xref: /freebsd/lib/libdevstat/devstat.c (revision 2be1a816)
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/resource.h>
36 #include <sys/queue.h>
37 
38 #include <ctype.h>
39 #include <err.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <stdarg.h>
46 #include <kvm.h>
47 #include <nlist.h>
48 
49 #include "devstat.h"
50 
51 int
52 compute_stats(struct devstat *current, struct devstat *previous,
53 	      long double etime, u_int64_t *total_bytes,
54 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
55 	      long double *kb_per_transfer, long double *transfers_per_second,
56 	      long double *mb_per_second, long double *blocks_per_second,
57 	      long double *ms_per_transaction);
58 
59 typedef enum {
60 	DEVSTAT_ARG_NOTYPE,
61 	DEVSTAT_ARG_UINT64,
62 	DEVSTAT_ARG_LD,
63 	DEVSTAT_ARG_SKIP
64 } devstat_arg_type;
65 
66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
67 
68 /*
69  * Table to match descriptive strings with device types.  These are in
70  * order from most common to least common to speed search time.
71  */
72 struct devstat_match_table match_table[] = {
73 	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
74 	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
75 	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
76 	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
77 	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
78 	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
79 	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80 	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
81 	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
82 	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
83 	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
84 	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
85 	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
86 	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
87 	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
88 	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
89 	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
90 	{NULL,		0,			0}
91 };
92 
93 struct devstat_args {
94 	devstat_metric 		metric;
95 	devstat_arg_type	argtype;
96 } devstat_arg_list[] = {
97 	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
98 	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99 	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100 	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101 	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102 	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103 	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104 	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105 	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106 	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107 	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108 	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109 	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110 	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111 	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112 	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113 	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114 	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115 	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116 	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117 	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118 	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119 	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120 	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121 	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122 	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123 	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124 	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
125 	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126 	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127 	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128 	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129 	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130 	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131 	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132 	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133 	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134 	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135 	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136 };
137 
138 static const char *namelist[] = {
139 #define X_NUMDEVS	0
140 	"_devstat_num_devs",
141 #define X_GENERATION	1
142 	"_devstat_generation",
143 #define X_VERSION	2
144 	"_devstat_version",
145 #define X_DEVICE_STATQ	3
146 	"_device_statq",
147 #define X_END		4
148 };
149 
150 /*
151  * Local function declarations.
152  */
153 static int compare_select(const void *arg1, const void *arg2);
154 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
155 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
156 static char *get_devstat_kvm(kvm_t *kd);
157 
158 #define KREADNL(kd, var, val) \
159 	readkmem_nl(kd, namelist[var], &val, sizeof(val))
160 
161 int
162 devstat_getnumdevs(kvm_t *kd)
163 {
164 	size_t numdevsize;
165 	int numdevs;
166 
167 	numdevsize = sizeof(int);
168 
169 	/*
170 	 * Find out how many devices we have in the system.
171 	 */
172 	if (kd == NULL) {
173 		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
174 				 &numdevsize, NULL, 0) == -1) {
175 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
176 				 "%s: error getting number of devices\n"
177 				 "%s: %s", __func__, __func__,
178 				 strerror(errno));
179 			return(-1);
180 		} else
181 			return(numdevs);
182 	} else {
183 
184 		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
185 			return(-1);
186 		else
187 			return(numdevs);
188 	}
189 }
190 
191 /*
192  * This is an easy way to get the generation number, but the generation is
193  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
194  * Because this generation sysctl is separate from the statistics sysctl,
195  * the device list and the generation could change between the time that
196  * this function is called and the device list is retreived.
197  */
198 long
199 devstat_getgeneration(kvm_t *kd)
200 {
201 	size_t gensize;
202 	long generation;
203 
204 	gensize = sizeof(long);
205 
206 	/*
207 	 * Get the current generation number.
208 	 */
209 	if (kd == NULL) {
210 		if (sysctlbyname("kern.devstat.generation", &generation,
211 				 &gensize, NULL, 0) == -1) {
212 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
213 				 "%s: error getting devstat generation\n%s: %s",
214 				 __func__, __func__, strerror(errno));
215 			return(-1);
216 		} else
217 			return(generation);
218 	} else {
219 		if (KREADNL(kd, X_GENERATION, generation) == -1)
220 			return(-1);
221 		else
222 			return(generation);
223 	}
224 }
225 
226 /*
227  * Get the current devstat version.  The return value of this function
228  * should be compared with DEVSTAT_VERSION, which is defined in
229  * sys/devicestat.h.  This will enable userland programs to determine
230  * whether they are out of sync with the kernel.
231  */
232 int
233 devstat_getversion(kvm_t *kd)
234 {
235 	size_t versize;
236 	int version;
237 
238 	versize = sizeof(int);
239 
240 	/*
241 	 * Get the current devstat version.
242 	 */
243 	if (kd == NULL) {
244 		if (sysctlbyname("kern.devstat.version", &version, &versize,
245 				 NULL, 0) == -1) {
246 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
247 				 "%s: error getting devstat version\n%s: %s",
248 				 __func__, __func__, strerror(errno));
249 			return(-1);
250 		} else
251 			return(version);
252 	} else {
253 		if (KREADNL(kd, X_VERSION, version) == -1)
254 			return(-1);
255 		else
256 			return(version);
257 	}
258 }
259 
260 /*
261  * Check the devstat version we know about against the devstat version the
262  * kernel knows about.  If they don't match, print an error into the
263  * devstat error buffer, and return -1.  If they match, return 0.
264  */
265 int
266 devstat_checkversion(kvm_t *kd)
267 {
268 	int buflen, res, retval = 0, version;
269 
270 	version = devstat_getversion(kd);
271 
272 	if (version != DEVSTAT_VERSION) {
273 		/*
274 		 * If getversion() returns an error (i.e. -1), then it
275 		 * has printed an error message in the buffer.  Therefore,
276 		 * we need to add a \n to the end of that message before we
277 		 * print our own message in the buffer.
278 		 */
279 		if (version == -1)
280 			buflen = strlen(devstat_errbuf);
281 		else
282 			buflen = 0;
283 
284 		res = snprintf(devstat_errbuf + buflen,
285 			       DEVSTAT_ERRBUF_SIZE - buflen,
286 			       "%s%s: userland devstat version %d is not "
287 			       "the same as the kernel\n%s: devstat "
288 			       "version %d\n", version == -1 ? "\n" : "",
289 			       __func__, DEVSTAT_VERSION, __func__, version);
290 
291 		if (res < 0)
292 			devstat_errbuf[buflen] = '\0';
293 
294 		buflen = strlen(devstat_errbuf);
295 		if (version < DEVSTAT_VERSION)
296 			res = snprintf(devstat_errbuf + buflen,
297 				       DEVSTAT_ERRBUF_SIZE - buflen,
298 				       "%s: libdevstat newer than kernel\n",
299 				       __func__);
300 		else
301 			res = snprintf(devstat_errbuf + buflen,
302 				       DEVSTAT_ERRBUF_SIZE - buflen,
303 				       "%s: kernel newer than libdevstat\n",
304 				       __func__);
305 
306 		if (res < 0)
307 			devstat_errbuf[buflen] = '\0';
308 
309 		retval = -1;
310 	}
311 
312 	return(retval);
313 }
314 
315 /*
316  * Get the current list of devices and statistics, and the current
317  * generation number.
318  *
319  * Return values:
320  * -1  -- error
321  *  0  -- device list is unchanged
322  *  1  -- device list has changed
323  */
324 int
325 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
326 {
327 	int error;
328 	size_t dssize;
329 	int oldnumdevs;
330 	long oldgeneration;
331 	int retval = 0;
332 	struct devinfo *dinfo;
333 	struct timespec ts;
334 
335 	dinfo = stats->dinfo;
336 
337 	if (dinfo == NULL) {
338 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
339 			 "%s: stats->dinfo was NULL", __func__);
340 		return(-1);
341 	}
342 
343 	oldnumdevs = dinfo->numdevs;
344 	oldgeneration = dinfo->generation;
345 
346 	clock_gettime(CLOCK_MONOTONIC, &ts);
347 	stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
348 
349 	if (kd == NULL) {
350 		/* If this is our first time through, mem_ptr will be null. */
351 		if (dinfo->mem_ptr == NULL) {
352 			/*
353 			 * Get the number of devices.  If it's negative, it's an
354 			 * error.  Don't bother setting the error string, since
355 			 * getnumdevs() has already done that for us.
356 			 */
357 			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
358 				return(-1);
359 
360 			/*
361 			 * The kern.devstat.all sysctl returns the current
362 			 * generation number, as well as all the devices.
363 			 * So we need four bytes more.
364 			 */
365 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
366 				 sizeof(long);
367 			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
368 		} else
369 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
370 				 sizeof(long);
371 
372 		/*
373 		 * Request all of the devices.  We only really allow for one
374 		 * ENOMEM failure.  It would, of course, be possible to just go
375 		 * in a loop and keep reallocing the device structure until we
376 		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
377 		 * If devices are being added to the system that quickly, maybe
378 		 * the user can just wait until all devices are added.
379 		 */
380 		for (;;) {
381 			error = sysctlbyname("kern.devstat.all",
382 					     dinfo->mem_ptr,
383 					     &dssize, NULL, 0);
384 			if (error != -1 || errno != EBUSY)
385 				break;
386 		}
387 		if (error == -1) {
388 			/*
389 			 * If we get ENOMEM back, that means that there are
390 			 * more devices now, so we need to allocate more
391 			 * space for the device array.
392 			 */
393 			if (errno == ENOMEM) {
394 				/*
395 				 * No need to set the error string here,
396 				 * devstat_getnumdevs() will do that if it fails.
397 				 */
398 				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
399 					return(-1);
400 
401 				dssize = (dinfo->numdevs *
402 					sizeof(struct devstat)) + sizeof(long);
403 				dinfo->mem_ptr = (u_int8_t *)
404 					realloc(dinfo->mem_ptr, dssize);
405 				if ((error = sysctlbyname("kern.devstat.all",
406 				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
407 					snprintf(devstat_errbuf,
408 						 sizeof(devstat_errbuf),
409 					    	 "%s: error getting device "
410 					    	 "stats\n%s: %s", __func__,
411 					    	 __func__, strerror(errno));
412 					return(-1);
413 				}
414 			} else {
415 				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
416 					 "%s: error getting device stats\n"
417 					 "%s: %s", __func__, __func__,
418 					 strerror(errno));
419 				return(-1);
420 			}
421 		}
422 
423 	} else {
424 		/*
425 		 * This is of course non-atomic, but since we are working
426 		 * on a core dump, the generation is unlikely to change
427 		 */
428 		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
429 			return(-1);
430 		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
431 			return(-1);
432 	}
433 	/*
434 	 * The sysctl spits out the generation as the first four bytes,
435 	 * then all of the device statistics structures.
436 	 */
437 	dinfo->generation = *(long *)dinfo->mem_ptr;
438 
439 	/*
440 	 * If the generation has changed, and if the current number of
441 	 * devices is not the same as the number of devices recorded in the
442 	 * devinfo structure, it is likely that the device list has shrunk.
443 	 * The reason that it is likely that the device list has shrunk in
444 	 * this case is that if the device list has grown, the sysctl above
445 	 * will return an ENOMEM error, and we will reset the number of
446 	 * devices and reallocate the device array.  If the second sysctl
447 	 * fails, we will return an error and therefore never get to this
448 	 * point.  If the device list has shrunk, the sysctl will not
449 	 * return an error since we have more space allocated than is
450 	 * necessary.  So, in the shrinkage case, we catch it here and
451 	 * reallocate the array so that we don't use any more space than is
452 	 * necessary.
453 	 */
454 	if (oldgeneration != dinfo->generation) {
455 		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
456 			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
457 				return(-1);
458 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
459 				sizeof(long);
460 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
461 							     dssize);
462 		}
463 		retval = 1;
464 	}
465 
466 	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
467 
468 	return(retval);
469 }
470 
471 /*
472  * selectdevs():
473  *
474  * Devices are selected/deselected based upon the following criteria:
475  * - devices specified by the user on the command line
476  * - devices matching any device type expressions given on the command line
477  * - devices with the highest I/O, if 'top' mode is enabled
478  * - the first n unselected devices in the device list, if maxshowdevs
479  *   devices haven't already been selected and if the user has not
480  *   specified any devices on the command line and if we're in "add" mode.
481  *
482  * Input parameters:
483  * - device selection list (dev_select)
484  * - current number of devices selected (num_selected)
485  * - total number of devices in the selection list (num_selections)
486  * - devstat generation as of the last time selectdevs() was called
487  *   (select_generation)
488  * - current devstat generation (current_generation)
489  * - current list of devices and statistics (devices)
490  * - number of devices in the current device list (numdevs)
491  * - compiled version of the command line device type arguments (matches)
492  *   - This is optional.  If the number of devices is 0, this will be ignored.
493  *   - The matching code pays attention to the current selection mode.  So
494  *     if you pass in a matching expression, it will be evaluated based
495  *     upon the selection mode that is passed in.  See below for details.
496  * - number of device type matching expressions (num_matches)
497  *   - Set to 0 to disable the matching code.
498  * - list of devices specified on the command line by the user (dev_selections)
499  * - number of devices selected on the command line by the user
500  *   (num_dev_selections)
501  * - Our selection mode.  There are four different selection modes:
502  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
503  *        selected by the user or devices matching a pattern given by the
504  *        user will be selected in addition to devices that are already
505  *        selected.  Additional devices will be selected, up to maxshowdevs
506  *        number of devices.
507  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
508  *        explicitly given by the user or devices matching a pattern
509  *        given by the user will be selected.  No other devices will be
510  *        selected.
511  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
512  *        only.  Basically, this will not de-select any devices that are
513  *        current selected, as only mode would, but it will also not
514  *        gratuitously select up to maxshowdevs devices as add mode would.
515  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
516  *        explicitly selected by the user or devices matching a pattern
517  *        given by the user will be de-selected.
518  * - maximum number of devices we can select (maxshowdevs)
519  * - flag indicating whether or not we're in 'top' mode (perf_select)
520  *
521  * Output data:
522  * - the device selection list may be modified and passed back out
523  * - the number of devices selected and the total number of items in the
524  *   device selection list may be changed
525  * - the selection generation may be changed to match the current generation
526  *
527  * Return values:
528  * -1  -- error
529  *  0  -- selected devices are unchanged
530  *  1  -- selected devices changed
531  */
532 int
533 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
534 		   int *num_selections, long *select_generation,
535 		   long current_generation, struct devstat *devices,
536 		   int numdevs, struct devstat_match *matches, int num_matches,
537 		   char **dev_selections, int num_dev_selections,
538 		   devstat_select_mode select_mode, int maxshowdevs,
539 		   int perf_select)
540 {
541 	int i, j, k;
542 	int init_selections = 0, init_selected_var = 0;
543 	struct device_selection *old_dev_select = NULL;
544 	int old_num_selections = 0, old_num_selected;
545 	int selection_number = 0;
546 	int changed = 0, found = 0;
547 
548 	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
549 		return(-1);
550 
551 	/*
552 	 * We always want to make sure that we have as many dev_select
553 	 * entries as there are devices.
554 	 */
555 	/*
556 	 * In this case, we haven't selected devices before.
557 	 */
558 	if (*dev_select == NULL) {
559 		*dev_select = (struct device_selection *)malloc(numdevs *
560 			sizeof(struct device_selection));
561 		*select_generation = current_generation;
562 		init_selections = 1;
563 		changed = 1;
564 	/*
565 	 * In this case, we have selected devices before, but the device
566 	 * list has changed since we last selected devices, so we need to
567 	 * either enlarge or reduce the size of the device selection list.
568 	 */
569 	} else if (*num_selections != numdevs) {
570 		*dev_select = (struct device_selection *)realloc(*dev_select,
571 			numdevs * sizeof(struct device_selection));
572 		*select_generation = current_generation;
573 		init_selections = 1;
574 	/*
575 	 * In this case, we've selected devices before, and the selection
576 	 * list is the same size as it was the last time, but the device
577 	 * list has changed.
578 	 */
579 	} else if (*select_generation < current_generation) {
580 		*select_generation = current_generation;
581 		init_selections = 1;
582 	}
583 
584 	/*
585 	 * If we're in "only" mode, we want to clear out the selected
586 	 * variable since we're going to select exactly what the user wants
587 	 * this time through.
588 	 */
589 	if (select_mode == DS_SELECT_ONLY)
590 		init_selected_var = 1;
591 
592 	/*
593 	 * In all cases, we want to back up the number of selected devices.
594 	 * It is a quick and accurate way to determine whether the selected
595 	 * devices have changed.
596 	 */
597 	old_num_selected = *num_selected;
598 
599 	/*
600 	 * We want to make a backup of the current selection list if
601 	 * the list of devices has changed, or if we're in performance
602 	 * selection mode.  In both cases, we don't want to make a backup
603 	 * if we already know for sure that the list will be different.
604 	 * This is certainly the case if this is our first time through the
605 	 * selection code.
606 	 */
607 	if (((init_selected_var != 0) || (init_selections != 0)
608 	 || (perf_select != 0)) && (changed == 0)){
609 		old_dev_select = (struct device_selection *)malloc(
610 		    *num_selections * sizeof(struct device_selection));
611 		old_num_selections = *num_selections;
612 		bcopy(*dev_select, old_dev_select,
613 		    sizeof(struct device_selection) * *num_selections);
614 	}
615 
616 	if (init_selections != 0) {
617 		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
618 
619 		for (i = 0; i < numdevs; i++) {
620 			(*dev_select)[i].device_number =
621 				devices[i].device_number;
622 			strncpy((*dev_select)[i].device_name,
623 				devices[i].device_name,
624 				DEVSTAT_NAME_LEN);
625 			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
626 			(*dev_select)[i].unit_number = devices[i].unit_number;
627 			(*dev_select)[i].position = i;
628 		}
629 		*num_selections = numdevs;
630 	} else if (init_selected_var != 0) {
631 		for (i = 0; i < numdevs; i++)
632 			(*dev_select)[i].selected = 0;
633 	}
634 
635 	/* we haven't gotten around to selecting anything yet.. */
636 	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
637 	 || (init_selected_var != 0))
638 		*num_selected = 0;
639 
640 	/*
641 	 * Look through any devices the user specified on the command line
642 	 * and see if they match known devices.  If so, select them.
643 	 */
644 	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
645 		char tmpstr[80];
646 
647 		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
648 			 (*dev_select)[i].device_name,
649 			 (*dev_select)[i].unit_number);
650 		for (j = 0; j < num_dev_selections; j++) {
651 			if (strcmp(tmpstr, dev_selections[j]) == 0) {
652 				/*
653 				 * Here we do different things based on the
654 				 * mode we're in.  If we're in add or
655 				 * addonly mode, we only select this device
656 				 * if it hasn't already been selected.
657 				 * Otherwise, we would be unnecessarily
658 				 * changing the selection order and
659 				 * incrementing the selection count.  If
660 				 * we're in only mode, we unconditionally
661 				 * select this device, since in only mode
662 				 * any previous selections are erased and
663 				 * manually specified devices are the first
664 				 * ones to be selected.  If we're in remove
665 				 * mode, we de-select the specified device and
666 				 * decrement the selection count.
667 				 */
668 				switch(select_mode) {
669 				case DS_SELECT_ADD:
670 				case DS_SELECT_ADDONLY:
671 					if ((*dev_select)[i].selected)
672 						break;
673 					/* FALLTHROUGH */
674 				case DS_SELECT_ONLY:
675 					(*dev_select)[i].selected =
676 						++selection_number;
677 					(*num_selected)++;
678 					break;
679 				case DS_SELECT_REMOVE:
680 					(*dev_select)[i].selected = 0;
681 					(*num_selected)--;
682 					/*
683 					 * This isn't passed back out, we
684 					 * just use it to keep track of
685 					 * how many devices we've removed.
686 					 */
687 					num_dev_selections--;
688 					break;
689 				}
690 				break;
691 			}
692 		}
693 	}
694 
695 	/*
696 	 * Go through the user's device type expressions and select devices
697 	 * accordingly.  We only do this if the number of devices already
698 	 * selected is less than the maximum number we can show.
699 	 */
700 	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
701 		/* We should probably indicate some error here */
702 		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
703 		 || (matches[i].num_match_categories <= 0))
704 			continue;
705 
706 		for (j = 0; j < numdevs; j++) {
707 			int num_match_categories;
708 
709 			num_match_categories = matches[i].num_match_categories;
710 
711 			/*
712 			 * Determine whether or not the current device
713 			 * matches the given matching expression.  This if
714 			 * statement consists of three components:
715 			 *   - the device type check
716 			 *   - the device interface check
717 			 *   - the passthrough check
718 			 * If a the matching test is successful, it
719 			 * decrements the number of matching categories,
720 			 * and if we've reached the last element that
721 			 * needed to be matched, the if statement succeeds.
722 			 *
723 			 */
724 			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
725 			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
726 			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
727 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
728 			   || (((matches[i].match_fields &
729 				DEVSTAT_MATCH_PASS) == 0)
730 			    && ((devices[j].device_type &
731 			        DEVSTAT_TYPE_PASS) == 0)))
732 			  && (--num_match_categories == 0))
733 			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
734 			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
735 			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
736 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
737 			   || (((matches[i].match_fields &
738 				DEVSTAT_MATCH_PASS) == 0)
739 			    && ((devices[j].device_type &
740 				DEVSTAT_TYPE_PASS) == 0)))
741 			  && (--num_match_categories == 0))
742 			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
743 			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
744 			  && (--num_match_categories == 0))) {
745 
746 				/*
747 				 * This is probably a non-optimal solution
748 				 * to the problem that the devices in the
749 				 * device list will not be in the same
750 				 * order as the devices in the selection
751 				 * array.
752 				 */
753 				for (k = 0; k < numdevs; k++) {
754 					if ((*dev_select)[k].position == j) {
755 						found = 1;
756 						break;
757 					}
758 				}
759 
760 				/*
761 				 * There shouldn't be a case where a device
762 				 * in the device list is not in the
763 				 * selection list...but it could happen.
764 				 */
765 				if (found != 1) {
766 					fprintf(stderr, "selectdevs: couldn't"
767 						" find %s%d in selection "
768 						"list\n",
769 						devices[j].device_name,
770 						devices[j].unit_number);
771 					break;
772 				}
773 
774 				/*
775 				 * We do different things based upon the
776 				 * mode we're in.  If we're in add or only
777 				 * mode, we go ahead and select this device
778 				 * if it hasn't already been selected.  If
779 				 * it has already been selected, we leave
780 				 * it alone so we don't mess up the
781 				 * selection ordering.  Manually specified
782 				 * devices have already been selected, and
783 				 * they have higher priority than pattern
784 				 * matched devices.  If we're in remove
785 				 * mode, we de-select the given device and
786 				 * decrement the selected count.
787 				 */
788 				switch(select_mode) {
789 				case DS_SELECT_ADD:
790 				case DS_SELECT_ADDONLY:
791 				case DS_SELECT_ONLY:
792 					if ((*dev_select)[k].selected != 0)
793 						break;
794 					(*dev_select)[k].selected =
795 						++selection_number;
796 					(*num_selected)++;
797 					break;
798 				case DS_SELECT_REMOVE:
799 					(*dev_select)[k].selected = 0;
800 					(*num_selected)--;
801 					break;
802 				}
803 			}
804 		}
805 	}
806 
807 	/*
808 	 * Here we implement "top" mode.  Devices are sorted in the
809 	 * selection array based on two criteria:  whether or not they are
810 	 * selected (not selection number, just the fact that they are
811 	 * selected!) and the number of bytes in the "bytes" field of the
812 	 * selection structure.  The bytes field generally must be kept up
813 	 * by the user.  In the future, it may be maintained by library
814 	 * functions, but for now the user has to do the work.
815 	 *
816 	 * At first glance, it may seem wrong that we don't go through and
817 	 * select every device in the case where the user hasn't specified
818 	 * any devices or patterns.  In fact, though, it won't make any
819 	 * difference in the device sorting.  In that particular case (i.e.
820 	 * when we're in "add" or "only" mode, and the user hasn't
821 	 * specified anything) the first time through no devices will be
822 	 * selected, so the only criterion used to sort them will be their
823 	 * performance.  The second time through, and every time thereafter,
824 	 * all devices will be selected, so again selection won't matter.
825 	 */
826 	if (perf_select != 0) {
827 
828 		/* Sort the device array by throughput  */
829 		qsort(*dev_select, *num_selections,
830 		      sizeof(struct device_selection),
831 		      compare_select);
832 
833 		if (*num_selected == 0) {
834 			/*
835 			 * Here we select every device in the array, if it
836 			 * isn't already selected.  Because the 'selected'
837 			 * variable in the selection array entries contains
838 			 * the selection order, the devstats routine can show
839 			 * the devices that were selected first.
840 			 */
841 			for (i = 0; i < *num_selections; i++) {
842 				if ((*dev_select)[i].selected == 0) {
843 					(*dev_select)[i].selected =
844 						++selection_number;
845 					(*num_selected)++;
846 				}
847 			}
848 		} else {
849 			selection_number = 0;
850 			for (i = 0; i < *num_selections; i++) {
851 				if ((*dev_select)[i].selected != 0) {
852 					(*dev_select)[i].selected =
853 						++selection_number;
854 				}
855 			}
856 		}
857 	}
858 
859 	/*
860 	 * If we're in the "add" selection mode and if we haven't already
861 	 * selected maxshowdevs number of devices, go through the array and
862 	 * select any unselected devices.  If we're in "only" mode, we
863 	 * obviously don't want to select anything other than what the user
864 	 * specifies.  If we're in "remove" mode, it probably isn't a good
865 	 * idea to go through and select any more devices, since we might
866 	 * end up selecting something that the user wants removed.  Through
867 	 * more complicated logic, we could actually figure this out, but
868 	 * that would probably require combining this loop with the various
869 	 * selections loops above.
870 	 */
871 	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
872 		for (i = 0; i < *num_selections; i++)
873 			if ((*dev_select)[i].selected == 0) {
874 				(*dev_select)[i].selected = ++selection_number;
875 				(*num_selected)++;
876 			}
877 	}
878 
879 	/*
880 	 * Look at the number of devices that have been selected.  If it
881 	 * has changed, set the changed variable.  Otherwise, if we've
882 	 * made a backup of the selection list, compare it to the current
883 	 * selection list to see if the selected devices have changed.
884 	 */
885 	if ((changed == 0) && (old_num_selected != *num_selected))
886 		changed = 1;
887 	else if ((changed == 0) && (old_dev_select != NULL)) {
888 		/*
889 		 * Now we go through the selection list and we look at
890 		 * it three different ways.
891 		 */
892 		for (i = 0; (i < *num_selections) && (changed == 0) &&
893 		     (i < old_num_selections); i++) {
894 			/*
895 			 * If the device at index i in both the new and old
896 			 * selection arrays has the same device number and
897 			 * selection status, it hasn't changed.  We
898 			 * continue on to the next index.
899 			 */
900 			if (((*dev_select)[i].device_number ==
901 			     old_dev_select[i].device_number)
902 			 && ((*dev_select)[i].selected ==
903 			     old_dev_select[i].selected))
904 				continue;
905 
906 			/*
907 			 * Now, if we're still going through the if
908 			 * statement, the above test wasn't true.  So we
909 			 * check here to see if the device at index i in
910 			 * the current array is the same as the device at
911 			 * index i in the old array.  If it is, that means
912 			 * that its selection number has changed.  Set
913 			 * changed to 1 and exit the loop.
914 			 */
915 			else if ((*dev_select)[i].device_number ==
916 			          old_dev_select[i].device_number) {
917 				changed = 1;
918 				break;
919 			}
920 			/*
921 			 * If we get here, then the device at index i in
922 			 * the current array isn't the same device as the
923 			 * device at index i in the old array.
924 			 */
925 			else {
926 				found = 0;
927 
928 				/*
929 				 * Search through the old selection array
930 				 * looking for a device with the same
931 				 * device number as the device at index i
932 				 * in the current array.  If the selection
933 				 * status is the same, then we mark it as
934 				 * found.  If the selection status isn't
935 				 * the same, we break out of the loop.
936 				 * Since found isn't set, changed will be
937 				 * set to 1 below.
938 				 */
939 				for (j = 0; j < old_num_selections; j++) {
940 					if (((*dev_select)[i].device_number ==
941 					      old_dev_select[j].device_number)
942 					 && ((*dev_select)[i].selected ==
943 					      old_dev_select[j].selected)){
944 						found = 1;
945 						break;
946 					}
947 					else if ((*dev_select)[i].device_number
948 					    == old_dev_select[j].device_number)
949 						break;
950 				}
951 				if (found == 0)
952 					changed = 1;
953 			}
954 		}
955 	}
956 	if (old_dev_select != NULL)
957 		free(old_dev_select);
958 
959 	return(changed);
960 }
961 
962 /*
963  * Comparison routine for qsort() above.  Note that the comparison here is
964  * backwards -- generally, it should return a value to indicate whether
965  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
966  * it returns the opposite is so that the selection array will be sorted in
967  * order of decreasing performance.  We sort on two parameters.  The first
968  * sort key is whether or not one or the other of the devices in question
969  * has been selected.  If one of them has, and the other one has not, the
970  * selected device is automatically more important than the unselected
971  * device.  If neither device is selected, we judge the devices based upon
972  * performance.
973  */
974 static int
975 compare_select(const void *arg1, const void *arg2)
976 {
977 	if ((((const struct device_selection *)arg1)->selected)
978 	 && (((const struct device_selection *)arg2)->selected == 0))
979 		return(-1);
980 	else if ((((const struct device_selection *)arg1)->selected == 0)
981 	      && (((const struct device_selection *)arg2)->selected))
982 		return(1);
983 	else if (((const struct device_selection *)arg2)->bytes <
984 	         ((const struct device_selection *)arg1)->bytes)
985 		return(-1);
986 	else if (((const struct device_selection *)arg2)->bytes >
987 		 ((const struct device_selection *)arg1)->bytes)
988 		return(1);
989 	else
990 		return(0);
991 }
992 
993 /*
994  * Take a string with the general format "arg1,arg2,arg3", and build a
995  * device matching expression from it.
996  */
997 int
998 devstat_buildmatch(char *match_str, struct devstat_match **matches,
999 		   int *num_matches)
1000 {
1001 	char *tstr[5];
1002 	char **tempstr;
1003 	int num_args;
1004 	int i, j;
1005 
1006 	/* We can't do much without a string to parse */
1007 	if (match_str == NULL) {
1008 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1009 			 "%s: no match expression", __func__);
1010 		return(-1);
1011 	}
1012 
1013 	/*
1014 	 * Break the (comma delimited) input string out into separate strings.
1015 	 */
1016 	for (tempstr = tstr, num_args  = 0;
1017 	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);
1018 	     num_args++)
1019 		if (**tempstr != '\0')
1020 			if (++tempstr >= &tstr[5])
1021 				break;
1022 
1023 	/* The user gave us too many type arguments */
1024 	if (num_args > 3) {
1025 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1026 			 "%s: too many type arguments", __func__);
1027 		return(-1);
1028 	}
1029 
1030 	/*
1031 	 * Since you can't realloc a pointer that hasn't been malloced
1032 	 * first, we malloc first and then realloc.
1033 	 */
1034 	if (*num_matches == 0)
1035 		*matches = (struct devstat_match *)malloc(
1036 			   sizeof(struct devstat_match));
1037 	else
1038 		*matches = (struct devstat_match *)realloc(*matches,
1039 			  sizeof(struct devstat_match) * (*num_matches + 1));
1040 
1041 	/* Make sure the current entry is clear */
1042 	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1043 
1044 	/*
1045 	 * Step through the arguments the user gave us and build a device
1046 	 * matching expression from them.
1047 	 */
1048 	for (i = 0; i < num_args; i++) {
1049 		char *tempstr2, *tempstr3;
1050 
1051 		/*
1052 		 * Get rid of leading white space.
1053 		 */
1054 		tempstr2 = tstr[i];
1055 		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1056 			tempstr2++;
1057 
1058 		/*
1059 		 * Get rid of trailing white space.
1060 		 */
1061 		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1062 
1063 		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1064 		    && (isspace(*tempstr3))) {
1065 			*tempstr3 = '\0';
1066 			tempstr3--;
1067 		}
1068 
1069 		/*
1070 		 * Go through the match table comparing the user's
1071 		 * arguments to known device types, interfaces, etc.
1072 		 */
1073 		for (j = 0; match_table[j].match_str != NULL; j++) {
1074 			/*
1075 			 * We do case-insensitive matching, in case someone
1076 			 * wants to enter "SCSI" instead of "scsi" or
1077 			 * something like that.  Only compare as many
1078 			 * characters as are in the string in the match
1079 			 * table.  This should help if someone tries to use
1080 			 * a super-long match expression.
1081 			 */
1082 			if (strncasecmp(tempstr2, match_table[j].match_str,
1083 			    strlen(match_table[j].match_str)) == 0) {
1084 				/*
1085 				 * Make sure the user hasn't specified two
1086 				 * items of the same type, like "da" and
1087 				 * "cd".  One device cannot be both.
1088 				 */
1089 				if (((*matches)[*num_matches].match_fields &
1090 				    match_table[j].match_field) != 0) {
1091 					snprintf(devstat_errbuf,
1092 						 sizeof(devstat_errbuf),
1093 						 "%s: cannot have more than "
1094 						 "one match item in a single "
1095 						 "category", __func__);
1096 					return(-1);
1097 				}
1098 				/*
1099 				 * If we've gotten this far, we have a
1100 				 * winner.  Set the appropriate fields in
1101 				 * the match entry.
1102 				 */
1103 				(*matches)[*num_matches].match_fields |=
1104 					match_table[j].match_field;
1105 				(*matches)[*num_matches].device_type |=
1106 					match_table[j].type;
1107 				(*matches)[*num_matches].num_match_categories++;
1108 				break;
1109 			}
1110 		}
1111 		/*
1112 		 * We should have found a match in the above for loop.  If
1113 		 * not, that means the user entered an invalid device type
1114 		 * or interface.
1115 		 */
1116 		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1117 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1118 				 "%s: unknown match item \"%s\"", __func__,
1119 				 tstr[i]);
1120 			return(-1);
1121 		}
1122 	}
1123 
1124 	(*num_matches)++;
1125 
1126 	return(0);
1127 }
1128 
1129 /*
1130  * Compute a number of device statistics.  Only one field is mandatory, and
1131  * that is "current".  Everything else is optional.  The caller passes in
1132  * pointers to variables to hold the various statistics he desires.  If he
1133  * doesn't want a particular staistic, he should pass in a NULL pointer.
1134  * Return values:
1135  * 0   -- success
1136  * -1  -- failure
1137  */
1138 int
1139 compute_stats(struct devstat *current, struct devstat *previous,
1140 	      long double etime, u_int64_t *total_bytes,
1141 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1142 	      long double *kb_per_transfer, long double *transfers_per_second,
1143 	      long double *mb_per_second, long double *blocks_per_second,
1144 	      long double *ms_per_transaction)
1145 {
1146 	return(devstat_compute_statistics(current, previous, etime,
1147 	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1148 	       total_bytes,
1149 	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1150 	       total_transfers,
1151 	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1152 	       total_blocks,
1153 	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1154 	       kb_per_transfer,
1155 	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1156 	       transfers_per_second,
1157 	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1158 	       mb_per_second,
1159 	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1160 	       blocks_per_second,
1161 	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1162 	       ms_per_transaction,
1163 	       DSM_NONE));
1164 }
1165 
1166 
1167 /* This is 1/2^64 */
1168 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1169 
1170 long double
1171 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1172 {
1173 	long double etime;
1174 
1175 	etime = cur_time->sec;
1176 	etime += cur_time->frac * BINTIME_SCALE;
1177 	if (prev_time != NULL) {
1178 		etime -= prev_time->sec;
1179 		etime -= prev_time->frac * BINTIME_SCALE;
1180 	}
1181 	return(etime);
1182 }
1183 
1184 #define DELTA(field, index)				\
1185 	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1186 
1187 #define DELTA_T(field)					\
1188 	devstat_compute_etime(&current->field,  	\
1189 	(previous ? &previous->field : NULL))
1190 
1191 int
1192 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1193 			   long double etime, ...)
1194 {
1195 	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1196 	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1197 	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1198 	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1199 	va_list ap;
1200 	devstat_metric metric;
1201 	u_int64_t *destu64;
1202 	long double *destld;
1203 	int retval, i;
1204 
1205 	retval = 0;
1206 
1207 	/*
1208 	 * current is the only mandatory field.
1209 	 */
1210 	if (current == NULL) {
1211 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1212 			 "%s: current stats structure was NULL", __func__);
1213 		return(-1);
1214 	}
1215 
1216 	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1217 	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1218 	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1219 	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1220 
1221 	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1222 	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1223 	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1224 	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1225 	totaltransfers = totaltransfersread + totaltransferswrite +
1226 			 totaltransfersother + totaltransfersfree;
1227 
1228 	totalblocks = totalbytes;
1229 	totalblocksread = totalbytesread;
1230 	totalblockswrite = totalbyteswrite;
1231 	totalblocksfree = totalbytesfree;
1232 
1233 	if (current->block_size > 0) {
1234 		totalblocks /= current->block_size;
1235 		totalblocksread /= current->block_size;
1236 		totalblockswrite /= current->block_size;
1237 		totalblocksfree /= current->block_size;
1238 	} else {
1239 		totalblocks /= 512;
1240 		totalblocksread /= 512;
1241 		totalblockswrite /= 512;
1242 		totalblocksfree /= 512;
1243 	}
1244 
1245 	va_start(ap, etime);
1246 
1247 	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1248 
1249 		if (metric == DSM_NONE)
1250 			break;
1251 
1252 		if (metric >= DSM_MAX) {
1253 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1254 				 "%s: metric %d is out of range", __func__,
1255 				 metric);
1256 			retval = -1;
1257 			goto bailout;
1258 		}
1259 
1260 		switch (devstat_arg_list[metric].argtype) {
1261 		case DEVSTAT_ARG_UINT64:
1262 			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1263 			break;
1264 		case DEVSTAT_ARG_LD:
1265 			destld = (long double *)va_arg(ap, long double *);
1266 			break;
1267 		case DEVSTAT_ARG_SKIP:
1268 			destld = (long double *)va_arg(ap, long double *);
1269 			break;
1270 		default:
1271 			retval = -1;
1272 			goto bailout;
1273 			break; /* NOTREACHED */
1274 		}
1275 
1276 		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1277 			continue;
1278 
1279 		switch (metric) {
1280 		case DSM_TOTAL_BYTES:
1281 			*destu64 = totalbytes;
1282 			break;
1283 		case DSM_TOTAL_BYTES_READ:
1284 			*destu64 = totalbytesread;
1285 			break;
1286 		case DSM_TOTAL_BYTES_WRITE:
1287 			*destu64 = totalbyteswrite;
1288 			break;
1289 		case DSM_TOTAL_BYTES_FREE:
1290 			*destu64 = totalbytesfree;
1291 			break;
1292 		case DSM_TOTAL_TRANSFERS:
1293 			*destu64 = totaltransfers;
1294 			break;
1295 		case DSM_TOTAL_TRANSFERS_READ:
1296 			*destu64 = totaltransfersread;
1297 			break;
1298 		case DSM_TOTAL_TRANSFERS_WRITE:
1299 			*destu64 = totaltransferswrite;
1300 			break;
1301 		case DSM_TOTAL_TRANSFERS_FREE:
1302 			*destu64 = totaltransfersfree;
1303 			break;
1304 		case DSM_TOTAL_TRANSFERS_OTHER:
1305 			*destu64 = totaltransfersother;
1306 			break;
1307 		case DSM_TOTAL_BLOCKS:
1308 			*destu64 = totalblocks;
1309 			break;
1310 		case DSM_TOTAL_BLOCKS_READ:
1311 			*destu64 = totalblocksread;
1312 			break;
1313 		case DSM_TOTAL_BLOCKS_WRITE:
1314 			*destu64 = totalblockswrite;
1315 			break;
1316 		case DSM_TOTAL_BLOCKS_FREE:
1317 			*destu64 = totalblocksfree;
1318 			break;
1319 		case DSM_KB_PER_TRANSFER:
1320 			*destld = totalbytes;
1321 			*destld /= 1024;
1322 			if (totaltransfers > 0)
1323 				*destld /= totaltransfers;
1324 			else
1325 				*destld = 0.0;
1326 			break;
1327 		case DSM_KB_PER_TRANSFER_READ:
1328 			*destld = totalbytesread;
1329 			*destld /= 1024;
1330 			if (totaltransfersread > 0)
1331 				*destld /= totaltransfersread;
1332 			else
1333 				*destld = 0.0;
1334 			break;
1335 		case DSM_KB_PER_TRANSFER_WRITE:
1336 			*destld = totalbyteswrite;
1337 			*destld /= 1024;
1338 			if (totaltransferswrite > 0)
1339 				*destld /= totaltransferswrite;
1340 			else
1341 				*destld = 0.0;
1342 			break;
1343 		case DSM_KB_PER_TRANSFER_FREE:
1344 			*destld = totalbytesfree;
1345 			*destld /= 1024;
1346 			if (totaltransfersfree > 0)
1347 				*destld /= totaltransfersfree;
1348 			else
1349 				*destld = 0.0;
1350 			break;
1351 		case DSM_TRANSFERS_PER_SECOND:
1352 			if (etime > 0.0) {
1353 				*destld = totaltransfers;
1354 				*destld /= etime;
1355 			} else
1356 				*destld = 0.0;
1357 			break;
1358 		case DSM_TRANSFERS_PER_SECOND_READ:
1359 			if (etime > 0.0) {
1360 				*destld = totaltransfersread;
1361 				*destld /= etime;
1362 			} else
1363 				*destld = 0.0;
1364 			break;
1365 		case DSM_TRANSFERS_PER_SECOND_WRITE:
1366 			if (etime > 0.0) {
1367 				*destld = totaltransferswrite;
1368 				*destld /= etime;
1369 			} else
1370 				*destld = 0.0;
1371 			break;
1372 		case DSM_TRANSFERS_PER_SECOND_FREE:
1373 			if (etime > 0.0) {
1374 				*destld = totaltransfersfree;
1375 				*destld /= etime;
1376 			} else
1377 				*destld = 0.0;
1378 			break;
1379 		case DSM_TRANSFERS_PER_SECOND_OTHER:
1380 			if (etime > 0.0) {
1381 				*destld = totaltransfersother;
1382 				*destld /= etime;
1383 			} else
1384 				*destld = 0.0;
1385 			break;
1386 		case DSM_MB_PER_SECOND:
1387 			*destld = totalbytes;
1388 			*destld /= 1024 * 1024;
1389 			if (etime > 0.0)
1390 				*destld /= etime;
1391 			else
1392 				*destld = 0.0;
1393 			break;
1394 		case DSM_MB_PER_SECOND_READ:
1395 			*destld = totalbytesread;
1396 			*destld /= 1024 * 1024;
1397 			if (etime > 0.0)
1398 				*destld /= etime;
1399 			else
1400 				*destld = 0.0;
1401 			break;
1402 		case DSM_MB_PER_SECOND_WRITE:
1403 			*destld = totalbyteswrite;
1404 			*destld /= 1024 * 1024;
1405 			if (etime > 0.0)
1406 				*destld /= etime;
1407 			else
1408 				*destld = 0.0;
1409 			break;
1410 		case DSM_MB_PER_SECOND_FREE:
1411 			*destld = totalbytesfree;
1412 			*destld /= 1024 * 1024;
1413 			if (etime > 0.0)
1414 				*destld /= etime;
1415 			else
1416 				*destld = 0.0;
1417 			break;
1418 		case DSM_BLOCKS_PER_SECOND:
1419 			*destld = totalblocks;
1420 			if (etime > 0.0)
1421 				*destld /= etime;
1422 			else
1423 				*destld = 0.0;
1424 			break;
1425 		case DSM_BLOCKS_PER_SECOND_READ:
1426 			*destld = totalblocksread;
1427 			if (etime > 0.0)
1428 				*destld /= etime;
1429 			else
1430 				*destld = 0.0;
1431 			break;
1432 		case DSM_BLOCKS_PER_SECOND_WRITE:
1433 			*destld = totalblockswrite;
1434 			if (etime > 0.0)
1435 				*destld /= etime;
1436 			else
1437 				*destld = 0.0;
1438 			break;
1439 		case DSM_BLOCKS_PER_SECOND_FREE:
1440 			*destld = totalblocksfree;
1441 			if (etime > 0.0)
1442 				*destld /= etime;
1443 			else
1444 				*destld = 0.0;
1445 			break;
1446 		/*
1447 		 * This calculation is somewhat bogus.  It simply divides
1448 		 * the elapsed time by the total number of transactions
1449 		 * completed.  While that does give the caller a good
1450 		 * picture of the average rate of transaction completion,
1451 		 * it doesn't necessarily give the caller a good view of
1452 		 * how long transactions took to complete on average.
1453 		 * Those two numbers will be different for a device that
1454 		 * can handle more than one transaction at a time.  e.g.
1455 		 * SCSI disks doing tagged queueing.
1456 		 *
1457 		 * The only way to accurately determine the real average
1458 		 * time per transaction would be to compute and store the
1459 		 * time on a per-transaction basis.  That currently isn't
1460 		 * done in the kernel, and would only be desireable if it
1461 		 * could be implemented in a somewhat non-intrusive and high
1462 		 * performance way.
1463 		 */
1464 		case DSM_MS_PER_TRANSACTION:
1465 			if (totaltransfers > 0) {
1466 				*destld = 0;
1467 				for (i = 0; i < DEVSTAT_N_TRANS_FLAGS; i++)
1468 					*destld += DELTA_T(duration[i]);
1469 				*destld /= totaltransfers;
1470 				*destld *= 1000;
1471 			} else
1472 				*destld = 0.0;
1473 			break;
1474 		/*
1475 		 * As above, these next two really only give the average
1476 		 * rate of completion for read and write transactions, not
1477 		 * the average time the transaction took to complete.
1478 		 */
1479 		case DSM_MS_PER_TRANSACTION_READ:
1480 			if (totaltransfersread > 0) {
1481 				*destld = DELTA_T(duration[DEVSTAT_READ]);
1482 				*destld /= totaltransfersread;
1483 				*destld *= 1000;
1484 			} else
1485 				*destld = 0.0;
1486 			break;
1487 		case DSM_MS_PER_TRANSACTION_WRITE:
1488 			if (totaltransferswrite > 0) {
1489 				*destld = DELTA_T(duration[DEVSTAT_WRITE]);
1490 				*destld /= totaltransferswrite;
1491 				*destld *= 1000;
1492 			} else
1493 				*destld = 0.0;
1494 			break;
1495 		case DSM_MS_PER_TRANSACTION_FREE:
1496 			if (totaltransfersfree > 0) {
1497 				*destld = DELTA_T(duration[DEVSTAT_FREE]);
1498 				*destld /= totaltransfersfree;
1499 				*destld *= 1000;
1500 			} else
1501 				*destld = 0.0;
1502 			break;
1503 		case DSM_MS_PER_TRANSACTION_OTHER:
1504 			if (totaltransfersother > 0) {
1505 				*destld = DELTA_T(duration[DEVSTAT_NO_DATA]);
1506 				*destld /= totaltransfersother;
1507 				*destld *= 1000;
1508 			} else
1509 				*destld = 0.0;
1510 			break;
1511 		case DSM_BUSY_PCT:
1512 			*destld = DELTA_T(busy_time);
1513 			if (*destld < 0)
1514 				*destld = 0;
1515 			*destld /= etime;
1516 			*destld *= 100;
1517 			if (*destld < 0)
1518 				*destld = 0;
1519 			break;
1520 		case DSM_QUEUE_LENGTH:
1521 			*destu64 = current->start_count - current->end_count;
1522 			break;
1523 /*
1524  * XXX: comment out the default block to see if any case's are missing.
1525  */
1526 #if 1
1527 		default:
1528 			/*
1529 			 * This shouldn't happen, since we should have
1530 			 * caught any out of range metrics at the top of
1531 			 * the loop.
1532 			 */
1533 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1534 				 "%s: unknown metric %d", __func__, metric);
1535 			retval = -1;
1536 			goto bailout;
1537 			break; /* NOTREACHED */
1538 #endif
1539 		}
1540 	}
1541 
1542 bailout:
1543 
1544 	va_end(ap);
1545 	return(retval);
1546 }
1547 
1548 static int
1549 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1550 {
1551 
1552 	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1553 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1554 			 "%s: error reading value (kvm_read): %s", __func__,
1555 			 kvm_geterr(kd));
1556 		return(-1);
1557 	}
1558 	return(0);
1559 }
1560 
1561 static int
1562 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1563 {
1564 	struct nlist nl[2];
1565 
1566 	nl[0].n_name = (char *)name;
1567 	nl[1].n_name = NULL;
1568 
1569 	if (kvm_nlist(kd, nl) == -1) {
1570 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1571 			 "%s: error getting name list (kvm_nlist): %s",
1572 			 __func__, kvm_geterr(kd));
1573 		return(-1);
1574 	}
1575 	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1576 }
1577 
1578 /*
1579  * This duplicates the functionality of the kernel sysctl handler for poking
1580  * through crash dumps.
1581  */
1582 static char *
1583 get_devstat_kvm(kvm_t *kd)
1584 {
1585 	int i, wp;
1586 	long gen;
1587 	struct devstat *nds;
1588 	struct devstat ds;
1589 	struct devstatlist dhead;
1590 	int num_devs;
1591 	char *rv = NULL;
1592 
1593 	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1594 		return(NULL);
1595 	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1596 		return(NULL);
1597 
1598 	nds = STAILQ_FIRST(&dhead);
1599 
1600 	if ((rv = malloc(sizeof(gen))) == NULL) {
1601 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1602 			 "%s: out of memory (initial malloc failed)",
1603 			 __func__);
1604 		return(NULL);
1605 	}
1606 	gen = devstat_getgeneration(kd);
1607 	memcpy(rv, &gen, sizeof(gen));
1608 	wp = sizeof(gen);
1609 	/*
1610 	 * Now push out all the devices.
1611 	 */
1612 	for (i = 0; (nds != NULL) && (i < num_devs);
1613 	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1614 		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1615 			free(rv);
1616 			return(NULL);
1617 		}
1618 		nds = &ds;
1619 		rv = (char *)reallocf(rv, sizeof(gen) +
1620 				      sizeof(ds) * (i + 1));
1621 		if (rv == NULL) {
1622 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1623 				 "%s: out of memory (malloc failed)",
1624 				 __func__);
1625 			return(NULL);
1626 		}
1627 		memcpy(rv + wp, &ds, sizeof(ds));
1628 		wp += sizeof(ds);
1629 	}
1630 	return(rv);
1631 }
1632