xref: /freebsd/libexec/rtld-elf/rtld.c (revision 076ad2f8)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "rtld_utrace.h"
63 #include "notes.h"
64 
65 /* Types. */
66 typedef void (*func_ptr_type)();
67 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
68 
69 /*
70  * Function declarations.
71  */
72 static const char *basename(const char *);
73 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
74     const Elf_Dyn **, const Elf_Dyn **);
75 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
76     const Elf_Dyn *);
77 static void digest_dynamic(Obj_Entry *, int);
78 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
79 static Obj_Entry *dlcheck(void *);
80 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
81     int lo_flags, int mode, RtldLockState *lockstate);
82 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
83 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
84 static bool donelist_check(DoneList *, const Obj_Entry *);
85 static void errmsg_restore(char *);
86 static char *errmsg_save(void);
87 static void *fill_search_info(const char *, size_t, void *);
88 static char *find_library(const char *, const Obj_Entry *, int *);
89 static const char *gethints(bool);
90 static void hold_object(Obj_Entry *);
91 static void unhold_object(Obj_Entry *);
92 static void init_dag(Obj_Entry *);
93 static void init_marker(Obj_Entry *);
94 static void init_pagesizes(Elf_Auxinfo **aux_info);
95 static void init_rtld(caddr_t, Elf_Auxinfo **);
96 static void initlist_add_neededs(Needed_Entry *, Objlist *);
97 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
98 static void linkmap_add(Obj_Entry *);
99 static void linkmap_delete(Obj_Entry *);
100 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
101 static void unload_filtees(Obj_Entry *);
102 static int load_needed_objects(Obj_Entry *, int);
103 static int load_preload_objects(void);
104 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
105 static void map_stacks_exec(RtldLockState *);
106 static int obj_enforce_relro(Obj_Entry *);
107 static Obj_Entry *obj_from_addr(const void *);
108 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
109 static void objlist_call_init(Objlist *, RtldLockState *);
110 static void objlist_clear(Objlist *);
111 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
112 static void objlist_init(Objlist *);
113 static void objlist_push_head(Objlist *, Obj_Entry *);
114 static void objlist_push_tail(Objlist *, Obj_Entry *);
115 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static int parse_libdir(const char *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static void release_object(Obj_Entry *);
120 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
121     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
122 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
123     int flags, RtldLockState *lockstate);
124 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
125     RtldLockState *);
126 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
127     int flags, RtldLockState *lockstate);
128 static int rtld_dirname(const char *, char *);
129 static int rtld_dirname_abs(const char *, char *);
130 static void *rtld_dlopen(const char *name, int fd, int mode);
131 static void rtld_exit(void);
132 static char *search_library_path(const char *, const char *);
133 static char *search_library_pathfds(const char *, const char *, int *);
134 static const void **get_program_var_addr(const char *, RtldLockState *);
135 static void set_program_var(const char *, const void *);
136 static int symlook_default(SymLook *, const Obj_Entry *refobj);
137 static int symlook_global(SymLook *, DoneList *);
138 static void symlook_init_from_req(SymLook *, const SymLook *);
139 static int symlook_list(SymLook *, const Objlist *, DoneList *);
140 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
141 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
142 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
143 static void trace_loaded_objects(Obj_Entry *);
144 static void unlink_object(Obj_Entry *);
145 static void unload_object(Obj_Entry *);
146 static void unref_dag(Obj_Entry *);
147 static void ref_dag(Obj_Entry *);
148 static char *origin_subst_one(Obj_Entry *, char *, const char *,
149     const char *, bool);
150 static char *origin_subst(Obj_Entry *, char *);
151 static bool obj_resolve_origin(Obj_Entry *obj);
152 static void preinit_main(void);
153 static int  rtld_verify_versions(const Objlist *);
154 static int  rtld_verify_object_versions(Obj_Entry *);
155 static void object_add_name(Obj_Entry *, const char *);
156 static int  object_match_name(const Obj_Entry *, const char *);
157 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
158 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
159     struct dl_phdr_info *phdr_info);
160 static uint32_t gnu_hash(const char *);
161 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
162     const unsigned long);
163 
164 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
165 void _r_debug_postinit(struct link_map *) __noinline __exported;
166 
167 int __sys_openat(int, const char *, int, ...);
168 
169 /*
170  * Data declarations.
171  */
172 static char *error_message;	/* Message for dlerror(), or NULL */
173 struct r_debug r_debug __exported;	/* for GDB; */
174 static bool libmap_disable;	/* Disable libmap */
175 static bool ld_loadfltr;	/* Immediate filters processing */
176 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
177 static bool trust;		/* False for setuid and setgid programs */
178 static bool dangerous_ld_env;	/* True if environment variables have been
179 				   used to affect the libraries loaded */
180 static char *ld_bind_now;	/* Environment variable for immediate binding */
181 static char *ld_debug;		/* Environment variable for debugging */
182 static char *ld_library_path;	/* Environment variable for search path */
183 static char *ld_library_dirs;	/* Environment variable for library descriptors */
184 static char *ld_preload;	/* Environment variable for libraries to
185 				   load first */
186 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
187 static char *ld_tracing;	/* Called from ldd to print libs */
188 static char *ld_utrace;		/* Use utrace() to log events. */
189 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
190 static Obj_Entry *obj_main;	/* The main program shared object */
191 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
192 static unsigned int obj_count;	/* Number of objects in obj_list */
193 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
194 
195 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
196   STAILQ_HEAD_INITIALIZER(list_global);
197 static Objlist list_main =	/* Objects loaded at program startup */
198   STAILQ_HEAD_INITIALIZER(list_main);
199 static Objlist list_fini =	/* Objects needing fini() calls */
200   STAILQ_HEAD_INITIALIZER(list_fini);
201 
202 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
203 
204 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
205 
206 extern Elf_Dyn _DYNAMIC;
207 #pragma weak _DYNAMIC
208 
209 int dlclose(void *) __exported;
210 char *dlerror(void) __exported;
211 void *dlopen(const char *, int) __exported;
212 void *fdlopen(int, int) __exported;
213 void *dlsym(void *, const char *) __exported;
214 dlfunc_t dlfunc(void *, const char *) __exported;
215 void *dlvsym(void *, const char *, const char *) __exported;
216 int dladdr(const void *, Dl_info *) __exported;
217 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
218     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
219 int dlinfo(void *, int , void *) __exported;
220 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
221 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
222 int _rtld_get_stack_prot(void) __exported;
223 int _rtld_is_dlopened(void *) __exported;
224 void _rtld_error(const char *, ...) __exported;
225 
226 int npagesizes, osreldate;
227 size_t *pagesizes;
228 
229 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
230 
231 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
232 static int max_stack_flags;
233 
234 /*
235  * Global declarations normally provided by crt1.  The dynamic linker is
236  * not built with crt1, so we have to provide them ourselves.
237  */
238 char *__progname;
239 char **environ;
240 
241 /*
242  * Used to pass argc, argv to init functions.
243  */
244 int main_argc;
245 char **main_argv;
246 
247 /*
248  * Globals to control TLS allocation.
249  */
250 size_t tls_last_offset;		/* Static TLS offset of last module */
251 size_t tls_last_size;		/* Static TLS size of last module */
252 size_t tls_static_space;	/* Static TLS space allocated */
253 size_t tls_static_max_align;
254 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
255 int tls_max_index = 1;		/* Largest module index allocated */
256 
257 bool ld_library_path_rpath = false;
258 
259 /*
260  * Globals for path names, and such
261  */
262 char *ld_elf_hints_default = _PATH_ELF_HINTS;
263 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
264 char *ld_path_rtld = _PATH_RTLD;
265 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
266 char *ld_env_prefix = LD_;
267 
268 /*
269  * Fill in a DoneList with an allocation large enough to hold all of
270  * the currently-loaded objects.  Keep this as a macro since it calls
271  * alloca and we want that to occur within the scope of the caller.
272  */
273 #define donelist_init(dlp)					\
274     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
275     assert((dlp)->objs != NULL),				\
276     (dlp)->num_alloc = obj_count,				\
277     (dlp)->num_used = 0)
278 
279 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
280 	if (ld_utrace != NULL)					\
281 		ld_utrace_log(e, h, mb, ms, r, n);		\
282 } while (0)
283 
284 static void
285 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
286     int refcnt, const char *name)
287 {
288 	struct utrace_rtld ut;
289 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
290 
291 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
292 	ut.event = event;
293 	ut.handle = handle;
294 	ut.mapbase = mapbase;
295 	ut.mapsize = mapsize;
296 	ut.refcnt = refcnt;
297 	bzero(ut.name, sizeof(ut.name));
298 	if (name)
299 		strlcpy(ut.name, name, sizeof(ut.name));
300 	utrace(&ut, sizeof(ut));
301 }
302 
303 #ifdef RTLD_VARIANT_ENV_NAMES
304 /*
305  * construct the env variable based on the type of binary that's
306  * running.
307  */
308 static inline const char *
309 _LD(const char *var)
310 {
311 	static char buffer[128];
312 
313 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
314 	strlcat(buffer, var, sizeof(buffer));
315 	return (buffer);
316 }
317 #else
318 #define _LD(x)	LD_ x
319 #endif
320 
321 /*
322  * Main entry point for dynamic linking.  The first argument is the
323  * stack pointer.  The stack is expected to be laid out as described
324  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
325  * Specifically, the stack pointer points to a word containing
326  * ARGC.  Following that in the stack is a null-terminated sequence
327  * of pointers to argument strings.  Then comes a null-terminated
328  * sequence of pointers to environment strings.  Finally, there is a
329  * sequence of "auxiliary vector" entries.
330  *
331  * The second argument points to a place to store the dynamic linker's
332  * exit procedure pointer and the third to a place to store the main
333  * program's object.
334  *
335  * The return value is the main program's entry point.
336  */
337 func_ptr_type
338 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
339 {
340     Elf_Auxinfo *aux_info[AT_COUNT];
341     int i;
342     int argc;
343     char **argv;
344     char **env;
345     Elf_Auxinfo *aux;
346     Elf_Auxinfo *auxp;
347     const char *argv0;
348     Objlist_Entry *entry;
349     Obj_Entry *obj;
350     Obj_Entry *preload_tail;
351     Obj_Entry *last_interposer;
352     Objlist initlist;
353     RtldLockState lockstate;
354     char *library_path_rpath;
355     int mib[2];
356     size_t len;
357 
358     /*
359      * On entry, the dynamic linker itself has not been relocated yet.
360      * Be very careful not to reference any global data until after
361      * init_rtld has returned.  It is OK to reference file-scope statics
362      * and string constants, and to call static and global functions.
363      */
364 
365     /* Find the auxiliary vector on the stack. */
366     argc = *sp++;
367     argv = (char **) sp;
368     sp += argc + 1;	/* Skip over arguments and NULL terminator */
369     env = (char **) sp;
370     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
371 	;
372     aux = (Elf_Auxinfo *) sp;
373 
374     /* Digest the auxiliary vector. */
375     for (i = 0;  i < AT_COUNT;  i++)
376 	aux_info[i] = NULL;
377     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
378 	if (auxp->a_type < AT_COUNT)
379 	    aux_info[auxp->a_type] = auxp;
380     }
381 
382     /* Initialize and relocate ourselves. */
383     assert(aux_info[AT_BASE] != NULL);
384     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
385 
386     __progname = obj_rtld.path;
387     argv0 = argv[0] != NULL ? argv[0] : "(null)";
388     environ = env;
389     main_argc = argc;
390     main_argv = argv;
391 
392     if (aux_info[AT_CANARY] != NULL &&
393 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
394 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
395 	    if (i > sizeof(__stack_chk_guard))
396 		    i = sizeof(__stack_chk_guard);
397 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
398     } else {
399 	mib[0] = CTL_KERN;
400 	mib[1] = KERN_ARND;
401 
402 	len = sizeof(__stack_chk_guard);
403 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
404 	    len != sizeof(__stack_chk_guard)) {
405 		/* If sysctl was unsuccessful, use the "terminator canary". */
406 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
407 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
408 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
409 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
410 	}
411     }
412 
413     trust = !issetugid();
414 
415     md_abi_variant_hook(aux_info);
416 
417     ld_bind_now = getenv(_LD("BIND_NOW"));
418     /*
419      * If the process is tainted, then we un-set the dangerous environment
420      * variables.  The process will be marked as tainted until setuid(2)
421      * is called.  If any child process calls setuid(2) we do not want any
422      * future processes to honor the potentially un-safe variables.
423      */
424     if (!trust) {
425 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
426 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
427 	    unsetenv(_LD("LIBMAP_DISABLE")) ||
428 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
429 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
430 		_rtld_error("environment corrupt; aborting");
431 		rtld_die();
432 	}
433     }
434     ld_debug = getenv(_LD("DEBUG"));
435     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
436     libmap_override = getenv(_LD("LIBMAP"));
437     ld_library_path = getenv(_LD("LIBRARY_PATH"));
438     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
439     ld_preload = getenv(_LD("PRELOAD"));
440     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
441     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
442     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
443     if (library_path_rpath != NULL) {
444 	    if (library_path_rpath[0] == 'y' ||
445 		library_path_rpath[0] == 'Y' ||
446 		library_path_rpath[0] == '1')
447 		    ld_library_path_rpath = true;
448 	    else
449 		    ld_library_path_rpath = false;
450     }
451     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
452 	(ld_library_path != NULL) || (ld_preload != NULL) ||
453 	(ld_elf_hints_path != NULL) || ld_loadfltr;
454     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
455     ld_utrace = getenv(_LD("UTRACE"));
456 
457     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
458 	ld_elf_hints_path = ld_elf_hints_default;
459 
460     if (ld_debug != NULL && *ld_debug != '\0')
461 	debug = 1;
462     dbg("%s is initialized, base address = %p", __progname,
463 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
464     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
465     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
466 
467     dbg("initializing thread locks");
468     lockdflt_init();
469 
470     /*
471      * Load the main program, or process its program header if it is
472      * already loaded.
473      */
474     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
475 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
476 	dbg("loading main program");
477 	obj_main = map_object(fd, argv0, NULL);
478 	close(fd);
479 	if (obj_main == NULL)
480 	    rtld_die();
481 	max_stack_flags = obj->stack_flags;
482     } else {				/* Main program already loaded. */
483 	const Elf_Phdr *phdr;
484 	int phnum;
485 	caddr_t entry;
486 
487 	dbg("processing main program's program header");
488 	assert(aux_info[AT_PHDR] != NULL);
489 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
490 	assert(aux_info[AT_PHNUM] != NULL);
491 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
492 	assert(aux_info[AT_PHENT] != NULL);
493 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
494 	assert(aux_info[AT_ENTRY] != NULL);
495 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
496 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
497 	    rtld_die();
498     }
499 
500     if (aux_info[AT_EXECPATH] != NULL) {
501 	    char *kexecpath;
502 	    char buf[MAXPATHLEN];
503 
504 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
505 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
506 	    if (kexecpath[0] == '/')
507 		    obj_main->path = kexecpath;
508 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
509 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
510 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
511 		    obj_main->path = xstrdup(argv0);
512 	    else
513 		    obj_main->path = xstrdup(buf);
514     } else {
515 	    dbg("No AT_EXECPATH");
516 	    obj_main->path = xstrdup(argv0);
517     }
518     dbg("obj_main path %s", obj_main->path);
519     obj_main->mainprog = true;
520 
521     if (aux_info[AT_STACKPROT] != NULL &&
522       aux_info[AT_STACKPROT]->a_un.a_val != 0)
523 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
524 
525 #ifndef COMPAT_32BIT
526     /*
527      * Get the actual dynamic linker pathname from the executable if
528      * possible.  (It should always be possible.)  That ensures that
529      * gdb will find the right dynamic linker even if a non-standard
530      * one is being used.
531      */
532     if (obj_main->interp != NULL &&
533       strcmp(obj_main->interp, obj_rtld.path) != 0) {
534 	free(obj_rtld.path);
535 	obj_rtld.path = xstrdup(obj_main->interp);
536         __progname = obj_rtld.path;
537     }
538 #endif
539 
540     digest_dynamic(obj_main, 0);
541     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
542 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
543 	obj_main->dynsymcount);
544 
545     linkmap_add(obj_main);
546     linkmap_add(&obj_rtld);
547 
548     /* Link the main program into the list of objects. */
549     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
550     obj_count++;
551     obj_loads++;
552 
553     /* Initialize a fake symbol for resolving undefined weak references. */
554     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
555     sym_zero.st_shndx = SHN_UNDEF;
556     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
557 
558     if (!libmap_disable)
559         libmap_disable = (bool)lm_init(libmap_override);
560 
561     dbg("loading LD_PRELOAD libraries");
562     if (load_preload_objects() == -1)
563 	rtld_die();
564     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
565 
566     dbg("loading needed objects");
567     if (load_needed_objects(obj_main, 0) == -1)
568 	rtld_die();
569 
570     /* Make a list of all objects loaded at startup. */
571     last_interposer = obj_main;
572     TAILQ_FOREACH(obj, &obj_list, next) {
573 	if (obj->marker)
574 	    continue;
575 	if (obj->z_interpose && obj != obj_main) {
576 	    objlist_put_after(&list_main, last_interposer, obj);
577 	    last_interposer = obj;
578 	} else {
579 	    objlist_push_tail(&list_main, obj);
580 	}
581     	obj->refcount++;
582     }
583 
584     dbg("checking for required versions");
585     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
586 	rtld_die();
587 
588     if (ld_tracing) {		/* We're done */
589 	trace_loaded_objects(obj_main);
590 	exit(0);
591     }
592 
593     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
594        dump_relocations(obj_main);
595        exit (0);
596     }
597 
598     /*
599      * Processing tls relocations requires having the tls offsets
600      * initialized.  Prepare offsets before starting initial
601      * relocation processing.
602      */
603     dbg("initializing initial thread local storage offsets");
604     STAILQ_FOREACH(entry, &list_main, link) {
605 	/*
606 	 * Allocate all the initial objects out of the static TLS
607 	 * block even if they didn't ask for it.
608 	 */
609 	allocate_tls_offset(entry->obj);
610     }
611 
612     if (relocate_objects(obj_main,
613       ld_bind_now != NULL && *ld_bind_now != '\0',
614       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
615 	rtld_die();
616 
617     dbg("doing copy relocations");
618     if (do_copy_relocations(obj_main) == -1)
619 	rtld_die();
620 
621     dbg("enforcing main obj relro");
622     if (obj_enforce_relro(obj_main) == -1)
623 	rtld_die();
624 
625     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
626        dump_relocations(obj_main);
627        exit (0);
628     }
629 
630     /*
631      * Setup TLS for main thread.  This must be done after the
632      * relocations are processed, since tls initialization section
633      * might be the subject for relocations.
634      */
635     dbg("initializing initial thread local storage");
636     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
637 
638     dbg("initializing key program variables");
639     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
640     set_program_var("environ", env);
641     set_program_var("__elf_aux_vector", aux);
642 
643     /* Make a list of init functions to call. */
644     objlist_init(&initlist);
645     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
646       preload_tail, &initlist);
647 
648     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
649 
650     map_stacks_exec(NULL);
651     ifunc_init(aux);
652 
653     dbg("resolving ifuncs");
654     if (resolve_objects_ifunc(obj_main,
655       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
656       NULL) == -1)
657 	rtld_die();
658 
659     if (!obj_main->crt_no_init) {
660 	/*
661 	 * Make sure we don't call the main program's init and fini
662 	 * functions for binaries linked with old crt1 which calls
663 	 * _init itself.
664 	 */
665 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
666 	obj_main->preinit_array = obj_main->init_array =
667 	    obj_main->fini_array = (Elf_Addr)NULL;
668     }
669 
670     wlock_acquire(rtld_bind_lock, &lockstate);
671     if (obj_main->crt_no_init)
672 	preinit_main();
673     objlist_call_init(&initlist, &lockstate);
674     _r_debug_postinit(&obj_main->linkmap);
675     objlist_clear(&initlist);
676     dbg("loading filtees");
677     TAILQ_FOREACH(obj, &obj_list, next) {
678 	if (obj->marker)
679 	    continue;
680 	if (ld_loadfltr || obj->z_loadfltr)
681 	    load_filtees(obj, 0, &lockstate);
682     }
683     lock_release(rtld_bind_lock, &lockstate);
684 
685     dbg("transferring control to program entry point = %p", obj_main->entry);
686 
687     /* Return the exit procedure and the program entry point. */
688     *exit_proc = rtld_exit;
689     *objp = obj_main;
690     return (func_ptr_type) obj_main->entry;
691 }
692 
693 void *
694 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
695 {
696 	void *ptr;
697 	Elf_Addr target;
698 
699 	ptr = (void *)make_function_pointer(def, obj);
700 	target = call_ifunc_resolver(ptr);
701 	return ((void *)target);
702 }
703 
704 /*
705  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
706  * Changes to this function should be applied there as well.
707  */
708 Elf_Addr
709 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
710 {
711     const Elf_Rel *rel;
712     const Elf_Sym *def;
713     const Obj_Entry *defobj;
714     Elf_Addr *where;
715     Elf_Addr target;
716     RtldLockState lockstate;
717 
718     rlock_acquire(rtld_bind_lock, &lockstate);
719     if (sigsetjmp(lockstate.env, 0) != 0)
720 	    lock_upgrade(rtld_bind_lock, &lockstate);
721     if (obj->pltrel)
722 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
723     else
724 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
725 
726     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
727     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
728 	NULL, &lockstate);
729     if (def == NULL)
730 	rtld_die();
731     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
732 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
733     else
734 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
735 
736     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
737       defobj->strtab + def->st_name, basename(obj->path),
738       (void *)target, basename(defobj->path));
739 
740     /*
741      * Write the new contents for the jmpslot. Note that depending on
742      * architecture, the value which we need to return back to the
743      * lazy binding trampoline may or may not be the target
744      * address. The value returned from reloc_jmpslot() is the value
745      * that the trampoline needs.
746      */
747     target = reloc_jmpslot(where, target, defobj, obj, rel);
748     lock_release(rtld_bind_lock, &lockstate);
749     return target;
750 }
751 
752 /*
753  * Error reporting function.  Use it like printf.  If formats the message
754  * into a buffer, and sets things up so that the next call to dlerror()
755  * will return the message.
756  */
757 void
758 _rtld_error(const char *fmt, ...)
759 {
760     static char buf[512];
761     va_list ap;
762 
763     va_start(ap, fmt);
764     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
765     error_message = buf;
766     va_end(ap);
767     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
768 }
769 
770 /*
771  * Return a dynamically-allocated copy of the current error message, if any.
772  */
773 static char *
774 errmsg_save(void)
775 {
776     return error_message == NULL ? NULL : xstrdup(error_message);
777 }
778 
779 /*
780  * Restore the current error message from a copy which was previously saved
781  * by errmsg_save().  The copy is freed.
782  */
783 static void
784 errmsg_restore(char *saved_msg)
785 {
786     if (saved_msg == NULL)
787 	error_message = NULL;
788     else {
789 	_rtld_error("%s", saved_msg);
790 	free(saved_msg);
791     }
792 }
793 
794 static const char *
795 basename(const char *name)
796 {
797     const char *p = strrchr(name, '/');
798     return p != NULL ? p + 1 : name;
799 }
800 
801 static struct utsname uts;
802 
803 static char *
804 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
805     const char *subst, bool may_free)
806 {
807 	char *p, *p1, *res, *resp;
808 	int subst_len, kw_len, subst_count, old_len, new_len;
809 
810 	kw_len = strlen(kw);
811 
812 	/*
813 	 * First, count the number of the keyword occurrences, to
814 	 * preallocate the final string.
815 	 */
816 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
817 		p1 = strstr(p, kw);
818 		if (p1 == NULL)
819 			break;
820 	}
821 
822 	/*
823 	 * If the keyword is not found, just return.
824 	 *
825 	 * Return non-substituted string if resolution failed.  We
826 	 * cannot do anything more reasonable, the failure mode of the
827 	 * caller is unresolved library anyway.
828 	 */
829 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
830 		return (may_free ? real : xstrdup(real));
831 	if (obj != NULL)
832 		subst = obj->origin_path;
833 
834 	/*
835 	 * There is indeed something to substitute.  Calculate the
836 	 * length of the resulting string, and allocate it.
837 	 */
838 	subst_len = strlen(subst);
839 	old_len = strlen(real);
840 	new_len = old_len + (subst_len - kw_len) * subst_count;
841 	res = xmalloc(new_len + 1);
842 
843 	/*
844 	 * Now, execute the substitution loop.
845 	 */
846 	for (p = real, resp = res, *resp = '\0';;) {
847 		p1 = strstr(p, kw);
848 		if (p1 != NULL) {
849 			/* Copy the prefix before keyword. */
850 			memcpy(resp, p, p1 - p);
851 			resp += p1 - p;
852 			/* Keyword replacement. */
853 			memcpy(resp, subst, subst_len);
854 			resp += subst_len;
855 			*resp = '\0';
856 			p = p1 + kw_len;
857 		} else
858 			break;
859 	}
860 
861 	/* Copy to the end of string and finish. */
862 	strcat(resp, p);
863 	if (may_free)
864 		free(real);
865 	return (res);
866 }
867 
868 static char *
869 origin_subst(Obj_Entry *obj, char *real)
870 {
871 	char *res1, *res2, *res3, *res4;
872 
873 	if (obj == NULL || !trust)
874 		return (xstrdup(real));
875 	if (uts.sysname[0] == '\0') {
876 		if (uname(&uts) != 0) {
877 			_rtld_error("utsname failed: %d", errno);
878 			return (NULL);
879 		}
880 	}
881 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
882 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
883 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
884 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
885 	return (res4);
886 }
887 
888 void
889 rtld_die(void)
890 {
891     const char *msg = dlerror();
892 
893     if (msg == NULL)
894 	msg = "Fatal error";
895     rtld_fdputstr(STDERR_FILENO, msg);
896     rtld_fdputchar(STDERR_FILENO, '\n');
897     _exit(1);
898 }
899 
900 /*
901  * Process a shared object's DYNAMIC section, and save the important
902  * information in its Obj_Entry structure.
903  */
904 static void
905 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
906     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
907 {
908     const Elf_Dyn *dynp;
909     Needed_Entry **needed_tail = &obj->needed;
910     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
911     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
912     const Elf_Hashelt *hashtab;
913     const Elf32_Word *hashval;
914     Elf32_Word bkt, nmaskwords;
915     int bloom_size32;
916     int plttype = DT_REL;
917 
918     *dyn_rpath = NULL;
919     *dyn_soname = NULL;
920     *dyn_runpath = NULL;
921 
922     obj->bind_now = false;
923     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
924 	switch (dynp->d_tag) {
925 
926 	case DT_REL:
927 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
928 	    break;
929 
930 	case DT_RELSZ:
931 	    obj->relsize = dynp->d_un.d_val;
932 	    break;
933 
934 	case DT_RELENT:
935 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
936 	    break;
937 
938 	case DT_JMPREL:
939 	    obj->pltrel = (const Elf_Rel *)
940 	      (obj->relocbase + dynp->d_un.d_ptr);
941 	    break;
942 
943 	case DT_PLTRELSZ:
944 	    obj->pltrelsize = dynp->d_un.d_val;
945 	    break;
946 
947 	case DT_RELA:
948 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
949 	    break;
950 
951 	case DT_RELASZ:
952 	    obj->relasize = dynp->d_un.d_val;
953 	    break;
954 
955 	case DT_RELAENT:
956 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
957 	    break;
958 
959 	case DT_PLTREL:
960 	    plttype = dynp->d_un.d_val;
961 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
962 	    break;
963 
964 	case DT_SYMTAB:
965 	    obj->symtab = (const Elf_Sym *)
966 	      (obj->relocbase + dynp->d_un.d_ptr);
967 	    break;
968 
969 	case DT_SYMENT:
970 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
971 	    break;
972 
973 	case DT_STRTAB:
974 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
975 	    break;
976 
977 	case DT_STRSZ:
978 	    obj->strsize = dynp->d_un.d_val;
979 	    break;
980 
981 	case DT_VERNEED:
982 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
983 		dynp->d_un.d_val);
984 	    break;
985 
986 	case DT_VERNEEDNUM:
987 	    obj->verneednum = dynp->d_un.d_val;
988 	    break;
989 
990 	case DT_VERDEF:
991 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
992 		dynp->d_un.d_val);
993 	    break;
994 
995 	case DT_VERDEFNUM:
996 	    obj->verdefnum = dynp->d_un.d_val;
997 	    break;
998 
999 	case DT_VERSYM:
1000 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1001 		dynp->d_un.d_val);
1002 	    break;
1003 
1004 	case DT_HASH:
1005 	    {
1006 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1007 		    dynp->d_un.d_ptr);
1008 		obj->nbuckets = hashtab[0];
1009 		obj->nchains = hashtab[1];
1010 		obj->buckets = hashtab + 2;
1011 		obj->chains = obj->buckets + obj->nbuckets;
1012 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1013 		  obj->buckets != NULL;
1014 	    }
1015 	    break;
1016 
1017 	case DT_GNU_HASH:
1018 	    {
1019 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1020 		    dynp->d_un.d_ptr);
1021 		obj->nbuckets_gnu = hashtab[0];
1022 		obj->symndx_gnu = hashtab[1];
1023 		nmaskwords = hashtab[2];
1024 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1025 		obj->maskwords_bm_gnu = nmaskwords - 1;
1026 		obj->shift2_gnu = hashtab[3];
1027 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1028 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1029 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1030 		  obj->symndx_gnu;
1031 		/* Number of bitmask words is required to be power of 2 */
1032 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1033 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1034 	    }
1035 	    break;
1036 
1037 	case DT_NEEDED:
1038 	    if (!obj->rtld) {
1039 		Needed_Entry *nep = NEW(Needed_Entry);
1040 		nep->name = dynp->d_un.d_val;
1041 		nep->obj = NULL;
1042 		nep->next = NULL;
1043 
1044 		*needed_tail = nep;
1045 		needed_tail = &nep->next;
1046 	    }
1047 	    break;
1048 
1049 	case DT_FILTER:
1050 	    if (!obj->rtld) {
1051 		Needed_Entry *nep = NEW(Needed_Entry);
1052 		nep->name = dynp->d_un.d_val;
1053 		nep->obj = NULL;
1054 		nep->next = NULL;
1055 
1056 		*needed_filtees_tail = nep;
1057 		needed_filtees_tail = &nep->next;
1058 	    }
1059 	    break;
1060 
1061 	case DT_AUXILIARY:
1062 	    if (!obj->rtld) {
1063 		Needed_Entry *nep = NEW(Needed_Entry);
1064 		nep->name = dynp->d_un.d_val;
1065 		nep->obj = NULL;
1066 		nep->next = NULL;
1067 
1068 		*needed_aux_filtees_tail = nep;
1069 		needed_aux_filtees_tail = &nep->next;
1070 	    }
1071 	    break;
1072 
1073 	case DT_PLTGOT:
1074 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1075 	    break;
1076 
1077 	case DT_TEXTREL:
1078 	    obj->textrel = true;
1079 	    break;
1080 
1081 	case DT_SYMBOLIC:
1082 	    obj->symbolic = true;
1083 	    break;
1084 
1085 	case DT_RPATH:
1086 	    /*
1087 	     * We have to wait until later to process this, because we
1088 	     * might not have gotten the address of the string table yet.
1089 	     */
1090 	    *dyn_rpath = dynp;
1091 	    break;
1092 
1093 	case DT_SONAME:
1094 	    *dyn_soname = dynp;
1095 	    break;
1096 
1097 	case DT_RUNPATH:
1098 	    *dyn_runpath = dynp;
1099 	    break;
1100 
1101 	case DT_INIT:
1102 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1103 	    break;
1104 
1105 	case DT_PREINIT_ARRAY:
1106 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1107 	    break;
1108 
1109 	case DT_PREINIT_ARRAYSZ:
1110 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1111 	    break;
1112 
1113 	case DT_INIT_ARRAY:
1114 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1115 	    break;
1116 
1117 	case DT_INIT_ARRAYSZ:
1118 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1119 	    break;
1120 
1121 	case DT_FINI:
1122 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1123 	    break;
1124 
1125 	case DT_FINI_ARRAY:
1126 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1127 	    break;
1128 
1129 	case DT_FINI_ARRAYSZ:
1130 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1131 	    break;
1132 
1133 	/*
1134 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1135 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1136 	 */
1137 
1138 #ifndef __mips__
1139 	case DT_DEBUG:
1140 	    if (!early)
1141 		dbg("Filling in DT_DEBUG entry");
1142 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1143 	    break;
1144 #endif
1145 
1146 	case DT_FLAGS:
1147 		if (dynp->d_un.d_val & DF_ORIGIN)
1148 		    obj->z_origin = true;
1149 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1150 		    obj->symbolic = true;
1151 		if (dynp->d_un.d_val & DF_TEXTREL)
1152 		    obj->textrel = true;
1153 		if (dynp->d_un.d_val & DF_BIND_NOW)
1154 		    obj->bind_now = true;
1155 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1156 		    ;*/
1157 	    break;
1158 #ifdef __mips__
1159 	case DT_MIPS_LOCAL_GOTNO:
1160 		obj->local_gotno = dynp->d_un.d_val;
1161 		break;
1162 
1163 	case DT_MIPS_SYMTABNO:
1164 		obj->symtabno = dynp->d_un.d_val;
1165 		break;
1166 
1167 	case DT_MIPS_GOTSYM:
1168 		obj->gotsym = dynp->d_un.d_val;
1169 		break;
1170 
1171 	case DT_MIPS_RLD_MAP:
1172 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1173 		break;
1174 #endif
1175 
1176 #ifdef __powerpc64__
1177 	case DT_PPC64_GLINK:
1178 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1179 		break;
1180 #endif
1181 
1182 	case DT_FLAGS_1:
1183 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1184 		    obj->z_noopen = true;
1185 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1186 		    obj->z_origin = true;
1187 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1188 		    obj->z_global = true;
1189 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1190 		    obj->bind_now = true;
1191 		if (dynp->d_un.d_val & DF_1_NODELETE)
1192 		    obj->z_nodelete = true;
1193 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1194 		    obj->z_loadfltr = true;
1195 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1196 		    obj->z_interpose = true;
1197 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1198 		    obj->z_nodeflib = true;
1199 	    break;
1200 
1201 	default:
1202 	    if (!early) {
1203 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1204 		    (long)dynp->d_tag);
1205 	    }
1206 	    break;
1207 	}
1208     }
1209 
1210     obj->traced = false;
1211 
1212     if (plttype == DT_RELA) {
1213 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1214 	obj->pltrel = NULL;
1215 	obj->pltrelasize = obj->pltrelsize;
1216 	obj->pltrelsize = 0;
1217     }
1218 
1219     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1220     if (obj->valid_hash_sysv)
1221 	obj->dynsymcount = obj->nchains;
1222     else if (obj->valid_hash_gnu) {
1223 	obj->dynsymcount = 0;
1224 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1225 	    if (obj->buckets_gnu[bkt] == 0)
1226 		continue;
1227 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1228 	    do
1229 		obj->dynsymcount++;
1230 	    while ((*hashval++ & 1u) == 0);
1231 	}
1232 	obj->dynsymcount += obj->symndx_gnu;
1233     }
1234 }
1235 
1236 static bool
1237 obj_resolve_origin(Obj_Entry *obj)
1238 {
1239 
1240 	if (obj->origin_path != NULL)
1241 		return (true);
1242 	obj->origin_path = xmalloc(PATH_MAX);
1243 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1244 }
1245 
1246 static void
1247 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1248     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1249 {
1250 
1251 	if (obj->z_origin && !obj_resolve_origin(obj))
1252 		rtld_die();
1253 
1254 	if (dyn_runpath != NULL) {
1255 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1256 		obj->runpath = origin_subst(obj, obj->runpath);
1257 	} else if (dyn_rpath != NULL) {
1258 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1259 		obj->rpath = origin_subst(obj, obj->rpath);
1260 	}
1261 	if (dyn_soname != NULL)
1262 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1263 }
1264 
1265 static void
1266 digest_dynamic(Obj_Entry *obj, int early)
1267 {
1268 	const Elf_Dyn *dyn_rpath;
1269 	const Elf_Dyn *dyn_soname;
1270 	const Elf_Dyn *dyn_runpath;
1271 
1272 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1273 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1274 }
1275 
1276 /*
1277  * Process a shared object's program header.  This is used only for the
1278  * main program, when the kernel has already loaded the main program
1279  * into memory before calling the dynamic linker.  It creates and
1280  * returns an Obj_Entry structure.
1281  */
1282 static Obj_Entry *
1283 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1284 {
1285     Obj_Entry *obj;
1286     const Elf_Phdr *phlimit = phdr + phnum;
1287     const Elf_Phdr *ph;
1288     Elf_Addr note_start, note_end;
1289     int nsegs = 0;
1290 
1291     obj = obj_new();
1292     for (ph = phdr;  ph < phlimit;  ph++) {
1293 	if (ph->p_type != PT_PHDR)
1294 	    continue;
1295 
1296 	obj->phdr = phdr;
1297 	obj->phsize = ph->p_memsz;
1298 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1299 	break;
1300     }
1301 
1302     obj->stack_flags = PF_X | PF_R | PF_W;
1303 
1304     for (ph = phdr;  ph < phlimit;  ph++) {
1305 	switch (ph->p_type) {
1306 
1307 	case PT_INTERP:
1308 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1309 	    break;
1310 
1311 	case PT_LOAD:
1312 	    if (nsegs == 0) {	/* First load segment */
1313 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1314 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1315 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1316 		  obj->vaddrbase;
1317 	    } else {		/* Last load segment */
1318 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1319 		  obj->vaddrbase;
1320 	    }
1321 	    nsegs++;
1322 	    break;
1323 
1324 	case PT_DYNAMIC:
1325 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1326 	    break;
1327 
1328 	case PT_TLS:
1329 	    obj->tlsindex = 1;
1330 	    obj->tlssize = ph->p_memsz;
1331 	    obj->tlsalign = ph->p_align;
1332 	    obj->tlsinitsize = ph->p_filesz;
1333 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1334 	    break;
1335 
1336 	case PT_GNU_STACK:
1337 	    obj->stack_flags = ph->p_flags;
1338 	    break;
1339 
1340 	case PT_GNU_RELRO:
1341 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1342 	    obj->relro_size = round_page(ph->p_memsz);
1343 	    break;
1344 
1345 	case PT_NOTE:
1346 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1347 	    note_end = note_start + ph->p_filesz;
1348 	    digest_notes(obj, note_start, note_end);
1349 	    break;
1350 	}
1351     }
1352     if (nsegs < 1) {
1353 	_rtld_error("%s: too few PT_LOAD segments", path);
1354 	return NULL;
1355     }
1356 
1357     obj->entry = entry;
1358     return obj;
1359 }
1360 
1361 void
1362 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1363 {
1364 	const Elf_Note *note;
1365 	const char *note_name;
1366 	uintptr_t p;
1367 
1368 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1369 	    note = (const Elf_Note *)((const char *)(note + 1) +
1370 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1371 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1372 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1373 		    note->n_descsz != sizeof(int32_t))
1374 			continue;
1375 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1376 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1377 			continue;
1378 		note_name = (const char *)(note + 1);
1379 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1380 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1381 			continue;
1382 		switch (note->n_type) {
1383 		case NT_FREEBSD_ABI_TAG:
1384 			/* FreeBSD osrel note */
1385 			p = (uintptr_t)(note + 1);
1386 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1387 			obj->osrel = *(const int32_t *)(p);
1388 			dbg("note osrel %d", obj->osrel);
1389 			break;
1390 		case NT_FREEBSD_NOINIT_TAG:
1391 			/* FreeBSD 'crt does not call init' note */
1392 			obj->crt_no_init = true;
1393 			dbg("note crt_no_init");
1394 			break;
1395 		}
1396 	}
1397 }
1398 
1399 static Obj_Entry *
1400 dlcheck(void *handle)
1401 {
1402     Obj_Entry *obj;
1403 
1404     TAILQ_FOREACH(obj, &obj_list, next) {
1405 	if (obj == (Obj_Entry *) handle)
1406 	    break;
1407     }
1408 
1409     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1410 	_rtld_error("Invalid shared object handle %p", handle);
1411 	return NULL;
1412     }
1413     return obj;
1414 }
1415 
1416 /*
1417  * If the given object is already in the donelist, return true.  Otherwise
1418  * add the object to the list and return false.
1419  */
1420 static bool
1421 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1422 {
1423     unsigned int i;
1424 
1425     for (i = 0;  i < dlp->num_used;  i++)
1426 	if (dlp->objs[i] == obj)
1427 	    return true;
1428     /*
1429      * Our donelist allocation should always be sufficient.  But if
1430      * our threads locking isn't working properly, more shared objects
1431      * could have been loaded since we allocated the list.  That should
1432      * never happen, but we'll handle it properly just in case it does.
1433      */
1434     if (dlp->num_used < dlp->num_alloc)
1435 	dlp->objs[dlp->num_used++] = obj;
1436     return false;
1437 }
1438 
1439 /*
1440  * Hash function for symbol table lookup.  Don't even think about changing
1441  * this.  It is specified by the System V ABI.
1442  */
1443 unsigned long
1444 elf_hash(const char *name)
1445 {
1446     const unsigned char *p = (const unsigned char *) name;
1447     unsigned long h = 0;
1448     unsigned long g;
1449 
1450     while (*p != '\0') {
1451 	h = (h << 4) + *p++;
1452 	if ((g = h & 0xf0000000) != 0)
1453 	    h ^= g >> 24;
1454 	h &= ~g;
1455     }
1456     return h;
1457 }
1458 
1459 /*
1460  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1461  * unsigned in case it's implemented with a wider type.
1462  */
1463 static uint32_t
1464 gnu_hash(const char *s)
1465 {
1466 	uint32_t h;
1467 	unsigned char c;
1468 
1469 	h = 5381;
1470 	for (c = *s; c != '\0'; c = *++s)
1471 		h = h * 33 + c;
1472 	return (h & 0xffffffff);
1473 }
1474 
1475 
1476 /*
1477  * Find the library with the given name, and return its full pathname.
1478  * The returned string is dynamically allocated.  Generates an error
1479  * message and returns NULL if the library cannot be found.
1480  *
1481  * If the second argument is non-NULL, then it refers to an already-
1482  * loaded shared object, whose library search path will be searched.
1483  *
1484  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1485  * descriptor (which is close-on-exec) will be passed out via the third
1486  * argument.
1487  *
1488  * The search order is:
1489  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1490  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1491  *   LD_LIBRARY_PATH
1492  *   DT_RUNPATH in the referencing file
1493  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1494  *	 from list)
1495  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1496  *
1497  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1498  */
1499 static char *
1500 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1501 {
1502     char *pathname;
1503     char *name;
1504     bool nodeflib, objgiven;
1505 
1506     objgiven = refobj != NULL;
1507     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1508 	if (xname[0] != '/' && !trust) {
1509 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1510 	      xname);
1511 	    return NULL;
1512 	}
1513 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1514 	  __DECONST(char *, xname)));
1515     }
1516 
1517     if (libmap_disable || !objgiven ||
1518 	(name = lm_find(refobj->path, xname)) == NULL)
1519 	name = (char *)xname;
1520 
1521     dbg(" Searching for \"%s\"", name);
1522 
1523     /*
1524      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1525      * back to pre-conforming behaviour if user requested so with
1526      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1527      * nodeflib.
1528      */
1529     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1530 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1531 	  (refobj != NULL &&
1532 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1533 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1534           (pathname = search_library_path(name, gethints(false))) != NULL ||
1535 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1536 	    return (pathname);
1537     } else {
1538 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1539 	if ((objgiven &&
1540 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1541 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1542 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1543 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1544 	  (objgiven &&
1545 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1546 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1547 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1548 	  (objgiven && !nodeflib &&
1549 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1550 	    return (pathname);
1551     }
1552 
1553     if (objgiven && refobj->path != NULL) {
1554 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1555 	  name, basename(refobj->path));
1556     } else {
1557 	_rtld_error("Shared object \"%s\" not found", name);
1558     }
1559     return NULL;
1560 }
1561 
1562 /*
1563  * Given a symbol number in a referencing object, find the corresponding
1564  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1565  * no definition was found.  Returns a pointer to the Obj_Entry of the
1566  * defining object via the reference parameter DEFOBJ_OUT.
1567  */
1568 const Elf_Sym *
1569 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1570     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1571     RtldLockState *lockstate)
1572 {
1573     const Elf_Sym *ref;
1574     const Elf_Sym *def;
1575     const Obj_Entry *defobj;
1576     SymLook req;
1577     const char *name;
1578     int res;
1579 
1580     /*
1581      * If we have already found this symbol, get the information from
1582      * the cache.
1583      */
1584     if (symnum >= refobj->dynsymcount)
1585 	return NULL;	/* Bad object */
1586     if (cache != NULL && cache[symnum].sym != NULL) {
1587 	*defobj_out = cache[symnum].obj;
1588 	return cache[symnum].sym;
1589     }
1590 
1591     ref = refobj->symtab + symnum;
1592     name = refobj->strtab + ref->st_name;
1593     def = NULL;
1594     defobj = NULL;
1595 
1596     /*
1597      * We don't have to do a full scale lookup if the symbol is local.
1598      * We know it will bind to the instance in this load module; to
1599      * which we already have a pointer (ie ref). By not doing a lookup,
1600      * we not only improve performance, but it also avoids unresolvable
1601      * symbols when local symbols are not in the hash table. This has
1602      * been seen with the ia64 toolchain.
1603      */
1604     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1605 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1606 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1607 		symnum);
1608 	}
1609 	symlook_init(&req, name);
1610 	req.flags = flags;
1611 	req.ventry = fetch_ventry(refobj, symnum);
1612 	req.lockstate = lockstate;
1613 	res = symlook_default(&req, refobj);
1614 	if (res == 0) {
1615 	    def = req.sym_out;
1616 	    defobj = req.defobj_out;
1617 	}
1618     } else {
1619 	def = ref;
1620 	defobj = refobj;
1621     }
1622 
1623     /*
1624      * If we found no definition and the reference is weak, treat the
1625      * symbol as having the value zero.
1626      */
1627     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1628 	def = &sym_zero;
1629 	defobj = obj_main;
1630     }
1631 
1632     if (def != NULL) {
1633 	*defobj_out = defobj;
1634 	/* Record the information in the cache to avoid subsequent lookups. */
1635 	if (cache != NULL) {
1636 	    cache[symnum].sym = def;
1637 	    cache[symnum].obj = defobj;
1638 	}
1639     } else {
1640 	if (refobj != &obj_rtld)
1641 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1642     }
1643     return def;
1644 }
1645 
1646 /*
1647  * Return the search path from the ldconfig hints file, reading it if
1648  * necessary.  If nostdlib is true, then the default search paths are
1649  * not added to result.
1650  *
1651  * Returns NULL if there are problems with the hints file,
1652  * or if the search path there is empty.
1653  */
1654 static const char *
1655 gethints(bool nostdlib)
1656 {
1657 	static char *hints, *filtered_path;
1658 	static struct elfhints_hdr hdr;
1659 	struct fill_search_info_args sargs, hargs;
1660 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1661 	struct dl_serpath *SLPpath, *hintpath;
1662 	char *p;
1663 	struct stat hint_stat;
1664 	unsigned int SLPndx, hintndx, fndx, fcount;
1665 	int fd;
1666 	size_t flen;
1667 	uint32_t dl;
1668 	bool skip;
1669 
1670 	/* First call, read the hints file */
1671 	if (hints == NULL) {
1672 		/* Keep from trying again in case the hints file is bad. */
1673 		hints = "";
1674 
1675 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1676 			return (NULL);
1677 
1678 		/*
1679 		 * Check of hdr.dirlistlen value against type limit
1680 		 * intends to pacify static analyzers.  Further
1681 		 * paranoia leads to checks that dirlist is fully
1682 		 * contained in the file range.
1683 		 */
1684 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1685 		    hdr.magic != ELFHINTS_MAGIC ||
1686 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1687 		    fstat(fd, &hint_stat) == -1) {
1688 cleanup1:
1689 			close(fd);
1690 			hdr.dirlistlen = 0;
1691 			return (NULL);
1692 		}
1693 		dl = hdr.strtab;
1694 		if (dl + hdr.dirlist < dl)
1695 			goto cleanup1;
1696 		dl += hdr.dirlist;
1697 		if (dl + hdr.dirlistlen < dl)
1698 			goto cleanup1;
1699 		dl += hdr.dirlistlen;
1700 		if (dl > hint_stat.st_size)
1701 			goto cleanup1;
1702 		p = xmalloc(hdr.dirlistlen + 1);
1703 
1704 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1705 		    read(fd, p, hdr.dirlistlen + 1) !=
1706 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1707 			free(p);
1708 			goto cleanup1;
1709 		}
1710 		hints = p;
1711 		close(fd);
1712 	}
1713 
1714 	/*
1715 	 * If caller agreed to receive list which includes the default
1716 	 * paths, we are done. Otherwise, if we still did not
1717 	 * calculated filtered result, do it now.
1718 	 */
1719 	if (!nostdlib)
1720 		return (hints[0] != '\0' ? hints : NULL);
1721 	if (filtered_path != NULL)
1722 		goto filt_ret;
1723 
1724 	/*
1725 	 * Obtain the list of all configured search paths, and the
1726 	 * list of the default paths.
1727 	 *
1728 	 * First estimate the size of the results.
1729 	 */
1730 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1731 	smeta.dls_cnt = 0;
1732 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1733 	hmeta.dls_cnt = 0;
1734 
1735 	sargs.request = RTLD_DI_SERINFOSIZE;
1736 	sargs.serinfo = &smeta;
1737 	hargs.request = RTLD_DI_SERINFOSIZE;
1738 	hargs.serinfo = &hmeta;
1739 
1740 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1741 	path_enumerate(hints, fill_search_info, &hargs);
1742 
1743 	SLPinfo = xmalloc(smeta.dls_size);
1744 	hintinfo = xmalloc(hmeta.dls_size);
1745 
1746 	/*
1747 	 * Next fetch both sets of paths.
1748 	 */
1749 	sargs.request = RTLD_DI_SERINFO;
1750 	sargs.serinfo = SLPinfo;
1751 	sargs.serpath = &SLPinfo->dls_serpath[0];
1752 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1753 
1754 	hargs.request = RTLD_DI_SERINFO;
1755 	hargs.serinfo = hintinfo;
1756 	hargs.serpath = &hintinfo->dls_serpath[0];
1757 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1758 
1759 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1760 	path_enumerate(hints, fill_search_info, &hargs);
1761 
1762 	/*
1763 	 * Now calculate the difference between two sets, by excluding
1764 	 * standard paths from the full set.
1765 	 */
1766 	fndx = 0;
1767 	fcount = 0;
1768 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1769 	hintpath = &hintinfo->dls_serpath[0];
1770 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1771 		skip = false;
1772 		SLPpath = &SLPinfo->dls_serpath[0];
1773 		/*
1774 		 * Check each standard path against current.
1775 		 */
1776 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1777 			/* matched, skip the path */
1778 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1779 				skip = true;
1780 				break;
1781 			}
1782 		}
1783 		if (skip)
1784 			continue;
1785 		/*
1786 		 * Not matched against any standard path, add the path
1787 		 * to result. Separate consequtive paths with ':'.
1788 		 */
1789 		if (fcount > 0) {
1790 			filtered_path[fndx] = ':';
1791 			fndx++;
1792 		}
1793 		fcount++;
1794 		flen = strlen(hintpath->dls_name);
1795 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1796 		fndx += flen;
1797 	}
1798 	filtered_path[fndx] = '\0';
1799 
1800 	free(SLPinfo);
1801 	free(hintinfo);
1802 
1803 filt_ret:
1804 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1805 }
1806 
1807 static void
1808 init_dag(Obj_Entry *root)
1809 {
1810     const Needed_Entry *needed;
1811     const Objlist_Entry *elm;
1812     DoneList donelist;
1813 
1814     if (root->dag_inited)
1815 	return;
1816     donelist_init(&donelist);
1817 
1818     /* Root object belongs to own DAG. */
1819     objlist_push_tail(&root->dldags, root);
1820     objlist_push_tail(&root->dagmembers, root);
1821     donelist_check(&donelist, root);
1822 
1823     /*
1824      * Add dependencies of root object to DAG in breadth order
1825      * by exploiting the fact that each new object get added
1826      * to the tail of the dagmembers list.
1827      */
1828     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1829 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1830 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1831 		continue;
1832 	    objlist_push_tail(&needed->obj->dldags, root);
1833 	    objlist_push_tail(&root->dagmembers, needed->obj);
1834 	}
1835     }
1836     root->dag_inited = true;
1837 }
1838 
1839 static void
1840 init_marker(Obj_Entry *marker)
1841 {
1842 
1843 	bzero(marker, sizeof(*marker));
1844 	marker->marker = true;
1845 }
1846 
1847 Obj_Entry *
1848 globallist_curr(const Obj_Entry *obj)
1849 {
1850 
1851 	for (;;) {
1852 		if (obj == NULL)
1853 			return (NULL);
1854 		if (!obj->marker)
1855 			return (__DECONST(Obj_Entry *, obj));
1856 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1857 	}
1858 }
1859 
1860 Obj_Entry *
1861 globallist_next(const Obj_Entry *obj)
1862 {
1863 
1864 	for (;;) {
1865 		obj = TAILQ_NEXT(obj, next);
1866 		if (obj == NULL)
1867 			return (NULL);
1868 		if (!obj->marker)
1869 			return (__DECONST(Obj_Entry *, obj));
1870 	}
1871 }
1872 
1873 /* Prevent the object from being unmapped while the bind lock is dropped. */
1874 static void
1875 hold_object(Obj_Entry *obj)
1876 {
1877 
1878 	obj->holdcount++;
1879 }
1880 
1881 static void
1882 unhold_object(Obj_Entry *obj)
1883 {
1884 
1885 	assert(obj->holdcount > 0);
1886 	if (--obj->holdcount == 0 && obj->unholdfree)
1887 		release_object(obj);
1888 }
1889 
1890 static void
1891 process_z(Obj_Entry *root)
1892 {
1893 	const Objlist_Entry *elm;
1894 	Obj_Entry *obj;
1895 
1896 	/*
1897 	 * Walk over object DAG and process every dependent object
1898 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1899 	 * to grow their own DAG.
1900 	 *
1901 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1902 	 * symlook_global() to work.
1903 	 *
1904 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1905 	 */
1906 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1907 		obj = elm->obj;
1908 		if (obj == NULL)
1909 			continue;
1910 		if (obj->z_nodelete && !obj->ref_nodel) {
1911 			dbg("obj %s -z nodelete", obj->path);
1912 			init_dag(obj);
1913 			ref_dag(obj);
1914 			obj->ref_nodel = true;
1915 		}
1916 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1917 			dbg("obj %s -z global", obj->path);
1918 			objlist_push_tail(&list_global, obj);
1919 			init_dag(obj);
1920 		}
1921 	}
1922 }
1923 /*
1924  * Initialize the dynamic linker.  The argument is the address at which
1925  * the dynamic linker has been mapped into memory.  The primary task of
1926  * this function is to relocate the dynamic linker.
1927  */
1928 static void
1929 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1930 {
1931     Obj_Entry objtmp;	/* Temporary rtld object */
1932     const Elf_Ehdr *ehdr;
1933     const Elf_Dyn *dyn_rpath;
1934     const Elf_Dyn *dyn_soname;
1935     const Elf_Dyn *dyn_runpath;
1936 
1937 #ifdef RTLD_INIT_PAGESIZES_EARLY
1938     /* The page size is required by the dynamic memory allocator. */
1939     init_pagesizes(aux_info);
1940 #endif
1941 
1942     /*
1943      * Conjure up an Obj_Entry structure for the dynamic linker.
1944      *
1945      * The "path" member can't be initialized yet because string constants
1946      * cannot yet be accessed. Below we will set it correctly.
1947      */
1948     memset(&objtmp, 0, sizeof(objtmp));
1949     objtmp.path = NULL;
1950     objtmp.rtld = true;
1951     objtmp.mapbase = mapbase;
1952 #ifdef PIC
1953     objtmp.relocbase = mapbase;
1954 #endif
1955 
1956     objtmp.dynamic = rtld_dynamic(&objtmp);
1957     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1958     assert(objtmp.needed == NULL);
1959 #if !defined(__mips__)
1960     /* MIPS has a bogus DT_TEXTREL. */
1961     assert(!objtmp.textrel);
1962 #endif
1963     /*
1964      * Temporarily put the dynamic linker entry into the object list, so
1965      * that symbols can be found.
1966      */
1967     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1968 
1969     ehdr = (Elf_Ehdr *)mapbase;
1970     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1971     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1972 
1973     /* Initialize the object list. */
1974     TAILQ_INIT(&obj_list);
1975 
1976     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1977     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1978 
1979 #ifndef RTLD_INIT_PAGESIZES_EARLY
1980     /* The page size is required by the dynamic memory allocator. */
1981     init_pagesizes(aux_info);
1982 #endif
1983 
1984     if (aux_info[AT_OSRELDATE] != NULL)
1985 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1986 
1987     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1988 
1989     /* Replace the path with a dynamically allocated copy. */
1990     obj_rtld.path = xstrdup(ld_path_rtld);
1991 
1992     r_debug.r_brk = r_debug_state;
1993     r_debug.r_state = RT_CONSISTENT;
1994 }
1995 
1996 /*
1997  * Retrieve the array of supported page sizes.  The kernel provides the page
1998  * sizes in increasing order.
1999  */
2000 static void
2001 init_pagesizes(Elf_Auxinfo **aux_info)
2002 {
2003 	static size_t psa[MAXPAGESIZES];
2004 	int mib[2];
2005 	size_t len, size;
2006 
2007 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2008 	    NULL) {
2009 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2010 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2011 	} else {
2012 		len = 2;
2013 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2014 			size = sizeof(psa);
2015 		else {
2016 			/* As a fallback, retrieve the base page size. */
2017 			size = sizeof(psa[0]);
2018 			if (aux_info[AT_PAGESZ] != NULL) {
2019 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2020 				goto psa_filled;
2021 			} else {
2022 				mib[0] = CTL_HW;
2023 				mib[1] = HW_PAGESIZE;
2024 				len = 2;
2025 			}
2026 		}
2027 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2028 			_rtld_error("sysctl for hw.pagesize(s) failed");
2029 			rtld_die();
2030 		}
2031 psa_filled:
2032 		pagesizes = psa;
2033 	}
2034 	npagesizes = size / sizeof(pagesizes[0]);
2035 	/* Discard any invalid entries at the end of the array. */
2036 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2037 		npagesizes--;
2038 }
2039 
2040 /*
2041  * Add the init functions from a needed object list (and its recursive
2042  * needed objects) to "list".  This is not used directly; it is a helper
2043  * function for initlist_add_objects().  The write lock must be held
2044  * when this function is called.
2045  */
2046 static void
2047 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2048 {
2049     /* Recursively process the successor needed objects. */
2050     if (needed->next != NULL)
2051 	initlist_add_neededs(needed->next, list);
2052 
2053     /* Process the current needed object. */
2054     if (needed->obj != NULL)
2055 	initlist_add_objects(needed->obj, needed->obj, list);
2056 }
2057 
2058 /*
2059  * Scan all of the DAGs rooted in the range of objects from "obj" to
2060  * "tail" and add their init functions to "list".  This recurses over
2061  * the DAGs and ensure the proper init ordering such that each object's
2062  * needed libraries are initialized before the object itself.  At the
2063  * same time, this function adds the objects to the global finalization
2064  * list "list_fini" in the opposite order.  The write lock must be
2065  * held when this function is called.
2066  */
2067 static void
2068 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2069 {
2070     Obj_Entry *nobj;
2071 
2072     if (obj->init_scanned || obj->init_done)
2073 	return;
2074     obj->init_scanned = true;
2075 
2076     /* Recursively process the successor objects. */
2077     nobj = globallist_next(obj);
2078     if (nobj != NULL && obj != tail)
2079 	initlist_add_objects(nobj, tail, list);
2080 
2081     /* Recursively process the needed objects. */
2082     if (obj->needed != NULL)
2083 	initlist_add_neededs(obj->needed, list);
2084     if (obj->needed_filtees != NULL)
2085 	initlist_add_neededs(obj->needed_filtees, list);
2086     if (obj->needed_aux_filtees != NULL)
2087 	initlist_add_neededs(obj->needed_aux_filtees, list);
2088 
2089     /* Add the object to the init list. */
2090     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2091       obj->init_array != (Elf_Addr)NULL)
2092 	objlist_push_tail(list, obj);
2093 
2094     /* Add the object to the global fini list in the reverse order. */
2095     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2096       && !obj->on_fini_list) {
2097 	objlist_push_head(&list_fini, obj);
2098 	obj->on_fini_list = true;
2099     }
2100 }
2101 
2102 #ifndef FPTR_TARGET
2103 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2104 #endif
2105 
2106 static void
2107 free_needed_filtees(Needed_Entry *n)
2108 {
2109     Needed_Entry *needed, *needed1;
2110 
2111     for (needed = n; needed != NULL; needed = needed->next) {
2112 	if (needed->obj != NULL) {
2113 	    dlclose(needed->obj);
2114 	    needed->obj = NULL;
2115 	}
2116     }
2117     for (needed = n; needed != NULL; needed = needed1) {
2118 	needed1 = needed->next;
2119 	free(needed);
2120     }
2121 }
2122 
2123 static void
2124 unload_filtees(Obj_Entry *obj)
2125 {
2126 
2127     free_needed_filtees(obj->needed_filtees);
2128     obj->needed_filtees = NULL;
2129     free_needed_filtees(obj->needed_aux_filtees);
2130     obj->needed_aux_filtees = NULL;
2131     obj->filtees_loaded = false;
2132 }
2133 
2134 static void
2135 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2136     RtldLockState *lockstate)
2137 {
2138 
2139     for (; needed != NULL; needed = needed->next) {
2140 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2141 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2142 	  RTLD_LOCAL, lockstate);
2143     }
2144 }
2145 
2146 static void
2147 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2148 {
2149 
2150     lock_restart_for_upgrade(lockstate);
2151     if (!obj->filtees_loaded) {
2152 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2153 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2154 	obj->filtees_loaded = true;
2155     }
2156 }
2157 
2158 static int
2159 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2160 {
2161     Obj_Entry *obj1;
2162 
2163     for (; needed != NULL; needed = needed->next) {
2164 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2165 	  flags & ~RTLD_LO_NOLOAD);
2166 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2167 	    return (-1);
2168     }
2169     return (0);
2170 }
2171 
2172 /*
2173  * Given a shared object, traverse its list of needed objects, and load
2174  * each of them.  Returns 0 on success.  Generates an error message and
2175  * returns -1 on failure.
2176  */
2177 static int
2178 load_needed_objects(Obj_Entry *first, int flags)
2179 {
2180     Obj_Entry *obj;
2181 
2182     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2183 	if (obj->marker)
2184 	    continue;
2185 	if (process_needed(obj, obj->needed, flags) == -1)
2186 	    return (-1);
2187     }
2188     return (0);
2189 }
2190 
2191 static int
2192 load_preload_objects(void)
2193 {
2194     char *p = ld_preload;
2195     Obj_Entry *obj;
2196     static const char delim[] = " \t:;";
2197 
2198     if (p == NULL)
2199 	return 0;
2200 
2201     p += strspn(p, delim);
2202     while (*p != '\0') {
2203 	size_t len = strcspn(p, delim);
2204 	char savech;
2205 
2206 	savech = p[len];
2207 	p[len] = '\0';
2208 	obj = load_object(p, -1, NULL, 0);
2209 	if (obj == NULL)
2210 	    return -1;	/* XXX - cleanup */
2211 	obj->z_interpose = true;
2212 	p[len] = savech;
2213 	p += len;
2214 	p += strspn(p, delim);
2215     }
2216     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2217     return 0;
2218 }
2219 
2220 static const char *
2221 printable_path(const char *path)
2222 {
2223 
2224 	return (path == NULL ? "<unknown>" : path);
2225 }
2226 
2227 /*
2228  * Load a shared object into memory, if it is not already loaded.  The
2229  * object may be specified by name or by user-supplied file descriptor
2230  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2231  * duplicate is.
2232  *
2233  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2234  * on failure.
2235  */
2236 static Obj_Entry *
2237 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2238 {
2239     Obj_Entry *obj;
2240     int fd;
2241     struct stat sb;
2242     char *path;
2243 
2244     fd = -1;
2245     if (name != NULL) {
2246 	TAILQ_FOREACH(obj, &obj_list, next) {
2247 	    if (obj->marker || obj->doomed)
2248 		continue;
2249 	    if (object_match_name(obj, name))
2250 		return (obj);
2251 	}
2252 
2253 	path = find_library(name, refobj, &fd);
2254 	if (path == NULL)
2255 	    return (NULL);
2256     } else
2257 	path = NULL;
2258 
2259     if (fd >= 0) {
2260 	/*
2261 	 * search_library_pathfds() opens a fresh file descriptor for the
2262 	 * library, so there is no need to dup().
2263 	 */
2264     } else if (fd_u == -1) {
2265 	/*
2266 	 * If we didn't find a match by pathname, or the name is not
2267 	 * supplied, open the file and check again by device and inode.
2268 	 * This avoids false mismatches caused by multiple links or ".."
2269 	 * in pathnames.
2270 	 *
2271 	 * To avoid a race, we open the file and use fstat() rather than
2272 	 * using stat().
2273 	 */
2274 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2275 	    _rtld_error("Cannot open \"%s\"", path);
2276 	    free(path);
2277 	    return (NULL);
2278 	}
2279     } else {
2280 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2281 	if (fd == -1) {
2282 	    _rtld_error("Cannot dup fd");
2283 	    free(path);
2284 	    return (NULL);
2285 	}
2286     }
2287     if (fstat(fd, &sb) == -1) {
2288 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2289 	close(fd);
2290 	free(path);
2291 	return NULL;
2292     }
2293     TAILQ_FOREACH(obj, &obj_list, next) {
2294 	if (obj->marker || obj->doomed)
2295 	    continue;
2296 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2297 	    break;
2298     }
2299     if (obj != NULL && name != NULL) {
2300 	object_add_name(obj, name);
2301 	free(path);
2302 	close(fd);
2303 	return obj;
2304     }
2305     if (flags & RTLD_LO_NOLOAD) {
2306 	free(path);
2307 	close(fd);
2308 	return (NULL);
2309     }
2310 
2311     /* First use of this object, so we must map it in */
2312     obj = do_load_object(fd, name, path, &sb, flags);
2313     if (obj == NULL)
2314 	free(path);
2315     close(fd);
2316 
2317     return obj;
2318 }
2319 
2320 static Obj_Entry *
2321 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2322   int flags)
2323 {
2324     Obj_Entry *obj;
2325     struct statfs fs;
2326 
2327     /*
2328      * but first, make sure that environment variables haven't been
2329      * used to circumvent the noexec flag on a filesystem.
2330      */
2331     if (dangerous_ld_env) {
2332 	if (fstatfs(fd, &fs) != 0) {
2333 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2334 	    return NULL;
2335 	}
2336 	if (fs.f_flags & MNT_NOEXEC) {
2337 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2338 	    return NULL;
2339 	}
2340     }
2341     dbg("loading \"%s\"", printable_path(path));
2342     obj = map_object(fd, printable_path(path), sbp);
2343     if (obj == NULL)
2344         return NULL;
2345 
2346     /*
2347      * If DT_SONAME is present in the object, digest_dynamic2 already
2348      * added it to the object names.
2349      */
2350     if (name != NULL)
2351 	object_add_name(obj, name);
2352     obj->path = path;
2353     digest_dynamic(obj, 0);
2354     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2355 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2356     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2357       RTLD_LO_DLOPEN) {
2358 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2359 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2360 	munmap(obj->mapbase, obj->mapsize);
2361 	obj_free(obj);
2362 	return (NULL);
2363     }
2364 
2365     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2366     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2367     obj_count++;
2368     obj_loads++;
2369     linkmap_add(obj);	/* for GDB & dlinfo() */
2370     max_stack_flags |= obj->stack_flags;
2371 
2372     dbg("  %p .. %p: %s", obj->mapbase,
2373          obj->mapbase + obj->mapsize - 1, obj->path);
2374     if (obj->textrel)
2375 	dbg("  WARNING: %s has impure text", obj->path);
2376     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2377 	obj->path);
2378 
2379     return obj;
2380 }
2381 
2382 static Obj_Entry *
2383 obj_from_addr(const void *addr)
2384 {
2385     Obj_Entry *obj;
2386 
2387     TAILQ_FOREACH(obj, &obj_list, next) {
2388 	if (obj->marker)
2389 	    continue;
2390 	if (addr < (void *) obj->mapbase)
2391 	    continue;
2392 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2393 	    return obj;
2394     }
2395     return NULL;
2396 }
2397 
2398 static void
2399 preinit_main(void)
2400 {
2401     Elf_Addr *preinit_addr;
2402     int index;
2403 
2404     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2405     if (preinit_addr == NULL)
2406 	return;
2407 
2408     for (index = 0; index < obj_main->preinit_array_num; index++) {
2409 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2410 	    dbg("calling preinit function for %s at %p", obj_main->path,
2411 	      (void *)preinit_addr[index]);
2412 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2413 	      0, 0, obj_main->path);
2414 	    call_init_pointer(obj_main, preinit_addr[index]);
2415 	}
2416     }
2417 }
2418 
2419 /*
2420  * Call the finalization functions for each of the objects in "list"
2421  * belonging to the DAG of "root" and referenced once. If NULL "root"
2422  * is specified, every finalization function will be called regardless
2423  * of the reference count and the list elements won't be freed. All of
2424  * the objects are expected to have non-NULL fini functions.
2425  */
2426 static void
2427 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2428 {
2429     Objlist_Entry *elm;
2430     char *saved_msg;
2431     Elf_Addr *fini_addr;
2432     int index;
2433 
2434     assert(root == NULL || root->refcount == 1);
2435 
2436     if (root != NULL)
2437 	root->doomed = true;
2438 
2439     /*
2440      * Preserve the current error message since a fini function might
2441      * call into the dynamic linker and overwrite it.
2442      */
2443     saved_msg = errmsg_save();
2444     do {
2445 	STAILQ_FOREACH(elm, list, link) {
2446 	    if (root != NULL && (elm->obj->refcount != 1 ||
2447 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2448 		continue;
2449 	    /* Remove object from fini list to prevent recursive invocation. */
2450 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2451 	    /* Ensure that new references cannot be acquired. */
2452 	    elm->obj->doomed = true;
2453 
2454 	    hold_object(elm->obj);
2455 	    lock_release(rtld_bind_lock, lockstate);
2456 	    /*
2457 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2458 	     * When this happens, DT_FINI_ARRAY is processed first.
2459 	     */
2460 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2461 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2462 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2463 		  index--) {
2464 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2465 			dbg("calling fini function for %s at %p",
2466 			    elm->obj->path, (void *)fini_addr[index]);
2467 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2468 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2469 			call_initfini_pointer(elm->obj, fini_addr[index]);
2470 		    }
2471 		}
2472 	    }
2473 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2474 		dbg("calling fini function for %s at %p", elm->obj->path,
2475 		    (void *)elm->obj->fini);
2476 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2477 		    0, 0, elm->obj->path);
2478 		call_initfini_pointer(elm->obj, elm->obj->fini);
2479 	    }
2480 	    wlock_acquire(rtld_bind_lock, lockstate);
2481 	    unhold_object(elm->obj);
2482 	    /* No need to free anything if process is going down. */
2483 	    if (root != NULL)
2484 	    	free(elm);
2485 	    /*
2486 	     * We must restart the list traversal after every fini call
2487 	     * because a dlclose() call from the fini function or from
2488 	     * another thread might have modified the reference counts.
2489 	     */
2490 	    break;
2491 	}
2492     } while (elm != NULL);
2493     errmsg_restore(saved_msg);
2494 }
2495 
2496 /*
2497  * Call the initialization functions for each of the objects in
2498  * "list".  All of the objects are expected to have non-NULL init
2499  * functions.
2500  */
2501 static void
2502 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2503 {
2504     Objlist_Entry *elm;
2505     Obj_Entry *obj;
2506     char *saved_msg;
2507     Elf_Addr *init_addr;
2508     int index;
2509 
2510     /*
2511      * Clean init_scanned flag so that objects can be rechecked and
2512      * possibly initialized earlier if any of vectors called below
2513      * cause the change by using dlopen.
2514      */
2515     TAILQ_FOREACH(obj, &obj_list, next) {
2516 	if (obj->marker)
2517 	    continue;
2518 	obj->init_scanned = false;
2519     }
2520 
2521     /*
2522      * Preserve the current error message since an init function might
2523      * call into the dynamic linker and overwrite it.
2524      */
2525     saved_msg = errmsg_save();
2526     STAILQ_FOREACH(elm, list, link) {
2527 	if (elm->obj->init_done) /* Initialized early. */
2528 	    continue;
2529 	/*
2530 	 * Race: other thread might try to use this object before current
2531 	 * one completes the initialization. Not much can be done here
2532 	 * without better locking.
2533 	 */
2534 	elm->obj->init_done = true;
2535 	hold_object(elm->obj);
2536 	lock_release(rtld_bind_lock, lockstate);
2537 
2538         /*
2539          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2540          * When this happens, DT_INIT is processed first.
2541          */
2542 	if (elm->obj->init != (Elf_Addr)NULL) {
2543 	    dbg("calling init function for %s at %p", elm->obj->path,
2544 	        (void *)elm->obj->init);
2545 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2546 	        0, 0, elm->obj->path);
2547 	    call_initfini_pointer(elm->obj, elm->obj->init);
2548 	}
2549 	init_addr = (Elf_Addr *)elm->obj->init_array;
2550 	if (init_addr != NULL) {
2551 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2552 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2553 		    dbg("calling init function for %s at %p", elm->obj->path,
2554 			(void *)init_addr[index]);
2555 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2556 			(void *)init_addr[index], 0, 0, elm->obj->path);
2557 		    call_init_pointer(elm->obj, init_addr[index]);
2558 		}
2559 	    }
2560 	}
2561 	wlock_acquire(rtld_bind_lock, lockstate);
2562 	unhold_object(elm->obj);
2563     }
2564     errmsg_restore(saved_msg);
2565 }
2566 
2567 static void
2568 objlist_clear(Objlist *list)
2569 {
2570     Objlist_Entry *elm;
2571 
2572     while (!STAILQ_EMPTY(list)) {
2573 	elm = STAILQ_FIRST(list);
2574 	STAILQ_REMOVE_HEAD(list, link);
2575 	free(elm);
2576     }
2577 }
2578 
2579 static Objlist_Entry *
2580 objlist_find(Objlist *list, const Obj_Entry *obj)
2581 {
2582     Objlist_Entry *elm;
2583 
2584     STAILQ_FOREACH(elm, list, link)
2585 	if (elm->obj == obj)
2586 	    return elm;
2587     return NULL;
2588 }
2589 
2590 static void
2591 objlist_init(Objlist *list)
2592 {
2593     STAILQ_INIT(list);
2594 }
2595 
2596 static void
2597 objlist_push_head(Objlist *list, Obj_Entry *obj)
2598 {
2599     Objlist_Entry *elm;
2600 
2601     elm = NEW(Objlist_Entry);
2602     elm->obj = obj;
2603     STAILQ_INSERT_HEAD(list, elm, link);
2604 }
2605 
2606 static void
2607 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2608 {
2609     Objlist_Entry *elm;
2610 
2611     elm = NEW(Objlist_Entry);
2612     elm->obj = obj;
2613     STAILQ_INSERT_TAIL(list, elm, link);
2614 }
2615 
2616 static void
2617 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2618 {
2619 	Objlist_Entry *elm, *listelm;
2620 
2621 	STAILQ_FOREACH(listelm, list, link) {
2622 		if (listelm->obj == listobj)
2623 			break;
2624 	}
2625 	elm = NEW(Objlist_Entry);
2626 	elm->obj = obj;
2627 	if (listelm != NULL)
2628 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2629 	else
2630 		STAILQ_INSERT_TAIL(list, elm, link);
2631 }
2632 
2633 static void
2634 objlist_remove(Objlist *list, Obj_Entry *obj)
2635 {
2636     Objlist_Entry *elm;
2637 
2638     if ((elm = objlist_find(list, obj)) != NULL) {
2639 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2640 	free(elm);
2641     }
2642 }
2643 
2644 /*
2645  * Relocate dag rooted in the specified object.
2646  * Returns 0 on success, or -1 on failure.
2647  */
2648 
2649 static int
2650 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2651     int flags, RtldLockState *lockstate)
2652 {
2653 	Objlist_Entry *elm;
2654 	int error;
2655 
2656 	error = 0;
2657 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2658 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2659 		    lockstate);
2660 		if (error == -1)
2661 			break;
2662 	}
2663 	return (error);
2664 }
2665 
2666 /*
2667  * Prepare for, or clean after, relocating an object marked with
2668  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2669  * segments are remapped read-write.  After relocations are done, the
2670  * segment's permissions are returned back to the modes specified in
2671  * the phdrs.  If any relocation happened, or always for wired
2672  * program, COW is triggered.
2673  */
2674 static int
2675 reloc_textrel_prot(Obj_Entry *obj, bool before)
2676 {
2677 	const Elf_Phdr *ph;
2678 	void *base;
2679 	size_t l, sz;
2680 	int prot;
2681 
2682 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2683 	    l--, ph++) {
2684 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2685 			continue;
2686 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2687 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2688 		    trunc_page(ph->p_vaddr);
2689 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2690 		if (mprotect(base, sz, prot) == -1) {
2691 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2692 			    obj->path, before ? "en" : "dis",
2693 			    rtld_strerror(errno));
2694 			return (-1);
2695 		}
2696 	}
2697 	return (0);
2698 }
2699 
2700 /*
2701  * Relocate single object.
2702  * Returns 0 on success, or -1 on failure.
2703  */
2704 static int
2705 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2706     int flags, RtldLockState *lockstate)
2707 {
2708 
2709 	if (obj->relocated)
2710 		return (0);
2711 	obj->relocated = true;
2712 	if (obj != rtldobj)
2713 		dbg("relocating \"%s\"", obj->path);
2714 
2715 	if (obj->symtab == NULL || obj->strtab == NULL ||
2716 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2717 		_rtld_error("%s: Shared object has no run-time symbol table",
2718 			    obj->path);
2719 		return (-1);
2720 	}
2721 
2722 	/* There are relocations to the write-protected text segment. */
2723 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2724 		return (-1);
2725 
2726 	/* Process the non-PLT non-IFUNC relocations. */
2727 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2728 		return (-1);
2729 
2730 	/* Re-protected the text segment. */
2731 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2732 		return (-1);
2733 
2734 	/* Set the special PLT or GOT entries. */
2735 	init_pltgot(obj);
2736 
2737 	/* Process the PLT relocations. */
2738 	if (reloc_plt(obj) == -1)
2739 		return (-1);
2740 	/* Relocate the jump slots if we are doing immediate binding. */
2741 	if (obj->bind_now || bind_now)
2742 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2743 			return (-1);
2744 
2745 	/*
2746 	 * Process the non-PLT IFUNC relocations.  The relocations are
2747 	 * processed in two phases, because IFUNC resolvers may
2748 	 * reference other symbols, which must be readily processed
2749 	 * before resolvers are called.
2750 	 */
2751 	if (obj->non_plt_gnu_ifunc &&
2752 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2753 		return (-1);
2754 
2755 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2756 		return (-1);
2757 
2758 	/*
2759 	 * Set up the magic number and version in the Obj_Entry.  These
2760 	 * were checked in the crt1.o from the original ElfKit, so we
2761 	 * set them for backward compatibility.
2762 	 */
2763 	obj->magic = RTLD_MAGIC;
2764 	obj->version = RTLD_VERSION;
2765 
2766 	return (0);
2767 }
2768 
2769 /*
2770  * Relocate newly-loaded shared objects.  The argument is a pointer to
2771  * the Obj_Entry for the first such object.  All objects from the first
2772  * to the end of the list of objects are relocated.  Returns 0 on success,
2773  * or -1 on failure.
2774  */
2775 static int
2776 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2777     int flags, RtldLockState *lockstate)
2778 {
2779 	Obj_Entry *obj;
2780 	int error;
2781 
2782 	for (error = 0, obj = first;  obj != NULL;
2783 	    obj = TAILQ_NEXT(obj, next)) {
2784 		if (obj->marker)
2785 			continue;
2786 		error = relocate_object(obj, bind_now, rtldobj, flags,
2787 		    lockstate);
2788 		if (error == -1)
2789 			break;
2790 	}
2791 	return (error);
2792 }
2793 
2794 /*
2795  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2796  * referencing STT_GNU_IFUNC symbols is postponed till the other
2797  * relocations are done.  The indirect functions specified as
2798  * ifunc are allowed to call other symbols, so we need to have
2799  * objects relocated before asking for resolution from indirects.
2800  *
2801  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2802  * instead of the usual lazy handling of PLT slots.  It is
2803  * consistent with how GNU does it.
2804  */
2805 static int
2806 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2807     RtldLockState *lockstate)
2808 {
2809 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2810 		return (-1);
2811 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2812 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2813 		return (-1);
2814 	return (0);
2815 }
2816 
2817 static int
2818 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2819     RtldLockState *lockstate)
2820 {
2821 	Obj_Entry *obj;
2822 
2823 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2824 		if (obj->marker)
2825 			continue;
2826 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2827 			return (-1);
2828 	}
2829 	return (0);
2830 }
2831 
2832 static int
2833 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2834     RtldLockState *lockstate)
2835 {
2836 	Objlist_Entry *elm;
2837 
2838 	STAILQ_FOREACH(elm, list, link) {
2839 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2840 		    lockstate) == -1)
2841 			return (-1);
2842 	}
2843 	return (0);
2844 }
2845 
2846 /*
2847  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2848  * before the process exits.
2849  */
2850 static void
2851 rtld_exit(void)
2852 {
2853     RtldLockState lockstate;
2854 
2855     wlock_acquire(rtld_bind_lock, &lockstate);
2856     dbg("rtld_exit()");
2857     objlist_call_fini(&list_fini, NULL, &lockstate);
2858     /* No need to remove the items from the list, since we are exiting. */
2859     if (!libmap_disable)
2860         lm_fini();
2861     lock_release(rtld_bind_lock, &lockstate);
2862 }
2863 
2864 /*
2865  * Iterate over a search path, translate each element, and invoke the
2866  * callback on the result.
2867  */
2868 static void *
2869 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2870 {
2871     const char *trans;
2872     if (path == NULL)
2873 	return (NULL);
2874 
2875     path += strspn(path, ":;");
2876     while (*path != '\0') {
2877 	size_t len;
2878 	char  *res;
2879 
2880 	len = strcspn(path, ":;");
2881 	trans = lm_findn(NULL, path, len);
2882 	if (trans)
2883 	    res = callback(trans, strlen(trans), arg);
2884 	else
2885 	    res = callback(path, len, arg);
2886 
2887 	if (res != NULL)
2888 	    return (res);
2889 
2890 	path += len;
2891 	path += strspn(path, ":;");
2892     }
2893 
2894     return (NULL);
2895 }
2896 
2897 struct try_library_args {
2898     const char	*name;
2899     size_t	 namelen;
2900     char	*buffer;
2901     size_t	 buflen;
2902 };
2903 
2904 static void *
2905 try_library_path(const char *dir, size_t dirlen, void *param)
2906 {
2907     struct try_library_args *arg;
2908 
2909     arg = param;
2910     if (*dir == '/' || trust) {
2911 	char *pathname;
2912 
2913 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2914 		return (NULL);
2915 
2916 	pathname = arg->buffer;
2917 	strncpy(pathname, dir, dirlen);
2918 	pathname[dirlen] = '/';
2919 	strcpy(pathname + dirlen + 1, arg->name);
2920 
2921 	dbg("  Trying \"%s\"", pathname);
2922 	if (access(pathname, F_OK) == 0) {		/* We found it */
2923 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2924 	    strcpy(pathname, arg->buffer);
2925 	    return (pathname);
2926 	}
2927     }
2928     return (NULL);
2929 }
2930 
2931 static char *
2932 search_library_path(const char *name, const char *path)
2933 {
2934     char *p;
2935     struct try_library_args arg;
2936 
2937     if (path == NULL)
2938 	return NULL;
2939 
2940     arg.name = name;
2941     arg.namelen = strlen(name);
2942     arg.buffer = xmalloc(PATH_MAX);
2943     arg.buflen = PATH_MAX;
2944 
2945     p = path_enumerate(path, try_library_path, &arg);
2946 
2947     free(arg.buffer);
2948 
2949     return (p);
2950 }
2951 
2952 
2953 /*
2954  * Finds the library with the given name using the directory descriptors
2955  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2956  *
2957  * Returns a freshly-opened close-on-exec file descriptor for the library,
2958  * or -1 if the library cannot be found.
2959  */
2960 static char *
2961 search_library_pathfds(const char *name, const char *path, int *fdp)
2962 {
2963 	char *envcopy, *fdstr, *found, *last_token;
2964 	size_t len;
2965 	int dirfd, fd;
2966 
2967 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2968 
2969 	/* Don't load from user-specified libdirs into setuid binaries. */
2970 	if (!trust)
2971 		return (NULL);
2972 
2973 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2974 	if (path == NULL)
2975 		return (NULL);
2976 
2977 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2978 	if (name[0] == '/') {
2979 		dbg("Absolute path (%s) passed to %s", name, __func__);
2980 		return (NULL);
2981 	}
2982 
2983 	/*
2984 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2985 	 * copy of the path, as strtok_r rewrites separator tokens
2986 	 * with '\0'.
2987 	 */
2988 	found = NULL;
2989 	envcopy = xstrdup(path);
2990 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2991 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2992 		dirfd = parse_libdir(fdstr);
2993 		if (dirfd < 0)
2994 			break;
2995 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2996 		if (fd >= 0) {
2997 			*fdp = fd;
2998 			len = strlen(fdstr) + strlen(name) + 3;
2999 			found = xmalloc(len);
3000 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3001 				_rtld_error("error generating '%d/%s'",
3002 				    dirfd, name);
3003 				rtld_die();
3004 			}
3005 			dbg("open('%s') => %d", found, fd);
3006 			break;
3007 		}
3008 	}
3009 	free(envcopy);
3010 
3011 	return (found);
3012 }
3013 
3014 
3015 int
3016 dlclose(void *handle)
3017 {
3018     Obj_Entry *root;
3019     RtldLockState lockstate;
3020 
3021     wlock_acquire(rtld_bind_lock, &lockstate);
3022     root = dlcheck(handle);
3023     if (root == NULL) {
3024 	lock_release(rtld_bind_lock, &lockstate);
3025 	return -1;
3026     }
3027     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3028 	root->path);
3029 
3030     /* Unreference the object and its dependencies. */
3031     root->dl_refcount--;
3032 
3033     if (root->refcount == 1) {
3034 	/*
3035 	 * The object will be no longer referenced, so we must unload it.
3036 	 * First, call the fini functions.
3037 	 */
3038 	objlist_call_fini(&list_fini, root, &lockstate);
3039 
3040 	unref_dag(root);
3041 
3042 	/* Finish cleaning up the newly-unreferenced objects. */
3043 	GDB_STATE(RT_DELETE,&root->linkmap);
3044 	unload_object(root);
3045 	GDB_STATE(RT_CONSISTENT,NULL);
3046     } else
3047 	unref_dag(root);
3048 
3049     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3050     lock_release(rtld_bind_lock, &lockstate);
3051     return 0;
3052 }
3053 
3054 char *
3055 dlerror(void)
3056 {
3057     char *msg = error_message;
3058     error_message = NULL;
3059     return msg;
3060 }
3061 
3062 /*
3063  * This function is deprecated and has no effect.
3064  */
3065 void
3066 dllockinit(void *context,
3067 	   void *(*lock_create)(void *context),
3068            void (*rlock_acquire)(void *lock),
3069            void (*wlock_acquire)(void *lock),
3070            void (*lock_release)(void *lock),
3071            void (*lock_destroy)(void *lock),
3072 	   void (*context_destroy)(void *context))
3073 {
3074     static void *cur_context;
3075     static void (*cur_context_destroy)(void *);
3076 
3077     /* Just destroy the context from the previous call, if necessary. */
3078     if (cur_context_destroy != NULL)
3079 	cur_context_destroy(cur_context);
3080     cur_context = context;
3081     cur_context_destroy = context_destroy;
3082 }
3083 
3084 void *
3085 dlopen(const char *name, int mode)
3086 {
3087 
3088 	return (rtld_dlopen(name, -1, mode));
3089 }
3090 
3091 void *
3092 fdlopen(int fd, int mode)
3093 {
3094 
3095 	return (rtld_dlopen(NULL, fd, mode));
3096 }
3097 
3098 static void *
3099 rtld_dlopen(const char *name, int fd, int mode)
3100 {
3101     RtldLockState lockstate;
3102     int lo_flags;
3103 
3104     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3105     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3106     if (ld_tracing != NULL) {
3107 	rlock_acquire(rtld_bind_lock, &lockstate);
3108 	if (sigsetjmp(lockstate.env, 0) != 0)
3109 	    lock_upgrade(rtld_bind_lock, &lockstate);
3110 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3111 	lock_release(rtld_bind_lock, &lockstate);
3112     }
3113     lo_flags = RTLD_LO_DLOPEN;
3114     if (mode & RTLD_NODELETE)
3115 	    lo_flags |= RTLD_LO_NODELETE;
3116     if (mode & RTLD_NOLOAD)
3117 	    lo_flags |= RTLD_LO_NOLOAD;
3118     if (ld_tracing != NULL)
3119 	    lo_flags |= RTLD_LO_TRACE;
3120 
3121     return (dlopen_object(name, fd, obj_main, lo_flags,
3122       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3123 }
3124 
3125 static void
3126 dlopen_cleanup(Obj_Entry *obj)
3127 {
3128 
3129 	obj->dl_refcount--;
3130 	unref_dag(obj);
3131 	if (obj->refcount == 0)
3132 		unload_object(obj);
3133 }
3134 
3135 static Obj_Entry *
3136 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3137     int mode, RtldLockState *lockstate)
3138 {
3139     Obj_Entry *old_obj_tail;
3140     Obj_Entry *obj;
3141     Objlist initlist;
3142     RtldLockState mlockstate;
3143     int result;
3144 
3145     objlist_init(&initlist);
3146 
3147     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3148 	wlock_acquire(rtld_bind_lock, &mlockstate);
3149 	lockstate = &mlockstate;
3150     }
3151     GDB_STATE(RT_ADD,NULL);
3152 
3153     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3154     obj = NULL;
3155     if (name == NULL && fd == -1) {
3156 	obj = obj_main;
3157 	obj->refcount++;
3158     } else {
3159 	obj = load_object(name, fd, refobj, lo_flags);
3160     }
3161 
3162     if (obj) {
3163 	obj->dl_refcount++;
3164 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3165 	    objlist_push_tail(&list_global, obj);
3166 	if (globallist_next(old_obj_tail) != NULL) {
3167 	    /* We loaded something new. */
3168 	    assert(globallist_next(old_obj_tail) == obj);
3169 	    result = load_needed_objects(obj,
3170 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3171 	    init_dag(obj);
3172 	    ref_dag(obj);
3173 	    if (result != -1)
3174 		result = rtld_verify_versions(&obj->dagmembers);
3175 	    if (result != -1 && ld_tracing)
3176 		goto trace;
3177 	    if (result == -1 || relocate_object_dag(obj,
3178 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3179 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3180 	      lockstate) == -1) {
3181 		dlopen_cleanup(obj);
3182 		obj = NULL;
3183 	    } else if (lo_flags & RTLD_LO_EARLY) {
3184 		/*
3185 		 * Do not call the init functions for early loaded
3186 		 * filtees.  The image is still not initialized enough
3187 		 * for them to work.
3188 		 *
3189 		 * Our object is found by the global object list and
3190 		 * will be ordered among all init calls done right
3191 		 * before transferring control to main.
3192 		 */
3193 	    } else {
3194 		/* Make list of init functions to call. */
3195 		initlist_add_objects(obj, obj, &initlist);
3196 	    }
3197 	    /*
3198 	     * Process all no_delete or global objects here, given
3199 	     * them own DAGs to prevent their dependencies from being
3200 	     * unloaded.  This has to be done after we have loaded all
3201 	     * of the dependencies, so that we do not miss any.
3202 	     */
3203 	    if (obj != NULL)
3204 		process_z(obj);
3205 	} else {
3206 	    /*
3207 	     * Bump the reference counts for objects on this DAG.  If
3208 	     * this is the first dlopen() call for the object that was
3209 	     * already loaded as a dependency, initialize the dag
3210 	     * starting at it.
3211 	     */
3212 	    init_dag(obj);
3213 	    ref_dag(obj);
3214 
3215 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3216 		goto trace;
3217 	}
3218 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3219 	  obj->z_nodelete) && !obj->ref_nodel) {
3220 	    dbg("obj %s nodelete", obj->path);
3221 	    ref_dag(obj);
3222 	    obj->z_nodelete = obj->ref_nodel = true;
3223 	}
3224     }
3225 
3226     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3227 	name);
3228     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3229 
3230     if (!(lo_flags & RTLD_LO_EARLY)) {
3231 	map_stacks_exec(lockstate);
3232     }
3233 
3234     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3235       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3236       lockstate) == -1) {
3237 	objlist_clear(&initlist);
3238 	dlopen_cleanup(obj);
3239 	if (lockstate == &mlockstate)
3240 	    lock_release(rtld_bind_lock, lockstate);
3241 	return (NULL);
3242     }
3243 
3244     if (!(lo_flags & RTLD_LO_EARLY)) {
3245 	/* Call the init functions. */
3246 	objlist_call_init(&initlist, lockstate);
3247     }
3248     objlist_clear(&initlist);
3249     if (lockstate == &mlockstate)
3250 	lock_release(rtld_bind_lock, lockstate);
3251     return obj;
3252 trace:
3253     trace_loaded_objects(obj);
3254     if (lockstate == &mlockstate)
3255 	lock_release(rtld_bind_lock, lockstate);
3256     exit(0);
3257 }
3258 
3259 static void *
3260 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3261     int flags)
3262 {
3263     DoneList donelist;
3264     const Obj_Entry *obj, *defobj;
3265     const Elf_Sym *def;
3266     SymLook req;
3267     RtldLockState lockstate;
3268     tls_index ti;
3269     void *sym;
3270     int res;
3271 
3272     def = NULL;
3273     defobj = NULL;
3274     symlook_init(&req, name);
3275     req.ventry = ve;
3276     req.flags = flags | SYMLOOK_IN_PLT;
3277     req.lockstate = &lockstate;
3278 
3279     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3280     rlock_acquire(rtld_bind_lock, &lockstate);
3281     if (sigsetjmp(lockstate.env, 0) != 0)
3282 	    lock_upgrade(rtld_bind_lock, &lockstate);
3283     if (handle == NULL || handle == RTLD_NEXT ||
3284 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3285 
3286 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3287 	    _rtld_error("Cannot determine caller's shared object");
3288 	    lock_release(rtld_bind_lock, &lockstate);
3289 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3290 	    return NULL;
3291 	}
3292 	if (handle == NULL) {	/* Just the caller's shared object. */
3293 	    res = symlook_obj(&req, obj);
3294 	    if (res == 0) {
3295 		def = req.sym_out;
3296 		defobj = req.defobj_out;
3297 	    }
3298 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3299 		   handle == RTLD_SELF) { /* ... caller included */
3300 	    if (handle == RTLD_NEXT)
3301 		obj = globallist_next(obj);
3302 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3303 		if (obj->marker)
3304 		    continue;
3305 		res = symlook_obj(&req, obj);
3306 		if (res == 0) {
3307 		    if (def == NULL ||
3308 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3309 			def = req.sym_out;
3310 			defobj = req.defobj_out;
3311 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3312 			    break;
3313 		    }
3314 		}
3315 	    }
3316 	    /*
3317 	     * Search the dynamic linker itself, and possibly resolve the
3318 	     * symbol from there.  This is how the application links to
3319 	     * dynamic linker services such as dlopen.
3320 	     */
3321 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3322 		res = symlook_obj(&req, &obj_rtld);
3323 		if (res == 0) {
3324 		    def = req.sym_out;
3325 		    defobj = req.defobj_out;
3326 		}
3327 	    }
3328 	} else {
3329 	    assert(handle == RTLD_DEFAULT);
3330 	    res = symlook_default(&req, obj);
3331 	    if (res == 0) {
3332 		defobj = req.defobj_out;
3333 		def = req.sym_out;
3334 	    }
3335 	}
3336     } else {
3337 	if ((obj = dlcheck(handle)) == NULL) {
3338 	    lock_release(rtld_bind_lock, &lockstate);
3339 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3340 	    return NULL;
3341 	}
3342 
3343 	donelist_init(&donelist);
3344 	if (obj->mainprog) {
3345             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3346 	    res = symlook_global(&req, &donelist);
3347 	    if (res == 0) {
3348 		def = req.sym_out;
3349 		defobj = req.defobj_out;
3350 	    }
3351 	    /*
3352 	     * Search the dynamic linker itself, and possibly resolve the
3353 	     * symbol from there.  This is how the application links to
3354 	     * dynamic linker services such as dlopen.
3355 	     */
3356 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3357 		res = symlook_obj(&req, &obj_rtld);
3358 		if (res == 0) {
3359 		    def = req.sym_out;
3360 		    defobj = req.defobj_out;
3361 		}
3362 	    }
3363 	}
3364 	else {
3365 	    /* Search the whole DAG rooted at the given object. */
3366 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3367 	    if (res == 0) {
3368 		def = req.sym_out;
3369 		defobj = req.defobj_out;
3370 	    }
3371 	}
3372     }
3373 
3374     if (def != NULL) {
3375 	lock_release(rtld_bind_lock, &lockstate);
3376 
3377 	/*
3378 	 * The value required by the caller is derived from the value
3379 	 * of the symbol. this is simply the relocated value of the
3380 	 * symbol.
3381 	 */
3382 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3383 	    sym = make_function_pointer(def, defobj);
3384 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3385 	    sym = rtld_resolve_ifunc(defobj, def);
3386 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3387 	    ti.ti_module = defobj->tlsindex;
3388 	    ti.ti_offset = def->st_value;
3389 	    sym = __tls_get_addr(&ti);
3390 	} else
3391 	    sym = defobj->relocbase + def->st_value;
3392 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3393 	return (sym);
3394     }
3395 
3396     _rtld_error("Undefined symbol \"%s\"", name);
3397     lock_release(rtld_bind_lock, &lockstate);
3398     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3399     return NULL;
3400 }
3401 
3402 void *
3403 dlsym(void *handle, const char *name)
3404 {
3405 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3406 	    SYMLOOK_DLSYM);
3407 }
3408 
3409 dlfunc_t
3410 dlfunc(void *handle, const char *name)
3411 {
3412 	union {
3413 		void *d;
3414 		dlfunc_t f;
3415 	} rv;
3416 
3417 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3418 	    SYMLOOK_DLSYM);
3419 	return (rv.f);
3420 }
3421 
3422 void *
3423 dlvsym(void *handle, const char *name, const char *version)
3424 {
3425 	Ver_Entry ventry;
3426 
3427 	ventry.name = version;
3428 	ventry.file = NULL;
3429 	ventry.hash = elf_hash(version);
3430 	ventry.flags= 0;
3431 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3432 	    SYMLOOK_DLSYM);
3433 }
3434 
3435 int
3436 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3437 {
3438     const Obj_Entry *obj;
3439     RtldLockState lockstate;
3440 
3441     rlock_acquire(rtld_bind_lock, &lockstate);
3442     obj = obj_from_addr(addr);
3443     if (obj == NULL) {
3444         _rtld_error("No shared object contains address");
3445 	lock_release(rtld_bind_lock, &lockstate);
3446         return (0);
3447     }
3448     rtld_fill_dl_phdr_info(obj, phdr_info);
3449     lock_release(rtld_bind_lock, &lockstate);
3450     return (1);
3451 }
3452 
3453 int
3454 dladdr(const void *addr, Dl_info *info)
3455 {
3456     const Obj_Entry *obj;
3457     const Elf_Sym *def;
3458     void *symbol_addr;
3459     unsigned long symoffset;
3460     RtldLockState lockstate;
3461 
3462     rlock_acquire(rtld_bind_lock, &lockstate);
3463     obj = obj_from_addr(addr);
3464     if (obj == NULL) {
3465         _rtld_error("No shared object contains address");
3466 	lock_release(rtld_bind_lock, &lockstate);
3467         return 0;
3468     }
3469     info->dli_fname = obj->path;
3470     info->dli_fbase = obj->mapbase;
3471     info->dli_saddr = (void *)0;
3472     info->dli_sname = NULL;
3473 
3474     /*
3475      * Walk the symbol list looking for the symbol whose address is
3476      * closest to the address sent in.
3477      */
3478     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3479         def = obj->symtab + symoffset;
3480 
3481         /*
3482          * For skip the symbol if st_shndx is either SHN_UNDEF or
3483          * SHN_COMMON.
3484          */
3485         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3486             continue;
3487 
3488         /*
3489          * If the symbol is greater than the specified address, or if it
3490          * is further away from addr than the current nearest symbol,
3491          * then reject it.
3492          */
3493         symbol_addr = obj->relocbase + def->st_value;
3494         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3495             continue;
3496 
3497         /* Update our idea of the nearest symbol. */
3498         info->dli_sname = obj->strtab + def->st_name;
3499         info->dli_saddr = symbol_addr;
3500 
3501         /* Exact match? */
3502         if (info->dli_saddr == addr)
3503             break;
3504     }
3505     lock_release(rtld_bind_lock, &lockstate);
3506     return 1;
3507 }
3508 
3509 int
3510 dlinfo(void *handle, int request, void *p)
3511 {
3512     const Obj_Entry *obj;
3513     RtldLockState lockstate;
3514     int error;
3515 
3516     rlock_acquire(rtld_bind_lock, &lockstate);
3517 
3518     if (handle == NULL || handle == RTLD_SELF) {
3519 	void *retaddr;
3520 
3521 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3522 	if ((obj = obj_from_addr(retaddr)) == NULL)
3523 	    _rtld_error("Cannot determine caller's shared object");
3524     } else
3525 	obj = dlcheck(handle);
3526 
3527     if (obj == NULL) {
3528 	lock_release(rtld_bind_lock, &lockstate);
3529 	return (-1);
3530     }
3531 
3532     error = 0;
3533     switch (request) {
3534     case RTLD_DI_LINKMAP:
3535 	*((struct link_map const **)p) = &obj->linkmap;
3536 	break;
3537     case RTLD_DI_ORIGIN:
3538 	error = rtld_dirname(obj->path, p);
3539 	break;
3540 
3541     case RTLD_DI_SERINFOSIZE:
3542     case RTLD_DI_SERINFO:
3543 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3544 	break;
3545 
3546     default:
3547 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3548 	error = -1;
3549     }
3550 
3551     lock_release(rtld_bind_lock, &lockstate);
3552 
3553     return (error);
3554 }
3555 
3556 static void
3557 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3558 {
3559 
3560 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3561 	phdr_info->dlpi_name = obj->path;
3562 	phdr_info->dlpi_phdr = obj->phdr;
3563 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3564 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3565 	phdr_info->dlpi_tls_data = obj->tlsinit;
3566 	phdr_info->dlpi_adds = obj_loads;
3567 	phdr_info->dlpi_subs = obj_loads - obj_count;
3568 }
3569 
3570 int
3571 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3572 {
3573 	struct dl_phdr_info phdr_info;
3574 	Obj_Entry *obj, marker;
3575 	RtldLockState bind_lockstate, phdr_lockstate;
3576 	int error;
3577 
3578 	init_marker(&marker);
3579 	error = 0;
3580 
3581 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3582 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3583 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3584 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3585 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3586 		hold_object(obj);
3587 		lock_release(rtld_bind_lock, &bind_lockstate);
3588 
3589 		error = callback(&phdr_info, sizeof phdr_info, param);
3590 
3591 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3592 		unhold_object(obj);
3593 		obj = globallist_next(&marker);
3594 		TAILQ_REMOVE(&obj_list, &marker, next);
3595 		if (error != 0) {
3596 			lock_release(rtld_bind_lock, &bind_lockstate);
3597 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3598 			return (error);
3599 		}
3600 	}
3601 
3602 	if (error == 0) {
3603 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3604 		lock_release(rtld_bind_lock, &bind_lockstate);
3605 		error = callback(&phdr_info, sizeof(phdr_info), param);
3606 	}
3607 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3608 	return (error);
3609 }
3610 
3611 static void *
3612 fill_search_info(const char *dir, size_t dirlen, void *param)
3613 {
3614     struct fill_search_info_args *arg;
3615 
3616     arg = param;
3617 
3618     if (arg->request == RTLD_DI_SERINFOSIZE) {
3619 	arg->serinfo->dls_cnt ++;
3620 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3621     } else {
3622 	struct dl_serpath *s_entry;
3623 
3624 	s_entry = arg->serpath;
3625 	s_entry->dls_name  = arg->strspace;
3626 	s_entry->dls_flags = arg->flags;
3627 
3628 	strncpy(arg->strspace, dir, dirlen);
3629 	arg->strspace[dirlen] = '\0';
3630 
3631 	arg->strspace += dirlen + 1;
3632 	arg->serpath++;
3633     }
3634 
3635     return (NULL);
3636 }
3637 
3638 static int
3639 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3640 {
3641     struct dl_serinfo _info;
3642     struct fill_search_info_args args;
3643 
3644     args.request = RTLD_DI_SERINFOSIZE;
3645     args.serinfo = &_info;
3646 
3647     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3648     _info.dls_cnt  = 0;
3649 
3650     path_enumerate(obj->rpath, fill_search_info, &args);
3651     path_enumerate(ld_library_path, fill_search_info, &args);
3652     path_enumerate(obj->runpath, fill_search_info, &args);
3653     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3654     if (!obj->z_nodeflib)
3655       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3656 
3657 
3658     if (request == RTLD_DI_SERINFOSIZE) {
3659 	info->dls_size = _info.dls_size;
3660 	info->dls_cnt = _info.dls_cnt;
3661 	return (0);
3662     }
3663 
3664     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3665 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3666 	return (-1);
3667     }
3668 
3669     args.request  = RTLD_DI_SERINFO;
3670     args.serinfo  = info;
3671     args.serpath  = &info->dls_serpath[0];
3672     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3673 
3674     args.flags = LA_SER_RUNPATH;
3675     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3676 	return (-1);
3677 
3678     args.flags = LA_SER_LIBPATH;
3679     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3680 	return (-1);
3681 
3682     args.flags = LA_SER_RUNPATH;
3683     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3684 	return (-1);
3685 
3686     args.flags = LA_SER_CONFIG;
3687     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3688       != NULL)
3689 	return (-1);
3690 
3691     args.flags = LA_SER_DEFAULT;
3692     if (!obj->z_nodeflib &&
3693       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3694 	return (-1);
3695     return (0);
3696 }
3697 
3698 static int
3699 rtld_dirname(const char *path, char *bname)
3700 {
3701     const char *endp;
3702 
3703     /* Empty or NULL string gets treated as "." */
3704     if (path == NULL || *path == '\0') {
3705 	bname[0] = '.';
3706 	bname[1] = '\0';
3707 	return (0);
3708     }
3709 
3710     /* Strip trailing slashes */
3711     endp = path + strlen(path) - 1;
3712     while (endp > path && *endp == '/')
3713 	endp--;
3714 
3715     /* Find the start of the dir */
3716     while (endp > path && *endp != '/')
3717 	endp--;
3718 
3719     /* Either the dir is "/" or there are no slashes */
3720     if (endp == path) {
3721 	bname[0] = *endp == '/' ? '/' : '.';
3722 	bname[1] = '\0';
3723 	return (0);
3724     } else {
3725 	do {
3726 	    endp--;
3727 	} while (endp > path && *endp == '/');
3728     }
3729 
3730     if (endp - path + 2 > PATH_MAX)
3731     {
3732 	_rtld_error("Filename is too long: %s", path);
3733 	return(-1);
3734     }
3735 
3736     strncpy(bname, path, endp - path + 1);
3737     bname[endp - path + 1] = '\0';
3738     return (0);
3739 }
3740 
3741 static int
3742 rtld_dirname_abs(const char *path, char *base)
3743 {
3744 	char *last;
3745 
3746 	if (realpath(path, base) == NULL)
3747 		return (-1);
3748 	dbg("%s -> %s", path, base);
3749 	last = strrchr(base, '/');
3750 	if (last == NULL)
3751 		return (-1);
3752 	if (last != base)
3753 		*last = '\0';
3754 	return (0);
3755 }
3756 
3757 static void
3758 linkmap_add(Obj_Entry *obj)
3759 {
3760     struct link_map *l = &obj->linkmap;
3761     struct link_map *prev;
3762 
3763     obj->linkmap.l_name = obj->path;
3764     obj->linkmap.l_addr = obj->mapbase;
3765     obj->linkmap.l_ld = obj->dynamic;
3766 #ifdef __mips__
3767     /* GDB needs load offset on MIPS to use the symbols */
3768     obj->linkmap.l_offs = obj->relocbase;
3769 #endif
3770 
3771     if (r_debug.r_map == NULL) {
3772 	r_debug.r_map = l;
3773 	return;
3774     }
3775 
3776     /*
3777      * Scan to the end of the list, but not past the entry for the
3778      * dynamic linker, which we want to keep at the very end.
3779      */
3780     for (prev = r_debug.r_map;
3781       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3782       prev = prev->l_next)
3783 	;
3784 
3785     /* Link in the new entry. */
3786     l->l_prev = prev;
3787     l->l_next = prev->l_next;
3788     if (l->l_next != NULL)
3789 	l->l_next->l_prev = l;
3790     prev->l_next = l;
3791 }
3792 
3793 static void
3794 linkmap_delete(Obj_Entry *obj)
3795 {
3796     struct link_map *l = &obj->linkmap;
3797 
3798     if (l->l_prev == NULL) {
3799 	if ((r_debug.r_map = l->l_next) != NULL)
3800 	    l->l_next->l_prev = NULL;
3801 	return;
3802     }
3803 
3804     if ((l->l_prev->l_next = l->l_next) != NULL)
3805 	l->l_next->l_prev = l->l_prev;
3806 }
3807 
3808 /*
3809  * Function for the debugger to set a breakpoint on to gain control.
3810  *
3811  * The two parameters allow the debugger to easily find and determine
3812  * what the runtime loader is doing and to whom it is doing it.
3813  *
3814  * When the loadhook trap is hit (r_debug_state, set at program
3815  * initialization), the arguments can be found on the stack:
3816  *
3817  *  +8   struct link_map *m
3818  *  +4   struct r_debug  *rd
3819  *  +0   RetAddr
3820  */
3821 void
3822 r_debug_state(struct r_debug* rd, struct link_map *m)
3823 {
3824     /*
3825      * The following is a hack to force the compiler to emit calls to
3826      * this function, even when optimizing.  If the function is empty,
3827      * the compiler is not obliged to emit any code for calls to it,
3828      * even when marked __noinline.  However, gdb depends on those
3829      * calls being made.
3830      */
3831     __compiler_membar();
3832 }
3833 
3834 /*
3835  * A function called after init routines have completed. This can be used to
3836  * break before a program's entry routine is called, and can be used when
3837  * main is not available in the symbol table.
3838  */
3839 void
3840 _r_debug_postinit(struct link_map *m)
3841 {
3842 
3843 	/* See r_debug_state(). */
3844 	__compiler_membar();
3845 }
3846 
3847 static void
3848 release_object(Obj_Entry *obj)
3849 {
3850 
3851 	if (obj->holdcount > 0) {
3852 		obj->unholdfree = true;
3853 		return;
3854 	}
3855 	munmap(obj->mapbase, obj->mapsize);
3856 	linkmap_delete(obj);
3857 	obj_free(obj);
3858 }
3859 
3860 /*
3861  * Get address of the pointer variable in the main program.
3862  * Prefer non-weak symbol over the weak one.
3863  */
3864 static const void **
3865 get_program_var_addr(const char *name, RtldLockState *lockstate)
3866 {
3867     SymLook req;
3868     DoneList donelist;
3869 
3870     symlook_init(&req, name);
3871     req.lockstate = lockstate;
3872     donelist_init(&donelist);
3873     if (symlook_global(&req, &donelist) != 0)
3874 	return (NULL);
3875     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3876 	return ((const void **)make_function_pointer(req.sym_out,
3877 	  req.defobj_out));
3878     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3879 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3880     else
3881 	return ((const void **)(req.defobj_out->relocbase +
3882 	  req.sym_out->st_value));
3883 }
3884 
3885 /*
3886  * Set a pointer variable in the main program to the given value.  This
3887  * is used to set key variables such as "environ" before any of the
3888  * init functions are called.
3889  */
3890 static void
3891 set_program_var(const char *name, const void *value)
3892 {
3893     const void **addr;
3894 
3895     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3896 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3897 	*addr = value;
3898     }
3899 }
3900 
3901 /*
3902  * Search the global objects, including dependencies and main object,
3903  * for the given symbol.
3904  */
3905 static int
3906 symlook_global(SymLook *req, DoneList *donelist)
3907 {
3908     SymLook req1;
3909     const Objlist_Entry *elm;
3910     int res;
3911 
3912     symlook_init_from_req(&req1, req);
3913 
3914     /* Search all objects loaded at program start up. */
3915     if (req->defobj_out == NULL ||
3916       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3917 	res = symlook_list(&req1, &list_main, donelist);
3918 	if (res == 0 && (req->defobj_out == NULL ||
3919 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3920 	    req->sym_out = req1.sym_out;
3921 	    req->defobj_out = req1.defobj_out;
3922 	    assert(req->defobj_out != NULL);
3923 	}
3924     }
3925 
3926     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3927     STAILQ_FOREACH(elm, &list_global, link) {
3928 	if (req->defobj_out != NULL &&
3929 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3930 	    break;
3931 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3932 	if (res == 0 && (req->defobj_out == NULL ||
3933 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3934 	    req->sym_out = req1.sym_out;
3935 	    req->defobj_out = req1.defobj_out;
3936 	    assert(req->defobj_out != NULL);
3937 	}
3938     }
3939 
3940     return (req->sym_out != NULL ? 0 : ESRCH);
3941 }
3942 
3943 /*
3944  * Given a symbol name in a referencing object, find the corresponding
3945  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3946  * no definition was found.  Returns a pointer to the Obj_Entry of the
3947  * defining object via the reference parameter DEFOBJ_OUT.
3948  */
3949 static int
3950 symlook_default(SymLook *req, const Obj_Entry *refobj)
3951 {
3952     DoneList donelist;
3953     const Objlist_Entry *elm;
3954     SymLook req1;
3955     int res;
3956 
3957     donelist_init(&donelist);
3958     symlook_init_from_req(&req1, req);
3959 
3960     /*
3961      * Look first in the referencing object if linked symbolically,
3962      * and similarly handle protected symbols.
3963      */
3964     res = symlook_obj(&req1, refobj);
3965     if (res == 0 && (refobj->symbolic ||
3966       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
3967 	req->sym_out = req1.sym_out;
3968 	req->defobj_out = req1.defobj_out;
3969 	assert(req->defobj_out != NULL);
3970     }
3971     if (refobj->symbolic || req->defobj_out != NULL)
3972 	donelist_check(&donelist, refobj);
3973 
3974     symlook_global(req, &donelist);
3975 
3976     /* Search all dlopened DAGs containing the referencing object. */
3977     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3978 	if (req->sym_out != NULL &&
3979 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3980 	    break;
3981 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3982 	if (res == 0 && (req->sym_out == NULL ||
3983 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3984 	    req->sym_out = req1.sym_out;
3985 	    req->defobj_out = req1.defobj_out;
3986 	    assert(req->defobj_out != NULL);
3987 	}
3988     }
3989 
3990     /*
3991      * Search the dynamic linker itself, and possibly resolve the
3992      * symbol from there.  This is how the application links to
3993      * dynamic linker services such as dlopen.
3994      */
3995     if (req->sym_out == NULL ||
3996       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3997 	res = symlook_obj(&req1, &obj_rtld);
3998 	if (res == 0) {
3999 	    req->sym_out = req1.sym_out;
4000 	    req->defobj_out = req1.defobj_out;
4001 	    assert(req->defobj_out != NULL);
4002 	}
4003     }
4004 
4005     return (req->sym_out != NULL ? 0 : ESRCH);
4006 }
4007 
4008 static int
4009 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4010 {
4011     const Elf_Sym *def;
4012     const Obj_Entry *defobj;
4013     const Objlist_Entry *elm;
4014     SymLook req1;
4015     int res;
4016 
4017     def = NULL;
4018     defobj = NULL;
4019     STAILQ_FOREACH(elm, objlist, link) {
4020 	if (donelist_check(dlp, elm->obj))
4021 	    continue;
4022 	symlook_init_from_req(&req1, req);
4023 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4024 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4025 		def = req1.sym_out;
4026 		defobj = req1.defobj_out;
4027 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4028 		    break;
4029 	    }
4030 	}
4031     }
4032     if (def != NULL) {
4033 	req->sym_out = def;
4034 	req->defobj_out = defobj;
4035 	return (0);
4036     }
4037     return (ESRCH);
4038 }
4039 
4040 /*
4041  * Search the chain of DAGS cointed to by the given Needed_Entry
4042  * for a symbol of the given name.  Each DAG is scanned completely
4043  * before advancing to the next one.  Returns a pointer to the symbol,
4044  * or NULL if no definition was found.
4045  */
4046 static int
4047 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4048 {
4049     const Elf_Sym *def;
4050     const Needed_Entry *n;
4051     const Obj_Entry *defobj;
4052     SymLook req1;
4053     int res;
4054 
4055     def = NULL;
4056     defobj = NULL;
4057     symlook_init_from_req(&req1, req);
4058     for (n = needed; n != NULL; n = n->next) {
4059 	if (n->obj == NULL ||
4060 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4061 	    continue;
4062 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4063 	    def = req1.sym_out;
4064 	    defobj = req1.defobj_out;
4065 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4066 		break;
4067 	}
4068     }
4069     if (def != NULL) {
4070 	req->sym_out = def;
4071 	req->defobj_out = defobj;
4072 	return (0);
4073     }
4074     return (ESRCH);
4075 }
4076 
4077 /*
4078  * Search the symbol table of a single shared object for a symbol of
4079  * the given name and version, if requested.  Returns a pointer to the
4080  * symbol, or NULL if no definition was found.  If the object is
4081  * filter, return filtered symbol from filtee.
4082  *
4083  * The symbol's hash value is passed in for efficiency reasons; that
4084  * eliminates many recomputations of the hash value.
4085  */
4086 int
4087 symlook_obj(SymLook *req, const Obj_Entry *obj)
4088 {
4089     DoneList donelist;
4090     SymLook req1;
4091     int flags, res, mres;
4092 
4093     /*
4094      * If there is at least one valid hash at this point, we prefer to
4095      * use the faster GNU version if available.
4096      */
4097     if (obj->valid_hash_gnu)
4098 	mres = symlook_obj1_gnu(req, obj);
4099     else if (obj->valid_hash_sysv)
4100 	mres = symlook_obj1_sysv(req, obj);
4101     else
4102 	return (EINVAL);
4103 
4104     if (mres == 0) {
4105 	if (obj->needed_filtees != NULL) {
4106 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4107 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4108 	    donelist_init(&donelist);
4109 	    symlook_init_from_req(&req1, req);
4110 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4111 	    if (res == 0) {
4112 		req->sym_out = req1.sym_out;
4113 		req->defobj_out = req1.defobj_out;
4114 	    }
4115 	    return (res);
4116 	}
4117 	if (obj->needed_aux_filtees != NULL) {
4118 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4119 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4120 	    donelist_init(&donelist);
4121 	    symlook_init_from_req(&req1, req);
4122 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4123 	    if (res == 0) {
4124 		req->sym_out = req1.sym_out;
4125 		req->defobj_out = req1.defobj_out;
4126 		return (res);
4127 	    }
4128 	}
4129     }
4130     return (mres);
4131 }
4132 
4133 /* Symbol match routine common to both hash functions */
4134 static bool
4135 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4136     const unsigned long symnum)
4137 {
4138 	Elf_Versym verndx;
4139 	const Elf_Sym *symp;
4140 	const char *strp;
4141 
4142 	symp = obj->symtab + symnum;
4143 	strp = obj->strtab + symp->st_name;
4144 
4145 	switch (ELF_ST_TYPE(symp->st_info)) {
4146 	case STT_FUNC:
4147 	case STT_NOTYPE:
4148 	case STT_OBJECT:
4149 	case STT_COMMON:
4150 	case STT_GNU_IFUNC:
4151 		if (symp->st_value == 0)
4152 			return (false);
4153 		/* fallthrough */
4154 	case STT_TLS:
4155 		if (symp->st_shndx != SHN_UNDEF)
4156 			break;
4157 #ifndef __mips__
4158 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4159 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4160 			break;
4161 		/* fallthrough */
4162 #endif
4163 	default:
4164 		return (false);
4165 	}
4166 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4167 		return (false);
4168 
4169 	if (req->ventry == NULL) {
4170 		if (obj->versyms != NULL) {
4171 			verndx = VER_NDX(obj->versyms[symnum]);
4172 			if (verndx > obj->vernum) {
4173 				_rtld_error(
4174 				    "%s: symbol %s references wrong version %d",
4175 				    obj->path, obj->strtab + symnum, verndx);
4176 				return (false);
4177 			}
4178 			/*
4179 			 * If we are not called from dlsym (i.e. this
4180 			 * is a normal relocation from unversioned
4181 			 * binary), accept the symbol immediately if
4182 			 * it happens to have first version after this
4183 			 * shared object became versioned.  Otherwise,
4184 			 * if symbol is versioned and not hidden,
4185 			 * remember it. If it is the only symbol with
4186 			 * this name exported by the shared object, it
4187 			 * will be returned as a match by the calling
4188 			 * function. If symbol is global (verndx < 2)
4189 			 * accept it unconditionally.
4190 			 */
4191 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4192 			    verndx == VER_NDX_GIVEN) {
4193 				result->sym_out = symp;
4194 				return (true);
4195 			}
4196 			else if (verndx >= VER_NDX_GIVEN) {
4197 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4198 				    == 0) {
4199 					if (result->vsymp == NULL)
4200 						result->vsymp = symp;
4201 					result->vcount++;
4202 				}
4203 				return (false);
4204 			}
4205 		}
4206 		result->sym_out = symp;
4207 		return (true);
4208 	}
4209 	if (obj->versyms == NULL) {
4210 		if (object_match_name(obj, req->ventry->name)) {
4211 			_rtld_error("%s: object %s should provide version %s "
4212 			    "for symbol %s", obj_rtld.path, obj->path,
4213 			    req->ventry->name, obj->strtab + symnum);
4214 			return (false);
4215 		}
4216 	} else {
4217 		verndx = VER_NDX(obj->versyms[symnum]);
4218 		if (verndx > obj->vernum) {
4219 			_rtld_error("%s: symbol %s references wrong version %d",
4220 			    obj->path, obj->strtab + symnum, verndx);
4221 			return (false);
4222 		}
4223 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4224 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4225 			/*
4226 			 * Version does not match. Look if this is a
4227 			 * global symbol and if it is not hidden. If
4228 			 * global symbol (verndx < 2) is available,
4229 			 * use it. Do not return symbol if we are
4230 			 * called by dlvsym, because dlvsym looks for
4231 			 * a specific version and default one is not
4232 			 * what dlvsym wants.
4233 			 */
4234 			if ((req->flags & SYMLOOK_DLSYM) ||
4235 			    (verndx >= VER_NDX_GIVEN) ||
4236 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4237 				return (false);
4238 		}
4239 	}
4240 	result->sym_out = symp;
4241 	return (true);
4242 }
4243 
4244 /*
4245  * Search for symbol using SysV hash function.
4246  * obj->buckets is known not to be NULL at this point; the test for this was
4247  * performed with the obj->valid_hash_sysv assignment.
4248  */
4249 static int
4250 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4251 {
4252 	unsigned long symnum;
4253 	Sym_Match_Result matchres;
4254 
4255 	matchres.sym_out = NULL;
4256 	matchres.vsymp = NULL;
4257 	matchres.vcount = 0;
4258 
4259 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4260 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4261 		if (symnum >= obj->nchains)
4262 			return (ESRCH);	/* Bad object */
4263 
4264 		if (matched_symbol(req, obj, &matchres, symnum)) {
4265 			req->sym_out = matchres.sym_out;
4266 			req->defobj_out = obj;
4267 			return (0);
4268 		}
4269 	}
4270 	if (matchres.vcount == 1) {
4271 		req->sym_out = matchres.vsymp;
4272 		req->defobj_out = obj;
4273 		return (0);
4274 	}
4275 	return (ESRCH);
4276 }
4277 
4278 /* Search for symbol using GNU hash function */
4279 static int
4280 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4281 {
4282 	Elf_Addr bloom_word;
4283 	const Elf32_Word *hashval;
4284 	Elf32_Word bucket;
4285 	Sym_Match_Result matchres;
4286 	unsigned int h1, h2;
4287 	unsigned long symnum;
4288 
4289 	matchres.sym_out = NULL;
4290 	matchres.vsymp = NULL;
4291 	matchres.vcount = 0;
4292 
4293 	/* Pick right bitmask word from Bloom filter array */
4294 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4295 	    obj->maskwords_bm_gnu];
4296 
4297 	/* Calculate modulus word size of gnu hash and its derivative */
4298 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4299 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4300 
4301 	/* Filter out the "definitely not in set" queries */
4302 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4303 		return (ESRCH);
4304 
4305 	/* Locate hash chain and corresponding value element*/
4306 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4307 	if (bucket == 0)
4308 		return (ESRCH);
4309 	hashval = &obj->chain_zero_gnu[bucket];
4310 	do {
4311 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4312 			symnum = hashval - obj->chain_zero_gnu;
4313 			if (matched_symbol(req, obj, &matchres, symnum)) {
4314 				req->sym_out = matchres.sym_out;
4315 				req->defobj_out = obj;
4316 				return (0);
4317 			}
4318 		}
4319 	} while ((*hashval++ & 1) == 0);
4320 	if (matchres.vcount == 1) {
4321 		req->sym_out = matchres.vsymp;
4322 		req->defobj_out = obj;
4323 		return (0);
4324 	}
4325 	return (ESRCH);
4326 }
4327 
4328 static void
4329 trace_loaded_objects(Obj_Entry *obj)
4330 {
4331     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4332     int		c;
4333 
4334     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4335 	main_local = "";
4336 
4337     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4338 	fmt1 = "\t%o => %p (%x)\n";
4339 
4340     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4341 	fmt2 = "\t%o (%x)\n";
4342 
4343     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4344 
4345     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4346 	Needed_Entry		*needed;
4347 	char			*name, *path;
4348 	bool			is_lib;
4349 
4350 	if (obj->marker)
4351 	    continue;
4352 	if (list_containers && obj->needed != NULL)
4353 	    rtld_printf("%s:\n", obj->path);
4354 	for (needed = obj->needed; needed; needed = needed->next) {
4355 	    if (needed->obj != NULL) {
4356 		if (needed->obj->traced && !list_containers)
4357 		    continue;
4358 		needed->obj->traced = true;
4359 		path = needed->obj->path;
4360 	    } else
4361 		path = "not found";
4362 
4363 	    name = (char *)obj->strtab + needed->name;
4364 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4365 
4366 	    fmt = is_lib ? fmt1 : fmt2;
4367 	    while ((c = *fmt++) != '\0') {
4368 		switch (c) {
4369 		default:
4370 		    rtld_putchar(c);
4371 		    continue;
4372 		case '\\':
4373 		    switch (c = *fmt) {
4374 		    case '\0':
4375 			continue;
4376 		    case 'n':
4377 			rtld_putchar('\n');
4378 			break;
4379 		    case 't':
4380 			rtld_putchar('\t');
4381 			break;
4382 		    }
4383 		    break;
4384 		case '%':
4385 		    switch (c = *fmt) {
4386 		    case '\0':
4387 			continue;
4388 		    case '%':
4389 		    default:
4390 			rtld_putchar(c);
4391 			break;
4392 		    case 'A':
4393 			rtld_putstr(main_local);
4394 			break;
4395 		    case 'a':
4396 			rtld_putstr(obj_main->path);
4397 			break;
4398 		    case 'o':
4399 			rtld_putstr(name);
4400 			break;
4401 #if 0
4402 		    case 'm':
4403 			rtld_printf("%d", sodp->sod_major);
4404 			break;
4405 		    case 'n':
4406 			rtld_printf("%d", sodp->sod_minor);
4407 			break;
4408 #endif
4409 		    case 'p':
4410 			rtld_putstr(path);
4411 			break;
4412 		    case 'x':
4413 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4414 			  0);
4415 			break;
4416 		    }
4417 		    break;
4418 		}
4419 		++fmt;
4420 	    }
4421 	}
4422     }
4423 }
4424 
4425 /*
4426  * Unload a dlopened object and its dependencies from memory and from
4427  * our data structures.  It is assumed that the DAG rooted in the
4428  * object has already been unreferenced, and that the object has a
4429  * reference count of 0.
4430  */
4431 static void
4432 unload_object(Obj_Entry *root)
4433 {
4434 	Obj_Entry marker, *obj, *next;
4435 
4436 	assert(root->refcount == 0);
4437 
4438 	/*
4439 	 * Pass over the DAG removing unreferenced objects from
4440 	 * appropriate lists.
4441 	 */
4442 	unlink_object(root);
4443 
4444 	/* Unmap all objects that are no longer referenced. */
4445 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4446 		next = TAILQ_NEXT(obj, next);
4447 		if (obj->marker || obj->refcount != 0)
4448 			continue;
4449 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4450 		    obj->mapsize, 0, obj->path);
4451 		dbg("unloading \"%s\"", obj->path);
4452 		/*
4453 		 * Unlink the object now to prevent new references from
4454 		 * being acquired while the bind lock is dropped in
4455 		 * recursive dlclose() invocations.
4456 		 */
4457 		TAILQ_REMOVE(&obj_list, obj, next);
4458 		obj_count--;
4459 
4460 		if (obj->filtees_loaded) {
4461 			if (next != NULL) {
4462 				init_marker(&marker);
4463 				TAILQ_INSERT_BEFORE(next, &marker, next);
4464 				unload_filtees(obj);
4465 				next = TAILQ_NEXT(&marker, next);
4466 				TAILQ_REMOVE(&obj_list, &marker, next);
4467 			} else
4468 				unload_filtees(obj);
4469 		}
4470 		release_object(obj);
4471 	}
4472 }
4473 
4474 static void
4475 unlink_object(Obj_Entry *root)
4476 {
4477     Objlist_Entry *elm;
4478 
4479     if (root->refcount == 0) {
4480 	/* Remove the object from the RTLD_GLOBAL list. */
4481 	objlist_remove(&list_global, root);
4482 
4483     	/* Remove the object from all objects' DAG lists. */
4484     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4485 	    objlist_remove(&elm->obj->dldags, root);
4486 	    if (elm->obj != root)
4487 		unlink_object(elm->obj);
4488 	}
4489     }
4490 }
4491 
4492 static void
4493 ref_dag(Obj_Entry *root)
4494 {
4495     Objlist_Entry *elm;
4496 
4497     assert(root->dag_inited);
4498     STAILQ_FOREACH(elm, &root->dagmembers, link)
4499 	elm->obj->refcount++;
4500 }
4501 
4502 static void
4503 unref_dag(Obj_Entry *root)
4504 {
4505     Objlist_Entry *elm;
4506 
4507     assert(root->dag_inited);
4508     STAILQ_FOREACH(elm, &root->dagmembers, link)
4509 	elm->obj->refcount--;
4510 }
4511 
4512 /*
4513  * Common code for MD __tls_get_addr().
4514  */
4515 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4516 static void *
4517 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4518 {
4519     Elf_Addr *newdtv, *dtv;
4520     RtldLockState lockstate;
4521     int to_copy;
4522 
4523     dtv = *dtvp;
4524     /* Check dtv generation in case new modules have arrived */
4525     if (dtv[0] != tls_dtv_generation) {
4526 	wlock_acquire(rtld_bind_lock, &lockstate);
4527 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4528 	to_copy = dtv[1];
4529 	if (to_copy > tls_max_index)
4530 	    to_copy = tls_max_index;
4531 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4532 	newdtv[0] = tls_dtv_generation;
4533 	newdtv[1] = tls_max_index;
4534 	free(dtv);
4535 	lock_release(rtld_bind_lock, &lockstate);
4536 	dtv = *dtvp = newdtv;
4537     }
4538 
4539     /* Dynamically allocate module TLS if necessary */
4540     if (dtv[index + 1] == 0) {
4541 	/* Signal safe, wlock will block out signals. */
4542 	wlock_acquire(rtld_bind_lock, &lockstate);
4543 	if (!dtv[index + 1])
4544 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4545 	lock_release(rtld_bind_lock, &lockstate);
4546     }
4547     return ((void *)(dtv[index + 1] + offset));
4548 }
4549 
4550 void *
4551 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4552 {
4553 	Elf_Addr *dtv;
4554 
4555 	dtv = *dtvp;
4556 	/* Check dtv generation in case new modules have arrived */
4557 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4558 	    dtv[index + 1] != 0))
4559 		return ((void *)(dtv[index + 1] + offset));
4560 	return (tls_get_addr_slow(dtvp, index, offset));
4561 }
4562 
4563 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4564     defined(__powerpc__) || defined(__riscv__)
4565 
4566 /*
4567  * Allocate Static TLS using the Variant I method.
4568  */
4569 void *
4570 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4571 {
4572     Obj_Entry *obj;
4573     char *tcb;
4574     Elf_Addr **tls;
4575     Elf_Addr *dtv;
4576     Elf_Addr addr;
4577     int i;
4578 
4579     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4580 	return (oldtcb);
4581 
4582     assert(tcbsize >= TLS_TCB_SIZE);
4583     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4584     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4585 
4586     if (oldtcb != NULL) {
4587 	memcpy(tls, oldtcb, tls_static_space);
4588 	free(oldtcb);
4589 
4590 	/* Adjust the DTV. */
4591 	dtv = tls[0];
4592 	for (i = 0; i < dtv[1]; i++) {
4593 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4594 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4595 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4596 	    }
4597 	}
4598     } else {
4599 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4600 	tls[0] = dtv;
4601 	dtv[0] = tls_dtv_generation;
4602 	dtv[1] = tls_max_index;
4603 
4604 	for (obj = globallist_curr(objs); obj != NULL;
4605 	  obj = globallist_next(obj)) {
4606 	    if (obj->tlsoffset > 0) {
4607 		addr = (Elf_Addr)tls + obj->tlsoffset;
4608 		if (obj->tlsinitsize > 0)
4609 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4610 		if (obj->tlssize > obj->tlsinitsize)
4611 		    memset((void*) (addr + obj->tlsinitsize), 0,
4612 			   obj->tlssize - obj->tlsinitsize);
4613 		dtv[obj->tlsindex + 1] = addr;
4614 	    }
4615 	}
4616     }
4617 
4618     return (tcb);
4619 }
4620 
4621 void
4622 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4623 {
4624     Elf_Addr *dtv;
4625     Elf_Addr tlsstart, tlsend;
4626     int dtvsize, i;
4627 
4628     assert(tcbsize >= TLS_TCB_SIZE);
4629 
4630     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4631     tlsend = tlsstart + tls_static_space;
4632 
4633     dtv = *(Elf_Addr **)tlsstart;
4634     dtvsize = dtv[1];
4635     for (i = 0; i < dtvsize; i++) {
4636 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4637 	    free((void*)dtv[i+2]);
4638 	}
4639     }
4640     free(dtv);
4641     free(tcb);
4642 }
4643 
4644 #endif
4645 
4646 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4647 
4648 /*
4649  * Allocate Static TLS using the Variant II method.
4650  */
4651 void *
4652 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4653 {
4654     Obj_Entry *obj;
4655     size_t size, ralign;
4656     char *tls;
4657     Elf_Addr *dtv, *olddtv;
4658     Elf_Addr segbase, oldsegbase, addr;
4659     int i;
4660 
4661     ralign = tcbalign;
4662     if (tls_static_max_align > ralign)
4663 	    ralign = tls_static_max_align;
4664     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4665 
4666     assert(tcbsize >= 2*sizeof(Elf_Addr));
4667     tls = malloc_aligned(size, ralign);
4668     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4669 
4670     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4671     ((Elf_Addr*)segbase)[0] = segbase;
4672     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4673 
4674     dtv[0] = tls_dtv_generation;
4675     dtv[1] = tls_max_index;
4676 
4677     if (oldtls) {
4678 	/*
4679 	 * Copy the static TLS block over whole.
4680 	 */
4681 	oldsegbase = (Elf_Addr) oldtls;
4682 	memcpy((void *)(segbase - tls_static_space),
4683 	       (const void *)(oldsegbase - tls_static_space),
4684 	       tls_static_space);
4685 
4686 	/*
4687 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4688 	 * move them over.
4689 	 */
4690 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4691 	for (i = 0; i < olddtv[1]; i++) {
4692 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4693 		dtv[i+2] = olddtv[i+2];
4694 		olddtv[i+2] = 0;
4695 	    }
4696 	}
4697 
4698 	/*
4699 	 * We assume that this block was the one we created with
4700 	 * allocate_initial_tls().
4701 	 */
4702 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4703     } else {
4704 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4705 		if (obj->marker || obj->tlsoffset == 0)
4706 			continue;
4707 		addr = segbase - obj->tlsoffset;
4708 		memset((void*) (addr + obj->tlsinitsize),
4709 		       0, obj->tlssize - obj->tlsinitsize);
4710 		if (obj->tlsinit)
4711 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4712 		dtv[obj->tlsindex + 1] = addr;
4713 	}
4714     }
4715 
4716     return (void*) segbase;
4717 }
4718 
4719 void
4720 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4721 {
4722     Elf_Addr* dtv;
4723     size_t size, ralign;
4724     int dtvsize, i;
4725     Elf_Addr tlsstart, tlsend;
4726 
4727     /*
4728      * Figure out the size of the initial TLS block so that we can
4729      * find stuff which ___tls_get_addr() allocated dynamically.
4730      */
4731     ralign = tcbalign;
4732     if (tls_static_max_align > ralign)
4733 	    ralign = tls_static_max_align;
4734     size = round(tls_static_space, ralign);
4735 
4736     dtv = ((Elf_Addr**)tls)[1];
4737     dtvsize = dtv[1];
4738     tlsend = (Elf_Addr) tls;
4739     tlsstart = tlsend - size;
4740     for (i = 0; i < dtvsize; i++) {
4741 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4742 		free_aligned((void *)dtv[i + 2]);
4743 	}
4744     }
4745 
4746     free_aligned((void *)tlsstart);
4747     free((void*) dtv);
4748 }
4749 
4750 #endif
4751 
4752 /*
4753  * Allocate TLS block for module with given index.
4754  */
4755 void *
4756 allocate_module_tls(int index)
4757 {
4758     Obj_Entry* obj;
4759     char* p;
4760 
4761     TAILQ_FOREACH(obj, &obj_list, next) {
4762 	if (obj->marker)
4763 	    continue;
4764 	if (obj->tlsindex == index)
4765 	    break;
4766     }
4767     if (!obj) {
4768 	_rtld_error("Can't find module with TLS index %d", index);
4769 	rtld_die();
4770     }
4771 
4772     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4773     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4774     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4775 
4776     return p;
4777 }
4778 
4779 bool
4780 allocate_tls_offset(Obj_Entry *obj)
4781 {
4782     size_t off;
4783 
4784     if (obj->tls_done)
4785 	return true;
4786 
4787     if (obj->tlssize == 0) {
4788 	obj->tls_done = true;
4789 	return true;
4790     }
4791 
4792     if (tls_last_offset == 0)
4793 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4794     else
4795 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4796 				   obj->tlssize, obj->tlsalign);
4797 
4798     /*
4799      * If we have already fixed the size of the static TLS block, we
4800      * must stay within that size. When allocating the static TLS, we
4801      * leave a small amount of space spare to be used for dynamically
4802      * loading modules which use static TLS.
4803      */
4804     if (tls_static_space != 0) {
4805 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4806 	    return false;
4807     } else if (obj->tlsalign > tls_static_max_align) {
4808 	    tls_static_max_align = obj->tlsalign;
4809     }
4810 
4811     tls_last_offset = obj->tlsoffset = off;
4812     tls_last_size = obj->tlssize;
4813     obj->tls_done = true;
4814 
4815     return true;
4816 }
4817 
4818 void
4819 free_tls_offset(Obj_Entry *obj)
4820 {
4821 
4822     /*
4823      * If we were the last thing to allocate out of the static TLS
4824      * block, we give our space back to the 'allocator'. This is a
4825      * simplistic workaround to allow libGL.so.1 to be loaded and
4826      * unloaded multiple times.
4827      */
4828     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4829 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4830 	tls_last_offset -= obj->tlssize;
4831 	tls_last_size = 0;
4832     }
4833 }
4834 
4835 void *
4836 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4837 {
4838     void *ret;
4839     RtldLockState lockstate;
4840 
4841     wlock_acquire(rtld_bind_lock, &lockstate);
4842     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4843       tcbsize, tcbalign);
4844     lock_release(rtld_bind_lock, &lockstate);
4845     return (ret);
4846 }
4847 
4848 void
4849 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4850 {
4851     RtldLockState lockstate;
4852 
4853     wlock_acquire(rtld_bind_lock, &lockstate);
4854     free_tls(tcb, tcbsize, tcbalign);
4855     lock_release(rtld_bind_lock, &lockstate);
4856 }
4857 
4858 static void
4859 object_add_name(Obj_Entry *obj, const char *name)
4860 {
4861     Name_Entry *entry;
4862     size_t len;
4863 
4864     len = strlen(name);
4865     entry = malloc(sizeof(Name_Entry) + len);
4866 
4867     if (entry != NULL) {
4868 	strcpy(entry->name, name);
4869 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4870     }
4871 }
4872 
4873 static int
4874 object_match_name(const Obj_Entry *obj, const char *name)
4875 {
4876     Name_Entry *entry;
4877 
4878     STAILQ_FOREACH(entry, &obj->names, link) {
4879 	if (strcmp(name, entry->name) == 0)
4880 	    return (1);
4881     }
4882     return (0);
4883 }
4884 
4885 static Obj_Entry *
4886 locate_dependency(const Obj_Entry *obj, const char *name)
4887 {
4888     const Objlist_Entry *entry;
4889     const Needed_Entry *needed;
4890 
4891     STAILQ_FOREACH(entry, &list_main, link) {
4892 	if (object_match_name(entry->obj, name))
4893 	    return entry->obj;
4894     }
4895 
4896     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4897 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4898 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4899 	    /*
4900 	     * If there is DT_NEEDED for the name we are looking for,
4901 	     * we are all set.  Note that object might not be found if
4902 	     * dependency was not loaded yet, so the function can
4903 	     * return NULL here.  This is expected and handled
4904 	     * properly by the caller.
4905 	     */
4906 	    return (needed->obj);
4907 	}
4908     }
4909     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4910 	obj->path, name);
4911     rtld_die();
4912 }
4913 
4914 static int
4915 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4916     const Elf_Vernaux *vna)
4917 {
4918     const Elf_Verdef *vd;
4919     const char *vername;
4920 
4921     vername = refobj->strtab + vna->vna_name;
4922     vd = depobj->verdef;
4923     if (vd == NULL) {
4924 	_rtld_error("%s: version %s required by %s not defined",
4925 	    depobj->path, vername, refobj->path);
4926 	return (-1);
4927     }
4928     for (;;) {
4929 	if (vd->vd_version != VER_DEF_CURRENT) {
4930 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4931 		depobj->path, vd->vd_version);
4932 	    return (-1);
4933 	}
4934 	if (vna->vna_hash == vd->vd_hash) {
4935 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4936 		((char *)vd + vd->vd_aux);
4937 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4938 		return (0);
4939 	}
4940 	if (vd->vd_next == 0)
4941 	    break;
4942 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4943     }
4944     if (vna->vna_flags & VER_FLG_WEAK)
4945 	return (0);
4946     _rtld_error("%s: version %s required by %s not found",
4947 	depobj->path, vername, refobj->path);
4948     return (-1);
4949 }
4950 
4951 static int
4952 rtld_verify_object_versions(Obj_Entry *obj)
4953 {
4954     const Elf_Verneed *vn;
4955     const Elf_Verdef  *vd;
4956     const Elf_Verdaux *vda;
4957     const Elf_Vernaux *vna;
4958     const Obj_Entry *depobj;
4959     int maxvernum, vernum;
4960 
4961     if (obj->ver_checked)
4962 	return (0);
4963     obj->ver_checked = true;
4964 
4965     maxvernum = 0;
4966     /*
4967      * Walk over defined and required version records and figure out
4968      * max index used by any of them. Do very basic sanity checking
4969      * while there.
4970      */
4971     vn = obj->verneed;
4972     while (vn != NULL) {
4973 	if (vn->vn_version != VER_NEED_CURRENT) {
4974 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4975 		obj->path, vn->vn_version);
4976 	    return (-1);
4977 	}
4978 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4979 	for (;;) {
4980 	    vernum = VER_NEED_IDX(vna->vna_other);
4981 	    if (vernum > maxvernum)
4982 		maxvernum = vernum;
4983 	    if (vna->vna_next == 0)
4984 		 break;
4985 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4986 	}
4987 	if (vn->vn_next == 0)
4988 	    break;
4989 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4990     }
4991 
4992     vd = obj->verdef;
4993     while (vd != NULL) {
4994 	if (vd->vd_version != VER_DEF_CURRENT) {
4995 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4996 		obj->path, vd->vd_version);
4997 	    return (-1);
4998 	}
4999 	vernum = VER_DEF_IDX(vd->vd_ndx);
5000 	if (vernum > maxvernum)
5001 		maxvernum = vernum;
5002 	if (vd->vd_next == 0)
5003 	    break;
5004 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5005     }
5006 
5007     if (maxvernum == 0)
5008 	return (0);
5009 
5010     /*
5011      * Store version information in array indexable by version index.
5012      * Verify that object version requirements are satisfied along the
5013      * way.
5014      */
5015     obj->vernum = maxvernum + 1;
5016     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5017 
5018     vd = obj->verdef;
5019     while (vd != NULL) {
5020 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5021 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5022 	    assert(vernum <= maxvernum);
5023 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5024 	    obj->vertab[vernum].hash = vd->vd_hash;
5025 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5026 	    obj->vertab[vernum].file = NULL;
5027 	    obj->vertab[vernum].flags = 0;
5028 	}
5029 	if (vd->vd_next == 0)
5030 	    break;
5031 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5032     }
5033 
5034     vn = obj->verneed;
5035     while (vn != NULL) {
5036 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5037 	if (depobj == NULL)
5038 	    return (-1);
5039 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5040 	for (;;) {
5041 	    if (check_object_provided_version(obj, depobj, vna))
5042 		return (-1);
5043 	    vernum = VER_NEED_IDX(vna->vna_other);
5044 	    assert(vernum <= maxvernum);
5045 	    obj->vertab[vernum].hash = vna->vna_hash;
5046 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5047 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5048 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5049 		VER_INFO_HIDDEN : 0;
5050 	    if (vna->vna_next == 0)
5051 		 break;
5052 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5053 	}
5054 	if (vn->vn_next == 0)
5055 	    break;
5056 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5057     }
5058     return 0;
5059 }
5060 
5061 static int
5062 rtld_verify_versions(const Objlist *objlist)
5063 {
5064     Objlist_Entry *entry;
5065     int rc;
5066 
5067     rc = 0;
5068     STAILQ_FOREACH(entry, objlist, link) {
5069 	/*
5070 	 * Skip dummy objects or objects that have their version requirements
5071 	 * already checked.
5072 	 */
5073 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5074 	    continue;
5075 	if (rtld_verify_object_versions(entry->obj) == -1) {
5076 	    rc = -1;
5077 	    if (ld_tracing == NULL)
5078 		break;
5079 	}
5080     }
5081     if (rc == 0 || ld_tracing != NULL)
5082     	rc = rtld_verify_object_versions(&obj_rtld);
5083     return rc;
5084 }
5085 
5086 const Ver_Entry *
5087 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5088 {
5089     Elf_Versym vernum;
5090 
5091     if (obj->vertab) {
5092 	vernum = VER_NDX(obj->versyms[symnum]);
5093 	if (vernum >= obj->vernum) {
5094 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5095 		obj->path, obj->strtab + symnum, vernum);
5096 	} else if (obj->vertab[vernum].hash != 0) {
5097 	    return &obj->vertab[vernum];
5098 	}
5099     }
5100     return NULL;
5101 }
5102 
5103 int
5104 _rtld_get_stack_prot(void)
5105 {
5106 
5107 	return (stack_prot);
5108 }
5109 
5110 int
5111 _rtld_is_dlopened(void *arg)
5112 {
5113 	Obj_Entry *obj;
5114 	RtldLockState lockstate;
5115 	int res;
5116 
5117 	rlock_acquire(rtld_bind_lock, &lockstate);
5118 	obj = dlcheck(arg);
5119 	if (obj == NULL)
5120 		obj = obj_from_addr(arg);
5121 	if (obj == NULL) {
5122 		_rtld_error("No shared object contains address");
5123 		lock_release(rtld_bind_lock, &lockstate);
5124 		return (-1);
5125 	}
5126 	res = obj->dlopened ? 1 : 0;
5127 	lock_release(rtld_bind_lock, &lockstate);
5128 	return (res);
5129 }
5130 
5131 int
5132 obj_enforce_relro(Obj_Entry *obj)
5133 {
5134 
5135 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5136 	    PROT_READ) == -1) {
5137 		_rtld_error("%s: Cannot enforce relro protection: %s",
5138 		    obj->path, rtld_strerror(errno));
5139 		return (-1);
5140 	}
5141 	return (0);
5142 }
5143 
5144 static void
5145 map_stacks_exec(RtldLockState *lockstate)
5146 {
5147 	void (*thr_map_stacks_exec)(void);
5148 
5149 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5150 		return;
5151 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5152 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5153 	if (thr_map_stacks_exec != NULL) {
5154 		stack_prot |= PROT_EXEC;
5155 		thr_map_stacks_exec();
5156 	}
5157 }
5158 
5159 void
5160 symlook_init(SymLook *dst, const char *name)
5161 {
5162 
5163 	bzero(dst, sizeof(*dst));
5164 	dst->name = name;
5165 	dst->hash = elf_hash(name);
5166 	dst->hash_gnu = gnu_hash(name);
5167 }
5168 
5169 static void
5170 symlook_init_from_req(SymLook *dst, const SymLook *src)
5171 {
5172 
5173 	dst->name = src->name;
5174 	dst->hash = src->hash;
5175 	dst->hash_gnu = src->hash_gnu;
5176 	dst->ventry = src->ventry;
5177 	dst->flags = src->flags;
5178 	dst->defobj_out = NULL;
5179 	dst->sym_out = NULL;
5180 	dst->lockstate = src->lockstate;
5181 }
5182 
5183 
5184 /*
5185  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5186  */
5187 static int
5188 parse_libdir(const char *str)
5189 {
5190 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5191 	const char *orig;
5192 	int fd;
5193 	char c;
5194 
5195 	orig = str;
5196 	fd = 0;
5197 	for (c = *str; c != '\0'; c = *++str) {
5198 		if (c < '0' || c > '9')
5199 			return (-1);
5200 
5201 		fd *= RADIX;
5202 		fd += c - '0';
5203 	}
5204 
5205 	/* Make sure we actually parsed something. */
5206 	if (str == orig) {
5207 		_rtld_error("failed to parse directory FD from '%s'", str);
5208 		return (-1);
5209 	}
5210 	return (fd);
5211 }
5212 
5213 /*
5214  * Overrides for libc_pic-provided functions.
5215  */
5216 
5217 int
5218 __getosreldate(void)
5219 {
5220 	size_t len;
5221 	int oid[2];
5222 	int error, osrel;
5223 
5224 	if (osreldate != 0)
5225 		return (osreldate);
5226 
5227 	oid[0] = CTL_KERN;
5228 	oid[1] = KERN_OSRELDATE;
5229 	osrel = 0;
5230 	len = sizeof(osrel);
5231 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5232 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5233 		osreldate = osrel;
5234 	return (osreldate);
5235 }
5236 
5237 void
5238 exit(int status)
5239 {
5240 
5241 	_exit(status);
5242 }
5243 
5244 void (*__cleanup)(void);
5245 int __isthreaded = 0;
5246 int _thread_autoinit_dummy_decl = 1;
5247 
5248 /*
5249  * No unresolved symbols for rtld.
5250  */
5251 void
5252 __pthread_cxa_finalize(struct dl_phdr_info *a)
5253 {
5254 }
5255 
5256 void
5257 __stack_chk_fail(void)
5258 {
5259 
5260 	_rtld_error("stack overflow detected; terminated");
5261 	rtld_die();
5262 }
5263 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5264 
5265 void
5266 __chk_fail(void)
5267 {
5268 
5269 	_rtld_error("buffer overflow detected; terminated");
5270 	rtld_die();
5271 }
5272 
5273 const char *
5274 rtld_strerror(int errnum)
5275 {
5276 
5277 	if (errnum < 0 || errnum >= sys_nerr)
5278 		return ("Unknown error");
5279 	return (sys_errlist[errnum]);
5280 }
5281