xref: /freebsd/contrib/xz/src/liblzma/lz/lz_encoder.c (revision f374ba41)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lz_encoder.c
4 /// \brief      LZ in window
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #include "lz_encoder.h"
15 #include "lz_encoder_hash.h"
16 
17 // See lz_encoder_hash.h. This is a bit hackish but avoids making
18 // endianness a conditional in makefiles.
19 #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
20 #	include "lz_encoder_hash_table.h"
21 #endif
22 
23 #include "memcmplen.h"
24 
25 
26 typedef struct {
27 	/// LZ-based encoder e.g. LZMA
28 	lzma_lz_encoder lz;
29 
30 	/// History buffer and match finder
31 	lzma_mf mf;
32 
33 	/// Next coder in the chain
34 	lzma_next_coder next;
35 } lzma_coder;
36 
37 
38 /// \brief      Moves the data in the input window to free space for new data
39 ///
40 /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
41 /// bytes of input history available all the time. Now and then we need to
42 /// "slide" the buffer to make space for the new data to the end of the
43 /// buffer. At the same time, data older than keep_size_before is dropped.
44 ///
45 static void
46 move_window(lzma_mf *mf)
47 {
48 	// Align the move to a multiple of 16 bytes. Some LZ-based encoders
49 	// like LZMA use the lowest bits of mf->read_pos to know the
50 	// alignment of the uncompressed data. We also get better speed
51 	// for memmove() with aligned buffers.
52 	assert(mf->read_pos > mf->keep_size_before);
53 	const uint32_t move_offset
54 		= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
55 
56 	assert(mf->write_pos > move_offset);
57 	const size_t move_size = mf->write_pos - move_offset;
58 
59 	assert(move_offset + move_size <= mf->size);
60 
61 	memmove(mf->buffer, mf->buffer + move_offset, move_size);
62 
63 	mf->offset += move_offset;
64 	mf->read_pos -= move_offset;
65 	mf->read_limit -= move_offset;
66 	mf->write_pos -= move_offset;
67 
68 	return;
69 }
70 
71 
72 /// \brief      Tries to fill the input window (mf->buffer)
73 ///
74 /// If we are the last encoder in the chain, our input data is in in[].
75 /// Otherwise we call the next filter in the chain to process in[] and
76 /// write its output to mf->buffer.
77 ///
78 /// This function must not be called once it has returned LZMA_STREAM_END.
79 ///
80 static lzma_ret
81 fill_window(lzma_coder *coder, const lzma_allocator *allocator,
82 		const uint8_t *in, size_t *in_pos, size_t in_size,
83 		lzma_action action)
84 {
85 	assert(coder->mf.read_pos <= coder->mf.write_pos);
86 
87 	// Move the sliding window if needed.
88 	if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
89 		move_window(&coder->mf);
90 
91 	// Maybe this is ugly, but lzma_mf uses uint32_t for most things
92 	// (which I find cleanest), but we need size_t here when filling
93 	// the history window.
94 	size_t write_pos = coder->mf.write_pos;
95 	lzma_ret ret;
96 	if (coder->next.code == NULL) {
97 		// Not using a filter, simply memcpy() as much as possible.
98 		lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
99 				&write_pos, coder->mf.size);
100 
101 		ret = action != LZMA_RUN && *in_pos == in_size
102 				? LZMA_STREAM_END : LZMA_OK;
103 
104 	} else {
105 		ret = coder->next.code(coder->next.coder, allocator,
106 				in, in_pos, in_size,
107 				coder->mf.buffer, &write_pos,
108 				coder->mf.size, action);
109 	}
110 
111 	coder->mf.write_pos = write_pos;
112 
113 	// Silence Valgrind. lzma_memcmplen() can read extra bytes
114 	// and Valgrind will give warnings if those bytes are uninitialized
115 	// because Valgrind cannot see that the values of the uninitialized
116 	// bytes are eventually ignored.
117 	memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
118 
119 	// If end of stream has been reached or flushing completed, we allow
120 	// the encoder to process all the input (that is, read_pos is allowed
121 	// to reach write_pos). Otherwise we keep keep_size_after bytes
122 	// available as prebuffer.
123 	if (ret == LZMA_STREAM_END) {
124 		assert(*in_pos == in_size);
125 		ret = LZMA_OK;
126 		coder->mf.action = action;
127 		coder->mf.read_limit = coder->mf.write_pos;
128 
129 	} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
130 		// This needs to be done conditionally, because if we got
131 		// only little new input, there may be too little input
132 		// to do any encoding yet.
133 		coder->mf.read_limit = coder->mf.write_pos
134 				- coder->mf.keep_size_after;
135 	}
136 
137 	// Restart the match finder after finished LZMA_SYNC_FLUSH.
138 	if (coder->mf.pending > 0
139 			&& coder->mf.read_pos < coder->mf.read_limit) {
140 		// Match finder may update coder->pending and expects it to
141 		// start from zero, so use a temporary variable.
142 		const uint32_t pending = coder->mf.pending;
143 		coder->mf.pending = 0;
144 
145 		// Rewind read_pos so that the match finder can hash
146 		// the pending bytes.
147 		assert(coder->mf.read_pos >= pending);
148 		coder->mf.read_pos -= pending;
149 
150 		// Call the skip function directly instead of using
151 		// mf_skip(), since we don't want to touch mf->read_ahead.
152 		coder->mf.skip(&coder->mf, pending);
153 	}
154 
155 	return ret;
156 }
157 
158 
159 static lzma_ret
160 lz_encode(void *coder_ptr, const lzma_allocator *allocator,
161 		const uint8_t *restrict in, size_t *restrict in_pos,
162 		size_t in_size,
163 		uint8_t *restrict out, size_t *restrict out_pos,
164 		size_t out_size, lzma_action action)
165 {
166 	lzma_coder *coder = coder_ptr;
167 
168 	while (*out_pos < out_size
169 			&& (*in_pos < in_size || action != LZMA_RUN)) {
170 		// Read more data to coder->mf.buffer if needed.
171 		if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
172 				>= coder->mf.read_limit)
173 			return_if_error(fill_window(coder, allocator,
174 					in, in_pos, in_size, action));
175 
176 		// Encode
177 		const lzma_ret ret = coder->lz.code(coder->lz.coder,
178 				&coder->mf, out, out_pos, out_size);
179 		if (ret != LZMA_OK) {
180 			// Setting this to LZMA_RUN for cases when we are
181 			// flushing. It doesn't matter when finishing or if
182 			// an error occurred.
183 			coder->mf.action = LZMA_RUN;
184 			return ret;
185 		}
186 	}
187 
188 	return LZMA_OK;
189 }
190 
191 
192 static bool
193 lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
194 		const lzma_lz_options *lz_options)
195 {
196 	// For now, the dictionary size is limited to 1.5 GiB. This may grow
197 	// in the future if needed, but it needs a little more work than just
198 	// changing this check.
199 	if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
200 			|| lz_options->dict_size
201 				> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
202 			|| lz_options->nice_len > lz_options->match_len_max)
203 		return true;
204 
205 	mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
206 
207 	mf->keep_size_after = lz_options->after_size
208 			+ lz_options->match_len_max;
209 
210 	// To avoid constant memmove()s, allocate some extra space. Since
211 	// memmove()s become more expensive when the size of the buffer
212 	// increases, we reserve more space when a large dictionary is
213 	// used to make the memmove() calls rarer.
214 	//
215 	// This works with dictionaries up to about 3 GiB. If bigger
216 	// dictionary is wanted, some extra work is needed:
217 	//   - Several variables in lzma_mf have to be changed from uint32_t
218 	//     to size_t.
219 	//   - Memory usage calculation needs something too, e.g. use uint64_t
220 	//     for mf->size.
221 	uint32_t reserve = lz_options->dict_size / 2;
222 	if (reserve > (UINT32_C(1) << 30))
223 		reserve /= 2;
224 
225 	reserve += (lz_options->before_size + lz_options->match_len_max
226 			+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
227 
228 	const uint32_t old_size = mf->size;
229 	mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
230 
231 	// Deallocate the old history buffer if it exists but has different
232 	// size than what is needed now.
233 	if (mf->buffer != NULL && old_size != mf->size) {
234 		lzma_free(mf->buffer, allocator);
235 		mf->buffer = NULL;
236 	}
237 
238 	// Match finder options
239 	mf->match_len_max = lz_options->match_len_max;
240 	mf->nice_len = lz_options->nice_len;
241 
242 	// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
243 	// mean limiting dictionary size to less than 2 GiB. With a match
244 	// finder that uses multibyte resolution (hashes start at e.g. every
245 	// fourth byte), cyclic_size would stay below 2 Gi even when
246 	// dictionary size is greater than 2 GiB.
247 	//
248 	// It would be possible to allow cyclic_size >= 2 Gi, but then we
249 	// would need to be careful to use 64-bit types in various places
250 	// (size_t could do since we would need bigger than 32-bit address
251 	// space anyway). It would also require either zeroing a multigigabyte
252 	// buffer at initialization (waste of time and RAM) or allow
253 	// normalization in lz_encoder_mf.c to access uninitialized
254 	// memory to keep the code simpler. The current way is simple and
255 	// still allows pretty big dictionaries, so I don't expect these
256 	// limits to change.
257 	mf->cyclic_size = lz_options->dict_size + 1;
258 
259 	// Validate the match finder ID and setup the function pointers.
260 	switch (lz_options->match_finder) {
261 #ifdef HAVE_MF_HC3
262 	case LZMA_MF_HC3:
263 		mf->find = &lzma_mf_hc3_find;
264 		mf->skip = &lzma_mf_hc3_skip;
265 		break;
266 #endif
267 #ifdef HAVE_MF_HC4
268 	case LZMA_MF_HC4:
269 		mf->find = &lzma_mf_hc4_find;
270 		mf->skip = &lzma_mf_hc4_skip;
271 		break;
272 #endif
273 #ifdef HAVE_MF_BT2
274 	case LZMA_MF_BT2:
275 		mf->find = &lzma_mf_bt2_find;
276 		mf->skip = &lzma_mf_bt2_skip;
277 		break;
278 #endif
279 #ifdef HAVE_MF_BT3
280 	case LZMA_MF_BT3:
281 		mf->find = &lzma_mf_bt3_find;
282 		mf->skip = &lzma_mf_bt3_skip;
283 		break;
284 #endif
285 #ifdef HAVE_MF_BT4
286 	case LZMA_MF_BT4:
287 		mf->find = &lzma_mf_bt4_find;
288 		mf->skip = &lzma_mf_bt4_skip;
289 		break;
290 #endif
291 
292 	default:
293 		return true;
294 	}
295 
296 	// Calculate the sizes of mf->hash and mf->son.
297 	//
298 	// NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
299 	// is big enough for the selected match finder. This makes it
300 	// easier for applications as nice_len = 2 will always be accepted
301 	// even though the effective value can be slightly bigger.
302 	const uint32_t hash_bytes
303 			= mf_get_hash_bytes(lz_options->match_finder);
304 	assert(hash_bytes <= mf->nice_len);
305 
306 	const bool is_bt = (lz_options->match_finder & 0x10) != 0;
307 	uint32_t hs;
308 
309 	if (hash_bytes == 2) {
310 		hs = 0xFFFF;
311 	} else {
312 		// Round dictionary size up to the next 2^n - 1 so it can
313 		// be used as a hash mask.
314 		hs = lz_options->dict_size - 1;
315 		hs |= hs >> 1;
316 		hs |= hs >> 2;
317 		hs |= hs >> 4;
318 		hs |= hs >> 8;
319 		hs >>= 1;
320 		hs |= 0xFFFF;
321 
322 		if (hs > (UINT32_C(1) << 24)) {
323 			if (hash_bytes == 3)
324 				hs = (UINT32_C(1) << 24) - 1;
325 			else
326 				hs >>= 1;
327 		}
328 	}
329 
330 	mf->hash_mask = hs;
331 
332 	++hs;
333 	if (hash_bytes > 2)
334 		hs += HASH_2_SIZE;
335 	if (hash_bytes > 3)
336 		hs += HASH_3_SIZE;
337 /*
338 	No match finder uses this at the moment.
339 	if (mf->hash_bytes > 4)
340 		hs += HASH_4_SIZE;
341 */
342 
343 	const uint32_t old_hash_count = mf->hash_count;
344 	const uint32_t old_sons_count = mf->sons_count;
345 	mf->hash_count = hs;
346 	mf->sons_count = mf->cyclic_size;
347 	if (is_bt)
348 		mf->sons_count *= 2;
349 
350 	// Deallocate the old hash array if it exists and has different size
351 	// than what is needed now.
352 	if (old_hash_count != mf->hash_count
353 			|| old_sons_count != mf->sons_count) {
354 		lzma_free(mf->hash, allocator);
355 		mf->hash = NULL;
356 
357 		lzma_free(mf->son, allocator);
358 		mf->son = NULL;
359 	}
360 
361 	// Maximum number of match finder cycles
362 	mf->depth = lz_options->depth;
363 	if (mf->depth == 0) {
364 		if (is_bt)
365 			mf->depth = 16 + mf->nice_len / 2;
366 		else
367 			mf->depth = 4 + mf->nice_len / 4;
368 	}
369 
370 	return false;
371 }
372 
373 
374 static bool
375 lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
376 		const lzma_lz_options *lz_options)
377 {
378 	// Allocate the history buffer.
379 	if (mf->buffer == NULL) {
380 		// lzma_memcmplen() is used for the dictionary buffer
381 		// so we need to allocate a few extra bytes to prevent
382 		// it from reading past the end of the buffer.
383 		mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
384 				allocator);
385 		if (mf->buffer == NULL)
386 			return true;
387 
388 		// Keep Valgrind happy with lzma_memcmplen() and initialize
389 		// the extra bytes whose value may get read but which will
390 		// effectively get ignored.
391 		memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
392 	}
393 
394 	// Use cyclic_size as initial mf->offset. This allows
395 	// avoiding a few branches in the match finders. The downside is
396 	// that match finder needs to be normalized more often, which may
397 	// hurt performance with huge dictionaries.
398 	mf->offset = mf->cyclic_size;
399 	mf->read_pos = 0;
400 	mf->read_ahead = 0;
401 	mf->read_limit = 0;
402 	mf->write_pos = 0;
403 	mf->pending = 0;
404 
405 #if UINT32_MAX >= SIZE_MAX / 4
406 	// Check for integer overflow. (Huge dictionaries are not
407 	// possible on 32-bit CPU.)
408 	if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
409 			|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
410 		return true;
411 #endif
412 
413 	// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
414 	// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
415 	//
416 	// We don't need to initialize mf->son, but not doing that may
417 	// make Valgrind complain in normalization (see normalize() in
418 	// lz_encoder_mf.c). Skipping the initialization is *very* good
419 	// when big dictionary is used but only small amount of data gets
420 	// actually compressed: most of the mf->son won't get actually
421 	// allocated by the kernel, so we avoid wasting RAM and improve
422 	// initialization speed a lot.
423 	if (mf->hash == NULL) {
424 		mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
425 				allocator);
426 		mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
427 				allocator);
428 
429 		if (mf->hash == NULL || mf->son == NULL) {
430 			lzma_free(mf->hash, allocator);
431 			mf->hash = NULL;
432 
433 			lzma_free(mf->son, allocator);
434 			mf->son = NULL;
435 
436 			return true;
437 		}
438 	} else {
439 /*
440 		for (uint32_t i = 0; i < mf->hash_count; ++i)
441 			mf->hash[i] = EMPTY_HASH_VALUE;
442 */
443 		memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
444 	}
445 
446 	mf->cyclic_pos = 0;
447 
448 	// Handle preset dictionary.
449 	if (lz_options->preset_dict != NULL
450 			&& lz_options->preset_dict_size > 0) {
451 		// If the preset dictionary is bigger than the actual
452 		// dictionary, use only the tail.
453 		mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
454 		memcpy(mf->buffer, lz_options->preset_dict
455 				+ lz_options->preset_dict_size - mf->write_pos,
456 				mf->write_pos);
457 		mf->action = LZMA_SYNC_FLUSH;
458 		mf->skip(mf, mf->write_pos);
459 	}
460 
461 	mf->action = LZMA_RUN;
462 
463 	return false;
464 }
465 
466 
467 extern uint64_t
468 lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
469 {
470 	// Old buffers must not exist when calling lz_encoder_prepare().
471 	lzma_mf mf = {
472 		.buffer = NULL,
473 		.hash = NULL,
474 		.son = NULL,
475 		.hash_count = 0,
476 		.sons_count = 0,
477 	};
478 
479 	// Setup the size information into mf.
480 	if (lz_encoder_prepare(&mf, NULL, lz_options))
481 		return UINT64_MAX;
482 
483 	// Calculate the memory usage.
484 	return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
485 			+ mf.size + sizeof(lzma_coder);
486 }
487 
488 
489 static void
490 lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
491 {
492 	lzma_coder *coder = coder_ptr;
493 
494 	lzma_next_end(&coder->next, allocator);
495 
496 	lzma_free(coder->mf.son, allocator);
497 	lzma_free(coder->mf.hash, allocator);
498 	lzma_free(coder->mf.buffer, allocator);
499 
500 	if (coder->lz.end != NULL)
501 		coder->lz.end(coder->lz.coder, allocator);
502 	else
503 		lzma_free(coder->lz.coder, allocator);
504 
505 	lzma_free(coder, allocator);
506 	return;
507 }
508 
509 
510 static lzma_ret
511 lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
512 		const lzma_filter *filters_null lzma_attribute((__unused__)),
513 		const lzma_filter *reversed_filters)
514 {
515 	lzma_coder *coder = coder_ptr;
516 
517 	if (coder->lz.options_update == NULL)
518 		return LZMA_PROG_ERROR;
519 
520 	return_if_error(coder->lz.options_update(
521 			coder->lz.coder, reversed_filters));
522 
523 	return lzma_next_filter_update(
524 			&coder->next, allocator, reversed_filters + 1);
525 }
526 
527 
528 static lzma_ret
529 lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
530 		uint64_t out_limit)
531 {
532 	lzma_coder *coder = coder_ptr;
533 
534 	// This is supported only if there are no other filters chained.
535 	if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
536 		return coder->lz.set_out_limit(
537 				coder->lz.coder, uncomp_size, out_limit);
538 
539 	return LZMA_OPTIONS_ERROR;
540 }
541 
542 
543 extern lzma_ret
544 lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
545 		const lzma_filter_info *filters,
546 		lzma_ret (*lz_init)(lzma_lz_encoder *lz,
547 			const lzma_allocator *allocator,
548 			lzma_vli id, const void *options,
549 			lzma_lz_options *lz_options))
550 {
551 #if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
552 	// We need that the CRC32 table has been initialized.
553 	lzma_crc32_init();
554 #endif
555 
556 	// Allocate and initialize the base data structure.
557 	lzma_coder *coder = next->coder;
558 	if (coder == NULL) {
559 		coder = lzma_alloc(sizeof(lzma_coder), allocator);
560 		if (coder == NULL)
561 			return LZMA_MEM_ERROR;
562 
563 		next->coder = coder;
564 		next->code = &lz_encode;
565 		next->end = &lz_encoder_end;
566 		next->update = &lz_encoder_update;
567 		next->set_out_limit = &lz_encoder_set_out_limit;
568 
569 		coder->lz.coder = NULL;
570 		coder->lz.code = NULL;
571 		coder->lz.end = NULL;
572 
573 		// mf.size is initialized to silence Valgrind
574 		// when used on optimized binaries (GCC may reorder
575 		// code in a way that Valgrind gets unhappy).
576 		coder->mf.buffer = NULL;
577 		coder->mf.size = 0;
578 		coder->mf.hash = NULL;
579 		coder->mf.son = NULL;
580 		coder->mf.hash_count = 0;
581 		coder->mf.sons_count = 0;
582 
583 		coder->next = LZMA_NEXT_CODER_INIT;
584 	}
585 
586 	// Initialize the LZ-based encoder.
587 	lzma_lz_options lz_options;
588 	return_if_error(lz_init(&coder->lz, allocator,
589 			filters[0].id, filters[0].options, &lz_options));
590 
591 	// Setup the size information into coder->mf and deallocate
592 	// old buffers if they have wrong size.
593 	if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
594 		return LZMA_OPTIONS_ERROR;
595 
596 	// Allocate new buffers if needed, and do the rest of
597 	// the initialization.
598 	if (lz_encoder_init(&coder->mf, allocator, &lz_options))
599 		return LZMA_MEM_ERROR;
600 
601 	// Initialize the next filter in the chain, if any.
602 	return lzma_next_filter_init(&coder->next, allocator, filters + 1);
603 }
604 
605 
606 extern LZMA_API(lzma_bool)
607 lzma_mf_is_supported(lzma_match_finder mf)
608 {
609 	switch (mf) {
610 #ifdef HAVE_MF_HC3
611 	case LZMA_MF_HC3:
612 		return true;
613 #endif
614 #ifdef HAVE_MF_HC4
615 	case LZMA_MF_HC4:
616 		return true;
617 #endif
618 #ifdef HAVE_MF_BT2
619 	case LZMA_MF_BT2:
620 		return true;
621 #endif
622 #ifdef HAVE_MF_BT3
623 	case LZMA_MF_BT3:
624 		return true;
625 #endif
626 #ifdef HAVE_MF_BT4
627 	case LZMA_MF_BT4:
628 		return true;
629 #endif
630 	default:
631 		return false;
632 	}
633 }
634