
257 	/*
258 	** Create the memory for the new unit
259 	*/
260 
261 	temp_datum_pts_unit = (struct datum_pts_unit **)
262 		malloc((nunits+1)*sizeof(struct datum_pts_unit *));
263 	if (nunits > 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
264 			       nunits*sizeof(struct datum_pts_unit *));
265 	free(datum_pts_unit);
266 	datum_pts_unit = temp_datum_pts_unit;
267 	datum_pts_unit[nunits] = (struct datum_pts_unit *)
268 		malloc(sizeof(struct datum_pts_unit));
269 	datum_pts = datum_pts_unit[nunits];
270 
271 	datum_pts->unit = unit;	/* set my unit id */
272 	datum_pts->yearstart = 0;	/* initialize the yearstart to 0 */
273 	datum_pts->sigma2 = 0.0;	/* initialize the sigma2 to 0 */
274 
275 	datum_pts->PTS_fd = fd;
276 
277 	fcntl(datum_pts->PTS_fd, F_SETFL, 0); /* clear the descriptor flags */
278 
279 #ifdef DEBUG_DATUM_PTC
280 	if (debug)
281 	    printf("Opening RS232 port with file descriptor %d\n",
282 		   datum_pts->PTS_fd);
283 #endif
284 
285 	/*
286 	** Set up the RS232 terminal device information. Note that we assume that
287 	** we have termios. This code has only been tested on SUNs and HPs. If your
288 	** machine does not have termios this driver cannot be initialized. You can change this
289 	** if you want by editing this source. Please give the changes back to the
290 	** ntp folks so that it can become part of their regular distribution.
291 	*/
292 
293 #ifdef HAVE_TERMIOS
294 
295 	arg.c_iflag = IGNBRK;
296 	arg.c_oflag = 0;
297 	arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL;
298 	arg.c_lflag = 0;
299 	arg.c_cc[VMIN] = 0;		/* start timeout timer right away (not used) */
300 	arg.c_cc[VTIME] = 30;		/* 3 second timout on reads (not used) */
301 
302 	tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg);
303 
304 #else
305 
306 	msyslog(LOG_ERR, "Datum_PTS: Termios not supported in this driver");
307 	(void)close(datum_pts->PTS_fd);
308 
309 	peer->precision = PRECISION;
310 	pp->clockdesc = DESCRIPTION;
311 	memcpy((char *)&pp->refid, REFID, 4);
312 
313 	return 0;
314 
315 #endif
316 
317 	/*
318 	** Initialize the ntpd IO structure
319 	*/
320 
321 	datum_pts->peer = peer;
322 	datum_pts->io.clock_recv = datum_pts_receive;
323 	datum_pts->io.srcclock = (caddr_t)datum_pts;
324 	datum_pts->io.datalen = 0;
325 	datum_pts->io.fd = datum_pts->PTS_fd;
326 
327 	if (!io_addclock(&(datum_pts->io))) {
328 
329 #ifdef DEBUG_DATUM_PTC
330 		if (debug)
331 		    printf("Problem adding clock\n");
332 #endif
333 
334 		msyslog(LOG_ERR, "Datum_PTS: Problem adding clock");
335 		(void)close(datum_pts->PTS_fd);
336 
337 		return 0;
338 	}
339 
340 	/*
341 	** Now add one to the number of units and return a successful code
342 	*/
343 
344 	nunits++;
345 	return 1;
346 
347 }
348 
349 
350 /*......................................................................*/
351 /*	datum_pts_shutdown - this routine shuts doen the device and	*/
352 /*	removes the memory for the unit.				*/
353 /*......................................................................*/
354 
355 static void
356 datum_pts_shutdown(
357 	int unit,
358 	struct peer *peer
359 	)
360 {
361 	int i,j;
362 	struct datum_pts_unit **temp_datum_pts_unit;
363 
364 #ifdef DEBUG_DATUM_PTC
365 	if (debug)
366 	    printf("Shutdown Datum PTS\n");
367 #endif
368 
369 	msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS");
370 
371 	/*
372 	** First we have to find the right unit (i.e., the one with the same id).
373 	** We do this by looping through the dynamic array of units intil we find
374 	** it. Note, that I don't simply use an array with a maximimum number of
375 	** Datum PTS units. Everything is completely dynamic.
376 	*/
377 
378 	for (i=0; i<nunits; i++) {
379 		if (datum_pts_unit[i]->unit == unit) {
380 
381 			/*
382 			** We found the unit so close the file descriptor and free up the memory used
383 			** by the structure.
384 			*/
385 
386 			io_closeclock(&datum_pts_unit[i]->io);
387 			close(datum_pts_unit[i]->PTS_fd);
388 			free(datum_pts_unit[i]);
389 
390 			/*
391 			** Now clean up the datum_pts_unit dynamic array so that there are no holes.
392 			** This may mean moving pointers around, etc., to keep things compact.
393 			*/
394 
395 			if (nunits > 1) {
396 
397 				temp_datum_pts_unit = (struct datum_pts_unit **)
398 					malloc((nunits-1)*sizeof(struct datum_pts_unit *));
399 				if (i!= 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
400 						  i*sizeof(struct datum_pts_unit *));
401 
402 				for (j=i+1; j<nunits; j++) {
403 					temp_datum_pts_unit[j-1] = datum_pts_unit[j];
404 				}
405 
406 				free(datum_pts_unit);
407 				datum_pts_unit = temp_datum_pts_unit;
408 
409 			}else{
410 
411 				free(datum_pts_unit);
412 				datum_pts_unit = NULL;
413 
414 			}
415 
416 			return;
417 
418 		}
419 	}
420 
421 #ifdef DEBUG_DATUM_PTC
422 	if (debug)
423 	    printf("Error, could not shut down unit %d\n",unit);
424 #endif
425 
426 	msyslog(LOG_ERR, "Datum_PTS: Could not shut down Datum PTS unit %d",unit);
427 
428 }
429 
430 /*......................................................................*/
431 /*	datum_pts_poll - this routine sends out the time request to the */
432 /*	Datum PTS device. The time will be passed back in the 		*/
433 /*	datum_pts_receive() routine.					*/
434 /*......................................................................*/
435 
436 static void
437 datum_pts_poll(
438 	int unit,
439 	struct peer *peer
440 	)
441 {
442 	int i;
443 	int unit_index;
444 	int error_code;
445 	struct datum_pts_unit *datum_pts;
446 
447 #ifdef DEBUG_DATUM_PTC
448 	if (debug)
449 	    printf("Poll Datum PTS\n");
450 #endif
451 
452 	/*
453 	** Find the right unit and send out a time request once it is found.
454 	*/
455 
456 	unit_index = -1;
457 	for (i=0; i<nunits; i++) {
458 		if (datum_pts_unit[i]->unit == unit) {
459 			unit_index = i;
460 			datum_pts = datum_pts_unit[i];
461 			error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6);
462 			if (error_code != 6) perror("TIME_REQUEST");
463 			datum_pts->nbytes = 0;
464 			break;
465 		}
466 	}
467 
468 	/*
469 	** Print out an error message if we could not find the right unit.
470 	*/
471 
472 	if (unit_index == -1) {
473 
474 #ifdef DEBUG_DATUM_PTC
475 		if (debug)
476 		    printf("Error, could not poll unit %d\n",unit);
477 #endif
478 
479 		msyslog(LOG_ERR, "Datum_PTS: Could not poll unit %d",unit);
480 		return;
481 
482 	}
483 
484 }
485 
486 
487 /*......................................................................*/
488 /*	datum_pts_control - not used					*/
489 /*......................................................................*/
490 
491 static void
492 datum_pts_control(
493 	int unit,
494 	struct refclockstat *in,
495 	struct refclockstat *out,
496 	struct peer *peer
497 	)
498 {
499 
500 #ifdef DEBUG_DATUM_PTC
501 	if (debug)
502 	    printf("Control Datum PTS\n");
503 #endif
504 
505 }
506 
507 
508 /*......................................................................*/
509 /*	datum_pts_init - initializes things for all possible Datum	*/
510 /*	time code generators that might be used. In practice, this is	*/
511 /*	only called once at the beginning before anything else is	*/
512 /*	called.								*/
513 /*......................................................................*/
514 
515 static void
516 datum_pts_init(void)
517 {
518 
519 	/*									*/
520 	/*...... open up the log file if we are debugging ......................*/
521 	/*									*/
522 
523 	/*
524 	** Open up the log file if we are debugging. For now, send data out to the
525 	** screen (stdout).
526 	*/
527 
528 #ifdef DEBUG_DATUM_PTC
529 	if (debug)
530 	    printf("Init Datum PTS\n");
531 #endif
532 
533 	/*
534 	** Initialize the time request command string. This is the only message
535 	** that we ever have to send to the Datum PTS (although others are defined).
536 	*/
537 
538 	memcpy(TIME_REQUEST, "//k/mn",6);
539 
540 	/*
541 	** Initialize the number of units to 0 and set the dynamic array of units to
542 	** NULL since there are no units defined yet.
543 	*/
544 
545 	datum_pts_unit = NULL;
546 	nunits = 0;
547 
548 }
549 
550 
551 /*......................................................................*/
552 /*	datum_pts_buginfo - not used					*/
553 /*......................................................................*/
554 
555 static void
556 datum_pts_buginfo(
557 	int unit,
558 	register struct refclockbug *bug,
559 	register struct peer *peer
560 	)
561 {
562 
563 #ifdef DEBUG_DATUM_PTC
564 	if (debug)
565 	    printf("Buginfo Datum PTS\n");
566 #endif
567 
568 }
569 
570 
571 /*......................................................................*/
572 /*	datum_pts_receive - receive the time buffer that was read in	*/
573 /*	by the ntpd io handling routines. When 7 bytes have been	*/
574 /*	received (it may take several tries before all 7 bytes are	*/
575 /*	received), then the time code must be unpacked and sent to	*/
576 /*	the ntpd clock_receive() routine which causes the systems	*/
577 /*	clock to be updated (several layers down).			*/
578 /*......................................................................*/
579 
580 static void
581 datum_pts_receive(
582 	struct recvbuf *rbufp
583 	)
584 {
585 	int i;
586 	l_fp tstmp;
587 	struct datum_pts_unit *datum_pts;
588 	char *dpt;
589 	int dpend;
590 	int tzoff;
591 	int timerr;
592 	double ftimerr, abserr;
593 #ifdef DEBUG_DATUM_PTC
594 	double dispersion;
595 #endif
596 	int goodtime;
597       /*double doffset;*/
598 
599 	/*
600 	** Get the time code (maybe partial) message out of the rbufp buffer.
601 	*/
602 
603 	datum_pts = (struct datum_pts_unit *)rbufp->recv_srcclock;
604 	dpt = (char *)&rbufp->recv_space;
605 	dpend = rbufp->recv_length;
606 
607 #ifdef DEBUG_DATUM_PTC
608 	if (debug)
609 	    printf("Receive Datum PTS: %d bytes\n", dpend);
610 #endif
611 
612 	/*									*/
613 	/*...... save the ntp system time when the first byte is received ......*/
614 	/*									*/
615 
616 	/*
617 	** Save the ntp system time when the first byte is received. Note that
618 	** because it may take several calls to this routine before all seven
619 	** bytes of our return message are finally received by the io handlers in
620 	** ntpd, we really do want to use the time tag when the first byte is
621 	** received to reduce the jitter.
622 	*/
623 
624 	if (datum_pts->nbytes == 0) {
625 		datum_pts->lastrec = rbufp->recv_time;
626 	}
627 
628 	/*
629 	** Increment our count to the number of bytes received so far. Return if we
630 	** haven't gotten all seven bytes yet.
631 	*/
632 
633 	for (i=0; i<dpend; i++) {
634 		datum_pts->retbuf[datum_pts->nbytes+i] = dpt[i];
635 	}
636 
637 	datum_pts->nbytes += dpend;
638 
639 	if (datum_pts->nbytes != 7) {
640 		return;
641 	}
642 
643 	/*
644 	** Convert the seven bytes received in our time buffer to day, hour, minute,
645 	** second, and msecond values. The usec value is not used for anything
646 	** currently. It is just the fractional part of the time stored in units
647 	** of microseconds.
648 	*/
649 
650 	datum_pts->day =	100*(datum_pts->retbuf[0] & 0x0f) +
651 		10*((datum_pts->retbuf[1] & 0xf0)>>4) +
652 		(datum_pts->retbuf[1] & 0x0f);
653 
654 	datum_pts->hour =	10*((datum_pts->retbuf[2] & 0x30)>>4) +
655 		(datum_pts->retbuf[2] & 0x0f);
656 
657 	datum_pts->minute =	10*((datum_pts->retbuf[3] & 0x70)>>4) +
658 		(datum_pts->retbuf[3] & 0x0f);
659 
660 	datum_pts->second =	10*((datum_pts->retbuf[4] & 0x70)>>4) +
661 		(datum_pts->retbuf[4] & 0x0f);
662 
663 	datum_pts->msec =	100*((datum_pts->retbuf[5] & 0xf0) >> 4) +
664 		10*(datum_pts->retbuf[5] & 0x0f) +
665 		((datum_pts->retbuf[6] & 0xf0)>>4);
666 
667 	datum_pts->usec =	1000*datum_pts->msec;
668 
669 #ifdef DEBUG_DATUM_PTC
670 	if (debug)
671 	    printf("day %d, hour %d, minute %d, second %d, msec %d\n",
672 		   datum_pts->day,
673 		   datum_pts->hour,
674 		   datum_pts->minute,
675 		   datum_pts->second,
676 		   datum_pts->msec);
677 #endif
678 
679 	/*
680 	** Get the GMT time zone offset. Note that GMT should be zero if the Datum
681 	** reference time is using GMT as its time base. Otherwise we have to
682 	** determine the offset if the Datum PTS is using time of day as its time
683 	** base.
684 	*/
685 
686 	goodtime = 0;		/* We are not sure about the time and offset yet */
687 
688 #ifdef GMT
689 
690 	/*
691 	** This is the case where the Datum PTS is using GMT so there is no time
692 	** zone offset.
693 	*/
694 
695 	tzoff = 0;		/* set time zone offset to 0 */
696 
697 #else
698 
699 	/*
700 	** This is the case where the Datum PTS is using regular time of day for its
701 	** time so we must compute the time zone offset. The way we do it is kind of
702 	** funny but it works. We loop through different time zones (0 to 24) and
703 	** pick the one that gives the smallest error (+- one half hour). The time
704 	** zone offset is stored in the datum_pts structure for future use. Normally,
705 	** the clocktime() routine is only called once (unless the time zone offset
706 	** changes due to daylight savings) since the goodtime flag is set when a
707 	** good time is found (with a good offset). Note that even if the Datum
708 	** PTS is using GMT, this mechanism will still work since it should come up
709 	** with a value for tzoff = 0 (assuming that your system clock is within
710 	** a half hour of the Datum time (even with time zone differences).
711 	*/
712 
713 	for (tzoff=0; tzoff<24; tzoff++) {
714 		if (clocktime( datum_pts->day,
715 			       datum_pts->hour,
716 			       datum_pts->minute,
717 			       datum_pts->second,
718 			       (tzoff + datum_pts->tzoff) % 24,
719 			       datum_pts->lastrec.l_ui,
720 			       &datum_pts->yearstart,
721 			       &datum_pts->lastref.l_ui) ) {
722 
723 			datum_pts->lastref.l_uf = 0;
724 			error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui;
725 
726 #ifdef DEBUG_DATUM_PTC
727 			printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error);
728 #endif
729 
730 			if ((error < 1799) && (error > -1799)) {
731 				tzoff = (tzoff + datum_pts->tzoff) % 24;
732 				datum_pts->tzoff = tzoff;
733 				goodtime = 1;
734 
735 #ifdef DEBUG_DATUM_PTC
736 				printf("Time Zone found (clocktime method) = %d\n",tzoff);
737 #endif
738 
739 				break;
740 			}
741 
742 		}
743 	}
744 
745 #endif
746 
747 	/*
748 	** Make sure that we have a good time from the Datum PTS. Clocktime() also
749 	** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e.,
750 	** the fraction of a second) stuff later.
751 	*/
752 
753 	if (!goodtime) {
754 
755 		if (!clocktime( datum_pts->day,
756 				datum_pts->hour,
757 				datum_pts->minute,
758 				datum_pts->second,
759 				tzoff,
760 				datum_pts->lastrec.l_ui,
761 				&datum_pts->yearstart,
762 				&datum_pts->lastref.l_ui) ) {
763 
764 #ifdef DEBUG_DATUM_PTC
765 			if (debug)
766 			{
767 				printf("Error: bad clocktime\n");
768 				printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n",
769 				       tzoff,
770 				       datum_pts->lastrec.l_ui,
771 				       datum_pts->yearstart,
772 				       datum_pts->lastref.l_ui);
773 			}
774 #endif
775 
776 			msyslog(LOG_ERR, "Datum_PTS: Bad clocktime");
777 
778 			return;
779 
780 		}else{
781 
782 #ifdef DEBUG_DATUM_PTC
783 			if (debug)
784 			    printf("Good clocktime\n");
785 #endif
786 
787 		}
788 
789 	}
790 
791 	/*
792 	** We have datum_pts->lastref.l_ui set (which is the integer part of the
793 	** time. Now set the microseconds field.
794 	*/
795 
796 	TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf);
797 
798 	/*
799 	** Compute the time correction as the difference between the reference
800 	** time (i.e., the Datum time) minus the receive time (system time).
801 	*/
802 
803 	tstmp = datum_pts->lastref;		/* tstmp is the datum ntp time */
804 	L_SUB(&tstmp, &datum_pts->lastrec);	/* tstmp is now the correction */
805 	datum_pts->coderecv++;		/* increment a counter */
806 
807 #ifdef DEBUG_DATUM_PTC
808 	dispersion = DATUM_DISPERSION;	/* set the dispersion to 0 */
809 	ftimerr = dispersion;
810 	ftimerr /= (1024.0 * 64.0);
811 	if (debug)
812 	    printf("dispersion = %d, %f\n", dispersion, ftimerr);
813 #endif
814 
815 	/*
816 	** Pass the new time to ntpd through the refclock_receive function. Note
817 	** that we are not trying to make any corrections due to the time it takes
818 	** for the Datum PTS to send the message back. I am (erroneously) assuming
819 	** that the time for the Datum PTS to send the time back to us is negligable.
820 	** I suspect that this time delay may be as much as 15 ms or so (but probably
821 	** less). For our needs at JPL, this kind of error is ok so it is not
822 	** necessary to use fudge factors in the ntp.conf file. Maybe later we will.
823 	*/
824       /*LFPTOD(&tstmp, doffset);*/
825 	datum_pts->lastref = datum_pts->lastrec;
826 	refclock_receive(datum_pts->peer);
827 
828 	/*
829 	** Compute sigma squared (not used currently). Maybe later, this could be
830 	** used for the dispersion estimate. The problem is that ntpd does not link
831 	** in the math library so sqrt() is not available. Anyway, this is useful
832 	** for debugging. Maybe later I will just use absolute values for the time
833 	** error to come up with my dispersion estimate. Anyway, for now my dispersion
834 	** is set to 0.
835 	*/
836 
837 	timerr = tstmp.l_ui<<20;
838 	timerr |= (tstmp.l_uf>>12) & 0x000fffff;
839 	ftimerr = timerr;
840 	ftimerr /= 1024*1024;
841 	abserr = ftimerr;
842 	if (ftimerr < 0.0) abserr = -ftimerr;
843 
844 	if (datum_pts->sigma2 == 0.0) {
845 		if (abserr < DATUM_MAX_ERROR) {
846 			datum_pts->sigma2 = abserr*abserr;
847 		}else{
848 			datum_pts->sigma2 = DATUM_MAX_ERROR2;
849 		}
850 	}else{
851 		if (abserr < DATUM_MAX_ERROR) {
852 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr;
853 		}else{
854 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2;
855 		}
856 	}
857 
858 #ifdef DEBUG_DATUM_PTC
859 	if (debug)
860 	    printf("Time error = %f seconds\n", ftimerr);
861 #endif
862 
863 #if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS)
864 	if (debug)
865 	    printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n",
866 		   datum_pts->day,
867 		   datum_pts->hour,
868 		   datum_pts->minute,
869 		   datum_pts->second,
870 		   datum_pts->msec,
871 		   ftimerr);
872 #endif
873 
874 }
875 #else
876 int refclock_datum_bs;
877 #endif /* REFCLOCK */
878