xref: /freebsd/crypto/openssl/crypto/rand/rand_lib.c (revision f374ba41)
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include <openssl/opensslconf.h>
14 #include "crypto/rand.h"
15 #include <openssl/engine.h>
16 #include "internal/thread_once.h"
17 #include "rand_local.h"
18 #include "e_os.h"
19 
20 #ifndef OPENSSL_NO_ENGINE
21 /* non-NULL if default_RAND_meth is ENGINE-provided */
22 static ENGINE *funct_ref;
23 static CRYPTO_RWLOCK *rand_engine_lock;
24 #endif
25 static CRYPTO_RWLOCK *rand_meth_lock;
26 static const RAND_METHOD *default_RAND_meth;
27 static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
28 
29 static CRYPTO_RWLOCK *rand_nonce_lock;
30 static int rand_nonce_count;
31 
32 static int rand_inited = 0;
33 
34 #ifdef OPENSSL_RAND_SEED_RDTSC
35 /*
36  * IMPORTANT NOTE:  It is not currently possible to use this code
37  * because we are not sure about the amount of randomness it provides.
38  * Some SP900 tests have been run, but there is internal skepticism.
39  * So for now this code is not used.
40  */
41 # error "RDTSC enabled?  Should not be possible!"
42 
43 /*
44  * Acquire entropy from high-speed clock
45  *
46  * Since we get some randomness from the low-order bits of the
47  * high-speed clock, it can help.
48  *
49  * Returns the total entropy count, if it exceeds the requested
50  * entropy count. Otherwise, returns an entropy count of 0.
51  */
52 size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
53 {
54     unsigned char c;
55     int i;
56 
57     if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
58         for (i = 0; i < TSC_READ_COUNT; i++) {
59             c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
60             rand_pool_add(pool, &c, 1, 4);
61         }
62     }
63     return rand_pool_entropy_available(pool);
64 }
65 #endif
66 
67 #ifdef OPENSSL_RAND_SEED_RDCPU
68 size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
69 size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
70 
71 extern unsigned int OPENSSL_ia32cap_P[];
72 
73 /*
74  * Acquire entropy using Intel-specific cpu instructions
75  *
76  * Uses the RDSEED instruction if available, otherwise uses
77  * RDRAND if available.
78  *
79  * For the differences between RDSEED and RDRAND, and why RDSEED
80  * is the preferred choice, see https://goo.gl/oK3KcN
81  *
82  * Returns the total entropy count, if it exceeds the requested
83  * entropy count. Otherwise, returns an entropy count of 0.
84  */
85 size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
86 {
87     size_t bytes_needed;
88     unsigned char *buffer;
89 
90     bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
91     if (bytes_needed > 0) {
92         buffer = rand_pool_add_begin(pool, bytes_needed);
93 
94         if (buffer != NULL) {
95             /* Whichever comes first, use RDSEED, RDRAND or nothing */
96             if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
97                 if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
98                     == bytes_needed) {
99                     rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
100                 }
101             } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
102                 if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
103                     == bytes_needed) {
104                     rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
105                 }
106             } else {
107                 rand_pool_add_end(pool, 0, 0);
108             }
109         }
110     }
111 
112     return rand_pool_entropy_available(pool);
113 }
114 #endif
115 
116 
117 /*
118  * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
119  *
120  * If the DRBG has a parent, then the required amount of entropy input
121  * is fetched using the parent's RAND_DRBG_generate().
122  *
123  * Otherwise, the entropy is polled from the system entropy sources
124  * using rand_pool_acquire_entropy().
125  *
126  * If a random pool has been added to the DRBG using RAND_add(), then
127  * its entropy will be used up first.
128  */
129 size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
130                              unsigned char **pout,
131                              int entropy, size_t min_len, size_t max_len,
132                              int prediction_resistance)
133 {
134     size_t ret = 0;
135     size_t entropy_available = 0;
136     RAND_POOL *pool;
137 
138     if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) {
139         /*
140          * We currently don't support the algorithm from NIST SP 800-90C
141          * 10.1.2 to use a weaker DRBG as source
142          */
143         RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
144         return 0;
145     }
146 
147     if (drbg->seed_pool != NULL) {
148         pool = drbg->seed_pool;
149         pool->entropy_requested = entropy;
150     } else {
151         pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
152         if (pool == NULL)
153             return 0;
154     }
155 
156     if (drbg->parent != NULL) {
157         size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
158         unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
159 
160         if (buffer != NULL) {
161             size_t bytes = 0;
162 
163             /*
164              * Get random data from parent. Include our address as additional input,
165              * in order to provide some additional distinction between different
166              * DRBG child instances.
167              * Our lock is already held, but we need to lock our parent before
168              * generating bits from it. (Note: taking the lock will be a no-op
169              * if locking if drbg->parent->lock == NULL.)
170              */
171             rand_drbg_lock(drbg->parent);
172             if (RAND_DRBG_generate(drbg->parent,
173                                    buffer, bytes_needed,
174                                    prediction_resistance,
175                                    (unsigned char *)&drbg, sizeof(drbg)) != 0) {
176                 bytes = bytes_needed;
177                 if (drbg->enable_reseed_propagation)
178                     tsan_store(&drbg->reseed_counter,
179                                tsan_load(&drbg->parent->reseed_counter));
180             }
181             rand_drbg_unlock(drbg->parent);
182 
183             rand_pool_add_end(pool, bytes, 8 * bytes);
184             entropy_available = rand_pool_entropy_available(pool);
185         }
186 
187     } else {
188         if (prediction_resistance) {
189             /*
190              * We don't have any entropy sources that comply with the NIST
191              * standard to provide prediction resistance (see NIST SP 800-90C,
192              * Section 5.4).
193              */
194             RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
195                     RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
196             goto err;
197         }
198 
199         /* Get entropy by polling system entropy sources. */
200         entropy_available = rand_pool_acquire_entropy(pool);
201     }
202 
203     if (entropy_available > 0) {
204         ret   = rand_pool_length(pool);
205         *pout = rand_pool_detach(pool);
206     }
207 
208  err:
209     if (drbg->seed_pool == NULL)
210         rand_pool_free(pool);
211     return ret;
212 }
213 
214 /*
215  * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
216  *
217  */
218 void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
219                                unsigned char *out, size_t outlen)
220 {
221     if (drbg->seed_pool == NULL) {
222         if (drbg->secure)
223             OPENSSL_secure_clear_free(out, outlen);
224         else
225             OPENSSL_clear_free(out, outlen);
226     }
227 }
228 
229 
230 /*
231  * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
232  *
233  */
234 size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
235                            unsigned char **pout,
236                            int entropy, size_t min_len, size_t max_len)
237 {
238     size_t ret = 0;
239     RAND_POOL *pool;
240 
241     struct {
242         void * instance;
243         int count;
244     } data;
245 
246     memset(&data, 0, sizeof(data));
247     pool = rand_pool_new(0, 0, min_len, max_len);
248     if (pool == NULL)
249         return 0;
250 
251     if (rand_pool_add_nonce_data(pool) == 0)
252         goto err;
253 
254     data.instance = drbg;
255     CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
256 
257     if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
258         goto err;
259 
260     ret   = rand_pool_length(pool);
261     *pout = rand_pool_detach(pool);
262 
263  err:
264     rand_pool_free(pool);
265 
266     return ret;
267 }
268 
269 /*
270  * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
271  *
272  */
273 void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
274                              unsigned char *out, size_t outlen)
275 {
276     OPENSSL_clear_free(out, outlen);
277 }
278 
279 /*
280  * Generate additional data that can be used for the drbg. The data does
281  * not need to contain entropy, but it's useful if it contains at least
282  * some bits that are unpredictable.
283  *
284  * Returns 0 on failure.
285  *
286  * On success it allocates a buffer at |*pout| and returns the length of
287  * the data. The buffer should get freed using OPENSSL_secure_clear_free().
288  */
289 size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
290 {
291     size_t ret = 0;
292 
293     if (rand_pool_add_additional_data(pool) == 0)
294         goto err;
295 
296     ret = rand_pool_length(pool);
297     *pout = rand_pool_detach(pool);
298 
299  err:
300     return ret;
301 }
302 
303 void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
304 {
305     rand_pool_reattach(pool, out);
306 }
307 
308 DEFINE_RUN_ONCE_STATIC(do_rand_init)
309 {
310 #ifndef OPENSSL_NO_ENGINE
311     rand_engine_lock = CRYPTO_THREAD_lock_new();
312     if (rand_engine_lock == NULL)
313         return 0;
314 #endif
315 
316     rand_meth_lock = CRYPTO_THREAD_lock_new();
317     if (rand_meth_lock == NULL)
318         goto err1;
319 
320     rand_nonce_lock = CRYPTO_THREAD_lock_new();
321     if (rand_nonce_lock == NULL)
322         goto err2;
323 
324     if (!rand_pool_init())
325         goto err3;
326 
327     rand_inited = 1;
328     return 1;
329 
330 err3:
331     CRYPTO_THREAD_lock_free(rand_nonce_lock);
332     rand_nonce_lock = NULL;
333 err2:
334     CRYPTO_THREAD_lock_free(rand_meth_lock);
335     rand_meth_lock = NULL;
336 err1:
337 #ifndef OPENSSL_NO_ENGINE
338     CRYPTO_THREAD_lock_free(rand_engine_lock);
339     rand_engine_lock = NULL;
340 #endif
341     return 0;
342 }
343 
344 void rand_cleanup_int(void)
345 {
346     const RAND_METHOD *meth = default_RAND_meth;
347 
348     if (!rand_inited)
349         return;
350 
351     if (meth != NULL && meth->cleanup != NULL)
352         meth->cleanup();
353     RAND_set_rand_method(NULL);
354     rand_pool_cleanup();
355 #ifndef OPENSSL_NO_ENGINE
356     CRYPTO_THREAD_lock_free(rand_engine_lock);
357     rand_engine_lock = NULL;
358 #endif
359     CRYPTO_THREAD_lock_free(rand_meth_lock);
360     rand_meth_lock = NULL;
361     CRYPTO_THREAD_lock_free(rand_nonce_lock);
362     rand_nonce_lock = NULL;
363     rand_inited = 0;
364 }
365 
366 /*
367  * RAND_close_seed_files() ensures that any seed file descriptors are
368  * closed after use.
369  */
370 void RAND_keep_random_devices_open(int keep)
371 {
372     if (RUN_ONCE(&rand_init, do_rand_init))
373         rand_pool_keep_random_devices_open(keep);
374 }
375 
376 /*
377  * RAND_poll() reseeds the default RNG using random input
378  *
379  * The random input is obtained from polling various entropy
380  * sources which depend on the operating system and are
381  * configurable via the --with-rand-seed configure option.
382  */
383 int RAND_poll(void)
384 {
385     int ret = 0;
386 
387     RAND_POOL *pool = NULL;
388 
389     const RAND_METHOD *meth = RAND_get_rand_method();
390 
391     if (meth == NULL)
392         return 0;
393 
394     if (meth == RAND_OpenSSL()) {
395         /* fill random pool and seed the master DRBG */
396         RAND_DRBG *drbg = RAND_DRBG_get0_master();
397 
398         if (drbg == NULL)
399             return 0;
400 
401         rand_drbg_lock(drbg);
402         ret = rand_drbg_restart(drbg, NULL, 0, 0);
403         rand_drbg_unlock(drbg);
404 
405         return ret;
406 
407     } else {
408         /* fill random pool and seed the current legacy RNG */
409         pool = rand_pool_new(RAND_DRBG_STRENGTH, 1,
410                              (RAND_DRBG_STRENGTH + 7) / 8,
411                              RAND_POOL_MAX_LENGTH);
412         if (pool == NULL)
413             return 0;
414 
415         if (rand_pool_acquire_entropy(pool) == 0)
416             goto err;
417 
418         if (meth->add == NULL
419             || meth->add(rand_pool_buffer(pool),
420                          rand_pool_length(pool),
421                          (rand_pool_entropy(pool) / 8.0)) == 0)
422             goto err;
423 
424         ret = 1;
425     }
426 
427 err:
428     rand_pool_free(pool);
429     return ret;
430 }
431 
432 /*
433  * Allocate memory and initialize a new random pool
434  */
435 
436 RAND_POOL *rand_pool_new(int entropy_requested, int secure,
437                          size_t min_len, size_t max_len)
438 {
439     RAND_POOL *pool;
440     size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure);
441 
442     if (!RUN_ONCE(&rand_init, do_rand_init))
443         return NULL;
444 
445     pool = OPENSSL_zalloc(sizeof(*pool));
446     if (pool == NULL) {
447         RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
448         return NULL;
449     }
450 
451     pool->min_len = min_len;
452     pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
453         RAND_POOL_MAX_LENGTH : max_len;
454     pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len;
455     if (pool->alloc_len > pool->max_len)
456         pool->alloc_len = pool->max_len;
457 
458     if (secure)
459         pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len);
460     else
461         pool->buffer = OPENSSL_zalloc(pool->alloc_len);
462 
463     if (pool->buffer == NULL) {
464         RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
465         goto err;
466     }
467 
468     pool->entropy_requested = entropy_requested;
469     pool->secure = secure;
470 
471     return pool;
472 
473 err:
474     OPENSSL_free(pool);
475     return NULL;
476 }
477 
478 /*
479  * Attach new random pool to the given buffer
480  *
481  * This function is intended to be used only for feeding random data
482  * provided by RAND_add() and RAND_seed() into the <master> DRBG.
483  */
484 RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
485                             size_t entropy)
486 {
487     RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
488 
489     if (pool == NULL) {
490         RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
491         return NULL;
492     }
493 
494     /*
495      * The const needs to be cast away, but attached buffers will not be
496      * modified (in contrary to allocated buffers which are zeroed and
497      * freed in the end).
498      */
499     pool->buffer = (unsigned char *) buffer;
500     pool->len = len;
501 
502     pool->attached = 1;
503 
504     pool->min_len = pool->max_len = pool->alloc_len = pool->len;
505     pool->entropy = entropy;
506 
507     return pool;
508 }
509 
510 /*
511  * Free |pool|, securely erasing its buffer.
512  */
513 void rand_pool_free(RAND_POOL *pool)
514 {
515     if (pool == NULL)
516         return;
517 
518     /*
519      * Although it would be advisable from a cryptographical viewpoint,
520      * we are not allowed to clear attached buffers, since they are passed
521      * to rand_pool_attach() as `const unsigned char*`.
522      * (see corresponding comment in rand_pool_attach()).
523      */
524     if (!pool->attached) {
525         if (pool->secure)
526             OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
527         else
528             OPENSSL_clear_free(pool->buffer, pool->alloc_len);
529     }
530 
531     OPENSSL_free(pool);
532 }
533 
534 /*
535  * Return the |pool|'s buffer to the caller (readonly).
536  */
537 const unsigned char *rand_pool_buffer(RAND_POOL *pool)
538 {
539     return pool->buffer;
540 }
541 
542 /*
543  * Return the |pool|'s entropy to the caller.
544  */
545 size_t rand_pool_entropy(RAND_POOL *pool)
546 {
547     return pool->entropy;
548 }
549 
550 /*
551  * Return the |pool|'s buffer length to the caller.
552  */
553 size_t rand_pool_length(RAND_POOL *pool)
554 {
555     return pool->len;
556 }
557 
558 /*
559  * Detach the |pool| buffer and return it to the caller.
560  * It's the responsibility of the caller to free the buffer
561  * using OPENSSL_secure_clear_free() or to re-attach it
562  * again to the pool using rand_pool_reattach().
563  */
564 unsigned char *rand_pool_detach(RAND_POOL *pool)
565 {
566     unsigned char *ret = pool->buffer;
567     pool->buffer = NULL;
568     pool->entropy = 0;
569     return ret;
570 }
571 
572 /*
573  * Re-attach the |pool| buffer. It is only allowed to pass
574  * the |buffer| which was previously detached from the same pool.
575  */
576 void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
577 {
578     pool->buffer = buffer;
579     OPENSSL_cleanse(pool->buffer, pool->len);
580     pool->len = 0;
581 }
582 
583 /*
584  * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
585  * need to obtain at least |bits| bits of entropy?
586  */
587 #define ENTROPY_TO_BYTES(bits, entropy_factor) \
588     (((bits) * (entropy_factor) + 7) / 8)
589 
590 
591 /*
592  * Checks whether the |pool|'s entropy is available to the caller.
593  * This is the case when entropy count and buffer length are high enough.
594  * Returns
595  *
596  *  |entropy|  if the entropy count and buffer size is large enough
597  *      0      otherwise
598  */
599 size_t rand_pool_entropy_available(RAND_POOL *pool)
600 {
601     if (pool->entropy < pool->entropy_requested)
602         return 0;
603 
604     if (pool->len < pool->min_len)
605         return 0;
606 
607     return pool->entropy;
608 }
609 
610 /*
611  * Returns the (remaining) amount of entropy needed to fill
612  * the random pool.
613  */
614 
615 size_t rand_pool_entropy_needed(RAND_POOL *pool)
616 {
617     if (pool->entropy < pool->entropy_requested)
618         return pool->entropy_requested - pool->entropy;
619 
620     return 0;
621 }
622 
623 /* Increase the allocation size -- not usable for an attached pool */
624 static int rand_pool_grow(RAND_POOL *pool, size_t len)
625 {
626     if (len > pool->alloc_len - pool->len) {
627         unsigned char *p;
628         const size_t limit = pool->max_len / 2;
629         size_t newlen = pool->alloc_len;
630 
631         if (pool->attached || len > pool->max_len - pool->len) {
632             RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR);
633             return 0;
634         }
635 
636         do
637             newlen = newlen < limit ? newlen * 2 : pool->max_len;
638         while (len > newlen - pool->len);
639 
640         if (pool->secure)
641             p = OPENSSL_secure_zalloc(newlen);
642         else
643             p = OPENSSL_zalloc(newlen);
644         if (p == NULL) {
645             RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE);
646             return 0;
647         }
648         memcpy(p, pool->buffer, pool->len);
649         if (pool->secure)
650             OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
651         else
652             OPENSSL_clear_free(pool->buffer, pool->alloc_len);
653         pool->buffer = p;
654         pool->alloc_len = newlen;
655     }
656     return 1;
657 }
658 
659 /*
660  * Returns the number of bytes needed to fill the pool, assuming
661  * the input has 1 / |entropy_factor| entropy bits per data bit.
662  * In case of an error, 0 is returned.
663  */
664 
665 size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
666 {
667     size_t bytes_needed;
668     size_t entropy_needed = rand_pool_entropy_needed(pool);
669 
670     if (entropy_factor < 1) {
671         RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
672         return 0;
673     }
674 
675     bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);
676 
677     if (bytes_needed > pool->max_len - pool->len) {
678         /* not enough space left */
679         RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
680         return 0;
681     }
682 
683     if (pool->len < pool->min_len &&
684         bytes_needed < pool->min_len - pool->len)
685         /* to meet the min_len requirement */
686         bytes_needed = pool->min_len - pool->len;
687 
688     /*
689      * Make sure the buffer is large enough for the requested amount
690      * of data. This guarantees that existing code patterns where
691      * rand_pool_add_begin, rand_pool_add_end or rand_pool_add
692      * are used to collect entropy data without any error handling
693      * whatsoever, continue to be valid.
694      * Furthermore if the allocation here fails once, make sure that
695      * we don't fall back to a less secure or even blocking random source,
696      * as that could happen by the existing code patterns.
697      * This is not a concern for additional data, therefore that
698      * is not needed if rand_pool_grow fails in other places.
699      */
700     if (!rand_pool_grow(pool, bytes_needed)) {
701         /* persistent error for this pool */
702         pool->max_len = pool->len = 0;
703         return 0;
704     }
705 
706     return bytes_needed;
707 }
708 
709 /* Returns the remaining number of bytes available */
710 size_t rand_pool_bytes_remaining(RAND_POOL *pool)
711 {
712     return pool->max_len - pool->len;
713 }
714 
715 /*
716  * Add random bytes to the random pool.
717  *
718  * It is expected that the |buffer| contains |len| bytes of
719  * random input which contains at least |entropy| bits of
720  * randomness.
721  *
722  * Returns 1 if the added amount is adequate, otherwise 0
723  */
724 int rand_pool_add(RAND_POOL *pool,
725                   const unsigned char *buffer, size_t len, size_t entropy)
726 {
727     if (len > pool->max_len - pool->len) {
728         RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
729         return 0;
730     }
731 
732     if (pool->buffer == NULL) {
733         RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
734         return 0;
735     }
736 
737     if (len > 0) {
738         /*
739          * This is to protect us from accidentally passing the buffer
740          * returned from rand_pool_add_begin.
741          * The check for alloc_len makes sure we do not compare the
742          * address of the end of the allocated memory to something
743          * different, since that comparison would have an
744          * indeterminate result.
745          */
746         if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) {
747             RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
748             return 0;
749         }
750         /*
751          * We have that only for cases when a pool is used to collect
752          * additional data.
753          * For entropy data, as long as the allocation request stays within
754          * the limits given by rand_pool_bytes_needed this rand_pool_grow
755          * below is guaranteed to succeed, thus no allocation happens.
756          */
757         if (!rand_pool_grow(pool, len))
758             return 0;
759         memcpy(pool->buffer + pool->len, buffer, len);
760         pool->len += len;
761         pool->entropy += entropy;
762     }
763 
764     return 1;
765 }
766 
767 /*
768  * Start to add random bytes to the random pool in-place.
769  *
770  * Reserves the next |len| bytes for adding random bytes in-place
771  * and returns a pointer to the buffer.
772  * The caller is allowed to copy up to |len| bytes into the buffer.
773  * If |len| == 0 this is considered a no-op and a NULL pointer
774  * is returned without producing an error message.
775  *
776  * After updating the buffer, rand_pool_add_end() needs to be called
777  * to finish the update operation (see next comment).
778  */
779 unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
780 {
781     if (len == 0)
782         return NULL;
783 
784     if (len > pool->max_len - pool->len) {
785         RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
786         return NULL;
787     }
788 
789     if (pool->buffer == NULL) {
790         RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
791         return NULL;
792     }
793 
794     /*
795      * As long as the allocation request stays within the limits given
796      * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed
797      * to succeed, thus no allocation happens.
798      * We have that only for cases when a pool is used to collect
799      * additional data. Then the buffer might need to grow here,
800      * and of course the caller is responsible to check the return
801      * value of this function.
802      */
803     if (!rand_pool_grow(pool, len))
804         return NULL;
805 
806     return pool->buffer + pool->len;
807 }
808 
809 /*
810  * Finish to add random bytes to the random pool in-place.
811  *
812  * Finishes an in-place update of the random pool started by
813  * rand_pool_add_begin() (see previous comment).
814  * It is expected that |len| bytes of random input have been added
815  * to the buffer which contain at least |entropy| bits of randomness.
816  * It is allowed to add less bytes than originally reserved.
817  */
818 int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
819 {
820     if (len > pool->alloc_len - pool->len) {
821         RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
822         return 0;
823     }
824 
825     if (len > 0) {
826         pool->len += len;
827         pool->entropy += entropy;
828     }
829 
830     return 1;
831 }
832 
833 int RAND_set_rand_method(const RAND_METHOD *meth)
834 {
835     if (!RUN_ONCE(&rand_init, do_rand_init))
836         return 0;
837 
838     CRYPTO_THREAD_write_lock(rand_meth_lock);
839 #ifndef OPENSSL_NO_ENGINE
840     ENGINE_finish(funct_ref);
841     funct_ref = NULL;
842 #endif
843     default_RAND_meth = meth;
844     CRYPTO_THREAD_unlock(rand_meth_lock);
845     return 1;
846 }
847 
848 const RAND_METHOD *RAND_get_rand_method(void)
849 {
850     const RAND_METHOD *tmp_meth = NULL;
851 
852     if (!RUN_ONCE(&rand_init, do_rand_init))
853         return NULL;
854 
855     CRYPTO_THREAD_write_lock(rand_meth_lock);
856     if (default_RAND_meth == NULL) {
857 #ifndef OPENSSL_NO_ENGINE
858         ENGINE *e;
859 
860         /* If we have an engine that can do RAND, use it. */
861         if ((e = ENGINE_get_default_RAND()) != NULL
862                 && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
863             funct_ref = e;
864             default_RAND_meth = tmp_meth;
865         } else {
866             ENGINE_finish(e);
867             default_RAND_meth = &rand_meth;
868         }
869 #else
870         default_RAND_meth = &rand_meth;
871 #endif
872     }
873     tmp_meth = default_RAND_meth;
874     CRYPTO_THREAD_unlock(rand_meth_lock);
875     return tmp_meth;
876 }
877 
878 #ifndef OPENSSL_NO_ENGINE
879 int RAND_set_rand_engine(ENGINE *engine)
880 {
881     const RAND_METHOD *tmp_meth = NULL;
882 
883     if (!RUN_ONCE(&rand_init, do_rand_init))
884         return 0;
885 
886     if (engine != NULL) {
887         if (!ENGINE_init(engine))
888             return 0;
889         tmp_meth = ENGINE_get_RAND(engine);
890         if (tmp_meth == NULL) {
891             ENGINE_finish(engine);
892             return 0;
893         }
894     }
895     CRYPTO_THREAD_write_lock(rand_engine_lock);
896     /* This function releases any prior ENGINE so call it first */
897     RAND_set_rand_method(tmp_meth);
898     funct_ref = engine;
899     CRYPTO_THREAD_unlock(rand_engine_lock);
900     return 1;
901 }
902 #endif
903 
904 void RAND_seed(const void *buf, int num)
905 {
906     const RAND_METHOD *meth = RAND_get_rand_method();
907 
908     if (meth != NULL && meth->seed != NULL)
909         meth->seed(buf, num);
910 }
911 
912 void RAND_add(const void *buf, int num, double randomness)
913 {
914     const RAND_METHOD *meth = RAND_get_rand_method();
915 
916     if (meth != NULL && meth->add != NULL)
917         meth->add(buf, num, randomness);
918 }
919 
920 /*
921  * This function is not part of RAND_METHOD, so if we're not using
922  * the default method, then just call RAND_bytes().  Otherwise make
923  * sure we're instantiated and use the private DRBG.
924  */
925 int RAND_priv_bytes(unsigned char *buf, int num)
926 {
927     const RAND_METHOD *meth = RAND_get_rand_method();
928     RAND_DRBG *drbg;
929 
930     if (meth != NULL && meth != RAND_OpenSSL())
931         return RAND_bytes(buf, num);
932 
933     drbg = RAND_DRBG_get0_private();
934     if (drbg != NULL)
935         return RAND_DRBG_bytes(drbg, buf, num);
936 
937     return 0;
938 }
939 
940 int RAND_bytes(unsigned char *buf, int num)
941 {
942     const RAND_METHOD *meth = RAND_get_rand_method();
943 
944     if (meth != NULL && meth->bytes != NULL)
945         return meth->bytes(buf, num);
946     RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
947     return -1;
948 }
949 
950 #if OPENSSL_API_COMPAT < 0x10100000L
951 int RAND_pseudo_bytes(unsigned char *buf, int num)
952 {
953     const RAND_METHOD *meth = RAND_get_rand_method();
954 
955     if (meth != NULL && meth->pseudorand != NULL)
956         return meth->pseudorand(buf, num);
957     RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
958     return -1;
959 }
960 #endif
961 
962 int RAND_status(void)
963 {
964     const RAND_METHOD *meth = RAND_get_rand_method();
965 
966     if (meth != NULL && meth->status != NULL)
967         return meth->status();
968     return 0;
969 }
970