xref: /freebsd/libexec/rtld-elf/rtld.c (revision 41840d75)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_remove(Objlist *, Obj_Entry *);
120 static void *path_enumerate(const char *, path_enum_proc, void *);
121 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
122     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
123 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
124     int flags, RtldLockState *lockstate);
125 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
126     RtldLockState *);
127 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
128     int flags, RtldLockState *lockstate);
129 static int rtld_dirname(const char *, char *);
130 static int rtld_dirname_abs(const char *, char *);
131 static void *rtld_dlopen(const char *name, int fd, int mode);
132 static void rtld_exit(void);
133 static char *search_library_path(const char *, const char *);
134 static const void **get_program_var_addr(const char *, RtldLockState *);
135 static void set_program_var(const char *, const void *);
136 static int symlook_default(SymLook *, const Obj_Entry *refobj);
137 static int symlook_global(SymLook *, DoneList *);
138 static void symlook_init_from_req(SymLook *, const SymLook *);
139 static int symlook_list(SymLook *, const Objlist *, DoneList *);
140 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
141 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
142 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
143 static void trace_loaded_objects(Obj_Entry *);
144 static void unlink_object(Obj_Entry *);
145 static void unload_object(Obj_Entry *);
146 static void unref_dag(Obj_Entry *);
147 static void ref_dag(Obj_Entry *);
148 static char *origin_subst_one(char *, const char *, const char *, bool);
149 static char *origin_subst(char *, const char *);
150 static void preinit_main(void);
151 static int  rtld_verify_versions(const Objlist *);
152 static int  rtld_verify_object_versions(Obj_Entry *);
153 static void object_add_name(Obj_Entry *, const char *);
154 static int  object_match_name(const Obj_Entry *, const char *);
155 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
156 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
157     struct dl_phdr_info *phdr_info);
158 static uint32_t gnu_hash(const char *);
159 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
160     const unsigned long);
161 
162 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
163 
164 /*
165  * Data declarations.
166  */
167 static char *error_message;	/* Message for dlerror(), or NULL */
168 struct r_debug r_debug;		/* for GDB; */
169 static bool libmap_disable;	/* Disable libmap */
170 static bool ld_loadfltr;	/* Immediate filters processing */
171 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172 static bool trust;		/* False for setuid and setgid programs */
173 static bool dangerous_ld_env;	/* True if environment variables have been
174 				   used to affect the libraries loaded */
175 static char *ld_bind_now;	/* Environment variable for immediate binding */
176 static char *ld_debug;		/* Environment variable for debugging */
177 static char *ld_library_path;	/* Environment variable for search path */
178 static char *ld_preload;	/* Environment variable for libraries to
179 				   load first */
180 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181 static char *ld_tracing;	/* Called from ldd to print libs */
182 static char *ld_utrace;		/* Use utrace() to log events. */
183 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
184 static Obj_Entry **obj_tail;	/* Link field of last object in list */
185 static Obj_Entry *obj_main;	/* The main program shared object */
186 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187 static unsigned int obj_count;	/* Number of objects in obj_list */
188 static unsigned int obj_loads;	/* Number of objects in obj_list */
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 int osreldate, pagesize;
208 
209 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
210 
211 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
212 static int max_stack_flags;
213 
214 /*
215  * Global declarations normally provided by crt1.  The dynamic linker is
216  * not built with crt1, so we have to provide them ourselves.
217  */
218 char *__progname;
219 char **environ;
220 
221 /*
222  * Used to pass argc, argv to init functions.
223  */
224 int main_argc;
225 char **main_argv;
226 
227 /*
228  * Globals to control TLS allocation.
229  */
230 size_t tls_last_offset;		/* Static TLS offset of last module */
231 size_t tls_last_size;		/* Static TLS size of last module */
232 size_t tls_static_space;	/* Static TLS space allocated */
233 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
234 int tls_max_index = 1;		/* Largest module index allocated */
235 
236 bool ld_library_path_rpath = false;
237 
238 /*
239  * Fill in a DoneList with an allocation large enough to hold all of
240  * the currently-loaded objects.  Keep this as a macro since it calls
241  * alloca and we want that to occur within the scope of the caller.
242  */
243 #define donelist_init(dlp)					\
244     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
245     assert((dlp)->objs != NULL),				\
246     (dlp)->num_alloc = obj_count,				\
247     (dlp)->num_used = 0)
248 
249 #define	UTRACE_DLOPEN_START		1
250 #define	UTRACE_DLOPEN_STOP		2
251 #define	UTRACE_DLCLOSE_START		3
252 #define	UTRACE_DLCLOSE_STOP		4
253 #define	UTRACE_LOAD_OBJECT		5
254 #define	UTRACE_UNLOAD_OBJECT		6
255 #define	UTRACE_ADD_RUNDEP		7
256 #define	UTRACE_PRELOAD_FINISHED		8
257 #define	UTRACE_INIT_CALL		9
258 #define	UTRACE_FINI_CALL		10
259 
260 struct utrace_rtld {
261 	char sig[4];			/* 'RTLD' */
262 	int event;
263 	void *handle;
264 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
265 	size_t mapsize;
266 	int refcnt;			/* Used for 'mode' */
267 	char name[MAXPATHLEN];
268 };
269 
270 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
271 	if (ld_utrace != NULL)					\
272 		ld_utrace_log(e, h, mb, ms, r, n);		\
273 } while (0)
274 
275 static void
276 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
277     int refcnt, const char *name)
278 {
279 	struct utrace_rtld ut;
280 
281 	ut.sig[0] = 'R';
282 	ut.sig[1] = 'T';
283 	ut.sig[2] = 'L';
284 	ut.sig[3] = 'D';
285 	ut.event = event;
286 	ut.handle = handle;
287 	ut.mapbase = mapbase;
288 	ut.mapsize = mapsize;
289 	ut.refcnt = refcnt;
290 	bzero(ut.name, sizeof(ut.name));
291 	if (name)
292 		strlcpy(ut.name, name, sizeof(ut.name));
293 	utrace(&ut, sizeof(ut));
294 }
295 
296 /*
297  * Main entry point for dynamic linking.  The first argument is the
298  * stack pointer.  The stack is expected to be laid out as described
299  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
300  * Specifically, the stack pointer points to a word containing
301  * ARGC.  Following that in the stack is a null-terminated sequence
302  * of pointers to argument strings.  Then comes a null-terminated
303  * sequence of pointers to environment strings.  Finally, there is a
304  * sequence of "auxiliary vector" entries.
305  *
306  * The second argument points to a place to store the dynamic linker's
307  * exit procedure pointer and the third to a place to store the main
308  * program's object.
309  *
310  * The return value is the main program's entry point.
311  */
312 func_ptr_type
313 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
314 {
315     Elf_Auxinfo *aux_info[AT_COUNT];
316     int i;
317     int argc;
318     char **argv;
319     char **env;
320     Elf_Auxinfo *aux;
321     Elf_Auxinfo *auxp;
322     const char *argv0;
323     Objlist_Entry *entry;
324     Obj_Entry *obj;
325     Obj_Entry **preload_tail;
326     Objlist initlist;
327     RtldLockState lockstate;
328     char *library_path_rpath;
329     int mib[2];
330     size_t len;
331 
332     /*
333      * On entry, the dynamic linker itself has not been relocated yet.
334      * Be very careful not to reference any global data until after
335      * init_rtld has returned.  It is OK to reference file-scope statics
336      * and string constants, and to call static and global functions.
337      */
338 
339     /* Find the auxiliary vector on the stack. */
340     argc = *sp++;
341     argv = (char **) sp;
342     sp += argc + 1;	/* Skip over arguments and NULL terminator */
343     env = (char **) sp;
344     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
345 	;
346     aux = (Elf_Auxinfo *) sp;
347 
348     /* Digest the auxiliary vector. */
349     for (i = 0;  i < AT_COUNT;  i++)
350 	aux_info[i] = NULL;
351     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
352 	if (auxp->a_type < AT_COUNT)
353 	    aux_info[auxp->a_type] = auxp;
354     }
355 
356     /* Initialize and relocate ourselves. */
357     assert(aux_info[AT_BASE] != NULL);
358     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
359 
360     __progname = obj_rtld.path;
361     argv0 = argv[0] != NULL ? argv[0] : "(null)";
362     environ = env;
363     main_argc = argc;
364     main_argv = argv;
365 
366     if (aux_info[AT_CANARY] != NULL &&
367 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
368 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
369 	    if (i > sizeof(__stack_chk_guard))
370 		    i = sizeof(__stack_chk_guard);
371 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
372     } else {
373 	mib[0] = CTL_KERN;
374 	mib[1] = KERN_ARND;
375 
376 	len = sizeof(__stack_chk_guard);
377 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
378 	    len != sizeof(__stack_chk_guard)) {
379 		/* If sysctl was unsuccessful, use the "terminator canary". */
380 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
381 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
382 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
383 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
384 	}
385     }
386 
387     trust = !issetugid();
388 
389     ld_bind_now = getenv(LD_ "BIND_NOW");
390     /*
391      * If the process is tainted, then we un-set the dangerous environment
392      * variables.  The process will be marked as tainted until setuid(2)
393      * is called.  If any child process calls setuid(2) we do not want any
394      * future processes to honor the potentially un-safe variables.
395      */
396     if (!trust) {
397         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
398 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
399 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
400 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
401 		_rtld_error("environment corrupt; aborting");
402 		die();
403 	}
404     }
405     ld_debug = getenv(LD_ "DEBUG");
406     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
407     libmap_override = getenv(LD_ "LIBMAP");
408     ld_library_path = getenv(LD_ "LIBRARY_PATH");
409     ld_preload = getenv(LD_ "PRELOAD");
410     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
411     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
412     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
413     if (library_path_rpath != NULL) {
414 	    if (library_path_rpath[0] == 'y' ||
415 		library_path_rpath[0] == 'Y' ||
416 		library_path_rpath[0] == '1')
417 		    ld_library_path_rpath = true;
418 	    else
419 		    ld_library_path_rpath = false;
420     }
421     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
422 	(ld_library_path != NULL) || (ld_preload != NULL) ||
423 	(ld_elf_hints_path != NULL) || ld_loadfltr;
424     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
425     ld_utrace = getenv(LD_ "UTRACE");
426 
427     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
428 	ld_elf_hints_path = _PATH_ELF_HINTS;
429 
430     if (ld_debug != NULL && *ld_debug != '\0')
431 	debug = 1;
432     dbg("%s is initialized, base address = %p", __progname,
433 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
434     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
435     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
436 
437     dbg("initializing thread locks");
438     lockdflt_init();
439 
440     /*
441      * Load the main program, or process its program header if it is
442      * already loaded.
443      */
444     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
445 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
446 	dbg("loading main program");
447 	obj_main = map_object(fd, argv0, NULL);
448 	close(fd);
449 	if (obj_main == NULL)
450 	    die();
451 	max_stack_flags = obj->stack_flags;
452     } else {				/* Main program already loaded. */
453 	const Elf_Phdr *phdr;
454 	int phnum;
455 	caddr_t entry;
456 
457 	dbg("processing main program's program header");
458 	assert(aux_info[AT_PHDR] != NULL);
459 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
460 	assert(aux_info[AT_PHNUM] != NULL);
461 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
462 	assert(aux_info[AT_PHENT] != NULL);
463 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
464 	assert(aux_info[AT_ENTRY] != NULL);
465 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
466 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
467 	    die();
468     }
469 
470     if (aux_info[AT_EXECPATH] != 0) {
471 	    char *kexecpath;
472 	    char buf[MAXPATHLEN];
473 
474 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
475 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
476 	    if (kexecpath[0] == '/')
477 		    obj_main->path = kexecpath;
478 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
479 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
480 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
481 		    obj_main->path = xstrdup(argv0);
482 	    else
483 		    obj_main->path = xstrdup(buf);
484     } else {
485 	    dbg("No AT_EXECPATH");
486 	    obj_main->path = xstrdup(argv0);
487     }
488     dbg("obj_main path %s", obj_main->path);
489     obj_main->mainprog = true;
490 
491     if (aux_info[AT_STACKPROT] != NULL &&
492       aux_info[AT_STACKPROT]->a_un.a_val != 0)
493 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
494 
495     /*
496      * Get the actual dynamic linker pathname from the executable if
497      * possible.  (It should always be possible.)  That ensures that
498      * gdb will find the right dynamic linker even if a non-standard
499      * one is being used.
500      */
501     if (obj_main->interp != NULL &&
502       strcmp(obj_main->interp, obj_rtld.path) != 0) {
503 	free(obj_rtld.path);
504 	obj_rtld.path = xstrdup(obj_main->interp);
505         __progname = obj_rtld.path;
506     }
507 
508     digest_dynamic(obj_main, 0);
509     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
510 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
511 	obj_main->dynsymcount);
512 
513     linkmap_add(obj_main);
514     linkmap_add(&obj_rtld);
515 
516     /* Link the main program into the list of objects. */
517     *obj_tail = obj_main;
518     obj_tail = &obj_main->next;
519     obj_count++;
520     obj_loads++;
521 
522     /* Initialize a fake symbol for resolving undefined weak references. */
523     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
524     sym_zero.st_shndx = SHN_UNDEF;
525     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
526 
527     if (!libmap_disable)
528         libmap_disable = (bool)lm_init(libmap_override);
529 
530     dbg("loading LD_PRELOAD libraries");
531     if (load_preload_objects() == -1)
532 	die();
533     preload_tail = obj_tail;
534 
535     dbg("loading needed objects");
536     if (load_needed_objects(obj_main, 0) == -1)
537 	die();
538 
539     /* Make a list of all objects loaded at startup. */
540     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
541 	objlist_push_tail(&list_main, obj);
542     	obj->refcount++;
543     }
544 
545     dbg("checking for required versions");
546     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
547 	die();
548 
549     if (ld_tracing) {		/* We're done */
550 	trace_loaded_objects(obj_main);
551 	exit(0);
552     }
553 
554     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
555        dump_relocations(obj_main);
556        exit (0);
557     }
558 
559     /*
560      * Processing tls relocations requires having the tls offsets
561      * initialized.  Prepare offsets before starting initial
562      * relocation processing.
563      */
564     dbg("initializing initial thread local storage offsets");
565     STAILQ_FOREACH(entry, &list_main, link) {
566 	/*
567 	 * Allocate all the initial objects out of the static TLS
568 	 * block even if they didn't ask for it.
569 	 */
570 	allocate_tls_offset(entry->obj);
571     }
572 
573     if (relocate_objects(obj_main,
574       ld_bind_now != NULL && *ld_bind_now != '\0',
575       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
576 	die();
577 
578     dbg("doing copy relocations");
579     if (do_copy_relocations(obj_main) == -1)
580 	die();
581 
582     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
583        dump_relocations(obj_main);
584        exit (0);
585     }
586 
587     /*
588      * Setup TLS for main thread.  This must be done after the
589      * relocations are processed, since tls initialization section
590      * might be the subject for relocations.
591      */
592     dbg("initializing initial thread local storage");
593     allocate_initial_tls(obj_list);
594 
595     dbg("initializing key program variables");
596     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
597     set_program_var("environ", env);
598     set_program_var("__elf_aux_vector", aux);
599 
600     /* Make a list of init functions to call. */
601     objlist_init(&initlist);
602     initlist_add_objects(obj_list, preload_tail, &initlist);
603 
604     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
605 
606     map_stacks_exec(NULL);
607 
608     dbg("resolving ifuncs");
609     if (resolve_objects_ifunc(obj_main,
610       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
611       NULL) == -1)
612 	die();
613 
614     if (!obj_main->crt_no_init) {
615 	/*
616 	 * Make sure we don't call the main program's init and fini
617 	 * functions for binaries linked with old crt1 which calls
618 	 * _init itself.
619 	 */
620 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
621 	obj_main->preinit_array = obj_main->init_array =
622 	    obj_main->fini_array = (Elf_Addr)NULL;
623     }
624 
625     wlock_acquire(rtld_bind_lock, &lockstate);
626     if (obj_main->crt_no_init)
627 	preinit_main();
628     objlist_call_init(&initlist, &lockstate);
629     objlist_clear(&initlist);
630     dbg("loading filtees");
631     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
632 	if (ld_loadfltr || obj->z_loadfltr)
633 	    load_filtees(obj, 0, &lockstate);
634     }
635     lock_release(rtld_bind_lock, &lockstate);
636 
637     dbg("transferring control to program entry point = %p", obj_main->entry);
638 
639     /* Return the exit procedure and the program entry point. */
640     *exit_proc = rtld_exit;
641     *objp = obj_main;
642     return (func_ptr_type) obj_main->entry;
643 }
644 
645 void *
646 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
647 {
648 	void *ptr;
649 	Elf_Addr target;
650 
651 	ptr = (void *)make_function_pointer(def, obj);
652 	target = ((Elf_Addr (*)(void))ptr)();
653 	return ((void *)target);
654 }
655 
656 Elf_Addr
657 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
658 {
659     const Elf_Rel *rel;
660     const Elf_Sym *def;
661     const Obj_Entry *defobj;
662     Elf_Addr *where;
663     Elf_Addr target;
664     RtldLockState lockstate;
665 
666     rlock_acquire(rtld_bind_lock, &lockstate);
667     if (sigsetjmp(lockstate.env, 0) != 0)
668 	    lock_upgrade(rtld_bind_lock, &lockstate);
669     if (obj->pltrel)
670 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
671     else
672 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
673 
674     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
675     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
676 	&lockstate);
677     if (def == NULL)
678 	die();
679     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
680 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
681     else
682 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
683 
684     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
685       defobj->strtab + def->st_name, basename(obj->path),
686       (void *)target, basename(defobj->path));
687 
688     /*
689      * Write the new contents for the jmpslot. Note that depending on
690      * architecture, the value which we need to return back to the
691      * lazy binding trampoline may or may not be the target
692      * address. The value returned from reloc_jmpslot() is the value
693      * that the trampoline needs.
694      */
695     target = reloc_jmpslot(where, target, defobj, obj, rel);
696     lock_release(rtld_bind_lock, &lockstate);
697     return target;
698 }
699 
700 /*
701  * Error reporting function.  Use it like printf.  If formats the message
702  * into a buffer, and sets things up so that the next call to dlerror()
703  * will return the message.
704  */
705 void
706 _rtld_error(const char *fmt, ...)
707 {
708     static char buf[512];
709     va_list ap;
710 
711     va_start(ap, fmt);
712     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
713     error_message = buf;
714     va_end(ap);
715 }
716 
717 /*
718  * Return a dynamically-allocated copy of the current error message, if any.
719  */
720 static char *
721 errmsg_save(void)
722 {
723     return error_message == NULL ? NULL : xstrdup(error_message);
724 }
725 
726 /*
727  * Restore the current error message from a copy which was previously saved
728  * by errmsg_save().  The copy is freed.
729  */
730 static void
731 errmsg_restore(char *saved_msg)
732 {
733     if (saved_msg == NULL)
734 	error_message = NULL;
735     else {
736 	_rtld_error("%s", saved_msg);
737 	free(saved_msg);
738     }
739 }
740 
741 static const char *
742 basename(const char *name)
743 {
744     const char *p = strrchr(name, '/');
745     return p != NULL ? p + 1 : name;
746 }
747 
748 static struct utsname uts;
749 
750 static char *
751 origin_subst_one(char *real, const char *kw, const char *subst,
752     bool may_free)
753 {
754 	char *p, *p1, *res, *resp;
755 	int subst_len, kw_len, subst_count, old_len, new_len;
756 
757 	kw_len = strlen(kw);
758 
759 	/*
760 	 * First, count the number of the keyword occurences, to
761 	 * preallocate the final string.
762 	 */
763 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
764 		p1 = strstr(p, kw);
765 		if (p1 == NULL)
766 			break;
767 	}
768 
769 	/*
770 	 * If the keyword is not found, just return.
771 	 */
772 	if (subst_count == 0)
773 		return (may_free ? real : xstrdup(real));
774 
775 	/*
776 	 * There is indeed something to substitute.  Calculate the
777 	 * length of the resulting string, and allocate it.
778 	 */
779 	subst_len = strlen(subst);
780 	old_len = strlen(real);
781 	new_len = old_len + (subst_len - kw_len) * subst_count;
782 	res = xmalloc(new_len + 1);
783 
784 	/*
785 	 * Now, execute the substitution loop.
786 	 */
787 	for (p = real, resp = res, *resp = '\0';;) {
788 		p1 = strstr(p, kw);
789 		if (p1 != NULL) {
790 			/* Copy the prefix before keyword. */
791 			memcpy(resp, p, p1 - p);
792 			resp += p1 - p;
793 			/* Keyword replacement. */
794 			memcpy(resp, subst, subst_len);
795 			resp += subst_len;
796 			*resp = '\0';
797 			p = p1 + kw_len;
798 		} else
799 			break;
800 	}
801 
802 	/* Copy to the end of string and finish. */
803 	strcat(resp, p);
804 	if (may_free)
805 		free(real);
806 	return (res);
807 }
808 
809 static char *
810 origin_subst(char *real, const char *origin_path)
811 {
812 	char *res1, *res2, *res3, *res4;
813 
814 	if (uts.sysname[0] == '\0') {
815 		if (uname(&uts) != 0) {
816 			_rtld_error("utsname failed: %d", errno);
817 			return (NULL);
818 		}
819 	}
820 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
821 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
822 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
823 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
824 	return (res4);
825 }
826 
827 static void
828 die(void)
829 {
830     const char *msg = dlerror();
831 
832     if (msg == NULL)
833 	msg = "Fatal error";
834     rtld_fdputstr(STDERR_FILENO, msg);
835     rtld_fdputchar(STDERR_FILENO, '\n');
836     _exit(1);
837 }
838 
839 /*
840  * Process a shared object's DYNAMIC section, and save the important
841  * information in its Obj_Entry structure.
842  */
843 static void
844 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
845     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
846 {
847     const Elf_Dyn *dynp;
848     Needed_Entry **needed_tail = &obj->needed;
849     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
850     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
851     const Elf_Hashelt *hashtab;
852     const Elf32_Word *hashval;
853     Elf32_Word bkt, nmaskwords;
854     int bloom_size32;
855     bool nmw_power2;
856     int plttype = DT_REL;
857 
858     *dyn_rpath = NULL;
859     *dyn_soname = NULL;
860     *dyn_runpath = NULL;
861 
862     obj->bind_now = false;
863     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
864 	switch (dynp->d_tag) {
865 
866 	case DT_REL:
867 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
868 	    break;
869 
870 	case DT_RELSZ:
871 	    obj->relsize = dynp->d_un.d_val;
872 	    break;
873 
874 	case DT_RELENT:
875 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
876 	    break;
877 
878 	case DT_JMPREL:
879 	    obj->pltrel = (const Elf_Rel *)
880 	      (obj->relocbase + dynp->d_un.d_ptr);
881 	    break;
882 
883 	case DT_PLTRELSZ:
884 	    obj->pltrelsize = dynp->d_un.d_val;
885 	    break;
886 
887 	case DT_RELA:
888 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
889 	    break;
890 
891 	case DT_RELASZ:
892 	    obj->relasize = dynp->d_un.d_val;
893 	    break;
894 
895 	case DT_RELAENT:
896 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
897 	    break;
898 
899 	case DT_PLTREL:
900 	    plttype = dynp->d_un.d_val;
901 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
902 	    break;
903 
904 	case DT_SYMTAB:
905 	    obj->symtab = (const Elf_Sym *)
906 	      (obj->relocbase + dynp->d_un.d_ptr);
907 	    break;
908 
909 	case DT_SYMENT:
910 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
911 	    break;
912 
913 	case DT_STRTAB:
914 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
915 	    break;
916 
917 	case DT_STRSZ:
918 	    obj->strsize = dynp->d_un.d_val;
919 	    break;
920 
921 	case DT_VERNEED:
922 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
923 		dynp->d_un.d_val);
924 	    break;
925 
926 	case DT_VERNEEDNUM:
927 	    obj->verneednum = dynp->d_un.d_val;
928 	    break;
929 
930 	case DT_VERDEF:
931 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
932 		dynp->d_un.d_val);
933 	    break;
934 
935 	case DT_VERDEFNUM:
936 	    obj->verdefnum = dynp->d_un.d_val;
937 	    break;
938 
939 	case DT_VERSYM:
940 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
941 		dynp->d_un.d_val);
942 	    break;
943 
944 	case DT_HASH:
945 	    {
946 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
947 		    dynp->d_un.d_ptr);
948 		obj->nbuckets = hashtab[0];
949 		obj->nchains = hashtab[1];
950 		obj->buckets = hashtab + 2;
951 		obj->chains = obj->buckets + obj->nbuckets;
952 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
953 		  obj->buckets != NULL;
954 	    }
955 	    break;
956 
957 	case DT_GNU_HASH:
958 	    {
959 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
960 		    dynp->d_un.d_ptr);
961 		obj->nbuckets_gnu = hashtab[0];
962 		obj->symndx_gnu = hashtab[1];
963 		nmaskwords = hashtab[2];
964 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
965 		/* Number of bitmask words is required to be power of 2 */
966 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
967 		obj->maskwords_bm_gnu = nmaskwords - 1;
968 		obj->shift2_gnu = hashtab[3];
969 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
970 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
971 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
972 		  obj->symndx_gnu;
973 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
974 		  obj->buckets_gnu != NULL;
975 	    }
976 	    break;
977 
978 	case DT_NEEDED:
979 	    if (!obj->rtld) {
980 		Needed_Entry *nep = NEW(Needed_Entry);
981 		nep->name = dynp->d_un.d_val;
982 		nep->obj = NULL;
983 		nep->next = NULL;
984 
985 		*needed_tail = nep;
986 		needed_tail = &nep->next;
987 	    }
988 	    break;
989 
990 	case DT_FILTER:
991 	    if (!obj->rtld) {
992 		Needed_Entry *nep = NEW(Needed_Entry);
993 		nep->name = dynp->d_un.d_val;
994 		nep->obj = NULL;
995 		nep->next = NULL;
996 
997 		*needed_filtees_tail = nep;
998 		needed_filtees_tail = &nep->next;
999 	    }
1000 	    break;
1001 
1002 	case DT_AUXILIARY:
1003 	    if (!obj->rtld) {
1004 		Needed_Entry *nep = NEW(Needed_Entry);
1005 		nep->name = dynp->d_un.d_val;
1006 		nep->obj = NULL;
1007 		nep->next = NULL;
1008 
1009 		*needed_aux_filtees_tail = nep;
1010 		needed_aux_filtees_tail = &nep->next;
1011 	    }
1012 	    break;
1013 
1014 	case DT_PLTGOT:
1015 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1016 	    break;
1017 
1018 	case DT_TEXTREL:
1019 	    obj->textrel = true;
1020 	    break;
1021 
1022 	case DT_SYMBOLIC:
1023 	    obj->symbolic = true;
1024 	    break;
1025 
1026 	case DT_RPATH:
1027 	    /*
1028 	     * We have to wait until later to process this, because we
1029 	     * might not have gotten the address of the string table yet.
1030 	     */
1031 	    *dyn_rpath = dynp;
1032 	    break;
1033 
1034 	case DT_SONAME:
1035 	    *dyn_soname = dynp;
1036 	    break;
1037 
1038 	case DT_RUNPATH:
1039 	    *dyn_runpath = dynp;
1040 	    break;
1041 
1042 	case DT_INIT:
1043 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1044 	    break;
1045 
1046 	case DT_PREINIT_ARRAY:
1047 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1048 	    break;
1049 
1050 	case DT_PREINIT_ARRAYSZ:
1051 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1052 	    break;
1053 
1054 	case DT_INIT_ARRAY:
1055 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1056 	    break;
1057 
1058 	case DT_INIT_ARRAYSZ:
1059 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1060 	    break;
1061 
1062 	case DT_FINI:
1063 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1064 	    break;
1065 
1066 	case DT_FINI_ARRAY:
1067 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1068 	    break;
1069 
1070 	case DT_FINI_ARRAYSZ:
1071 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1072 	    break;
1073 
1074 	/*
1075 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1076 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1077 	 */
1078 
1079 #ifndef __mips__
1080 	case DT_DEBUG:
1081 	    /* XXX - not implemented yet */
1082 	    if (!early)
1083 		dbg("Filling in DT_DEBUG entry");
1084 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1085 	    break;
1086 #endif
1087 
1088 	case DT_FLAGS:
1089 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1090 		    obj->z_origin = true;
1091 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1092 		    obj->symbolic = true;
1093 		if (dynp->d_un.d_val & DF_TEXTREL)
1094 		    obj->textrel = true;
1095 		if (dynp->d_un.d_val & DF_BIND_NOW)
1096 		    obj->bind_now = true;
1097 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1098 		    ;*/
1099 	    break;
1100 #ifdef __mips__
1101 	case DT_MIPS_LOCAL_GOTNO:
1102 		obj->local_gotno = dynp->d_un.d_val;
1103 	    break;
1104 
1105 	case DT_MIPS_SYMTABNO:
1106 		obj->symtabno = dynp->d_un.d_val;
1107 		break;
1108 
1109 	case DT_MIPS_GOTSYM:
1110 		obj->gotsym = dynp->d_un.d_val;
1111 		break;
1112 
1113 	case DT_MIPS_RLD_MAP:
1114 #ifdef notyet
1115 		if (!early)
1116 			dbg("Filling in DT_DEBUG entry");
1117 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1118 #endif
1119 		break;
1120 #endif
1121 
1122 	case DT_FLAGS_1:
1123 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1124 		    obj->z_noopen = true;
1125 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1126 		    obj->z_origin = true;
1127 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1128 		    XXX ;*/
1129 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1130 		    obj->bind_now = true;
1131 		if (dynp->d_un.d_val & DF_1_NODELETE)
1132 		    obj->z_nodelete = true;
1133 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1134 		    obj->z_loadfltr = true;
1135 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1136 		    obj->z_nodeflib = true;
1137 	    break;
1138 
1139 	default:
1140 	    if (!early) {
1141 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1142 		    (long)dynp->d_tag);
1143 	    }
1144 	    break;
1145 	}
1146     }
1147 
1148     obj->traced = false;
1149 
1150     if (plttype == DT_RELA) {
1151 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1152 	obj->pltrel = NULL;
1153 	obj->pltrelasize = obj->pltrelsize;
1154 	obj->pltrelsize = 0;
1155     }
1156 
1157     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1158     if (obj->valid_hash_sysv)
1159 	obj->dynsymcount = obj->nchains;
1160     else if (obj->valid_hash_gnu) {
1161 	obj->dynsymcount = 0;
1162 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1163 	    if (obj->buckets_gnu[bkt] == 0)
1164 		continue;
1165 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1166 	    do
1167 		obj->dynsymcount++;
1168 	    while ((*hashval++ & 1u) == 0);
1169 	}
1170 	obj->dynsymcount += obj->symndx_gnu;
1171     }
1172 }
1173 
1174 static void
1175 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1176     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1177 {
1178 
1179     if (obj->z_origin && obj->origin_path == NULL) {
1180 	obj->origin_path = xmalloc(PATH_MAX);
1181 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1182 	    die();
1183     }
1184 
1185     if (dyn_runpath != NULL) {
1186 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1187 	if (obj->z_origin)
1188 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1189     }
1190     else if (dyn_rpath != NULL) {
1191 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1192 	if (obj->z_origin)
1193 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1194     }
1195 
1196     if (dyn_soname != NULL)
1197 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1198 }
1199 
1200 static void
1201 digest_dynamic(Obj_Entry *obj, int early)
1202 {
1203 	const Elf_Dyn *dyn_rpath;
1204 	const Elf_Dyn *dyn_soname;
1205 	const Elf_Dyn *dyn_runpath;
1206 
1207 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1208 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1209 }
1210 
1211 /*
1212  * Process a shared object's program header.  This is used only for the
1213  * main program, when the kernel has already loaded the main program
1214  * into memory before calling the dynamic linker.  It creates and
1215  * returns an Obj_Entry structure.
1216  */
1217 static Obj_Entry *
1218 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1219 {
1220     Obj_Entry *obj;
1221     const Elf_Phdr *phlimit = phdr + phnum;
1222     const Elf_Phdr *ph;
1223     Elf_Addr note_start, note_end;
1224     int nsegs = 0;
1225 
1226     obj = obj_new();
1227     for (ph = phdr;  ph < phlimit;  ph++) {
1228 	if (ph->p_type != PT_PHDR)
1229 	    continue;
1230 
1231 	obj->phdr = phdr;
1232 	obj->phsize = ph->p_memsz;
1233 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1234 	break;
1235     }
1236 
1237     obj->stack_flags = PF_X | PF_R | PF_W;
1238 
1239     for (ph = phdr;  ph < phlimit;  ph++) {
1240 	switch (ph->p_type) {
1241 
1242 	case PT_INTERP:
1243 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1244 	    break;
1245 
1246 	case PT_LOAD:
1247 	    if (nsegs == 0) {	/* First load segment */
1248 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1249 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1250 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1251 		  obj->vaddrbase;
1252 	    } else {		/* Last load segment */
1253 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1254 		  obj->vaddrbase;
1255 	    }
1256 	    nsegs++;
1257 	    break;
1258 
1259 	case PT_DYNAMIC:
1260 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1261 	    break;
1262 
1263 	case PT_TLS:
1264 	    obj->tlsindex = 1;
1265 	    obj->tlssize = ph->p_memsz;
1266 	    obj->tlsalign = ph->p_align;
1267 	    obj->tlsinitsize = ph->p_filesz;
1268 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1269 	    break;
1270 
1271 	case PT_GNU_STACK:
1272 	    obj->stack_flags = ph->p_flags;
1273 	    break;
1274 
1275 	case PT_GNU_RELRO:
1276 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1277 	    obj->relro_size = round_page(ph->p_memsz);
1278 	    break;
1279 
1280 	case PT_NOTE:
1281 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1282 	    note_end = note_start + ph->p_filesz;
1283 	    digest_notes(obj, note_start, note_end);
1284 	    break;
1285 	}
1286     }
1287     if (nsegs < 1) {
1288 	_rtld_error("%s: too few PT_LOAD segments", path);
1289 	return NULL;
1290     }
1291 
1292     obj->entry = entry;
1293     return obj;
1294 }
1295 
1296 void
1297 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1298 {
1299 	const Elf_Note *note;
1300 	const char *note_name;
1301 	uintptr_t p;
1302 
1303 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1304 	    note = (const Elf_Note *)((const char *)(note + 1) +
1305 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1306 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1307 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1308 		    note->n_descsz != sizeof(int32_t))
1309 			continue;
1310 		if (note->n_type != ABI_NOTETYPE &&
1311 		    note->n_type != CRT_NOINIT_NOTETYPE)
1312 			continue;
1313 		note_name = (const char *)(note + 1);
1314 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1315 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1316 			continue;
1317 		switch (note->n_type) {
1318 		case ABI_NOTETYPE:
1319 			/* FreeBSD osrel note */
1320 			p = (uintptr_t)(note + 1);
1321 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1322 			obj->osrel = *(const int32_t *)(p);
1323 			dbg("note osrel %d", obj->osrel);
1324 			break;
1325 		case CRT_NOINIT_NOTETYPE:
1326 			/* FreeBSD 'crt does not call init' note */
1327 			obj->crt_no_init = true;
1328 			dbg("note crt_no_init");
1329 			break;
1330 		}
1331 	}
1332 }
1333 
1334 static Obj_Entry *
1335 dlcheck(void *handle)
1336 {
1337     Obj_Entry *obj;
1338 
1339     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1340 	if (obj == (Obj_Entry *) handle)
1341 	    break;
1342 
1343     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1344 	_rtld_error("Invalid shared object handle %p", handle);
1345 	return NULL;
1346     }
1347     return obj;
1348 }
1349 
1350 /*
1351  * If the given object is already in the donelist, return true.  Otherwise
1352  * add the object to the list and return false.
1353  */
1354 static bool
1355 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1356 {
1357     unsigned int i;
1358 
1359     for (i = 0;  i < dlp->num_used;  i++)
1360 	if (dlp->objs[i] == obj)
1361 	    return true;
1362     /*
1363      * Our donelist allocation should always be sufficient.  But if
1364      * our threads locking isn't working properly, more shared objects
1365      * could have been loaded since we allocated the list.  That should
1366      * never happen, but we'll handle it properly just in case it does.
1367      */
1368     if (dlp->num_used < dlp->num_alloc)
1369 	dlp->objs[dlp->num_used++] = obj;
1370     return false;
1371 }
1372 
1373 /*
1374  * Hash function for symbol table lookup.  Don't even think about changing
1375  * this.  It is specified by the System V ABI.
1376  */
1377 unsigned long
1378 elf_hash(const char *name)
1379 {
1380     const unsigned char *p = (const unsigned char *) name;
1381     unsigned long h = 0;
1382     unsigned long g;
1383 
1384     while (*p != '\0') {
1385 	h = (h << 4) + *p++;
1386 	if ((g = h & 0xf0000000) != 0)
1387 	    h ^= g >> 24;
1388 	h &= ~g;
1389     }
1390     return h;
1391 }
1392 
1393 /*
1394  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1395  * unsigned in case it's implemented with a wider type.
1396  */
1397 static uint32_t
1398 gnu_hash(const char *s)
1399 {
1400 	uint32_t h;
1401 	unsigned char c;
1402 
1403 	h = 5381;
1404 	for (c = *s; c != '\0'; c = *++s)
1405 		h = h * 33 + c;
1406 	return (h & 0xffffffff);
1407 }
1408 
1409 /*
1410  * Find the library with the given name, and return its full pathname.
1411  * The returned string is dynamically allocated.  Generates an error
1412  * message and returns NULL if the library cannot be found.
1413  *
1414  * If the second argument is non-NULL, then it refers to an already-
1415  * loaded shared object, whose library search path will be searched.
1416  *
1417  * The search order is:
1418  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1419  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1420  *   LD_LIBRARY_PATH
1421  *   DT_RUNPATH in the referencing file
1422  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1423  *	 from list)
1424  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1425  *
1426  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1427  */
1428 static char *
1429 find_library(const char *xname, const Obj_Entry *refobj)
1430 {
1431     char *pathname;
1432     char *name;
1433     bool nodeflib, objgiven;
1434 
1435     objgiven = refobj != NULL;
1436     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1437 	if (xname[0] != '/' && !trust) {
1438 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1439 	      xname);
1440 	    return NULL;
1441 	}
1442 	if (objgiven && refobj->z_origin) {
1443 		return (origin_subst(__DECONST(char *, xname),
1444 		    refobj->origin_path));
1445 	} else {
1446 		return (xstrdup(xname));
1447 	}
1448     }
1449 
1450     if (libmap_disable || !objgiven ||
1451 	(name = lm_find(refobj->path, xname)) == NULL)
1452 	name = (char *)xname;
1453 
1454     dbg(" Searching for \"%s\"", name);
1455 
1456     /*
1457      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1458      * back to pre-conforming behaviour if user requested so with
1459      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1460      * nodeflib.
1461      */
1462     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1463 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1464 	  (refobj != NULL &&
1465 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1466           (pathname = search_library_path(name, gethints(false))) != NULL ||
1467 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1468 	    return (pathname);
1469     } else {
1470 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1471 	if ((objgiven &&
1472 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1473 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1474 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1475 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1476 	  (objgiven &&
1477 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1478 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1479 	  (objgiven && !nodeflib &&
1480 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1481 	    return (pathname);
1482     }
1483 
1484     if (objgiven && refobj->path != NULL) {
1485 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1486 	  name, basename(refobj->path));
1487     } else {
1488 	_rtld_error("Shared object \"%s\" not found", name);
1489     }
1490     return NULL;
1491 }
1492 
1493 /*
1494  * Given a symbol number in a referencing object, find the corresponding
1495  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1496  * no definition was found.  Returns a pointer to the Obj_Entry of the
1497  * defining object via the reference parameter DEFOBJ_OUT.
1498  */
1499 const Elf_Sym *
1500 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1501     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1502     RtldLockState *lockstate)
1503 {
1504     const Elf_Sym *ref;
1505     const Elf_Sym *def;
1506     const Obj_Entry *defobj;
1507     SymLook req;
1508     const char *name;
1509     int res;
1510 
1511     /*
1512      * If we have already found this symbol, get the information from
1513      * the cache.
1514      */
1515     if (symnum >= refobj->dynsymcount)
1516 	return NULL;	/* Bad object */
1517     if (cache != NULL && cache[symnum].sym != NULL) {
1518 	*defobj_out = cache[symnum].obj;
1519 	return cache[symnum].sym;
1520     }
1521 
1522     ref = refobj->symtab + symnum;
1523     name = refobj->strtab + ref->st_name;
1524     def = NULL;
1525     defobj = NULL;
1526 
1527     /*
1528      * We don't have to do a full scale lookup if the symbol is local.
1529      * We know it will bind to the instance in this load module; to
1530      * which we already have a pointer (ie ref). By not doing a lookup,
1531      * we not only improve performance, but it also avoids unresolvable
1532      * symbols when local symbols are not in the hash table. This has
1533      * been seen with the ia64 toolchain.
1534      */
1535     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1536 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1537 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1538 		symnum);
1539 	}
1540 	symlook_init(&req, name);
1541 	req.flags = flags;
1542 	req.ventry = fetch_ventry(refobj, symnum);
1543 	req.lockstate = lockstate;
1544 	res = symlook_default(&req, refobj);
1545 	if (res == 0) {
1546 	    def = req.sym_out;
1547 	    defobj = req.defobj_out;
1548 	}
1549     } else {
1550 	def = ref;
1551 	defobj = refobj;
1552     }
1553 
1554     /*
1555      * If we found no definition and the reference is weak, treat the
1556      * symbol as having the value zero.
1557      */
1558     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1559 	def = &sym_zero;
1560 	defobj = obj_main;
1561     }
1562 
1563     if (def != NULL) {
1564 	*defobj_out = defobj;
1565 	/* Record the information in the cache to avoid subsequent lookups. */
1566 	if (cache != NULL) {
1567 	    cache[symnum].sym = def;
1568 	    cache[symnum].obj = defobj;
1569 	}
1570     } else {
1571 	if (refobj != &obj_rtld)
1572 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1573     }
1574     return def;
1575 }
1576 
1577 /*
1578  * Return the search path from the ldconfig hints file, reading it if
1579  * necessary.  If nostdlib is true, then the default search paths are
1580  * not added to result.
1581  *
1582  * Returns NULL if there are problems with the hints file,
1583  * or if the search path there is empty.
1584  */
1585 static const char *
1586 gethints(bool nostdlib)
1587 {
1588 	static char *hints, *filtered_path;
1589 	struct elfhints_hdr hdr;
1590 	struct fill_search_info_args sargs, hargs;
1591 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1592 	struct dl_serpath *SLPpath, *hintpath;
1593 	char *p;
1594 	unsigned int SLPndx, hintndx, fndx, fcount;
1595 	int fd;
1596 	size_t flen;
1597 	bool skip;
1598 
1599 	/* First call, read the hints file */
1600 	if (hints == NULL) {
1601 		/* Keep from trying again in case the hints file is bad. */
1602 		hints = "";
1603 
1604 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1605 			return (NULL);
1606 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1607 		    hdr.magic != ELFHINTS_MAGIC ||
1608 		    hdr.version != 1) {
1609 			close(fd);
1610 			return (NULL);
1611 		}
1612 		p = xmalloc(hdr.dirlistlen + 1);
1613 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1614 		    read(fd, p, hdr.dirlistlen + 1) !=
1615 		    (ssize_t)hdr.dirlistlen + 1) {
1616 			free(p);
1617 			close(fd);
1618 			return (NULL);
1619 		}
1620 		hints = p;
1621 		close(fd);
1622 	}
1623 
1624 	/*
1625 	 * If caller agreed to receive list which includes the default
1626 	 * paths, we are done. Otherwise, if we still did not
1627 	 * calculated filtered result, do it now.
1628 	 */
1629 	if (!nostdlib)
1630 		return (hints[0] != '\0' ? hints : NULL);
1631 	if (filtered_path != NULL)
1632 		goto filt_ret;
1633 
1634 	/*
1635 	 * Obtain the list of all configured search paths, and the
1636 	 * list of the default paths.
1637 	 *
1638 	 * First estimate the size of the results.
1639 	 */
1640 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1641 	smeta.dls_cnt = 0;
1642 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1643 	hmeta.dls_cnt = 0;
1644 
1645 	sargs.request = RTLD_DI_SERINFOSIZE;
1646 	sargs.serinfo = &smeta;
1647 	hargs.request = RTLD_DI_SERINFOSIZE;
1648 	hargs.serinfo = &hmeta;
1649 
1650 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1651 	path_enumerate(p, fill_search_info, &hargs);
1652 
1653 	SLPinfo = xmalloc(smeta.dls_size);
1654 	hintinfo = xmalloc(hmeta.dls_size);
1655 
1656 	/*
1657 	 * Next fetch both sets of paths.
1658 	 */
1659 	sargs.request = RTLD_DI_SERINFO;
1660 	sargs.serinfo = SLPinfo;
1661 	sargs.serpath = &SLPinfo->dls_serpath[0];
1662 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1663 
1664 	hargs.request = RTLD_DI_SERINFO;
1665 	hargs.serinfo = hintinfo;
1666 	hargs.serpath = &hintinfo->dls_serpath[0];
1667 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1668 
1669 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1670 	path_enumerate(p, fill_search_info, &hargs);
1671 
1672 	/*
1673 	 * Now calculate the difference between two sets, by excluding
1674 	 * standard paths from the full set.
1675 	 */
1676 	fndx = 0;
1677 	fcount = 0;
1678 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1679 	hintpath = &hintinfo->dls_serpath[0];
1680 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1681 		skip = false;
1682 		SLPpath = &SLPinfo->dls_serpath[0];
1683 		/*
1684 		 * Check each standard path against current.
1685 		 */
1686 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1687 			/* matched, skip the path */
1688 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1689 				skip = true;
1690 				break;
1691 			}
1692 		}
1693 		if (skip)
1694 			continue;
1695 		/*
1696 		 * Not matched against any standard path, add the path
1697 		 * to result. Separate consequtive paths with ':'.
1698 		 */
1699 		if (fcount > 0) {
1700 			filtered_path[fndx] = ':';
1701 			fndx++;
1702 		}
1703 		fcount++;
1704 		flen = strlen(hintpath->dls_name);
1705 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1706 		fndx += flen;
1707 	}
1708 	filtered_path[fndx] = '\0';
1709 
1710 	free(SLPinfo);
1711 	free(hintinfo);
1712 
1713 filt_ret:
1714 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1715 }
1716 
1717 static void
1718 init_dag(Obj_Entry *root)
1719 {
1720     const Needed_Entry *needed;
1721     const Objlist_Entry *elm;
1722     DoneList donelist;
1723 
1724     if (root->dag_inited)
1725 	return;
1726     donelist_init(&donelist);
1727 
1728     /* Root object belongs to own DAG. */
1729     objlist_push_tail(&root->dldags, root);
1730     objlist_push_tail(&root->dagmembers, root);
1731     donelist_check(&donelist, root);
1732 
1733     /*
1734      * Add dependencies of root object to DAG in breadth order
1735      * by exploiting the fact that each new object get added
1736      * to the tail of the dagmembers list.
1737      */
1738     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1739 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1740 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1741 		continue;
1742 	    objlist_push_tail(&needed->obj->dldags, root);
1743 	    objlist_push_tail(&root->dagmembers, needed->obj);
1744 	}
1745     }
1746     root->dag_inited = true;
1747 }
1748 
1749 static void
1750 process_nodelete(Obj_Entry *root)
1751 {
1752 	const Objlist_Entry *elm;
1753 
1754 	/*
1755 	 * Walk over object DAG and process every dependent object that
1756 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1757 	 * which then should have its reference upped separately.
1758 	 */
1759 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1760 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1761 		    !elm->obj->ref_nodel) {
1762 			dbg("obj %s nodelete", elm->obj->path);
1763 			init_dag(elm->obj);
1764 			ref_dag(elm->obj);
1765 			elm->obj->ref_nodel = true;
1766 		}
1767 	}
1768 }
1769 /*
1770  * Initialize the dynamic linker.  The argument is the address at which
1771  * the dynamic linker has been mapped into memory.  The primary task of
1772  * this function is to relocate the dynamic linker.
1773  */
1774 static void
1775 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1776 {
1777     Obj_Entry objtmp;	/* Temporary rtld object */
1778     const Elf_Dyn *dyn_rpath;
1779     const Elf_Dyn *dyn_soname;
1780     const Elf_Dyn *dyn_runpath;
1781 
1782     /*
1783      * Conjure up an Obj_Entry structure for the dynamic linker.
1784      *
1785      * The "path" member can't be initialized yet because string constants
1786      * cannot yet be accessed. Below we will set it correctly.
1787      */
1788     memset(&objtmp, 0, sizeof(objtmp));
1789     objtmp.path = NULL;
1790     objtmp.rtld = true;
1791     objtmp.mapbase = mapbase;
1792 #ifdef PIC
1793     objtmp.relocbase = mapbase;
1794 #endif
1795     if (RTLD_IS_DYNAMIC()) {
1796 	objtmp.dynamic = rtld_dynamic(&objtmp);
1797 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1798 	assert(objtmp.needed == NULL);
1799 #if !defined(__mips__)
1800 	/* MIPS has a bogus DT_TEXTREL. */
1801 	assert(!objtmp.textrel);
1802 #endif
1803 
1804 	/*
1805 	 * Temporarily put the dynamic linker entry into the object list, so
1806 	 * that symbols can be found.
1807 	 */
1808 
1809 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1810     }
1811 
1812     /* Initialize the object list. */
1813     obj_tail = &obj_list;
1814 
1815     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1816     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1817 
1818     if (aux_info[AT_PAGESZ] != NULL)
1819 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1820     if (aux_info[AT_OSRELDATE] != NULL)
1821 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1822 
1823     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1824 
1825     /* Replace the path with a dynamically allocated copy. */
1826     obj_rtld.path = xstrdup(PATH_RTLD);
1827 
1828     r_debug.r_brk = r_debug_state;
1829     r_debug.r_state = RT_CONSISTENT;
1830 }
1831 
1832 /*
1833  * Add the init functions from a needed object list (and its recursive
1834  * needed objects) to "list".  This is not used directly; it is a helper
1835  * function for initlist_add_objects().  The write lock must be held
1836  * when this function is called.
1837  */
1838 static void
1839 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1840 {
1841     /* Recursively process the successor needed objects. */
1842     if (needed->next != NULL)
1843 	initlist_add_neededs(needed->next, list);
1844 
1845     /* Process the current needed object. */
1846     if (needed->obj != NULL)
1847 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1848 }
1849 
1850 /*
1851  * Scan all of the DAGs rooted in the range of objects from "obj" to
1852  * "tail" and add their init functions to "list".  This recurses over
1853  * the DAGs and ensure the proper init ordering such that each object's
1854  * needed libraries are initialized before the object itself.  At the
1855  * same time, this function adds the objects to the global finalization
1856  * list "list_fini" in the opposite order.  The write lock must be
1857  * held when this function is called.
1858  */
1859 static void
1860 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1861 {
1862 
1863     if (obj->init_scanned || obj->init_done)
1864 	return;
1865     obj->init_scanned = true;
1866 
1867     /* Recursively process the successor objects. */
1868     if (&obj->next != tail)
1869 	initlist_add_objects(obj->next, tail, list);
1870 
1871     /* Recursively process the needed objects. */
1872     if (obj->needed != NULL)
1873 	initlist_add_neededs(obj->needed, list);
1874     if (obj->needed_filtees != NULL)
1875 	initlist_add_neededs(obj->needed_filtees, list);
1876     if (obj->needed_aux_filtees != NULL)
1877 	initlist_add_neededs(obj->needed_aux_filtees, list);
1878 
1879     /* Add the object to the init list. */
1880     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1881       obj->init_array != (Elf_Addr)NULL)
1882 	objlist_push_tail(list, obj);
1883 
1884     /* Add the object to the global fini list in the reverse order. */
1885     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1886       && !obj->on_fini_list) {
1887 	objlist_push_head(&list_fini, obj);
1888 	obj->on_fini_list = true;
1889     }
1890 }
1891 
1892 #ifndef FPTR_TARGET
1893 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1894 #endif
1895 
1896 static void
1897 free_needed_filtees(Needed_Entry *n)
1898 {
1899     Needed_Entry *needed, *needed1;
1900 
1901     for (needed = n; needed != NULL; needed = needed->next) {
1902 	if (needed->obj != NULL) {
1903 	    dlclose(needed->obj);
1904 	    needed->obj = NULL;
1905 	}
1906     }
1907     for (needed = n; needed != NULL; needed = needed1) {
1908 	needed1 = needed->next;
1909 	free(needed);
1910     }
1911 }
1912 
1913 static void
1914 unload_filtees(Obj_Entry *obj)
1915 {
1916 
1917     free_needed_filtees(obj->needed_filtees);
1918     obj->needed_filtees = NULL;
1919     free_needed_filtees(obj->needed_aux_filtees);
1920     obj->needed_aux_filtees = NULL;
1921     obj->filtees_loaded = false;
1922 }
1923 
1924 static void
1925 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1926     RtldLockState *lockstate)
1927 {
1928 
1929     for (; needed != NULL; needed = needed->next) {
1930 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1931 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1932 	  RTLD_LOCAL, lockstate);
1933     }
1934 }
1935 
1936 static void
1937 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1938 {
1939 
1940     lock_restart_for_upgrade(lockstate);
1941     if (!obj->filtees_loaded) {
1942 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1943 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1944 	obj->filtees_loaded = true;
1945     }
1946 }
1947 
1948 static int
1949 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1950 {
1951     Obj_Entry *obj1;
1952 
1953     for (; needed != NULL; needed = needed->next) {
1954 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1955 	  flags & ~RTLD_LO_NOLOAD);
1956 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1957 	    return (-1);
1958     }
1959     return (0);
1960 }
1961 
1962 /*
1963  * Given a shared object, traverse its list of needed objects, and load
1964  * each of them.  Returns 0 on success.  Generates an error message and
1965  * returns -1 on failure.
1966  */
1967 static int
1968 load_needed_objects(Obj_Entry *first, int flags)
1969 {
1970     Obj_Entry *obj;
1971 
1972     for (obj = first;  obj != NULL;  obj = obj->next) {
1973 	if (process_needed(obj, obj->needed, flags) == -1)
1974 	    return (-1);
1975     }
1976     return (0);
1977 }
1978 
1979 static int
1980 load_preload_objects(void)
1981 {
1982     char *p = ld_preload;
1983     static const char delim[] = " \t:;";
1984 
1985     if (p == NULL)
1986 	return 0;
1987 
1988     p += strspn(p, delim);
1989     while (*p != '\0') {
1990 	size_t len = strcspn(p, delim);
1991 	char savech;
1992 
1993 	savech = p[len];
1994 	p[len] = '\0';
1995 	if (load_object(p, -1, NULL, 0) == NULL)
1996 	    return -1;	/* XXX - cleanup */
1997 	p[len] = savech;
1998 	p += len;
1999 	p += strspn(p, delim);
2000     }
2001     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2002     return 0;
2003 }
2004 
2005 static const char *
2006 printable_path(const char *path)
2007 {
2008 
2009 	return (path == NULL ? "<unknown>" : path);
2010 }
2011 
2012 /*
2013  * Load a shared object into memory, if it is not already loaded.  The
2014  * object may be specified by name or by user-supplied file descriptor
2015  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2016  * duplicate is.
2017  *
2018  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2019  * on failure.
2020  */
2021 static Obj_Entry *
2022 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2023 {
2024     Obj_Entry *obj;
2025     int fd;
2026     struct stat sb;
2027     char *path;
2028 
2029     if (name != NULL) {
2030 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2031 	    if (object_match_name(obj, name))
2032 		return (obj);
2033 	}
2034 
2035 	path = find_library(name, refobj);
2036 	if (path == NULL)
2037 	    return (NULL);
2038     } else
2039 	path = NULL;
2040 
2041     /*
2042      * If we didn't find a match by pathname, or the name is not
2043      * supplied, open the file and check again by device and inode.
2044      * This avoids false mismatches caused by multiple links or ".."
2045      * in pathnames.
2046      *
2047      * To avoid a race, we open the file and use fstat() rather than
2048      * using stat().
2049      */
2050     fd = -1;
2051     if (fd_u == -1) {
2052 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2053 	    _rtld_error("Cannot open \"%s\"", path);
2054 	    free(path);
2055 	    return (NULL);
2056 	}
2057     } else {
2058 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2059 	if (fd == -1) {
2060 	    _rtld_error("Cannot dup fd");
2061 	    free(path);
2062 	    return (NULL);
2063 	}
2064     }
2065     if (fstat(fd, &sb) == -1) {
2066 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2067 	close(fd);
2068 	free(path);
2069 	return NULL;
2070     }
2071     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2072 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2073 	    break;
2074     if (obj != NULL && name != NULL) {
2075 	object_add_name(obj, name);
2076 	free(path);
2077 	close(fd);
2078 	return obj;
2079     }
2080     if (flags & RTLD_LO_NOLOAD) {
2081 	free(path);
2082 	close(fd);
2083 	return (NULL);
2084     }
2085 
2086     /* First use of this object, so we must map it in */
2087     obj = do_load_object(fd, name, path, &sb, flags);
2088     if (obj == NULL)
2089 	free(path);
2090     close(fd);
2091 
2092     return obj;
2093 }
2094 
2095 static Obj_Entry *
2096 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2097   int flags)
2098 {
2099     Obj_Entry *obj;
2100     struct statfs fs;
2101 
2102     /*
2103      * but first, make sure that environment variables haven't been
2104      * used to circumvent the noexec flag on a filesystem.
2105      */
2106     if (dangerous_ld_env) {
2107 	if (fstatfs(fd, &fs) != 0) {
2108 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2109 	    return NULL;
2110 	}
2111 	if (fs.f_flags & MNT_NOEXEC) {
2112 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2113 	    return NULL;
2114 	}
2115     }
2116     dbg("loading \"%s\"", printable_path(path));
2117     obj = map_object(fd, printable_path(path), sbp);
2118     if (obj == NULL)
2119         return NULL;
2120 
2121     /*
2122      * If DT_SONAME is present in the object, digest_dynamic2 already
2123      * added it to the object names.
2124      */
2125     if (name != NULL)
2126 	object_add_name(obj, name);
2127     obj->path = path;
2128     digest_dynamic(obj, 0);
2129     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2130 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2131     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2132       RTLD_LO_DLOPEN) {
2133 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2134 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2135 	munmap(obj->mapbase, obj->mapsize);
2136 	obj_free(obj);
2137 	return (NULL);
2138     }
2139 
2140     *obj_tail = obj;
2141     obj_tail = &obj->next;
2142     obj_count++;
2143     obj_loads++;
2144     linkmap_add(obj);	/* for GDB & dlinfo() */
2145     max_stack_flags |= obj->stack_flags;
2146 
2147     dbg("  %p .. %p: %s", obj->mapbase,
2148          obj->mapbase + obj->mapsize - 1, obj->path);
2149     if (obj->textrel)
2150 	dbg("  WARNING: %s has impure text", obj->path);
2151     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2152 	obj->path);
2153 
2154     return obj;
2155 }
2156 
2157 static Obj_Entry *
2158 obj_from_addr(const void *addr)
2159 {
2160     Obj_Entry *obj;
2161 
2162     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2163 	if (addr < (void *) obj->mapbase)
2164 	    continue;
2165 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2166 	    return obj;
2167     }
2168     return NULL;
2169 }
2170 
2171 static void
2172 preinit_main(void)
2173 {
2174     Elf_Addr *preinit_addr;
2175     int index;
2176 
2177     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2178     if (preinit_addr == NULL)
2179 	return;
2180 
2181     for (index = 0; index < obj_main->preinit_array_num; index++) {
2182 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2183 	    dbg("calling preinit function for %s at %p", obj_main->path,
2184 	      (void *)preinit_addr[index]);
2185 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2186 	      0, 0, obj_main->path);
2187 	    call_init_pointer(obj_main, preinit_addr[index]);
2188 	}
2189     }
2190 }
2191 
2192 /*
2193  * Call the finalization functions for each of the objects in "list"
2194  * belonging to the DAG of "root" and referenced once. If NULL "root"
2195  * is specified, every finalization function will be called regardless
2196  * of the reference count and the list elements won't be freed. All of
2197  * the objects are expected to have non-NULL fini functions.
2198  */
2199 static void
2200 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2201 {
2202     Objlist_Entry *elm;
2203     char *saved_msg;
2204     Elf_Addr *fini_addr;
2205     int index;
2206 
2207     assert(root == NULL || root->refcount == 1);
2208 
2209     /*
2210      * Preserve the current error message since a fini function might
2211      * call into the dynamic linker and overwrite it.
2212      */
2213     saved_msg = errmsg_save();
2214     do {
2215 	STAILQ_FOREACH(elm, list, link) {
2216 	    if (root != NULL && (elm->obj->refcount != 1 ||
2217 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2218 		continue;
2219 	    /* Remove object from fini list to prevent recursive invocation. */
2220 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2221 	    /*
2222 	     * XXX: If a dlopen() call references an object while the
2223 	     * fini function is in progress, we might end up trying to
2224 	     * unload the referenced object in dlclose() or the object
2225 	     * won't be unloaded although its fini function has been
2226 	     * called.
2227 	     */
2228 	    lock_release(rtld_bind_lock, lockstate);
2229 
2230 	    /*
2231 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2232 	     * When this happens, DT_FINI_ARRAY is processed first.
2233 	     */
2234 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2235 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2236 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2237 		  index--) {
2238 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2239 			dbg("calling fini function for %s at %p",
2240 			    elm->obj->path, (void *)fini_addr[index]);
2241 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2242 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2243 			call_initfini_pointer(elm->obj, fini_addr[index]);
2244 		    }
2245 		}
2246 	    }
2247 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2248 		dbg("calling fini function for %s at %p", elm->obj->path,
2249 		    (void *)elm->obj->fini);
2250 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2251 		    0, 0, elm->obj->path);
2252 		call_initfini_pointer(elm->obj, elm->obj->fini);
2253 	    }
2254 	    wlock_acquire(rtld_bind_lock, lockstate);
2255 	    /* No need to free anything if process is going down. */
2256 	    if (root != NULL)
2257 	    	free(elm);
2258 	    /*
2259 	     * We must restart the list traversal after every fini call
2260 	     * because a dlclose() call from the fini function or from
2261 	     * another thread might have modified the reference counts.
2262 	     */
2263 	    break;
2264 	}
2265     } while (elm != NULL);
2266     errmsg_restore(saved_msg);
2267 }
2268 
2269 /*
2270  * Call the initialization functions for each of the objects in
2271  * "list".  All of the objects are expected to have non-NULL init
2272  * functions.
2273  */
2274 static void
2275 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2276 {
2277     Objlist_Entry *elm;
2278     Obj_Entry *obj;
2279     char *saved_msg;
2280     Elf_Addr *init_addr;
2281     int index;
2282 
2283     /*
2284      * Clean init_scanned flag so that objects can be rechecked and
2285      * possibly initialized earlier if any of vectors called below
2286      * cause the change by using dlopen.
2287      */
2288     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2289 	obj->init_scanned = false;
2290 
2291     /*
2292      * Preserve the current error message since an init function might
2293      * call into the dynamic linker and overwrite it.
2294      */
2295     saved_msg = errmsg_save();
2296     STAILQ_FOREACH(elm, list, link) {
2297 	if (elm->obj->init_done) /* Initialized early. */
2298 	    continue;
2299 	/*
2300 	 * Race: other thread might try to use this object before current
2301 	 * one completes the initilization. Not much can be done here
2302 	 * without better locking.
2303 	 */
2304 	elm->obj->init_done = true;
2305 	lock_release(rtld_bind_lock, lockstate);
2306 
2307         /*
2308          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2309          * When this happens, DT_INIT is processed first.
2310          */
2311 	if (elm->obj->init != (Elf_Addr)NULL) {
2312 	    dbg("calling init function for %s at %p", elm->obj->path,
2313 	        (void *)elm->obj->init);
2314 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2315 	        0, 0, elm->obj->path);
2316 	    call_initfini_pointer(elm->obj, elm->obj->init);
2317 	}
2318 	init_addr = (Elf_Addr *)elm->obj->init_array;
2319 	if (init_addr != NULL) {
2320 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2321 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2322 		    dbg("calling init function for %s at %p", elm->obj->path,
2323 			(void *)init_addr[index]);
2324 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2325 			(void *)init_addr[index], 0, 0, elm->obj->path);
2326 		    call_init_pointer(elm->obj, init_addr[index]);
2327 		}
2328 	    }
2329 	}
2330 	wlock_acquire(rtld_bind_lock, lockstate);
2331     }
2332     errmsg_restore(saved_msg);
2333 }
2334 
2335 static void
2336 objlist_clear(Objlist *list)
2337 {
2338     Objlist_Entry *elm;
2339 
2340     while (!STAILQ_EMPTY(list)) {
2341 	elm = STAILQ_FIRST(list);
2342 	STAILQ_REMOVE_HEAD(list, link);
2343 	free(elm);
2344     }
2345 }
2346 
2347 static Objlist_Entry *
2348 objlist_find(Objlist *list, const Obj_Entry *obj)
2349 {
2350     Objlist_Entry *elm;
2351 
2352     STAILQ_FOREACH(elm, list, link)
2353 	if (elm->obj == obj)
2354 	    return elm;
2355     return NULL;
2356 }
2357 
2358 static void
2359 objlist_init(Objlist *list)
2360 {
2361     STAILQ_INIT(list);
2362 }
2363 
2364 static void
2365 objlist_push_head(Objlist *list, Obj_Entry *obj)
2366 {
2367     Objlist_Entry *elm;
2368 
2369     elm = NEW(Objlist_Entry);
2370     elm->obj = obj;
2371     STAILQ_INSERT_HEAD(list, elm, link);
2372 }
2373 
2374 static void
2375 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2376 {
2377     Objlist_Entry *elm;
2378 
2379     elm = NEW(Objlist_Entry);
2380     elm->obj = obj;
2381     STAILQ_INSERT_TAIL(list, elm, link);
2382 }
2383 
2384 static void
2385 objlist_remove(Objlist *list, Obj_Entry *obj)
2386 {
2387     Objlist_Entry *elm;
2388 
2389     if ((elm = objlist_find(list, obj)) != NULL) {
2390 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2391 	free(elm);
2392     }
2393 }
2394 
2395 /*
2396  * Relocate dag rooted in the specified object.
2397  * Returns 0 on success, or -1 on failure.
2398  */
2399 
2400 static int
2401 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2402     int flags, RtldLockState *lockstate)
2403 {
2404 	Objlist_Entry *elm;
2405 	int error;
2406 
2407 	error = 0;
2408 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2409 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2410 		    lockstate);
2411 		if (error == -1)
2412 			break;
2413 	}
2414 	return (error);
2415 }
2416 
2417 /*
2418  * Relocate single object.
2419  * Returns 0 on success, or -1 on failure.
2420  */
2421 static int
2422 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2423     int flags, RtldLockState *lockstate)
2424 {
2425 
2426 	if (obj->relocated)
2427 		return (0);
2428 	obj->relocated = true;
2429 	if (obj != rtldobj)
2430 		dbg("relocating \"%s\"", obj->path);
2431 
2432 	if (obj->symtab == NULL || obj->strtab == NULL ||
2433 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2434 		_rtld_error("%s: Shared object has no run-time symbol table",
2435 			    obj->path);
2436 		return (-1);
2437 	}
2438 
2439 	if (obj->textrel) {
2440 		/* There are relocations to the write-protected text segment. */
2441 		if (mprotect(obj->mapbase, obj->textsize,
2442 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2443 			_rtld_error("%s: Cannot write-enable text segment: %s",
2444 			    obj->path, rtld_strerror(errno));
2445 			return (-1);
2446 		}
2447 	}
2448 
2449 	/* Process the non-PLT relocations. */
2450 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2451 		return (-1);
2452 
2453 	if (obj->textrel) {	/* Re-protected the text segment. */
2454 		if (mprotect(obj->mapbase, obj->textsize,
2455 		    PROT_READ|PROT_EXEC) == -1) {
2456 			_rtld_error("%s: Cannot write-protect text segment: %s",
2457 			    obj->path, rtld_strerror(errno));
2458 			return (-1);
2459 		}
2460 	}
2461 
2462 
2463 	/* Set the special PLT or GOT entries. */
2464 	init_pltgot(obj);
2465 
2466 	/* Process the PLT relocations. */
2467 	if (reloc_plt(obj) == -1)
2468 		return (-1);
2469 	/* Relocate the jump slots if we are doing immediate binding. */
2470 	if (obj->bind_now || bind_now)
2471 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2472 			return (-1);
2473 
2474 	if (obj->relro_size > 0) {
2475 		if (mprotect(obj->relro_page, obj->relro_size,
2476 		    PROT_READ) == -1) {
2477 			_rtld_error("%s: Cannot enforce relro protection: %s",
2478 			    obj->path, rtld_strerror(errno));
2479 			return (-1);
2480 		}
2481 	}
2482 
2483 	/*
2484 	 * Set up the magic number and version in the Obj_Entry.  These
2485 	 * were checked in the crt1.o from the original ElfKit, so we
2486 	 * set them for backward compatibility.
2487 	 */
2488 	obj->magic = RTLD_MAGIC;
2489 	obj->version = RTLD_VERSION;
2490 
2491 	return (0);
2492 }
2493 
2494 /*
2495  * Relocate newly-loaded shared objects.  The argument is a pointer to
2496  * the Obj_Entry for the first such object.  All objects from the first
2497  * to the end of the list of objects are relocated.  Returns 0 on success,
2498  * or -1 on failure.
2499  */
2500 static int
2501 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2502     int flags, RtldLockState *lockstate)
2503 {
2504 	Obj_Entry *obj;
2505 	int error;
2506 
2507 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2508 		error = relocate_object(obj, bind_now, rtldobj, flags,
2509 		    lockstate);
2510 		if (error == -1)
2511 			break;
2512 	}
2513 	return (error);
2514 }
2515 
2516 /*
2517  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2518  * referencing STT_GNU_IFUNC symbols is postponed till the other
2519  * relocations are done.  The indirect functions specified as
2520  * ifunc are allowed to call other symbols, so we need to have
2521  * objects relocated before asking for resolution from indirects.
2522  *
2523  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2524  * instead of the usual lazy handling of PLT slots.  It is
2525  * consistent with how GNU does it.
2526  */
2527 static int
2528 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2529     RtldLockState *lockstate)
2530 {
2531 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2532 		return (-1);
2533 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2534 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2535 		return (-1);
2536 	return (0);
2537 }
2538 
2539 static int
2540 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2541     RtldLockState *lockstate)
2542 {
2543 	Obj_Entry *obj;
2544 
2545 	for (obj = first;  obj != NULL;  obj = obj->next) {
2546 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2547 			return (-1);
2548 	}
2549 	return (0);
2550 }
2551 
2552 static int
2553 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2554     RtldLockState *lockstate)
2555 {
2556 	Objlist_Entry *elm;
2557 
2558 	STAILQ_FOREACH(elm, list, link) {
2559 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2560 		    lockstate) == -1)
2561 			return (-1);
2562 	}
2563 	return (0);
2564 }
2565 
2566 /*
2567  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2568  * before the process exits.
2569  */
2570 static void
2571 rtld_exit(void)
2572 {
2573     RtldLockState lockstate;
2574 
2575     wlock_acquire(rtld_bind_lock, &lockstate);
2576     dbg("rtld_exit()");
2577     objlist_call_fini(&list_fini, NULL, &lockstate);
2578     /* No need to remove the items from the list, since we are exiting. */
2579     if (!libmap_disable)
2580         lm_fini();
2581     lock_release(rtld_bind_lock, &lockstate);
2582 }
2583 
2584 static void *
2585 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2586 {
2587 #ifdef COMPAT_32BIT
2588     const char *trans;
2589 #endif
2590     if (path == NULL)
2591 	return (NULL);
2592 
2593     path += strspn(path, ":;");
2594     while (*path != '\0') {
2595 	size_t len;
2596 	char  *res;
2597 
2598 	len = strcspn(path, ":;");
2599 #ifdef COMPAT_32BIT
2600 	trans = lm_findn(NULL, path, len);
2601 	if (trans)
2602 	    res = callback(trans, strlen(trans), arg);
2603 	else
2604 #endif
2605 	res = callback(path, len, arg);
2606 
2607 	if (res != NULL)
2608 	    return (res);
2609 
2610 	path += len;
2611 	path += strspn(path, ":;");
2612     }
2613 
2614     return (NULL);
2615 }
2616 
2617 struct try_library_args {
2618     const char	*name;
2619     size_t	 namelen;
2620     char	*buffer;
2621     size_t	 buflen;
2622 };
2623 
2624 static void *
2625 try_library_path(const char *dir, size_t dirlen, void *param)
2626 {
2627     struct try_library_args *arg;
2628 
2629     arg = param;
2630     if (*dir == '/' || trust) {
2631 	char *pathname;
2632 
2633 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2634 		return (NULL);
2635 
2636 	pathname = arg->buffer;
2637 	strncpy(pathname, dir, dirlen);
2638 	pathname[dirlen] = '/';
2639 	strcpy(pathname + dirlen + 1, arg->name);
2640 
2641 	dbg("  Trying \"%s\"", pathname);
2642 	if (access(pathname, F_OK) == 0) {		/* We found it */
2643 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2644 	    strcpy(pathname, arg->buffer);
2645 	    return (pathname);
2646 	}
2647     }
2648     return (NULL);
2649 }
2650 
2651 static char *
2652 search_library_path(const char *name, const char *path)
2653 {
2654     char *p;
2655     struct try_library_args arg;
2656 
2657     if (path == NULL)
2658 	return NULL;
2659 
2660     arg.name = name;
2661     arg.namelen = strlen(name);
2662     arg.buffer = xmalloc(PATH_MAX);
2663     arg.buflen = PATH_MAX;
2664 
2665     p = path_enumerate(path, try_library_path, &arg);
2666 
2667     free(arg.buffer);
2668 
2669     return (p);
2670 }
2671 
2672 int
2673 dlclose(void *handle)
2674 {
2675     Obj_Entry *root;
2676     RtldLockState lockstate;
2677 
2678     wlock_acquire(rtld_bind_lock, &lockstate);
2679     root = dlcheck(handle);
2680     if (root == NULL) {
2681 	lock_release(rtld_bind_lock, &lockstate);
2682 	return -1;
2683     }
2684     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2685 	root->path);
2686 
2687     /* Unreference the object and its dependencies. */
2688     root->dl_refcount--;
2689 
2690     if (root->refcount == 1) {
2691 	/*
2692 	 * The object will be no longer referenced, so we must unload it.
2693 	 * First, call the fini functions.
2694 	 */
2695 	objlist_call_fini(&list_fini, root, &lockstate);
2696 
2697 	unref_dag(root);
2698 
2699 	/* Finish cleaning up the newly-unreferenced objects. */
2700 	GDB_STATE(RT_DELETE,&root->linkmap);
2701 	unload_object(root);
2702 	GDB_STATE(RT_CONSISTENT,NULL);
2703     } else
2704 	unref_dag(root);
2705 
2706     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2707     lock_release(rtld_bind_lock, &lockstate);
2708     return 0;
2709 }
2710 
2711 char *
2712 dlerror(void)
2713 {
2714     char *msg = error_message;
2715     error_message = NULL;
2716     return msg;
2717 }
2718 
2719 /*
2720  * This function is deprecated and has no effect.
2721  */
2722 void
2723 dllockinit(void *context,
2724 	   void *(*lock_create)(void *context),
2725            void (*rlock_acquire)(void *lock),
2726            void (*wlock_acquire)(void *lock),
2727            void (*lock_release)(void *lock),
2728            void (*lock_destroy)(void *lock),
2729 	   void (*context_destroy)(void *context))
2730 {
2731     static void *cur_context;
2732     static void (*cur_context_destroy)(void *);
2733 
2734     /* Just destroy the context from the previous call, if necessary. */
2735     if (cur_context_destroy != NULL)
2736 	cur_context_destroy(cur_context);
2737     cur_context = context;
2738     cur_context_destroy = context_destroy;
2739 }
2740 
2741 void *
2742 dlopen(const char *name, int mode)
2743 {
2744 
2745 	return (rtld_dlopen(name, -1, mode));
2746 }
2747 
2748 void *
2749 fdlopen(int fd, int mode)
2750 {
2751 
2752 	return (rtld_dlopen(NULL, fd, mode));
2753 }
2754 
2755 static void *
2756 rtld_dlopen(const char *name, int fd, int mode)
2757 {
2758     RtldLockState lockstate;
2759     int lo_flags;
2760 
2761     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2762     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2763     if (ld_tracing != NULL) {
2764 	rlock_acquire(rtld_bind_lock, &lockstate);
2765 	if (sigsetjmp(lockstate.env, 0) != 0)
2766 	    lock_upgrade(rtld_bind_lock, &lockstate);
2767 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2768 	lock_release(rtld_bind_lock, &lockstate);
2769     }
2770     lo_flags = RTLD_LO_DLOPEN;
2771     if (mode & RTLD_NODELETE)
2772 	    lo_flags |= RTLD_LO_NODELETE;
2773     if (mode & RTLD_NOLOAD)
2774 	    lo_flags |= RTLD_LO_NOLOAD;
2775     if (ld_tracing != NULL)
2776 	    lo_flags |= RTLD_LO_TRACE;
2777 
2778     return (dlopen_object(name, fd, obj_main, lo_flags,
2779       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2780 }
2781 
2782 static void
2783 dlopen_cleanup(Obj_Entry *obj)
2784 {
2785 
2786 	obj->dl_refcount--;
2787 	unref_dag(obj);
2788 	if (obj->refcount == 0)
2789 		unload_object(obj);
2790 }
2791 
2792 static Obj_Entry *
2793 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2794     int mode, RtldLockState *lockstate)
2795 {
2796     Obj_Entry **old_obj_tail;
2797     Obj_Entry *obj;
2798     Objlist initlist;
2799     RtldLockState mlockstate;
2800     int result;
2801 
2802     objlist_init(&initlist);
2803 
2804     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2805 	wlock_acquire(rtld_bind_lock, &mlockstate);
2806 	lockstate = &mlockstate;
2807     }
2808     GDB_STATE(RT_ADD,NULL);
2809 
2810     old_obj_tail = obj_tail;
2811     obj = NULL;
2812     if (name == NULL && fd == -1) {
2813 	obj = obj_main;
2814 	obj->refcount++;
2815     } else {
2816 	obj = load_object(name, fd, refobj, lo_flags);
2817     }
2818 
2819     if (obj) {
2820 	obj->dl_refcount++;
2821 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2822 	    objlist_push_tail(&list_global, obj);
2823 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2824 	    assert(*old_obj_tail == obj);
2825 	    result = load_needed_objects(obj,
2826 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2827 	    init_dag(obj);
2828 	    ref_dag(obj);
2829 	    if (result != -1)
2830 		result = rtld_verify_versions(&obj->dagmembers);
2831 	    if (result != -1 && ld_tracing)
2832 		goto trace;
2833 	    if (result == -1 || relocate_object_dag(obj,
2834 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2835 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2836 	      lockstate) == -1) {
2837 		dlopen_cleanup(obj);
2838 		obj = NULL;
2839 	    } else if (lo_flags & RTLD_LO_EARLY) {
2840 		/*
2841 		 * Do not call the init functions for early loaded
2842 		 * filtees.  The image is still not initialized enough
2843 		 * for them to work.
2844 		 *
2845 		 * Our object is found by the global object list and
2846 		 * will be ordered among all init calls done right
2847 		 * before transferring control to main.
2848 		 */
2849 	    } else {
2850 		/* Make list of init functions to call. */
2851 		initlist_add_objects(obj, &obj->next, &initlist);
2852 	    }
2853 	    /*
2854 	     * Process all no_delete objects here, given them own
2855 	     * DAGs to prevent their dependencies from being unloaded.
2856 	     * This has to be done after we have loaded all of the
2857 	     * dependencies, so that we do not miss any.
2858 	     */
2859 	    if (obj != NULL)
2860 		process_nodelete(obj);
2861 	} else {
2862 	    /*
2863 	     * Bump the reference counts for objects on this DAG.  If
2864 	     * this is the first dlopen() call for the object that was
2865 	     * already loaded as a dependency, initialize the dag
2866 	     * starting at it.
2867 	     */
2868 	    init_dag(obj);
2869 	    ref_dag(obj);
2870 
2871 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2872 		goto trace;
2873 	}
2874 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2875 	  obj->z_nodelete) && !obj->ref_nodel) {
2876 	    dbg("obj %s nodelete", obj->path);
2877 	    ref_dag(obj);
2878 	    obj->z_nodelete = obj->ref_nodel = true;
2879 	}
2880     }
2881 
2882     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2883 	name);
2884     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2885 
2886     if (!(lo_flags & RTLD_LO_EARLY)) {
2887 	map_stacks_exec(lockstate);
2888     }
2889 
2890     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2891       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2892       lockstate) == -1) {
2893 	objlist_clear(&initlist);
2894 	dlopen_cleanup(obj);
2895 	if (lockstate == &mlockstate)
2896 	    lock_release(rtld_bind_lock, lockstate);
2897 	return (NULL);
2898     }
2899 
2900     if (!(lo_flags & RTLD_LO_EARLY)) {
2901 	/* Call the init functions. */
2902 	objlist_call_init(&initlist, lockstate);
2903     }
2904     objlist_clear(&initlist);
2905     if (lockstate == &mlockstate)
2906 	lock_release(rtld_bind_lock, lockstate);
2907     return obj;
2908 trace:
2909     trace_loaded_objects(obj);
2910     if (lockstate == &mlockstate)
2911 	lock_release(rtld_bind_lock, lockstate);
2912     exit(0);
2913 }
2914 
2915 static void *
2916 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2917     int flags)
2918 {
2919     DoneList donelist;
2920     const Obj_Entry *obj, *defobj;
2921     const Elf_Sym *def;
2922     SymLook req;
2923     RtldLockState lockstate;
2924 #ifndef __ia64__
2925     tls_index ti;
2926 #endif
2927     int res;
2928 
2929     def = NULL;
2930     defobj = NULL;
2931     symlook_init(&req, name);
2932     req.ventry = ve;
2933     req.flags = flags | SYMLOOK_IN_PLT;
2934     req.lockstate = &lockstate;
2935 
2936     rlock_acquire(rtld_bind_lock, &lockstate);
2937     if (sigsetjmp(lockstate.env, 0) != 0)
2938 	    lock_upgrade(rtld_bind_lock, &lockstate);
2939     if (handle == NULL || handle == RTLD_NEXT ||
2940 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2941 
2942 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2943 	    _rtld_error("Cannot determine caller's shared object");
2944 	    lock_release(rtld_bind_lock, &lockstate);
2945 	    return NULL;
2946 	}
2947 	if (handle == NULL) {	/* Just the caller's shared object. */
2948 	    res = symlook_obj(&req, obj);
2949 	    if (res == 0) {
2950 		def = req.sym_out;
2951 		defobj = req.defobj_out;
2952 	    }
2953 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2954 		   handle == RTLD_SELF) { /* ... caller included */
2955 	    if (handle == RTLD_NEXT)
2956 		obj = obj->next;
2957 	    for (; obj != NULL; obj = obj->next) {
2958 		res = symlook_obj(&req, obj);
2959 		if (res == 0) {
2960 		    if (def == NULL ||
2961 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2962 			def = req.sym_out;
2963 			defobj = req.defobj_out;
2964 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2965 			    break;
2966 		    }
2967 		}
2968 	    }
2969 	    /*
2970 	     * Search the dynamic linker itself, and possibly resolve the
2971 	     * symbol from there.  This is how the application links to
2972 	     * dynamic linker services such as dlopen.
2973 	     */
2974 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2975 		res = symlook_obj(&req, &obj_rtld);
2976 		if (res == 0) {
2977 		    def = req.sym_out;
2978 		    defobj = req.defobj_out;
2979 		}
2980 	    }
2981 	} else {
2982 	    assert(handle == RTLD_DEFAULT);
2983 	    res = symlook_default(&req, obj);
2984 	    if (res == 0) {
2985 		defobj = req.defobj_out;
2986 		def = req.sym_out;
2987 	    }
2988 	}
2989     } else {
2990 	if ((obj = dlcheck(handle)) == NULL) {
2991 	    lock_release(rtld_bind_lock, &lockstate);
2992 	    return NULL;
2993 	}
2994 
2995 	donelist_init(&donelist);
2996 	if (obj->mainprog) {
2997             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2998 	    res = symlook_global(&req, &donelist);
2999 	    if (res == 0) {
3000 		def = req.sym_out;
3001 		defobj = req.defobj_out;
3002 	    }
3003 	    /*
3004 	     * Search the dynamic linker itself, and possibly resolve the
3005 	     * symbol from there.  This is how the application links to
3006 	     * dynamic linker services such as dlopen.
3007 	     */
3008 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3009 		res = symlook_obj(&req, &obj_rtld);
3010 		if (res == 0) {
3011 		    def = req.sym_out;
3012 		    defobj = req.defobj_out;
3013 		}
3014 	    }
3015 	}
3016 	else {
3017 	    /* Search the whole DAG rooted at the given object. */
3018 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3019 	    if (res == 0) {
3020 		def = req.sym_out;
3021 		defobj = req.defobj_out;
3022 	    }
3023 	}
3024     }
3025 
3026     if (def != NULL) {
3027 	lock_release(rtld_bind_lock, &lockstate);
3028 
3029 	/*
3030 	 * The value required by the caller is derived from the value
3031 	 * of the symbol. For the ia64 architecture, we need to
3032 	 * construct a function descriptor which the caller can use to
3033 	 * call the function with the right 'gp' value. For other
3034 	 * architectures and for non-functions, the value is simply
3035 	 * the relocated value of the symbol.
3036 	 */
3037 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3038 	    return (make_function_pointer(def, defobj));
3039 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3040 	    return (rtld_resolve_ifunc(defobj, def));
3041 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3042 #ifdef __ia64__
3043 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3044 #else
3045 	    ti.ti_module = defobj->tlsindex;
3046 	    ti.ti_offset = def->st_value;
3047 	    return (__tls_get_addr(&ti));
3048 #endif
3049 	} else
3050 	    return (defobj->relocbase + def->st_value);
3051     }
3052 
3053     _rtld_error("Undefined symbol \"%s\"", name);
3054     lock_release(rtld_bind_lock, &lockstate);
3055     return NULL;
3056 }
3057 
3058 void *
3059 dlsym(void *handle, const char *name)
3060 {
3061 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3062 	    SYMLOOK_DLSYM);
3063 }
3064 
3065 dlfunc_t
3066 dlfunc(void *handle, const char *name)
3067 {
3068 	union {
3069 		void *d;
3070 		dlfunc_t f;
3071 	} rv;
3072 
3073 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3074 	    SYMLOOK_DLSYM);
3075 	return (rv.f);
3076 }
3077 
3078 void *
3079 dlvsym(void *handle, const char *name, const char *version)
3080 {
3081 	Ver_Entry ventry;
3082 
3083 	ventry.name = version;
3084 	ventry.file = NULL;
3085 	ventry.hash = elf_hash(version);
3086 	ventry.flags= 0;
3087 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3088 	    SYMLOOK_DLSYM);
3089 }
3090 
3091 int
3092 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3093 {
3094     const Obj_Entry *obj;
3095     RtldLockState lockstate;
3096 
3097     rlock_acquire(rtld_bind_lock, &lockstate);
3098     obj = obj_from_addr(addr);
3099     if (obj == NULL) {
3100         _rtld_error("No shared object contains address");
3101 	lock_release(rtld_bind_lock, &lockstate);
3102         return (0);
3103     }
3104     rtld_fill_dl_phdr_info(obj, phdr_info);
3105     lock_release(rtld_bind_lock, &lockstate);
3106     return (1);
3107 }
3108 
3109 int
3110 dladdr(const void *addr, Dl_info *info)
3111 {
3112     const Obj_Entry *obj;
3113     const Elf_Sym *def;
3114     void *symbol_addr;
3115     unsigned long symoffset;
3116     RtldLockState lockstate;
3117 
3118     rlock_acquire(rtld_bind_lock, &lockstate);
3119     obj = obj_from_addr(addr);
3120     if (obj == NULL) {
3121         _rtld_error("No shared object contains address");
3122 	lock_release(rtld_bind_lock, &lockstate);
3123         return 0;
3124     }
3125     info->dli_fname = obj->path;
3126     info->dli_fbase = obj->mapbase;
3127     info->dli_saddr = (void *)0;
3128     info->dli_sname = NULL;
3129 
3130     /*
3131      * Walk the symbol list looking for the symbol whose address is
3132      * closest to the address sent in.
3133      */
3134     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3135         def = obj->symtab + symoffset;
3136 
3137         /*
3138          * For skip the symbol if st_shndx is either SHN_UNDEF or
3139          * SHN_COMMON.
3140          */
3141         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3142             continue;
3143 
3144         /*
3145          * If the symbol is greater than the specified address, or if it
3146          * is further away from addr than the current nearest symbol,
3147          * then reject it.
3148          */
3149         symbol_addr = obj->relocbase + def->st_value;
3150         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3151             continue;
3152 
3153         /* Update our idea of the nearest symbol. */
3154         info->dli_sname = obj->strtab + def->st_name;
3155         info->dli_saddr = symbol_addr;
3156 
3157         /* Exact match? */
3158         if (info->dli_saddr == addr)
3159             break;
3160     }
3161     lock_release(rtld_bind_lock, &lockstate);
3162     return 1;
3163 }
3164 
3165 int
3166 dlinfo(void *handle, int request, void *p)
3167 {
3168     const Obj_Entry *obj;
3169     RtldLockState lockstate;
3170     int error;
3171 
3172     rlock_acquire(rtld_bind_lock, &lockstate);
3173 
3174     if (handle == NULL || handle == RTLD_SELF) {
3175 	void *retaddr;
3176 
3177 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3178 	if ((obj = obj_from_addr(retaddr)) == NULL)
3179 	    _rtld_error("Cannot determine caller's shared object");
3180     } else
3181 	obj = dlcheck(handle);
3182 
3183     if (obj == NULL) {
3184 	lock_release(rtld_bind_lock, &lockstate);
3185 	return (-1);
3186     }
3187 
3188     error = 0;
3189     switch (request) {
3190     case RTLD_DI_LINKMAP:
3191 	*((struct link_map const **)p) = &obj->linkmap;
3192 	break;
3193     case RTLD_DI_ORIGIN:
3194 	error = rtld_dirname(obj->path, p);
3195 	break;
3196 
3197     case RTLD_DI_SERINFOSIZE:
3198     case RTLD_DI_SERINFO:
3199 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3200 	break;
3201 
3202     default:
3203 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3204 	error = -1;
3205     }
3206 
3207     lock_release(rtld_bind_lock, &lockstate);
3208 
3209     return (error);
3210 }
3211 
3212 static void
3213 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3214 {
3215 
3216 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3217 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3218 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3219 	phdr_info->dlpi_phdr = obj->phdr;
3220 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3221 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3222 	phdr_info->dlpi_tls_data = obj->tlsinit;
3223 	phdr_info->dlpi_adds = obj_loads;
3224 	phdr_info->dlpi_subs = obj_loads - obj_count;
3225 }
3226 
3227 int
3228 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3229 {
3230     struct dl_phdr_info phdr_info;
3231     const Obj_Entry *obj;
3232     RtldLockState bind_lockstate, phdr_lockstate;
3233     int error;
3234 
3235     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3236     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3237 
3238     error = 0;
3239 
3240     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3241 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3242 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3243 		break;
3244 
3245     }
3246     lock_release(rtld_bind_lock, &bind_lockstate);
3247     lock_release(rtld_phdr_lock, &phdr_lockstate);
3248 
3249     return (error);
3250 }
3251 
3252 static void *
3253 fill_search_info(const char *dir, size_t dirlen, void *param)
3254 {
3255     struct fill_search_info_args *arg;
3256 
3257     arg = param;
3258 
3259     if (arg->request == RTLD_DI_SERINFOSIZE) {
3260 	arg->serinfo->dls_cnt ++;
3261 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3262     } else {
3263 	struct dl_serpath *s_entry;
3264 
3265 	s_entry = arg->serpath;
3266 	s_entry->dls_name  = arg->strspace;
3267 	s_entry->dls_flags = arg->flags;
3268 
3269 	strncpy(arg->strspace, dir, dirlen);
3270 	arg->strspace[dirlen] = '\0';
3271 
3272 	arg->strspace += dirlen + 1;
3273 	arg->serpath++;
3274     }
3275 
3276     return (NULL);
3277 }
3278 
3279 static int
3280 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3281 {
3282     struct dl_serinfo _info;
3283     struct fill_search_info_args args;
3284 
3285     args.request = RTLD_DI_SERINFOSIZE;
3286     args.serinfo = &_info;
3287 
3288     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3289     _info.dls_cnt  = 0;
3290 
3291     path_enumerate(obj->rpath, fill_search_info, &args);
3292     path_enumerate(ld_library_path, fill_search_info, &args);
3293     path_enumerate(obj->runpath, fill_search_info, &args);
3294     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3295     if (!obj->z_nodeflib)
3296       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3297 
3298 
3299     if (request == RTLD_DI_SERINFOSIZE) {
3300 	info->dls_size = _info.dls_size;
3301 	info->dls_cnt = _info.dls_cnt;
3302 	return (0);
3303     }
3304 
3305     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3306 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3307 	return (-1);
3308     }
3309 
3310     args.request  = RTLD_DI_SERINFO;
3311     args.serinfo  = info;
3312     args.serpath  = &info->dls_serpath[0];
3313     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3314 
3315     args.flags = LA_SER_RUNPATH;
3316     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3317 	return (-1);
3318 
3319     args.flags = LA_SER_LIBPATH;
3320     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3321 	return (-1);
3322 
3323     args.flags = LA_SER_RUNPATH;
3324     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3325 	return (-1);
3326 
3327     args.flags = LA_SER_CONFIG;
3328     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3329       != NULL)
3330 	return (-1);
3331 
3332     args.flags = LA_SER_DEFAULT;
3333     if (!obj->z_nodeflib &&
3334       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3335 	return (-1);
3336     return (0);
3337 }
3338 
3339 static int
3340 rtld_dirname(const char *path, char *bname)
3341 {
3342     const char *endp;
3343 
3344     /* Empty or NULL string gets treated as "." */
3345     if (path == NULL || *path == '\0') {
3346 	bname[0] = '.';
3347 	bname[1] = '\0';
3348 	return (0);
3349     }
3350 
3351     /* Strip trailing slashes */
3352     endp = path + strlen(path) - 1;
3353     while (endp > path && *endp == '/')
3354 	endp--;
3355 
3356     /* Find the start of the dir */
3357     while (endp > path && *endp != '/')
3358 	endp--;
3359 
3360     /* Either the dir is "/" or there are no slashes */
3361     if (endp == path) {
3362 	bname[0] = *endp == '/' ? '/' : '.';
3363 	bname[1] = '\0';
3364 	return (0);
3365     } else {
3366 	do {
3367 	    endp--;
3368 	} while (endp > path && *endp == '/');
3369     }
3370 
3371     if (endp - path + 2 > PATH_MAX)
3372     {
3373 	_rtld_error("Filename is too long: %s", path);
3374 	return(-1);
3375     }
3376 
3377     strncpy(bname, path, endp - path + 1);
3378     bname[endp - path + 1] = '\0';
3379     return (0);
3380 }
3381 
3382 static int
3383 rtld_dirname_abs(const char *path, char *base)
3384 {
3385 	char base_rel[PATH_MAX];
3386 
3387 	if (rtld_dirname(path, base) == -1)
3388 		return (-1);
3389 	if (base[0] == '/')
3390 		return (0);
3391 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3392 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3393 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3394 		return (-1);
3395 	strcpy(base, base_rel);
3396 	return (0);
3397 }
3398 
3399 static void
3400 linkmap_add(Obj_Entry *obj)
3401 {
3402     struct link_map *l = &obj->linkmap;
3403     struct link_map *prev;
3404 
3405     obj->linkmap.l_name = obj->path;
3406     obj->linkmap.l_addr = obj->mapbase;
3407     obj->linkmap.l_ld = obj->dynamic;
3408 #ifdef __mips__
3409     /* GDB needs load offset on MIPS to use the symbols */
3410     obj->linkmap.l_offs = obj->relocbase;
3411 #endif
3412 
3413     if (r_debug.r_map == NULL) {
3414 	r_debug.r_map = l;
3415 	return;
3416     }
3417 
3418     /*
3419      * Scan to the end of the list, but not past the entry for the
3420      * dynamic linker, which we want to keep at the very end.
3421      */
3422     for (prev = r_debug.r_map;
3423       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3424       prev = prev->l_next)
3425 	;
3426 
3427     /* Link in the new entry. */
3428     l->l_prev = prev;
3429     l->l_next = prev->l_next;
3430     if (l->l_next != NULL)
3431 	l->l_next->l_prev = l;
3432     prev->l_next = l;
3433 }
3434 
3435 static void
3436 linkmap_delete(Obj_Entry *obj)
3437 {
3438     struct link_map *l = &obj->linkmap;
3439 
3440     if (l->l_prev == NULL) {
3441 	if ((r_debug.r_map = l->l_next) != NULL)
3442 	    l->l_next->l_prev = NULL;
3443 	return;
3444     }
3445 
3446     if ((l->l_prev->l_next = l->l_next) != NULL)
3447 	l->l_next->l_prev = l->l_prev;
3448 }
3449 
3450 /*
3451  * Function for the debugger to set a breakpoint on to gain control.
3452  *
3453  * The two parameters allow the debugger to easily find and determine
3454  * what the runtime loader is doing and to whom it is doing it.
3455  *
3456  * When the loadhook trap is hit (r_debug_state, set at program
3457  * initialization), the arguments can be found on the stack:
3458  *
3459  *  +8   struct link_map *m
3460  *  +4   struct r_debug  *rd
3461  *  +0   RetAddr
3462  */
3463 void
3464 r_debug_state(struct r_debug* rd, struct link_map *m)
3465 {
3466     /*
3467      * The following is a hack to force the compiler to emit calls to
3468      * this function, even when optimizing.  If the function is empty,
3469      * the compiler is not obliged to emit any code for calls to it,
3470      * even when marked __noinline.  However, gdb depends on those
3471      * calls being made.
3472      */
3473     __asm __volatile("" : : : "memory");
3474 }
3475 
3476 /*
3477  * Get address of the pointer variable in the main program.
3478  * Prefer non-weak symbol over the weak one.
3479  */
3480 static const void **
3481 get_program_var_addr(const char *name, RtldLockState *lockstate)
3482 {
3483     SymLook req;
3484     DoneList donelist;
3485 
3486     symlook_init(&req, name);
3487     req.lockstate = lockstate;
3488     donelist_init(&donelist);
3489     if (symlook_global(&req, &donelist) != 0)
3490 	return (NULL);
3491     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3492 	return ((const void **)make_function_pointer(req.sym_out,
3493 	  req.defobj_out));
3494     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3495 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3496     else
3497 	return ((const void **)(req.defobj_out->relocbase +
3498 	  req.sym_out->st_value));
3499 }
3500 
3501 /*
3502  * Set a pointer variable in the main program to the given value.  This
3503  * is used to set key variables such as "environ" before any of the
3504  * init functions are called.
3505  */
3506 static void
3507 set_program_var(const char *name, const void *value)
3508 {
3509     const void **addr;
3510 
3511     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3512 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3513 	*addr = value;
3514     }
3515 }
3516 
3517 /*
3518  * Search the global objects, including dependencies and main object,
3519  * for the given symbol.
3520  */
3521 static int
3522 symlook_global(SymLook *req, DoneList *donelist)
3523 {
3524     SymLook req1;
3525     const Objlist_Entry *elm;
3526     int res;
3527 
3528     symlook_init_from_req(&req1, req);
3529 
3530     /* Search all objects loaded at program start up. */
3531     if (req->defobj_out == NULL ||
3532       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3533 	res = symlook_list(&req1, &list_main, donelist);
3534 	if (res == 0 && (req->defobj_out == NULL ||
3535 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3536 	    req->sym_out = req1.sym_out;
3537 	    req->defobj_out = req1.defobj_out;
3538 	    assert(req->defobj_out != NULL);
3539 	}
3540     }
3541 
3542     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3543     STAILQ_FOREACH(elm, &list_global, link) {
3544 	if (req->defobj_out != NULL &&
3545 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3546 	    break;
3547 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3548 	if (res == 0 && (req->defobj_out == NULL ||
3549 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3550 	    req->sym_out = req1.sym_out;
3551 	    req->defobj_out = req1.defobj_out;
3552 	    assert(req->defobj_out != NULL);
3553 	}
3554     }
3555 
3556     return (req->sym_out != NULL ? 0 : ESRCH);
3557 }
3558 
3559 /*
3560  * Given a symbol name in a referencing object, find the corresponding
3561  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3562  * no definition was found.  Returns a pointer to the Obj_Entry of the
3563  * defining object via the reference parameter DEFOBJ_OUT.
3564  */
3565 static int
3566 symlook_default(SymLook *req, const Obj_Entry *refobj)
3567 {
3568     DoneList donelist;
3569     const Objlist_Entry *elm;
3570     SymLook req1;
3571     int res;
3572 
3573     donelist_init(&donelist);
3574     symlook_init_from_req(&req1, req);
3575 
3576     /* Look first in the referencing object if linked symbolically. */
3577     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3578 	res = symlook_obj(&req1, refobj);
3579 	if (res == 0) {
3580 	    req->sym_out = req1.sym_out;
3581 	    req->defobj_out = req1.defobj_out;
3582 	    assert(req->defobj_out != NULL);
3583 	}
3584     }
3585 
3586     symlook_global(req, &donelist);
3587 
3588     /* Search all dlopened DAGs containing the referencing object. */
3589     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3590 	if (req->sym_out != NULL &&
3591 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3592 	    break;
3593 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3594 	if (res == 0 && (req->sym_out == NULL ||
3595 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3596 	    req->sym_out = req1.sym_out;
3597 	    req->defobj_out = req1.defobj_out;
3598 	    assert(req->defobj_out != NULL);
3599 	}
3600     }
3601 
3602     /*
3603      * Search the dynamic linker itself, and possibly resolve the
3604      * symbol from there.  This is how the application links to
3605      * dynamic linker services such as dlopen.
3606      */
3607     if (req->sym_out == NULL ||
3608       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3609 	res = symlook_obj(&req1, &obj_rtld);
3610 	if (res == 0) {
3611 	    req->sym_out = req1.sym_out;
3612 	    req->defobj_out = req1.defobj_out;
3613 	    assert(req->defobj_out != NULL);
3614 	}
3615     }
3616 
3617     return (req->sym_out != NULL ? 0 : ESRCH);
3618 }
3619 
3620 static int
3621 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3622 {
3623     const Elf_Sym *def;
3624     const Obj_Entry *defobj;
3625     const Objlist_Entry *elm;
3626     SymLook req1;
3627     int res;
3628 
3629     def = NULL;
3630     defobj = NULL;
3631     STAILQ_FOREACH(elm, objlist, link) {
3632 	if (donelist_check(dlp, elm->obj))
3633 	    continue;
3634 	symlook_init_from_req(&req1, req);
3635 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3636 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3637 		def = req1.sym_out;
3638 		defobj = req1.defobj_out;
3639 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3640 		    break;
3641 	    }
3642 	}
3643     }
3644     if (def != NULL) {
3645 	req->sym_out = def;
3646 	req->defobj_out = defobj;
3647 	return (0);
3648     }
3649     return (ESRCH);
3650 }
3651 
3652 /*
3653  * Search the chain of DAGS cointed to by the given Needed_Entry
3654  * for a symbol of the given name.  Each DAG is scanned completely
3655  * before advancing to the next one.  Returns a pointer to the symbol,
3656  * or NULL if no definition was found.
3657  */
3658 static int
3659 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3660 {
3661     const Elf_Sym *def;
3662     const Needed_Entry *n;
3663     const Obj_Entry *defobj;
3664     SymLook req1;
3665     int res;
3666 
3667     def = NULL;
3668     defobj = NULL;
3669     symlook_init_from_req(&req1, req);
3670     for (n = needed; n != NULL; n = n->next) {
3671 	if (n->obj == NULL ||
3672 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3673 	    continue;
3674 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3675 	    def = req1.sym_out;
3676 	    defobj = req1.defobj_out;
3677 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3678 		break;
3679 	}
3680     }
3681     if (def != NULL) {
3682 	req->sym_out = def;
3683 	req->defobj_out = defobj;
3684 	return (0);
3685     }
3686     return (ESRCH);
3687 }
3688 
3689 /*
3690  * Search the symbol table of a single shared object for a symbol of
3691  * the given name and version, if requested.  Returns a pointer to the
3692  * symbol, or NULL if no definition was found.  If the object is
3693  * filter, return filtered symbol from filtee.
3694  *
3695  * The symbol's hash value is passed in for efficiency reasons; that
3696  * eliminates many recomputations of the hash value.
3697  */
3698 int
3699 symlook_obj(SymLook *req, const Obj_Entry *obj)
3700 {
3701     DoneList donelist;
3702     SymLook req1;
3703     int flags, res, mres;
3704 
3705     /*
3706      * If there is at least one valid hash at this point, we prefer to
3707      * use the faster GNU version if available.
3708      */
3709     if (obj->valid_hash_gnu)
3710 	mres = symlook_obj1_gnu(req, obj);
3711     else if (obj->valid_hash_sysv)
3712 	mres = symlook_obj1_sysv(req, obj);
3713     else
3714 	return (EINVAL);
3715 
3716     if (mres == 0) {
3717 	if (obj->needed_filtees != NULL) {
3718 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3719 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3720 	    donelist_init(&donelist);
3721 	    symlook_init_from_req(&req1, req);
3722 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3723 	    if (res == 0) {
3724 		req->sym_out = req1.sym_out;
3725 		req->defobj_out = req1.defobj_out;
3726 	    }
3727 	    return (res);
3728 	}
3729 	if (obj->needed_aux_filtees != NULL) {
3730 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3731 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3732 	    donelist_init(&donelist);
3733 	    symlook_init_from_req(&req1, req);
3734 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3735 	    if (res == 0) {
3736 		req->sym_out = req1.sym_out;
3737 		req->defobj_out = req1.defobj_out;
3738 		return (res);
3739 	    }
3740 	}
3741     }
3742     return (mres);
3743 }
3744 
3745 /* Symbol match routine common to both hash functions */
3746 static bool
3747 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3748     const unsigned long symnum)
3749 {
3750 	Elf_Versym verndx;
3751 	const Elf_Sym *symp;
3752 	const char *strp;
3753 
3754 	symp = obj->symtab + symnum;
3755 	strp = obj->strtab + symp->st_name;
3756 
3757 	switch (ELF_ST_TYPE(symp->st_info)) {
3758 	case STT_FUNC:
3759 	case STT_NOTYPE:
3760 	case STT_OBJECT:
3761 	case STT_COMMON:
3762 	case STT_GNU_IFUNC:
3763 		if (symp->st_value == 0)
3764 			return (false);
3765 		/* fallthrough */
3766 	case STT_TLS:
3767 		if (symp->st_shndx != SHN_UNDEF)
3768 			break;
3769 #ifndef __mips__
3770 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3771 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3772 			break;
3773 		/* fallthrough */
3774 #endif
3775 	default:
3776 		return (false);
3777 	}
3778 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3779 		return (false);
3780 
3781 	if (req->ventry == NULL) {
3782 		if (obj->versyms != NULL) {
3783 			verndx = VER_NDX(obj->versyms[symnum]);
3784 			if (verndx > obj->vernum) {
3785 				_rtld_error(
3786 				    "%s: symbol %s references wrong version %d",
3787 				    obj->path, obj->strtab + symnum, verndx);
3788 				return (false);
3789 			}
3790 			/*
3791 			 * If we are not called from dlsym (i.e. this
3792 			 * is a normal relocation from unversioned
3793 			 * binary), accept the symbol immediately if
3794 			 * it happens to have first version after this
3795 			 * shared object became versioned.  Otherwise,
3796 			 * if symbol is versioned and not hidden,
3797 			 * remember it. If it is the only symbol with
3798 			 * this name exported by the shared object, it
3799 			 * will be returned as a match by the calling
3800 			 * function. If symbol is global (verndx < 2)
3801 			 * accept it unconditionally.
3802 			 */
3803 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3804 			    verndx == VER_NDX_GIVEN) {
3805 				result->sym_out = symp;
3806 				return (true);
3807 			}
3808 			else if (verndx >= VER_NDX_GIVEN) {
3809 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3810 				    == 0) {
3811 					if (result->vsymp == NULL)
3812 						result->vsymp = symp;
3813 					result->vcount++;
3814 				}
3815 				return (false);
3816 			}
3817 		}
3818 		result->sym_out = symp;
3819 		return (true);
3820 	}
3821 	if (obj->versyms == NULL) {
3822 		if (object_match_name(obj, req->ventry->name)) {
3823 			_rtld_error("%s: object %s should provide version %s "
3824 			    "for symbol %s", obj_rtld.path, obj->path,
3825 			    req->ventry->name, obj->strtab + symnum);
3826 			return (false);
3827 		}
3828 	} else {
3829 		verndx = VER_NDX(obj->versyms[symnum]);
3830 		if (verndx > obj->vernum) {
3831 			_rtld_error("%s: symbol %s references wrong version %d",
3832 			    obj->path, obj->strtab + symnum, verndx);
3833 			return (false);
3834 		}
3835 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3836 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3837 			/*
3838 			 * Version does not match. Look if this is a
3839 			 * global symbol and if it is not hidden. If
3840 			 * global symbol (verndx < 2) is available,
3841 			 * use it. Do not return symbol if we are
3842 			 * called by dlvsym, because dlvsym looks for
3843 			 * a specific version and default one is not
3844 			 * what dlvsym wants.
3845 			 */
3846 			if ((req->flags & SYMLOOK_DLSYM) ||
3847 			    (verndx >= VER_NDX_GIVEN) ||
3848 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3849 				return (false);
3850 		}
3851 	}
3852 	result->sym_out = symp;
3853 	return (true);
3854 }
3855 
3856 /*
3857  * Search for symbol using SysV hash function.
3858  * obj->buckets is known not to be NULL at this point; the test for this was
3859  * performed with the obj->valid_hash_sysv assignment.
3860  */
3861 static int
3862 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3863 {
3864 	unsigned long symnum;
3865 	Sym_Match_Result matchres;
3866 
3867 	matchres.sym_out = NULL;
3868 	matchres.vsymp = NULL;
3869 	matchres.vcount = 0;
3870 
3871 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3872 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3873 		if (symnum >= obj->nchains)
3874 			return (ESRCH);	/* Bad object */
3875 
3876 		if (matched_symbol(req, obj, &matchres, symnum)) {
3877 			req->sym_out = matchres.sym_out;
3878 			req->defobj_out = obj;
3879 			return (0);
3880 		}
3881 	}
3882 	if (matchres.vcount == 1) {
3883 		req->sym_out = matchres.vsymp;
3884 		req->defobj_out = obj;
3885 		return (0);
3886 	}
3887 	return (ESRCH);
3888 }
3889 
3890 /* Search for symbol using GNU hash function */
3891 static int
3892 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3893 {
3894 	Elf_Addr bloom_word;
3895 	const Elf32_Word *hashval;
3896 	Elf32_Word bucket;
3897 	Sym_Match_Result matchres;
3898 	unsigned int h1, h2;
3899 	unsigned long symnum;
3900 
3901 	matchres.sym_out = NULL;
3902 	matchres.vsymp = NULL;
3903 	matchres.vcount = 0;
3904 
3905 	/* Pick right bitmask word from Bloom filter array */
3906 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3907 	    obj->maskwords_bm_gnu];
3908 
3909 	/* Calculate modulus word size of gnu hash and its derivative */
3910 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3911 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3912 
3913 	/* Filter out the "definitely not in set" queries */
3914 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3915 		return (ESRCH);
3916 
3917 	/* Locate hash chain and corresponding value element*/
3918 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3919 	if (bucket == 0)
3920 		return (ESRCH);
3921 	hashval = &obj->chain_zero_gnu[bucket];
3922 	do {
3923 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3924 			symnum = hashval - obj->chain_zero_gnu;
3925 			if (matched_symbol(req, obj, &matchres, symnum)) {
3926 				req->sym_out = matchres.sym_out;
3927 				req->defobj_out = obj;
3928 				return (0);
3929 			}
3930 		}
3931 	} while ((*hashval++ & 1) == 0);
3932 	if (matchres.vcount == 1) {
3933 		req->sym_out = matchres.vsymp;
3934 		req->defobj_out = obj;
3935 		return (0);
3936 	}
3937 	return (ESRCH);
3938 }
3939 
3940 static void
3941 trace_loaded_objects(Obj_Entry *obj)
3942 {
3943     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3944     int		c;
3945 
3946     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3947 	main_local = "";
3948 
3949     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3950 	fmt1 = "\t%o => %p (%x)\n";
3951 
3952     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3953 	fmt2 = "\t%o (%x)\n";
3954 
3955     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3956 
3957     for (; obj; obj = obj->next) {
3958 	Needed_Entry		*needed;
3959 	char			*name, *path;
3960 	bool			is_lib;
3961 
3962 	if (list_containers && obj->needed != NULL)
3963 	    rtld_printf("%s:\n", obj->path);
3964 	for (needed = obj->needed; needed; needed = needed->next) {
3965 	    if (needed->obj != NULL) {
3966 		if (needed->obj->traced && !list_containers)
3967 		    continue;
3968 		needed->obj->traced = true;
3969 		path = needed->obj->path;
3970 	    } else
3971 		path = "not found";
3972 
3973 	    name = (char *)obj->strtab + needed->name;
3974 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3975 
3976 	    fmt = is_lib ? fmt1 : fmt2;
3977 	    while ((c = *fmt++) != '\0') {
3978 		switch (c) {
3979 		default:
3980 		    rtld_putchar(c);
3981 		    continue;
3982 		case '\\':
3983 		    switch (c = *fmt) {
3984 		    case '\0':
3985 			continue;
3986 		    case 'n':
3987 			rtld_putchar('\n');
3988 			break;
3989 		    case 't':
3990 			rtld_putchar('\t');
3991 			break;
3992 		    }
3993 		    break;
3994 		case '%':
3995 		    switch (c = *fmt) {
3996 		    case '\0':
3997 			continue;
3998 		    case '%':
3999 		    default:
4000 			rtld_putchar(c);
4001 			break;
4002 		    case 'A':
4003 			rtld_putstr(main_local);
4004 			break;
4005 		    case 'a':
4006 			rtld_putstr(obj_main->path);
4007 			break;
4008 		    case 'o':
4009 			rtld_putstr(name);
4010 			break;
4011 #if 0
4012 		    case 'm':
4013 			rtld_printf("%d", sodp->sod_major);
4014 			break;
4015 		    case 'n':
4016 			rtld_printf("%d", sodp->sod_minor);
4017 			break;
4018 #endif
4019 		    case 'p':
4020 			rtld_putstr(path);
4021 			break;
4022 		    case 'x':
4023 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4024 			  0);
4025 			break;
4026 		    }
4027 		    break;
4028 		}
4029 		++fmt;
4030 	    }
4031 	}
4032     }
4033 }
4034 
4035 /*
4036  * Unload a dlopened object and its dependencies from memory and from
4037  * our data structures.  It is assumed that the DAG rooted in the
4038  * object has already been unreferenced, and that the object has a
4039  * reference count of 0.
4040  */
4041 static void
4042 unload_object(Obj_Entry *root)
4043 {
4044     Obj_Entry *obj;
4045     Obj_Entry **linkp;
4046 
4047     assert(root->refcount == 0);
4048 
4049     /*
4050      * Pass over the DAG removing unreferenced objects from
4051      * appropriate lists.
4052      */
4053     unlink_object(root);
4054 
4055     /* Unmap all objects that are no longer referenced. */
4056     linkp = &obj_list->next;
4057     while ((obj = *linkp) != NULL) {
4058 	if (obj->refcount == 0) {
4059 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4060 		obj->path);
4061 	    dbg("unloading \"%s\"", obj->path);
4062 	    unload_filtees(root);
4063 	    munmap(obj->mapbase, obj->mapsize);
4064 	    linkmap_delete(obj);
4065 	    *linkp = obj->next;
4066 	    obj_count--;
4067 	    obj_free(obj);
4068 	} else
4069 	    linkp = &obj->next;
4070     }
4071     obj_tail = linkp;
4072 }
4073 
4074 static void
4075 unlink_object(Obj_Entry *root)
4076 {
4077     Objlist_Entry *elm;
4078 
4079     if (root->refcount == 0) {
4080 	/* Remove the object from the RTLD_GLOBAL list. */
4081 	objlist_remove(&list_global, root);
4082 
4083     	/* Remove the object from all objects' DAG lists. */
4084     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4085 	    objlist_remove(&elm->obj->dldags, root);
4086 	    if (elm->obj != root)
4087 		unlink_object(elm->obj);
4088 	}
4089     }
4090 }
4091 
4092 static void
4093 ref_dag(Obj_Entry *root)
4094 {
4095     Objlist_Entry *elm;
4096 
4097     assert(root->dag_inited);
4098     STAILQ_FOREACH(elm, &root->dagmembers, link)
4099 	elm->obj->refcount++;
4100 }
4101 
4102 static void
4103 unref_dag(Obj_Entry *root)
4104 {
4105     Objlist_Entry *elm;
4106 
4107     assert(root->dag_inited);
4108     STAILQ_FOREACH(elm, &root->dagmembers, link)
4109 	elm->obj->refcount--;
4110 }
4111 
4112 /*
4113  * Common code for MD __tls_get_addr().
4114  */
4115 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4116 static void *
4117 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4118 {
4119     Elf_Addr *newdtv, *dtv;
4120     RtldLockState lockstate;
4121     int to_copy;
4122 
4123     dtv = *dtvp;
4124     /* Check dtv generation in case new modules have arrived */
4125     if (dtv[0] != tls_dtv_generation) {
4126 	wlock_acquire(rtld_bind_lock, &lockstate);
4127 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4128 	to_copy = dtv[1];
4129 	if (to_copy > tls_max_index)
4130 	    to_copy = tls_max_index;
4131 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4132 	newdtv[0] = tls_dtv_generation;
4133 	newdtv[1] = tls_max_index;
4134 	free(dtv);
4135 	lock_release(rtld_bind_lock, &lockstate);
4136 	dtv = *dtvp = newdtv;
4137     }
4138 
4139     /* Dynamically allocate module TLS if necessary */
4140     if (dtv[index + 1] == 0) {
4141 	/* Signal safe, wlock will block out signals. */
4142 	wlock_acquire(rtld_bind_lock, &lockstate);
4143 	if (!dtv[index + 1])
4144 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4145 	lock_release(rtld_bind_lock, &lockstate);
4146     }
4147     return ((void *)(dtv[index + 1] + offset));
4148 }
4149 
4150 void *
4151 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4152 {
4153 	Elf_Addr *dtv;
4154 
4155 	dtv = *dtvp;
4156 	/* Check dtv generation in case new modules have arrived */
4157 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4158 	    dtv[index + 1] != 0))
4159 		return ((void *)(dtv[index + 1] + offset));
4160 	return (tls_get_addr_slow(dtvp, index, offset));
4161 }
4162 
4163 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4164 
4165 /*
4166  * Allocate Static TLS using the Variant I method.
4167  */
4168 void *
4169 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4170 {
4171     Obj_Entry *obj;
4172     char *tcb;
4173     Elf_Addr **tls;
4174     Elf_Addr *dtv;
4175     Elf_Addr addr;
4176     int i;
4177 
4178     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4179 	return (oldtcb);
4180 
4181     assert(tcbsize >= TLS_TCB_SIZE);
4182     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4183     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4184 
4185     if (oldtcb != NULL) {
4186 	memcpy(tls, oldtcb, tls_static_space);
4187 	free(oldtcb);
4188 
4189 	/* Adjust the DTV. */
4190 	dtv = tls[0];
4191 	for (i = 0; i < dtv[1]; i++) {
4192 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4193 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4194 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4195 	    }
4196 	}
4197     } else {
4198 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4199 	tls[0] = dtv;
4200 	dtv[0] = tls_dtv_generation;
4201 	dtv[1] = tls_max_index;
4202 
4203 	for (obj = objs; obj; obj = obj->next) {
4204 	    if (obj->tlsoffset > 0) {
4205 		addr = (Elf_Addr)tls + obj->tlsoffset;
4206 		if (obj->tlsinitsize > 0)
4207 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4208 		if (obj->tlssize > obj->tlsinitsize)
4209 		    memset((void*) (addr + obj->tlsinitsize), 0,
4210 			   obj->tlssize - obj->tlsinitsize);
4211 		dtv[obj->tlsindex + 1] = addr;
4212 	    }
4213 	}
4214     }
4215 
4216     return (tcb);
4217 }
4218 
4219 void
4220 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4221 {
4222     Elf_Addr *dtv;
4223     Elf_Addr tlsstart, tlsend;
4224     int dtvsize, i;
4225 
4226     assert(tcbsize >= TLS_TCB_SIZE);
4227 
4228     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4229     tlsend = tlsstart + tls_static_space;
4230 
4231     dtv = *(Elf_Addr **)tlsstart;
4232     dtvsize = dtv[1];
4233     for (i = 0; i < dtvsize; i++) {
4234 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4235 	    free((void*)dtv[i+2]);
4236 	}
4237     }
4238     free(dtv);
4239     free(tcb);
4240 }
4241 
4242 #endif
4243 
4244 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4245 
4246 /*
4247  * Allocate Static TLS using the Variant II method.
4248  */
4249 void *
4250 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4251 {
4252     Obj_Entry *obj;
4253     size_t size;
4254     char *tls;
4255     Elf_Addr *dtv, *olddtv;
4256     Elf_Addr segbase, oldsegbase, addr;
4257     int i;
4258 
4259     size = round(tls_static_space, tcbalign);
4260 
4261     assert(tcbsize >= 2*sizeof(Elf_Addr));
4262     tls = xcalloc(1, size + tcbsize);
4263     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4264 
4265     segbase = (Elf_Addr)(tls + size);
4266     ((Elf_Addr*)segbase)[0] = segbase;
4267     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4268 
4269     dtv[0] = tls_dtv_generation;
4270     dtv[1] = tls_max_index;
4271 
4272     if (oldtls) {
4273 	/*
4274 	 * Copy the static TLS block over whole.
4275 	 */
4276 	oldsegbase = (Elf_Addr) oldtls;
4277 	memcpy((void *)(segbase - tls_static_space),
4278 	       (const void *)(oldsegbase - tls_static_space),
4279 	       tls_static_space);
4280 
4281 	/*
4282 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4283 	 * move them over.
4284 	 */
4285 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4286 	for (i = 0; i < olddtv[1]; i++) {
4287 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4288 		dtv[i+2] = olddtv[i+2];
4289 		olddtv[i+2] = 0;
4290 	    }
4291 	}
4292 
4293 	/*
4294 	 * We assume that this block was the one we created with
4295 	 * allocate_initial_tls().
4296 	 */
4297 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4298     } else {
4299 	for (obj = objs; obj; obj = obj->next) {
4300 	    if (obj->tlsoffset) {
4301 		addr = segbase - obj->tlsoffset;
4302 		memset((void*) (addr + obj->tlsinitsize),
4303 		       0, obj->tlssize - obj->tlsinitsize);
4304 		if (obj->tlsinit)
4305 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4306 		dtv[obj->tlsindex + 1] = addr;
4307 	    }
4308 	}
4309     }
4310 
4311     return (void*) segbase;
4312 }
4313 
4314 void
4315 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4316 {
4317     size_t size;
4318     Elf_Addr* dtv;
4319     int dtvsize, i;
4320     Elf_Addr tlsstart, tlsend;
4321 
4322     /*
4323      * Figure out the size of the initial TLS block so that we can
4324      * find stuff which ___tls_get_addr() allocated dynamically.
4325      */
4326     size = round(tls_static_space, tcbalign);
4327 
4328     dtv = ((Elf_Addr**)tls)[1];
4329     dtvsize = dtv[1];
4330     tlsend = (Elf_Addr) tls;
4331     tlsstart = tlsend - size;
4332     for (i = 0; i < dtvsize; i++) {
4333 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
4334 	    free((void*) dtv[i+2]);
4335 	}
4336     }
4337 
4338     free((void*) tlsstart);
4339     free((void*) dtv);
4340 }
4341 
4342 #endif
4343 
4344 /*
4345  * Allocate TLS block for module with given index.
4346  */
4347 void *
4348 allocate_module_tls(int index)
4349 {
4350     Obj_Entry* obj;
4351     char* p;
4352 
4353     for (obj = obj_list; obj; obj = obj->next) {
4354 	if (obj->tlsindex == index)
4355 	    break;
4356     }
4357     if (!obj) {
4358 	_rtld_error("Can't find module with TLS index %d", index);
4359 	die();
4360     }
4361 
4362     p = malloc(obj->tlssize);
4363     if (p == NULL) {
4364 	_rtld_error("Cannot allocate TLS block for index %d", index);
4365 	die();
4366     }
4367     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4368     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4369 
4370     return p;
4371 }
4372 
4373 bool
4374 allocate_tls_offset(Obj_Entry *obj)
4375 {
4376     size_t off;
4377 
4378     if (obj->tls_done)
4379 	return true;
4380 
4381     if (obj->tlssize == 0) {
4382 	obj->tls_done = true;
4383 	return true;
4384     }
4385 
4386     if (obj->tlsindex == 1)
4387 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4388     else
4389 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4390 				   obj->tlssize, obj->tlsalign);
4391 
4392     /*
4393      * If we have already fixed the size of the static TLS block, we
4394      * must stay within that size. When allocating the static TLS, we
4395      * leave a small amount of space spare to be used for dynamically
4396      * loading modules which use static TLS.
4397      */
4398     if (tls_static_space) {
4399 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4400 	    return false;
4401     }
4402 
4403     tls_last_offset = obj->tlsoffset = off;
4404     tls_last_size = obj->tlssize;
4405     obj->tls_done = true;
4406 
4407     return true;
4408 }
4409 
4410 void
4411 free_tls_offset(Obj_Entry *obj)
4412 {
4413 
4414     /*
4415      * If we were the last thing to allocate out of the static TLS
4416      * block, we give our space back to the 'allocator'. This is a
4417      * simplistic workaround to allow libGL.so.1 to be loaded and
4418      * unloaded multiple times.
4419      */
4420     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4421 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4422 	tls_last_offset -= obj->tlssize;
4423 	tls_last_size = 0;
4424     }
4425 }
4426 
4427 void *
4428 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4429 {
4430     void *ret;
4431     RtldLockState lockstate;
4432 
4433     wlock_acquire(rtld_bind_lock, &lockstate);
4434     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4435     lock_release(rtld_bind_lock, &lockstate);
4436     return (ret);
4437 }
4438 
4439 void
4440 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4441 {
4442     RtldLockState lockstate;
4443 
4444     wlock_acquire(rtld_bind_lock, &lockstate);
4445     free_tls(tcb, tcbsize, tcbalign);
4446     lock_release(rtld_bind_lock, &lockstate);
4447 }
4448 
4449 static void
4450 object_add_name(Obj_Entry *obj, const char *name)
4451 {
4452     Name_Entry *entry;
4453     size_t len;
4454 
4455     len = strlen(name);
4456     entry = malloc(sizeof(Name_Entry) + len);
4457 
4458     if (entry != NULL) {
4459 	strcpy(entry->name, name);
4460 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4461     }
4462 }
4463 
4464 static int
4465 object_match_name(const Obj_Entry *obj, const char *name)
4466 {
4467     Name_Entry *entry;
4468 
4469     STAILQ_FOREACH(entry, &obj->names, link) {
4470 	if (strcmp(name, entry->name) == 0)
4471 	    return (1);
4472     }
4473     return (0);
4474 }
4475 
4476 static Obj_Entry *
4477 locate_dependency(const Obj_Entry *obj, const char *name)
4478 {
4479     const Objlist_Entry *entry;
4480     const Needed_Entry *needed;
4481 
4482     STAILQ_FOREACH(entry, &list_main, link) {
4483 	if (object_match_name(entry->obj, name))
4484 	    return entry->obj;
4485     }
4486 
4487     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4488 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4489 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4490 	    /*
4491 	     * If there is DT_NEEDED for the name we are looking for,
4492 	     * we are all set.  Note that object might not be found if
4493 	     * dependency was not loaded yet, so the function can
4494 	     * return NULL here.  This is expected and handled
4495 	     * properly by the caller.
4496 	     */
4497 	    return (needed->obj);
4498 	}
4499     }
4500     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4501 	obj->path, name);
4502     die();
4503 }
4504 
4505 static int
4506 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4507     const Elf_Vernaux *vna)
4508 {
4509     const Elf_Verdef *vd;
4510     const char *vername;
4511 
4512     vername = refobj->strtab + vna->vna_name;
4513     vd = depobj->verdef;
4514     if (vd == NULL) {
4515 	_rtld_error("%s: version %s required by %s not defined",
4516 	    depobj->path, vername, refobj->path);
4517 	return (-1);
4518     }
4519     for (;;) {
4520 	if (vd->vd_version != VER_DEF_CURRENT) {
4521 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4522 		depobj->path, vd->vd_version);
4523 	    return (-1);
4524 	}
4525 	if (vna->vna_hash == vd->vd_hash) {
4526 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4527 		((char *)vd + vd->vd_aux);
4528 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4529 		return (0);
4530 	}
4531 	if (vd->vd_next == 0)
4532 	    break;
4533 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4534     }
4535     if (vna->vna_flags & VER_FLG_WEAK)
4536 	return (0);
4537     _rtld_error("%s: version %s required by %s not found",
4538 	depobj->path, vername, refobj->path);
4539     return (-1);
4540 }
4541 
4542 static int
4543 rtld_verify_object_versions(Obj_Entry *obj)
4544 {
4545     const Elf_Verneed *vn;
4546     const Elf_Verdef  *vd;
4547     const Elf_Verdaux *vda;
4548     const Elf_Vernaux *vna;
4549     const Obj_Entry *depobj;
4550     int maxvernum, vernum;
4551 
4552     if (obj->ver_checked)
4553 	return (0);
4554     obj->ver_checked = true;
4555 
4556     maxvernum = 0;
4557     /*
4558      * Walk over defined and required version records and figure out
4559      * max index used by any of them. Do very basic sanity checking
4560      * while there.
4561      */
4562     vn = obj->verneed;
4563     while (vn != NULL) {
4564 	if (vn->vn_version != VER_NEED_CURRENT) {
4565 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4566 		obj->path, vn->vn_version);
4567 	    return (-1);
4568 	}
4569 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4570 	for (;;) {
4571 	    vernum = VER_NEED_IDX(vna->vna_other);
4572 	    if (vernum > maxvernum)
4573 		maxvernum = vernum;
4574 	    if (vna->vna_next == 0)
4575 		 break;
4576 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4577 	}
4578 	if (vn->vn_next == 0)
4579 	    break;
4580 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4581     }
4582 
4583     vd = obj->verdef;
4584     while (vd != NULL) {
4585 	if (vd->vd_version != VER_DEF_CURRENT) {
4586 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4587 		obj->path, vd->vd_version);
4588 	    return (-1);
4589 	}
4590 	vernum = VER_DEF_IDX(vd->vd_ndx);
4591 	if (vernum > maxvernum)
4592 		maxvernum = vernum;
4593 	if (vd->vd_next == 0)
4594 	    break;
4595 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4596     }
4597 
4598     if (maxvernum == 0)
4599 	return (0);
4600 
4601     /*
4602      * Store version information in array indexable by version index.
4603      * Verify that object version requirements are satisfied along the
4604      * way.
4605      */
4606     obj->vernum = maxvernum + 1;
4607     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4608 
4609     vd = obj->verdef;
4610     while (vd != NULL) {
4611 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4612 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4613 	    assert(vernum <= maxvernum);
4614 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4615 	    obj->vertab[vernum].hash = vd->vd_hash;
4616 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4617 	    obj->vertab[vernum].file = NULL;
4618 	    obj->vertab[vernum].flags = 0;
4619 	}
4620 	if (vd->vd_next == 0)
4621 	    break;
4622 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4623     }
4624 
4625     vn = obj->verneed;
4626     while (vn != NULL) {
4627 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4628 	if (depobj == NULL)
4629 	    return (-1);
4630 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4631 	for (;;) {
4632 	    if (check_object_provided_version(obj, depobj, vna))
4633 		return (-1);
4634 	    vernum = VER_NEED_IDX(vna->vna_other);
4635 	    assert(vernum <= maxvernum);
4636 	    obj->vertab[vernum].hash = vna->vna_hash;
4637 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4638 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4639 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4640 		VER_INFO_HIDDEN : 0;
4641 	    if (vna->vna_next == 0)
4642 		 break;
4643 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4644 	}
4645 	if (vn->vn_next == 0)
4646 	    break;
4647 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4648     }
4649     return 0;
4650 }
4651 
4652 static int
4653 rtld_verify_versions(const Objlist *objlist)
4654 {
4655     Objlist_Entry *entry;
4656     int rc;
4657 
4658     rc = 0;
4659     STAILQ_FOREACH(entry, objlist, link) {
4660 	/*
4661 	 * Skip dummy objects or objects that have their version requirements
4662 	 * already checked.
4663 	 */
4664 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4665 	    continue;
4666 	if (rtld_verify_object_versions(entry->obj) == -1) {
4667 	    rc = -1;
4668 	    if (ld_tracing == NULL)
4669 		break;
4670 	}
4671     }
4672     if (rc == 0 || ld_tracing != NULL)
4673     	rc = rtld_verify_object_versions(&obj_rtld);
4674     return rc;
4675 }
4676 
4677 const Ver_Entry *
4678 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4679 {
4680     Elf_Versym vernum;
4681 
4682     if (obj->vertab) {
4683 	vernum = VER_NDX(obj->versyms[symnum]);
4684 	if (vernum >= obj->vernum) {
4685 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4686 		obj->path, obj->strtab + symnum, vernum);
4687 	} else if (obj->vertab[vernum].hash != 0) {
4688 	    return &obj->vertab[vernum];
4689 	}
4690     }
4691     return NULL;
4692 }
4693 
4694 int
4695 _rtld_get_stack_prot(void)
4696 {
4697 
4698 	return (stack_prot);
4699 }
4700 
4701 static void
4702 map_stacks_exec(RtldLockState *lockstate)
4703 {
4704 	void (*thr_map_stacks_exec)(void);
4705 
4706 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4707 		return;
4708 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4709 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4710 	if (thr_map_stacks_exec != NULL) {
4711 		stack_prot |= PROT_EXEC;
4712 		thr_map_stacks_exec();
4713 	}
4714 }
4715 
4716 void
4717 symlook_init(SymLook *dst, const char *name)
4718 {
4719 
4720 	bzero(dst, sizeof(*dst));
4721 	dst->name = name;
4722 	dst->hash = elf_hash(name);
4723 	dst->hash_gnu = gnu_hash(name);
4724 }
4725 
4726 static void
4727 symlook_init_from_req(SymLook *dst, const SymLook *src)
4728 {
4729 
4730 	dst->name = src->name;
4731 	dst->hash = src->hash;
4732 	dst->hash_gnu = src->hash_gnu;
4733 	dst->ventry = src->ventry;
4734 	dst->flags = src->flags;
4735 	dst->defobj_out = NULL;
4736 	dst->sym_out = NULL;
4737 	dst->lockstate = src->lockstate;
4738 }
4739 
4740 /*
4741  * Overrides for libc_pic-provided functions.
4742  */
4743 
4744 int
4745 __getosreldate(void)
4746 {
4747 	size_t len;
4748 	int oid[2];
4749 	int error, osrel;
4750 
4751 	if (osreldate != 0)
4752 		return (osreldate);
4753 
4754 	oid[0] = CTL_KERN;
4755 	oid[1] = KERN_OSRELDATE;
4756 	osrel = 0;
4757 	len = sizeof(osrel);
4758 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4759 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4760 		osreldate = osrel;
4761 	return (osreldate);
4762 }
4763 
4764 void
4765 exit(int status)
4766 {
4767 
4768 	_exit(status);
4769 }
4770 
4771 void (*__cleanup)(void);
4772 int __isthreaded = 0;
4773 int _thread_autoinit_dummy_decl = 1;
4774 
4775 /*
4776  * No unresolved symbols for rtld.
4777  */
4778 void
4779 __pthread_cxa_finalize(struct dl_phdr_info *a)
4780 {
4781 }
4782 
4783 void
4784 __stack_chk_fail(void)
4785 {
4786 
4787 	_rtld_error("stack overflow detected; terminated");
4788 	die();
4789 }
4790 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4791 
4792 void
4793 __chk_fail(void)
4794 {
4795 
4796 	_rtld_error("buffer overflow detected; terminated");
4797 	die();
4798 }
4799 
4800 const char *
4801 rtld_strerror(int errnum)
4802 {
4803 
4804 	if (errnum < 0 || errnum >= sys_nerr)
4805 		return ("Unknown error");
4806 	return (sys_errlist[errnum]);
4807 }
4808