xref: /freebsd/sbin/fsck_ffs/suj.c (revision 1f474190)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/disk.h>
34 #include <sys/disklabel.h>
35 #include <sys/mount.h>
36 #include <sys/stat.h>
37 
38 #include <ufs/ufs/ufsmount.h>
39 #include <ufs/ufs/dinode.h>
40 #include <ufs/ufs/dir.h>
41 #include <ufs/ffs/fs.h>
42 
43 #include <assert.h>
44 #include <err.h>
45 #include <setjmp.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <stdint.h>
50 #include <libufs.h>
51 #include <string.h>
52 #include <strings.h>
53 #include <sysexits.h>
54 #include <time.h>
55 
56 #include "fsck.h"
57 
58 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
59 #define	SUJ_HASHSIZE	2048
60 #define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
61 #define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
62 
63 struct suj_seg {
64 	TAILQ_ENTRY(suj_seg) ss_next;
65 	struct jsegrec	ss_rec;
66 	uint8_t		*ss_blk;
67 };
68 
69 struct suj_rec {
70 	TAILQ_ENTRY(suj_rec) sr_next;
71 	union jrec	*sr_rec;
72 };
73 TAILQ_HEAD(srechd, suj_rec);
74 
75 struct suj_ino {
76 	LIST_ENTRY(suj_ino)	si_next;
77 	struct srechd		si_recs;
78 	struct srechd		si_newrecs;
79 	struct srechd		si_movs;
80 	struct jtrncrec		*si_trunc;
81 	ino_t			si_ino;
82 	char			si_skipparent;
83 	char			si_hasrecs;
84 	char			si_blkadj;
85 	char			si_linkadj;
86 	int			si_mode;
87 	nlink_t			si_nlinkadj;
88 	nlink_t			si_nlink;
89 	nlink_t			si_dotlinks;
90 };
91 LIST_HEAD(inohd, suj_ino);
92 
93 struct suj_blk {
94 	LIST_ENTRY(suj_blk)	sb_next;
95 	struct srechd		sb_recs;
96 	ufs2_daddr_t		sb_blk;
97 };
98 LIST_HEAD(blkhd, suj_blk);
99 
100 struct data_blk {
101 	LIST_ENTRY(data_blk)	db_next;
102 	uint8_t			*db_buf;
103 	ufs2_daddr_t		db_blk;
104 	int			db_size;
105 	int			db_dirty;
106 };
107 
108 struct ino_blk {
109 	LIST_ENTRY(ino_blk)	ib_next;
110 	uint8_t			*ib_buf;
111 	int			ib_dirty;
112 	ino_t			ib_startinginum;
113 	ufs2_daddr_t		ib_blk;
114 };
115 LIST_HEAD(iblkhd, ino_blk);
116 
117 struct suj_cg {
118 	LIST_ENTRY(suj_cg)	sc_next;
119 	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
120 	struct inohd		sc_inohash[SUJ_HASHSIZE];
121 	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
122 	struct ino_blk		*sc_lastiblk;
123 	struct suj_ino		*sc_lastino;
124 	struct suj_blk		*sc_lastblk;
125 	uint8_t			*sc_cgbuf;
126 	struct cg		*sc_cgp;
127 	int			sc_dirty;
128 	int			sc_cgx;
129 };
130 
131 static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
132 static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
133 static struct suj_cg *lastcg;
134 static struct data_blk *lastblk;
135 
136 static TAILQ_HEAD(seghd, suj_seg) allsegs;
137 static uint64_t oldseq;
138 static struct fs *fs = NULL;
139 static ino_t sujino;
140 
141 /*
142  * Summary statistics.
143  */
144 static uint64_t freefrags;
145 static uint64_t freeblocks;
146 static uint64_t freeinos;
147 static uint64_t freedir;
148 static uint64_t jbytes;
149 static uint64_t jrecs;
150 
151 static jmp_buf	jmpbuf;
152 
153 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
154 static void err_suj(const char *, ...) __dead2;
155 static void ino_trunc(ino_t, off_t);
156 static void ino_decr(ino_t);
157 static void ino_adjust(struct suj_ino *);
158 static void ino_build(struct suj_ino *);
159 static int blk_isfree(ufs2_daddr_t);
160 static void initsuj(void);
161 static void ino_dirty(ino_t);
162 
163 static void *
164 errmalloc(size_t n)
165 {
166 	void *a;
167 
168 	a = Malloc(n);
169 	if (a == NULL)
170 		err(EX_OSERR, "malloc(%zu)", n);
171 	return (a);
172 }
173 
174 /*
175  * When hit a fatal error in journalling check, print out
176  * the error and then offer to fallback to normal fsck.
177  */
178 static void
179 err_suj(const char * restrict fmt, ...)
180 {
181 	va_list ap;
182 
183 	if (preen)
184 		(void)fprintf(stdout, "%s: ", cdevname);
185 
186 	va_start(ap, fmt);
187 	(void)vfprintf(stdout, fmt, ap);
188 	va_end(ap);
189 
190 	longjmp(jmpbuf, -1);
191 }
192 
193 /*
194  * Mark file system as clean, write the super-block back, close the disk.
195  */
196 static void
197 closedisk(const char *devnam)
198 {
199 	struct csum *cgsum;
200 	uint32_t i;
201 
202 	/*
203 	 * Recompute the fs summary info from correct cs summaries.
204 	 */
205 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
206 	for (i = 0; i < fs->fs_ncg; i++) {
207 		cgsum = &fs->fs_cs(fs, i);
208 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
209 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
210 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
211 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
212 	}
213 	fs->fs_pendinginodes = 0;
214 	fs->fs_pendingblocks = 0;
215 	fs->fs_clean = 1;
216 	fs->fs_time = time(NULL);
217 	fs->fs_mtime = time(NULL);
218 	if (sbput(disk.d_fd, fs, 0) == -1)
219 		err(EX_OSERR, "sbput(%s)", devnam);
220 	if (ufs_disk_close(&disk) == -1)
221 		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
222 	fs = NULL;
223 }
224 
225 /*
226  * Lookup a cg by number in the hash so we can keep track of which cgs
227  * need stats rebuilt.
228  */
229 static struct suj_cg *
230 cg_lookup(int cgx)
231 {
232 	struct cghd *hd;
233 	struct suj_cg *sc;
234 
235 	if (cgx < 0 || cgx >= fs->fs_ncg)
236 		err_suj("Bad cg number %d\n", cgx);
237 	if (lastcg && lastcg->sc_cgx == cgx)
238 		return (lastcg);
239 	hd = &cghash[SUJ_HASH(cgx)];
240 	LIST_FOREACH(sc, hd, sc_next)
241 		if (sc->sc_cgx == cgx) {
242 			lastcg = sc;
243 			return (sc);
244 		}
245 	sc = errmalloc(sizeof(*sc));
246 	bzero(sc, sizeof(*sc));
247 	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
248 	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
249 	sc->sc_cgx = cgx;
250 	LIST_INSERT_HEAD(hd, sc, sc_next);
251 	/*
252 	 * Use bread() here rather than cgget() because the cylinder group
253 	 * may be corrupted but we want it anyway so we can fix it.
254 	 */
255 	if (bread(&disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
256 	    fs->fs_bsize) == -1)
257 		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
258 
259 	return (sc);
260 }
261 
262 /*
263  * Lookup an inode number in the hash and allocate a suj_ino if it does
264  * not exist.
265  */
266 static struct suj_ino *
267 ino_lookup(ino_t ino, int creat)
268 {
269 	struct suj_ino *sino;
270 	struct inohd *hd;
271 	struct suj_cg *sc;
272 
273 	sc = cg_lookup(ino_to_cg(fs, ino));
274 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
275 		return (sc->sc_lastino);
276 	hd = &sc->sc_inohash[SUJ_HASH(ino)];
277 	LIST_FOREACH(sino, hd, si_next)
278 		if (sino->si_ino == ino)
279 			return (sino);
280 	if (creat == 0)
281 		return (NULL);
282 	sino = errmalloc(sizeof(*sino));
283 	bzero(sino, sizeof(*sino));
284 	sino->si_ino = ino;
285 	TAILQ_INIT(&sino->si_recs);
286 	TAILQ_INIT(&sino->si_newrecs);
287 	TAILQ_INIT(&sino->si_movs);
288 	LIST_INSERT_HEAD(hd, sino, si_next);
289 
290 	return (sino);
291 }
292 
293 /*
294  * Lookup a block number in the hash and allocate a suj_blk if it does
295  * not exist.
296  */
297 static struct suj_blk *
298 blk_lookup(ufs2_daddr_t blk, int creat)
299 {
300 	struct suj_blk *sblk;
301 	struct suj_cg *sc;
302 	struct blkhd *hd;
303 
304 	sc = cg_lookup(dtog(fs, blk));
305 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
306 		return (sc->sc_lastblk);
307 	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
308 	LIST_FOREACH(sblk, hd, sb_next)
309 		if (sblk->sb_blk == blk)
310 			return (sblk);
311 	if (creat == 0)
312 		return (NULL);
313 	sblk = errmalloc(sizeof(*sblk));
314 	bzero(sblk, sizeof(*sblk));
315 	sblk->sb_blk = blk;
316 	TAILQ_INIT(&sblk->sb_recs);
317 	LIST_INSERT_HEAD(hd, sblk, sb_next);
318 
319 	return (sblk);
320 }
321 
322 static struct data_blk *
323 dblk_lookup(ufs2_daddr_t blk)
324 {
325 	struct data_blk *dblk;
326 	struct dblkhd *hd;
327 
328 	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
329 	if (lastblk && lastblk->db_blk == blk)
330 		return (lastblk);
331 	LIST_FOREACH(dblk, hd, db_next)
332 		if (dblk->db_blk == blk)
333 			return (dblk);
334 	/*
335 	 * The inode block wasn't located, allocate a new one.
336 	 */
337 	dblk = errmalloc(sizeof(*dblk));
338 	bzero(dblk, sizeof(*dblk));
339 	LIST_INSERT_HEAD(hd, dblk, db_next);
340 	dblk->db_blk = blk;
341 	return (dblk);
342 }
343 
344 static uint8_t *
345 dblk_read(ufs2_daddr_t blk, int size)
346 {
347 	struct data_blk *dblk;
348 
349 	dblk = dblk_lookup(blk);
350 	/*
351 	 * I doubt size mismatches can happen in practice but it is trivial
352 	 * to handle.
353 	 */
354 	if (size != dblk->db_size) {
355 		if (dblk->db_buf)
356 			free(dblk->db_buf);
357 		dblk->db_buf = errmalloc(size);
358 		dblk->db_size = size;
359 		if (bread(&disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
360 			err_suj("Failed to read data block %jd\n", blk);
361 	}
362 	return (dblk->db_buf);
363 }
364 
365 static void
366 dblk_dirty(ufs2_daddr_t blk)
367 {
368 	struct data_blk *dblk;
369 
370 	dblk = dblk_lookup(blk);
371 	dblk->db_dirty = 1;
372 }
373 
374 static void
375 dblk_write(void)
376 {
377 	struct data_blk *dblk;
378 	int i;
379 
380 	for (i = 0; i < SUJ_HASHSIZE; i++) {
381 		LIST_FOREACH(dblk, &dbhash[i], db_next) {
382 			if (dblk->db_dirty == 0 || dblk->db_size == 0)
383 				continue;
384 			if (bwrite(&disk, fsbtodb(fs, dblk->db_blk),
385 			    dblk->db_buf, dblk->db_size) == -1)
386 				err_suj("Unable to write block %jd\n",
387 				    dblk->db_blk);
388 		}
389 	}
390 }
391 
392 static union dinode *
393 ino_read(ino_t ino)
394 {
395 	struct ino_blk *iblk;
396 	struct iblkhd *hd;
397 	struct suj_cg *sc;
398 	ufs2_daddr_t blk;
399 	union dinode *dp;
400 	int off;
401 
402 	blk = ino_to_fsba(fs, ino);
403 	sc = cg_lookup(ino_to_cg(fs, ino));
404 	iblk = sc->sc_lastiblk;
405 	if (iblk && iblk->ib_blk == blk)
406 		goto found;
407 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
408 	LIST_FOREACH(iblk, hd, ib_next)
409 		if (iblk->ib_blk == blk)
410 			goto found;
411 	/*
412 	 * The inode block wasn't located, allocate a new one.
413 	 */
414 	iblk = errmalloc(sizeof(*iblk));
415 	bzero(iblk, sizeof(*iblk));
416 	iblk->ib_buf = errmalloc(fs->fs_bsize);
417 	iblk->ib_blk = blk;
418 	iblk->ib_startinginum = rounddown(ino, INOPB(fs));
419 	LIST_INSERT_HEAD(hd, iblk, ib_next);
420 	if (bread(&disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
421 		err_suj("Failed to read inode block %jd\n", blk);
422 found:
423 	sc->sc_lastiblk = iblk;
424 	off = ino_to_fsbo(fs, ino);
425 	if (fs->fs_magic == FS_UFS1_MAGIC)
426 		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
427 	dp = (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
428 	if (debug &&
429 	    ffs_verify_dinode_ckhash(fs, (struct ufs2_dinode *)dp) != 0) {
430 		pwarn("ino_read: INODE CHECK-HASH FAILED");
431 		prtinode(ino, dp);
432 		if (preen || reply("FIX") != 0) {
433 			if (preen)
434 				printf(" (FIXED)\n");
435 			ino_dirty(ino);
436 		}
437 	}
438 	return (dp);
439 }
440 
441 static void
442 ino_dirty(ino_t ino)
443 {
444 	struct ino_blk *iblk;
445 	struct iblkhd *hd;
446 	struct suj_cg *sc;
447 	ufs2_daddr_t blk;
448 	int off;
449 
450 	blk = ino_to_fsba(fs, ino);
451 	sc = cg_lookup(ino_to_cg(fs, ino));
452 	iblk = sc->sc_lastiblk;
453 	if (iblk && iblk->ib_blk == blk) {
454 		if (fs->fs_magic == FS_UFS2_MAGIC) {
455 			off = ino_to_fsbo(fs, ino);
456 			ffs_update_dinode_ckhash(fs,
457 			    &((struct ufs2_dinode *)iblk->ib_buf)[off]);
458 		}
459 		iblk->ib_dirty = 1;
460 		return;
461 	}
462 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
463 	LIST_FOREACH(iblk, hd, ib_next) {
464 		if (iblk->ib_blk == blk) {
465 			if (fs->fs_magic == FS_UFS2_MAGIC) {
466 				off = ino_to_fsbo(fs, ino);
467 				ffs_update_dinode_ckhash(fs,
468 				    &((struct ufs2_dinode *)iblk->ib_buf)[off]);
469 			}
470 			iblk->ib_dirty = 1;
471 			return;
472 		}
473 	}
474 	ino_read(ino);
475 	ino_dirty(ino);
476 }
477 
478 static void
479 iblk_write(struct ino_blk *iblk)
480 {
481 	struct ufs2_dinode *dp;
482 	int i;
483 
484 	if (iblk->ib_dirty == 0)
485 		return;
486 	if (debug && fs->fs_magic == FS_UFS2_MAGIC) {
487 		dp = (struct ufs2_dinode *)iblk->ib_buf;
488 		for (i = 0; i < INOPB(fs); dp++, i++) {
489 			if (ffs_verify_dinode_ckhash(fs, dp) == 0)
490 				continue;
491 			pwarn("iblk_write: INODE CHECK-HASH FAILED");
492 			prtinode(iblk->ib_startinginum + i, (union dinode *)dp);
493 			if (preen || reply("FIX") != 0) {
494 				if (preen)
495 					printf(" (FIXED)\n");
496 				ino_dirty(iblk->ib_startinginum + i);
497 			}
498 		}
499 	}
500 	if (bwrite(&disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
501 	    fs->fs_bsize) == -1)
502 		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
503 }
504 
505 static int
506 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
507 {
508 	ufs2_daddr_t bstart;
509 	ufs2_daddr_t bend;
510 	ufs2_daddr_t end;
511 
512 	end = start + frags;
513 	bstart = brec->jb_blkno + brec->jb_oldfrags;
514 	bend = bstart + brec->jb_frags;
515 	if (start < bend && end > bstart)
516 		return (1);
517 	return (0);
518 }
519 
520 static int
521 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
522     int frags)
523 {
524 
525 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
526 		return (0);
527 	if (brec->jb_blkno + brec->jb_oldfrags != start)
528 		return (0);
529 	if (brec->jb_frags < frags)
530 		return (0);
531 	return (1);
532 }
533 
534 static void
535 blk_setmask(struct jblkrec *brec, int *mask)
536 {
537 	int i;
538 
539 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
540 		*mask |= 1 << i;
541 }
542 
543 /*
544  * Determine whether a given block has been reallocated to a new location.
545  * Returns a mask of overlapping bits if any frags have been reused or
546  * zero if the block has not been re-used and the contents can be trusted.
547  *
548  * This is used to ensure that an orphaned pointer due to truncate is safe
549  * to be freed.  The mask value can be used to free partial blocks.
550  */
551 static int
552 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
553 {
554 	struct suj_blk *sblk;
555 	struct suj_rec *srec;
556 	struct jblkrec *brec;
557 	int mask;
558 	int off;
559 
560 	/*
561 	 * To be certain we're not freeing a reallocated block we lookup
562 	 * this block in the blk hash and see if there is an allocation
563 	 * journal record that overlaps with any fragments in the block
564 	 * we're concerned with.  If any fragments have ben reallocated
565 	 * the block has already been freed and re-used for another purpose.
566 	 */
567 	mask = 0;
568 	sblk = blk_lookup(blknum(fs, blk), 0);
569 	if (sblk == NULL)
570 		return (0);
571 	off = blk - sblk->sb_blk;
572 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
573 		brec = (struct jblkrec *)srec->sr_rec;
574 		/*
575 		 * If the block overlaps but does not match
576 		 * exactly this record refers to the current
577 		 * location.
578 		 */
579 		if (blk_overlaps(brec, blk, frags) == 0)
580 			continue;
581 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
582 			mask = 0;
583 		else
584 			blk_setmask(brec, &mask);
585 	}
586 	if (debug)
587 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
588 		    blk, sblk->sb_blk, off, mask);
589 	return (mask >> off);
590 }
591 
592 /*
593  * Determine whether it is safe to follow an indirect.  It is not safe
594  * if any part of the indirect has been reallocated or the last journal
595  * entry was an allocation.  Just allocated indirects may not have valid
596  * pointers yet and all of their children will have their own records.
597  * It is also not safe to follow an indirect if the cg bitmap has been
598  * cleared as a new allocation may write to the block prior to the journal
599  * being written.
600  *
601  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
602  */
603 static int
604 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
605 {
606 	struct suj_blk *sblk;
607 	struct jblkrec *brec;
608 
609 	sblk = blk_lookup(blk, 0);
610 	if (sblk == NULL)
611 		return (1);
612 	if (TAILQ_EMPTY(&sblk->sb_recs))
613 		return (1);
614 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
615 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
616 		if (brec->jb_op == JOP_FREEBLK)
617 			return (!blk_isfree(blk));
618 	return (0);
619 }
620 
621 /*
622  * Clear an inode from the cg bitmap.  If the inode was already clear return
623  * 0 so the caller knows it does not have to check the inode contents.
624  */
625 static int
626 ino_free(ino_t ino, int mode)
627 {
628 	struct suj_cg *sc;
629 	uint8_t *inosused;
630 	struct cg *cgp;
631 	int cg;
632 
633 	cg = ino_to_cg(fs, ino);
634 	ino = ino % fs->fs_ipg;
635 	sc = cg_lookup(cg);
636 	cgp = sc->sc_cgp;
637 	inosused = cg_inosused(cgp);
638 	/*
639 	 * The bitmap may never have made it to the disk so we have to
640 	 * conditionally clear.  We can avoid writing the cg in this case.
641 	 */
642 	if (isclr(inosused, ino))
643 		return (0);
644 	freeinos++;
645 	clrbit(inosused, ino);
646 	if (ino < cgp->cg_irotor)
647 		cgp->cg_irotor = ino;
648 	cgp->cg_cs.cs_nifree++;
649 	if ((mode & IFMT) == IFDIR) {
650 		freedir++;
651 		cgp->cg_cs.cs_ndir--;
652 	}
653 	sc->sc_dirty = 1;
654 
655 	return (1);
656 }
657 
658 /*
659  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
660  * set in the mask.
661  */
662 static void
663 blk_free(ufs2_daddr_t bno, int mask, int frags)
664 {
665 	ufs1_daddr_t fragno, cgbno;
666 	struct suj_cg *sc;
667 	struct cg *cgp;
668 	int i, cg;
669 	uint8_t *blksfree;
670 
671 	if (debug)
672 		printf("Freeing %d frags at blk %jd mask 0x%x\n",
673 		    frags, bno, mask);
674 	cg = dtog(fs, bno);
675 	sc = cg_lookup(cg);
676 	cgp = sc->sc_cgp;
677 	cgbno = dtogd(fs, bno);
678 	blksfree = cg_blksfree(cgp);
679 
680 	/*
681 	 * If it's not allocated we only wrote the journal entry
682 	 * and never the bitmaps.  Here we unconditionally clear and
683 	 * resolve the cg summary later.
684 	 */
685 	if (frags == fs->fs_frag && mask == 0) {
686 		fragno = fragstoblks(fs, cgbno);
687 		ffs_setblock(fs, blksfree, fragno);
688 		freeblocks++;
689 	} else {
690 		/*
691 		 * deallocate the fragment
692 		 */
693 		for (i = 0; i < frags; i++)
694 			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
695 				freefrags++;
696 				setbit(blksfree, cgbno + i);
697 			}
698 	}
699 	sc->sc_dirty = 1;
700 }
701 
702 /*
703  * Returns 1 if the whole block starting at 'bno' is marked free and 0
704  * otherwise.
705  */
706 static int
707 blk_isfree(ufs2_daddr_t bno)
708 {
709 	struct suj_cg *sc;
710 
711 	sc = cg_lookup(dtog(fs, bno));
712 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
713 }
714 
715 /*
716  * Fetch an indirect block to find the block at a given lbn.  The lbn
717  * may be negative to fetch a specific indirect block pointer or positive
718  * to fetch a specific block.
719  */
720 static ufs2_daddr_t
721 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
722 {
723 	ufs2_daddr_t *bap2;
724 	ufs2_daddr_t *bap1;
725 	ufs_lbn_t lbnadd;
726 	ufs_lbn_t base;
727 	int level;
728 	int i;
729 
730 	if (blk == 0)
731 		return (0);
732 	level = lbn_level(cur);
733 	if (level == -1)
734 		err_suj("Invalid indir lbn %jd\n", lbn);
735 	if (level == 0 && lbn < 0)
736 		err_suj("Invalid lbn %jd\n", lbn);
737 	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
738 	bap1 = (void *)bap2;
739 	lbnadd = 1;
740 	base = -(cur + level);
741 	for (i = level; i > 0; i--)
742 		lbnadd *= NINDIR(fs);
743 	if (lbn > 0)
744 		i = (lbn - base) / lbnadd;
745 	else
746 		i = (-lbn - base) / lbnadd;
747 	if (i < 0 || i >= NINDIR(fs))
748 		err_suj("Invalid indirect index %d produced by lbn %jd\n",
749 		    i, lbn);
750 	if (level == 0)
751 		cur = base + (i * lbnadd);
752 	else
753 		cur = -(base + (i * lbnadd)) - (level - 1);
754 	if (fs->fs_magic == FS_UFS1_MAGIC)
755 		blk = bap1[i];
756 	else
757 		blk = bap2[i];
758 	if (cur == lbn)
759 		return (blk);
760 	if (level == 0)
761 		err_suj("Invalid lbn %jd at level 0\n", lbn);
762 	return indir_blkatoff(blk, ino, cur, lbn);
763 }
764 
765 /*
766  * Finds the disk block address at the specified lbn within the inode
767  * specified by ip.  This follows the whole tree and honors di_size and
768  * di_extsize so it is a true test of reachability.  The lbn may be
769  * negative if an extattr or indirect block is requested.
770  */
771 static ufs2_daddr_t
772 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
773 {
774 	ufs_lbn_t tmpval;
775 	ufs_lbn_t cur;
776 	ufs_lbn_t next;
777 	int i;
778 
779 	/*
780 	 * Handle extattr blocks first.
781 	 */
782 	if (lbn < 0 && lbn >= -UFS_NXADDR) {
783 		lbn = -1 - lbn;
784 		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
785 			return (0);
786 		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
787 		return (ip->dp2.di_extb[lbn]);
788 	}
789 	/*
790 	 * Now direct and indirect.
791 	 */
792 	if (DIP(ip, di_mode) == IFLNK &&
793 	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
794 		return (0);
795 	if (lbn >= 0 && lbn < UFS_NDADDR) {
796 		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
797 		return (DIP(ip, di_db[lbn]));
798 	}
799 	*frags = fs->fs_frag;
800 
801 	for (i = 0, tmpval = NINDIR(fs), cur = UFS_NDADDR; i < UFS_NIADDR; i++,
802 	    tmpval *= NINDIR(fs), cur = next) {
803 		next = cur + tmpval;
804 		if (lbn == -cur - i)
805 			return (DIP(ip, di_ib[i]));
806 		/*
807 		 * Determine whether the lbn in question is within this tree.
808 		 */
809 		if (lbn < 0 && -lbn >= next)
810 			continue;
811 		if (lbn > 0 && lbn >= next)
812 			continue;
813 		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
814 	}
815 	err_suj("lbn %jd not in ino\n", lbn);
816 	/* NOTREACHED */
817 }
818 
819 /*
820  * Determine whether a block exists at a particular lbn in an inode.
821  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
822  * or ext blocks.
823  */
824 static int
825 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
826 {
827 	union dinode *ip;
828 	ufs2_daddr_t nblk;
829 
830 	ip = ino_read(ino);
831 
832 	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
833 		return (0);
834 	nblk = ino_blkatoff(ip, ino, lbn, frags);
835 
836 	return (nblk == blk);
837 }
838 
839 /*
840  * Clear the directory entry at diroff that should point to child.  Minimal
841  * checking is done and it is assumed that this path was verified with isat.
842  */
843 static void
844 ino_clrat(ino_t parent, off_t diroff, ino_t child)
845 {
846 	union dinode *dip;
847 	struct direct *dp;
848 	ufs2_daddr_t blk;
849 	uint8_t *block;
850 	ufs_lbn_t lbn;
851 	int blksize;
852 	int frags;
853 	int doff;
854 
855 	if (debug)
856 		printf("Clearing inode %ju from parent %ju at offset %jd\n",
857 		    (uintmax_t)child, (uintmax_t)parent, diroff);
858 
859 	lbn = lblkno(fs, diroff);
860 	doff = blkoff(fs, diroff);
861 	dip = ino_read(parent);
862 	blk = ino_blkatoff(dip, parent, lbn, &frags);
863 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
864 	block = dblk_read(blk, blksize);
865 	dp = (struct direct *)&block[doff];
866 	if (dp->d_ino != child)
867 		errx(1, "Inode %ju does not exist in %ju at %jd",
868 		    (uintmax_t)child, (uintmax_t)parent, diroff);
869 	dp->d_ino = 0;
870 	dblk_dirty(blk);
871 	/*
872 	 * The actual .. reference count will already have been removed
873 	 * from the parent by the .. remref record.
874 	 */
875 }
876 
877 /*
878  * Determines whether a pointer to an inode exists within a directory
879  * at a specified offset.  Returns the mode of the found entry.
880  */
881 static int
882 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
883 {
884 	union dinode *dip;
885 	struct direct *dp;
886 	ufs2_daddr_t blk;
887 	uint8_t *block;
888 	ufs_lbn_t lbn;
889 	int blksize;
890 	int frags;
891 	int dpoff;
892 	int doff;
893 
894 	*isdot = 0;
895 	dip = ino_read(parent);
896 	*mode = DIP(dip, di_mode);
897 	if ((*mode & IFMT) != IFDIR) {
898 		if (debug) {
899 			/*
900 			 * This can happen if the parent inode
901 			 * was reallocated.
902 			 */
903 			if (*mode != 0)
904 				printf("Directory %ju has bad mode %o\n",
905 				    (uintmax_t)parent, *mode);
906 			else
907 				printf("Directory %ju has zero mode\n",
908 				    (uintmax_t)parent);
909 		}
910 		return (0);
911 	}
912 	lbn = lblkno(fs, diroff);
913 	doff = blkoff(fs, diroff);
914 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
915 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
916 		if (debug)
917 			printf("ino %ju absent from %ju due to offset %jd"
918 			    " exceeding size %jd\n",
919 			    (uintmax_t)child, (uintmax_t)parent, diroff,
920 			    DIP(dip, di_size));
921 		return (0);
922 	}
923 	blk = ino_blkatoff(dip, parent, lbn, &frags);
924 	if (blk <= 0) {
925 		if (debug)
926 			printf("Sparse directory %ju", (uintmax_t)parent);
927 		return (0);
928 	}
929 	block = dblk_read(blk, blksize);
930 	/*
931 	 * Walk through the records from the start of the block to be
932 	 * certain we hit a valid record and not some junk in the middle
933 	 * of a file name.  Stop when we reach or pass the expected offset.
934 	 */
935 	dpoff = rounddown(doff, DIRBLKSIZ);
936 	do {
937 		dp = (struct direct *)&block[dpoff];
938 		if (dpoff == doff)
939 			break;
940 		if (dp->d_reclen == 0)
941 			break;
942 		dpoff += dp->d_reclen;
943 	} while (dpoff <= doff);
944 	if (dpoff > fs->fs_bsize)
945 		err_suj("Corrupt directory block in dir ino %ju\n",
946 		    (uintmax_t)parent);
947 	/* Not found. */
948 	if (dpoff != doff) {
949 		if (debug)
950 			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
951 			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
952 		return (0);
953 	}
954 	/*
955 	 * We found the item in question.  Record the mode and whether it's
956 	 * a . or .. link for the caller.
957 	 */
958 	if (dp->d_ino == child) {
959 		if (child == parent)
960 			*isdot = 1;
961 		else if (dp->d_namlen == 2 &&
962 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
963 			*isdot = 1;
964 		*mode = DTTOIF(dp->d_type);
965 		return (1);
966 	}
967 	if (debug)
968 		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
969 		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
970 	return (0);
971 }
972 
973 #define	VISIT_INDIR	0x0001
974 #define	VISIT_EXT	0x0002
975 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
976 
977 /*
978  * Read an indirect level which may or may not be linked into an inode.
979  */
980 static void
981 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
982     ino_visitor visitor, int flags)
983 {
984 	ufs2_daddr_t *bap2;
985 	ufs1_daddr_t *bap1;
986 	ufs_lbn_t lbnadd;
987 	ufs2_daddr_t nblk;
988 	ufs_lbn_t nlbn;
989 	int level;
990 	int i;
991 
992 	/*
993 	 * Don't visit indirect blocks with contents we can't trust.  This
994 	 * should only happen when indir_visit() is called to complete a
995 	 * truncate that never finished and not when a pointer is found via
996 	 * an inode.
997 	 */
998 	if (blk == 0)
999 		return;
1000 	level = lbn_level(lbn);
1001 	if (level == -1)
1002 		err_suj("Invalid level for lbn %jd\n", lbn);
1003 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
1004 		if (debug)
1005 			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
1006 			    blk, (uintmax_t)ino, lbn, level);
1007 		goto out;
1008 	}
1009 	lbnadd = 1;
1010 	for (i = level; i > 0; i--)
1011 		lbnadd *= NINDIR(fs);
1012 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1013 	bap2 = (void *)bap1;
1014 	for (i = 0; i < NINDIR(fs); i++) {
1015 		if (fs->fs_magic == FS_UFS1_MAGIC)
1016 			nblk = *bap1++;
1017 		else
1018 			nblk = *bap2++;
1019 		if (nblk == 0)
1020 			continue;
1021 		if (level == 0) {
1022 			nlbn = -lbn + i * lbnadd;
1023 			(*frags) += fs->fs_frag;
1024 			visitor(ino, nlbn, nblk, fs->fs_frag);
1025 		} else {
1026 			nlbn = (lbn + 1) - (i * lbnadd);
1027 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1028 		}
1029 	}
1030 out:
1031 	if (flags & VISIT_INDIR) {
1032 		(*frags) += fs->fs_frag;
1033 		visitor(ino, lbn, blk, fs->fs_frag);
1034 	}
1035 }
1036 
1037 /*
1038  * Visit each block in an inode as specified by 'flags' and call a
1039  * callback function.  The callback may inspect or free blocks.  The
1040  * count of frags found according to the size in the file is returned.
1041  * This is not valid for sparse files but may be used to determine
1042  * the correct di_blocks for a file.
1043  */
1044 static uint64_t
1045 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1046 {
1047 	ufs_lbn_t nextlbn;
1048 	ufs_lbn_t tmpval;
1049 	ufs_lbn_t lbn;
1050 	uint64_t size;
1051 	uint64_t fragcnt;
1052 	int mode;
1053 	int frags;
1054 	int i;
1055 
1056 	size = DIP(ip, di_size);
1057 	mode = DIP(ip, di_mode) & IFMT;
1058 	fragcnt = 0;
1059 	if ((flags & VISIT_EXT) &&
1060 	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1061 		for (i = 0; i < UFS_NXADDR; i++) {
1062 			if (ip->dp2.di_extb[i] == 0)
1063 				continue;
1064 			frags = sblksize(fs, ip->dp2.di_extsize, i);
1065 			frags = numfrags(fs, frags);
1066 			fragcnt += frags;
1067 			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1068 		}
1069 	}
1070 	/* Skip datablocks for short links and devices. */
1071 	if (mode == IFBLK || mode == IFCHR ||
1072 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1073 		return (fragcnt);
1074 	for (i = 0; i < UFS_NDADDR; i++) {
1075 		if (DIP(ip, di_db[i]) == 0)
1076 			continue;
1077 		frags = sblksize(fs, size, i);
1078 		frags = numfrags(fs, frags);
1079 		fragcnt += frags;
1080 		visitor(ino, i, DIP(ip, di_db[i]), frags);
1081 	}
1082 	/*
1083 	 * We know the following indirects are real as we're following
1084 	 * real pointers to them.
1085 	 */
1086 	flags |= VISIT_ROOT;
1087 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1088 	    lbn = nextlbn) {
1089 		nextlbn = lbn + tmpval;
1090 		tmpval *= NINDIR(fs);
1091 		if (DIP(ip, di_ib[i]) == 0)
1092 			continue;
1093 		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1094 		    flags);
1095 	}
1096 	return (fragcnt);
1097 }
1098 
1099 /*
1100  * Null visitor function used when we just want to count blocks and
1101  * record the lbn.
1102  */
1103 ufs_lbn_t visitlbn;
1104 static void
1105 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1106 {
1107 	if (lbn > 0)
1108 		visitlbn = lbn;
1109 }
1110 
1111 /*
1112  * Recalculate di_blocks when we discover that a block allocation or
1113  * free was not successfully completed.  The kernel does not roll this back
1114  * because it would be too expensive to compute which indirects were
1115  * reachable at the time the inode was written.
1116  */
1117 static void
1118 ino_adjblks(struct suj_ino *sino)
1119 {
1120 	union dinode *ip;
1121 	uint64_t blocks;
1122 	uint64_t frags;
1123 	off_t isize;
1124 	off_t size;
1125 	ino_t ino;
1126 
1127 	ino = sino->si_ino;
1128 	ip = ino_read(ino);
1129 	/* No need to adjust zero'd inodes. */
1130 	if (DIP(ip, di_mode) == 0)
1131 		return;
1132 	/*
1133 	 * Visit all blocks and count them as well as recording the last
1134 	 * valid lbn in the file.  If the file size doesn't agree with the
1135 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1136 	 * the blocks count.
1137 	 */
1138 	visitlbn = 0;
1139 	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1140 	blocks = fsbtodb(fs, frags);
1141 	/*
1142 	 * We assume the size and direct block list is kept coherent by
1143 	 * softdep.  For files that have extended into indirects we truncate
1144 	 * to the size in the inode or the maximum size permitted by
1145 	 * populated indirects.
1146 	 */
1147 	if (visitlbn >= UFS_NDADDR) {
1148 		isize = DIP(ip, di_size);
1149 		size = lblktosize(fs, visitlbn + 1);
1150 		if (isize > size)
1151 			isize = size;
1152 		/* Always truncate to free any unpopulated indirects. */
1153 		ino_trunc(sino->si_ino, isize);
1154 		return;
1155 	}
1156 	if (blocks == DIP(ip, di_blocks))
1157 		return;
1158 	if (debug)
1159 		printf("ino %ju adjusting block count from %jd to %jd\n",
1160 		    (uintmax_t)ino, DIP(ip, di_blocks), blocks);
1161 	DIP_SET(ip, di_blocks, blocks);
1162 	ino_dirty(ino);
1163 }
1164 
1165 static void
1166 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1167 {
1168 
1169 	blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
1170 }
1171 
1172 /*
1173  * Free a block or tree of blocks that was previously rooted in ino at
1174  * the given lbn.  If the lbn is an indirect all children are freed
1175  * recursively.
1176  */
1177 static void
1178 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1179 {
1180 	uint64_t resid;
1181 	int mask;
1182 
1183 	mask = blk_freemask(blk, ino, lbn, frags);
1184 	resid = 0;
1185 	if (lbn <= -UFS_NDADDR && follow && mask == 0)
1186 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1187 	else
1188 		blk_free(blk, mask, frags);
1189 }
1190 
1191 static void
1192 ino_setskip(struct suj_ino *sino, ino_t parent)
1193 {
1194 	int isdot;
1195 	int mode;
1196 
1197 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1198 		sino->si_skipparent = 1;
1199 }
1200 
1201 static void
1202 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1203 {
1204 	struct suj_ino *sino;
1205 	struct suj_rec *srec;
1206 	struct jrefrec *rrec;
1207 
1208 	/*
1209 	 * Lookup this inode to see if we have a record for it.
1210 	 */
1211 	sino = ino_lookup(child, 0);
1212 	/*
1213 	 * Tell any child directories we've already removed their
1214 	 * parent link cnt.  Don't try to adjust our link down again.
1215 	 */
1216 	if (sino != NULL && isdotdot == 0)
1217 		ino_setskip(sino, parent);
1218 	/*
1219 	 * No valid record for this inode.  Just drop the on-disk
1220 	 * link by one.
1221 	 */
1222 	if (sino == NULL || sino->si_hasrecs == 0) {
1223 		ino_decr(child);
1224 		return;
1225 	}
1226 	/*
1227 	 * Use ino_adjust() if ino_check() has already processed this
1228 	 * child.  If we lose the last non-dot reference to a
1229 	 * directory it will be discarded.
1230 	 */
1231 	if (sino->si_linkadj) {
1232 		sino->si_nlink--;
1233 		if (isdotdot)
1234 			sino->si_dotlinks--;
1235 		ino_adjust(sino);
1236 		return;
1237 	}
1238 	/*
1239 	 * If we haven't yet processed this inode we need to make
1240 	 * sure we will successfully discover the lost path.  If not
1241 	 * use nlinkadj to remember.
1242 	 */
1243 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1244 		rrec = (struct jrefrec *)srec->sr_rec;
1245 		if (rrec->jr_parent == parent &&
1246 		    rrec->jr_diroff == diroff)
1247 			return;
1248 	}
1249 	sino->si_nlinkadj++;
1250 }
1251 
1252 /*
1253  * Free the children of a directory when the directory is discarded.
1254  */
1255 static void
1256 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1257 {
1258 	struct suj_ino *sino;
1259 	struct direct *dp;
1260 	off_t diroff;
1261 	uint8_t *block;
1262 	int skipparent;
1263 	int isdotdot;
1264 	int dpoff;
1265 	int size;
1266 
1267 	sino = ino_lookup(ino, 0);
1268 	if (sino)
1269 		skipparent = sino->si_skipparent;
1270 	else
1271 		skipparent = 0;
1272 	size = lfragtosize(fs, frags);
1273 	block = dblk_read(blk, size);
1274 	dp = (struct direct *)&block[0];
1275 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1276 		dp = (struct direct *)&block[dpoff];
1277 		if (dp->d_ino == 0 || dp->d_ino == UFS_WINO)
1278 			continue;
1279 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1280 			continue;
1281 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1282 		    dp->d_name[1] == '.';
1283 		if (isdotdot && skipparent == 1)
1284 			continue;
1285 		if (debug)
1286 			printf("Directory %ju removing ino %ju name %s\n",
1287 			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1288 		diroff = lblktosize(fs, lbn) + dpoff;
1289 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1290 	}
1291 }
1292 
1293 /*
1294  * Reclaim an inode, freeing all blocks and decrementing all children's
1295  * link counts.  Free the inode back to the cg.
1296  */
1297 static void
1298 ino_reclaim(union dinode *ip, ino_t ino, int mode)
1299 {
1300 	uint32_t gen;
1301 
1302 	if (ino == UFS_ROOTINO)
1303 		err_suj("Attempting to free UFS_ROOTINO\n");
1304 	if (debug)
1305 		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1306 		    (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1307 
1308 	/* We are freeing an inode or directory. */
1309 	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1310 		ino_visit(ip, ino, ino_free_children, 0);
1311 	DIP_SET(ip, di_nlink, 0);
1312 	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1313 	/* Here we have to clear the inode and release any blocks it holds. */
1314 	gen = DIP(ip, di_gen);
1315 	if (fs->fs_magic == FS_UFS1_MAGIC)
1316 		bzero(ip, sizeof(struct ufs1_dinode));
1317 	else
1318 		bzero(ip, sizeof(struct ufs2_dinode));
1319 	DIP_SET(ip, di_gen, gen);
1320 	ino_dirty(ino);
1321 	ino_free(ino, mode);
1322 	return;
1323 }
1324 
1325 /*
1326  * Adjust an inode's link count down by one when a directory goes away.
1327  */
1328 static void
1329 ino_decr(ino_t ino)
1330 {
1331 	union dinode *ip;
1332 	int reqlink;
1333 	int nlink;
1334 	int mode;
1335 
1336 	ip = ino_read(ino);
1337 	nlink = DIP(ip, di_nlink);
1338 	mode = DIP(ip, di_mode);
1339 	if (nlink < 1)
1340 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1341 	if (mode == 0)
1342 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1343 	nlink--;
1344 	if ((mode & IFMT) == IFDIR)
1345 		reqlink = 2;
1346 	else
1347 		reqlink = 1;
1348 	if (nlink < reqlink) {
1349 		if (debug)
1350 			printf("ino %ju not enough links to live %d < %d\n",
1351 			    (uintmax_t)ino, nlink, reqlink);
1352 		ino_reclaim(ip, ino, mode);
1353 		return;
1354 	}
1355 	DIP_SET(ip, di_nlink, nlink);
1356 	ino_dirty(ino);
1357 }
1358 
1359 /*
1360  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1361  * free it.
1362  */
1363 static void
1364 ino_adjust(struct suj_ino *sino)
1365 {
1366 	struct jrefrec *rrec;
1367 	struct suj_rec *srec;
1368 	struct suj_ino *stmp;
1369 	union dinode *ip;
1370 	nlink_t nlink;
1371 	nlink_t reqlink;
1372 	int recmode;
1373 	int isdot;
1374 	int mode;
1375 	ino_t ino;
1376 
1377 	nlink = sino->si_nlink;
1378 	ino = sino->si_ino;
1379 	mode = sino->si_mode & IFMT;
1380 	/*
1381 	 * If it's a directory with no dot links, it was truncated before
1382 	 * the name was cleared.  We need to clear the dirent that
1383 	 * points at it.
1384 	 */
1385 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1386 		sino->si_nlink = nlink = 0;
1387 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1388 			rrec = (struct jrefrec *)srec->sr_rec;
1389 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1390 			    &recmode, &isdot) == 0)
1391 				continue;
1392 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1393 			break;
1394 		}
1395 		if (srec == NULL)
1396 			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1397 	}
1398 	/*
1399 	 * If it's a directory with no real names pointing to it go ahead
1400 	 * and truncate it.  This will free any children.
1401 	 */
1402 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1403 		sino->si_nlink = nlink = 0;
1404 		/*
1405 		 * Mark any .. links so they know not to free this inode
1406 		 * when they are removed.
1407 		 */
1408 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1409 			rrec = (struct jrefrec *)srec->sr_rec;
1410 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1411 				stmp = ino_lookup(rrec->jr_parent, 0);
1412 				if (stmp)
1413 					ino_setskip(stmp, ino);
1414 			}
1415 		}
1416 	}
1417 	ip = ino_read(ino);
1418 	mode = DIP(ip, di_mode) & IFMT;
1419 	if (nlink > UFS_LINK_MAX)
1420 		err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
1421 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink));
1422 	if (debug)
1423 	       printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
1424 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink),
1425 		    sino->si_mode);
1426 	if (mode == 0) {
1427 		if (debug)
1428 			printf("ino %ju, zero inode freeing bitmap\n",
1429 			    (uintmax_t)ino);
1430 		ino_free(ino, sino->si_mode);
1431 		return;
1432 	}
1433 	/* XXX Should be an assert? */
1434 	if (mode != sino->si_mode && debug)
1435 		printf("ino %ju, mode %o != %o\n",
1436 		    (uintmax_t)ino, mode, sino->si_mode);
1437 	if ((mode & IFMT) == IFDIR)
1438 		reqlink = 2;
1439 	else
1440 		reqlink = 1;
1441 	/* If the inode doesn't have enough links to live, free it. */
1442 	if (nlink < reqlink) {
1443 		if (debug)
1444 			printf("ino %ju not enough links to live %ju < %ju\n",
1445 			    (uintmax_t)ino, (uintmax_t)nlink,
1446 			    (uintmax_t)reqlink);
1447 		ino_reclaim(ip, ino, mode);
1448 		return;
1449 	}
1450 	/* If required write the updated link count. */
1451 	if (DIP(ip, di_nlink) == nlink) {
1452 		if (debug)
1453 			printf("ino %ju, link matches, skipping.\n",
1454 			    (uintmax_t)ino);
1455 		return;
1456 	}
1457 	DIP_SET(ip, di_nlink, nlink);
1458 	ino_dirty(ino);
1459 }
1460 
1461 /*
1462  * Truncate some or all blocks in an indirect, freeing any that are required
1463  * and zeroing the indirect.
1464  */
1465 static void
1466 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1467 {
1468 	ufs2_daddr_t *bap2;
1469 	ufs1_daddr_t *bap1;
1470 	ufs_lbn_t lbnadd;
1471 	ufs2_daddr_t nblk;
1472 	ufs_lbn_t next;
1473 	ufs_lbn_t nlbn;
1474 	int dirty;
1475 	int level;
1476 	int i;
1477 
1478 	if (blk == 0)
1479 		return;
1480 	dirty = 0;
1481 	level = lbn_level(lbn);
1482 	if (level == -1)
1483 		err_suj("Invalid level for lbn %jd\n", lbn);
1484 	lbnadd = 1;
1485 	for (i = level; i > 0; i--)
1486 		lbnadd *= NINDIR(fs);
1487 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1488 	bap2 = (void *)bap1;
1489 	for (i = 0; i < NINDIR(fs); i++) {
1490 		if (fs->fs_magic == FS_UFS1_MAGIC)
1491 			nblk = *bap1++;
1492 		else
1493 			nblk = *bap2++;
1494 		if (nblk == 0)
1495 			continue;
1496 		if (level != 0) {
1497 			nlbn = (lbn + 1) - (i * lbnadd);
1498 			/*
1499 			 * Calculate the lbn of the next indirect to
1500 			 * determine if any of this indirect must be
1501 			 * reclaimed.
1502 			 */
1503 			next = -(lbn + level) + ((i+1) * lbnadd);
1504 			if (next <= lastlbn)
1505 				continue;
1506 			indir_trunc(ino, nlbn, nblk, lastlbn);
1507 			/* If all of this indirect was reclaimed, free it. */
1508 			nlbn = next - lbnadd;
1509 			if (nlbn < lastlbn)
1510 				continue;
1511 		} else {
1512 			nlbn = -lbn + i * lbnadd;
1513 			if (nlbn < lastlbn)
1514 				continue;
1515 		}
1516 		dirty = 1;
1517 		blk_free(nblk, 0, fs->fs_frag);
1518 		if (fs->fs_magic == FS_UFS1_MAGIC)
1519 			*(bap1 - 1) = 0;
1520 		else
1521 			*(bap2 - 1) = 0;
1522 	}
1523 	if (dirty)
1524 		dblk_dirty(blk);
1525 }
1526 
1527 /*
1528  * Truncate an inode to the minimum of the given size or the last populated
1529  * block after any over size have been discarded.  The kernel would allocate
1530  * the last block in the file but fsck does not and neither do we.  This
1531  * code never extends files, only shrinks them.
1532  */
1533 static void
1534 ino_trunc(ino_t ino, off_t size)
1535 {
1536 	union dinode *ip;
1537 	ufs2_daddr_t bn;
1538 	uint64_t totalfrags;
1539 	ufs_lbn_t nextlbn;
1540 	ufs_lbn_t lastlbn;
1541 	ufs_lbn_t tmpval;
1542 	ufs_lbn_t lbn;
1543 	ufs_lbn_t i;
1544 	int frags;
1545 	off_t cursize;
1546 	off_t off;
1547 	int mode;
1548 
1549 	ip = ino_read(ino);
1550 	mode = DIP(ip, di_mode) & IFMT;
1551 	cursize = DIP(ip, di_size);
1552 	if (debug)
1553 		printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1554 		    (uintmax_t)ino, mode, size, cursize);
1555 
1556 	/* Skip datablocks for short links and devices. */
1557 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1558 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1559 		return;
1560 	/* Don't extend. */
1561 	if (size > cursize)
1562 		size = cursize;
1563 	lastlbn = lblkno(fs, blkroundup(fs, size));
1564 	for (i = lastlbn; i < UFS_NDADDR; i++) {
1565 		if (DIP(ip, di_db[i]) == 0)
1566 			continue;
1567 		frags = sblksize(fs, cursize, i);
1568 		frags = numfrags(fs, frags);
1569 		blk_free(DIP(ip, di_db[i]), 0, frags);
1570 		DIP_SET(ip, di_db[i], 0);
1571 	}
1572 	/*
1573 	 * Follow indirect blocks, freeing anything required.
1574 	 */
1575 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1576 	    lbn = nextlbn) {
1577 		nextlbn = lbn + tmpval;
1578 		tmpval *= NINDIR(fs);
1579 		/* If we're not freeing any in this indirect range skip it. */
1580 		if (lastlbn >= nextlbn)
1581 			continue;
1582 		if (DIP(ip, di_ib[i]) == 0)
1583 			continue;
1584 		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1585 		/* If we freed everything in this indirect free the indir. */
1586 		if (lastlbn > lbn)
1587 			continue;
1588 		blk_free(DIP(ip, di_ib[i]), 0, fs->fs_frag);
1589 		DIP_SET(ip, di_ib[i], 0);
1590 	}
1591 	ino_dirty(ino);
1592 	/*
1593 	 * Now that we've freed any whole blocks that exceed the desired
1594 	 * truncation size, figure out how many blocks remain and what the
1595 	 * last populated lbn is.  We will set the size to this last lbn
1596 	 * rather than worrying about allocating the final lbn as the kernel
1597 	 * would've done.  This is consistent with normal fsck behavior.
1598 	 */
1599 	visitlbn = 0;
1600 	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1601 	if (size > lblktosize(fs, visitlbn + 1))
1602 		size = lblktosize(fs, visitlbn + 1);
1603 	/*
1604 	 * If we're truncating direct blocks we have to adjust frags
1605 	 * accordingly.
1606 	 */
1607 	if (visitlbn < UFS_NDADDR && totalfrags) {
1608 		long oldspace, newspace;
1609 
1610 		bn = DIP(ip, di_db[visitlbn]);
1611 		if (bn == 0)
1612 			err_suj("Bad blk at ino %ju lbn %jd\n",
1613 			    (uintmax_t)ino, visitlbn);
1614 		oldspace = sblksize(fs, cursize, visitlbn);
1615 		newspace = sblksize(fs, size, visitlbn);
1616 		if (oldspace != newspace) {
1617 			bn += numfrags(fs, newspace);
1618 			frags = numfrags(fs, oldspace - newspace);
1619 			blk_free(bn, 0, frags);
1620 			totalfrags -= frags;
1621 		}
1622 	}
1623 	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1624 	DIP_SET(ip, di_size, size);
1625 	ino_dirty(ino);
1626 	/*
1627 	 * If we've truncated into the middle of a block or frag we have
1628 	 * to zero it here.  Otherwise the file could extend into
1629 	 * uninitialized space later.
1630 	 */
1631 	off = blkoff(fs, size);
1632 	if (off && DIP(ip, di_mode) != IFDIR) {
1633 		uint8_t *buf;
1634 		long clrsize;
1635 
1636 		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1637 		if (bn == 0)
1638 			err_suj("Block missing from ino %ju at lbn %jd\n",
1639 			    (uintmax_t)ino, visitlbn);
1640 		clrsize = frags * fs->fs_fsize;
1641 		buf = dblk_read(bn, clrsize);
1642 		clrsize -= off;
1643 		buf += off;
1644 		bzero(buf, clrsize);
1645 		dblk_dirty(bn);
1646 	}
1647 	return;
1648 }
1649 
1650 /*
1651  * Process records available for one inode and determine whether the
1652  * link count is correct or needs adjusting.
1653  */
1654 static void
1655 ino_check(struct suj_ino *sino)
1656 {
1657 	struct suj_rec *srec;
1658 	struct jrefrec *rrec;
1659 	nlink_t dotlinks;
1660 	nlink_t newlinks;
1661 	nlink_t removes;
1662 	nlink_t nlink;
1663 	ino_t ino;
1664 	int isdot;
1665 	int isat;
1666 	int mode;
1667 
1668 	if (sino->si_hasrecs == 0)
1669 		return;
1670 	ino = sino->si_ino;
1671 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1672 	nlink = rrec->jr_nlink;
1673 	newlinks = 0;
1674 	dotlinks = 0;
1675 	removes = sino->si_nlinkadj;
1676 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1677 		rrec = (struct jrefrec *)srec->sr_rec;
1678 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1679 		    rrec->jr_ino, &mode, &isdot);
1680 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1681 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1682 			    mode, rrec->jr_mode);
1683 		if (debug)
1684 			printf("jrefrec: op %d ino %ju, nlink %ju, parent %ju, "
1685 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1686 			    rrec->jr_op, (uintmax_t)rrec->jr_ino,
1687 			    (uintmax_t)rrec->jr_nlink,
1688 			    (uintmax_t)rrec->jr_parent,
1689 			    (uintmax_t)rrec->jr_diroff,
1690 			    rrec->jr_mode, isat, isdot);
1691 		mode = rrec->jr_mode & IFMT;
1692 		if (rrec->jr_op == JOP_REMREF)
1693 			removes++;
1694 		newlinks += isat;
1695 		if (isdot)
1696 			dotlinks += isat;
1697 	}
1698 	/*
1699 	 * The number of links that remain are the starting link count
1700 	 * subtracted by the total number of removes with the total
1701 	 * links discovered back in.  An incomplete remove thus
1702 	 * makes no change to the link count but an add increases
1703 	 * by one.
1704 	 */
1705 	if (debug)
1706 		printf(
1707 		    "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
1708 		    (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
1709 		    (uintmax_t)removes, (uintmax_t)dotlinks);
1710 	nlink += newlinks;
1711 	nlink -= removes;
1712 	sino->si_linkadj = 1;
1713 	sino->si_nlink = nlink;
1714 	sino->si_dotlinks = dotlinks;
1715 	sino->si_mode = mode;
1716 	ino_adjust(sino);
1717 }
1718 
1719 /*
1720  * Process records available for one block and determine whether it is
1721  * still allocated and whether the owning inode needs to be updated or
1722  * a free completed.
1723  */
1724 static void
1725 blk_check(struct suj_blk *sblk)
1726 {
1727 	struct suj_rec *srec;
1728 	struct jblkrec *brec;
1729 	struct suj_ino *sino;
1730 	ufs2_daddr_t blk;
1731 	int mask;
1732 	int frags;
1733 	int isat;
1734 
1735 	/*
1736 	 * Each suj_blk actually contains records for any fragments in that
1737 	 * block.  As a result we must evaluate each record individually.
1738 	 */
1739 	sino = NULL;
1740 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1741 		brec = (struct jblkrec *)srec->sr_rec;
1742 		frags = brec->jb_frags;
1743 		blk = brec->jb_blkno + brec->jb_oldfrags;
1744 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1745 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1746 			sino = ino_lookup(brec->jb_ino, 1);
1747 			sino->si_blkadj = 1;
1748 		}
1749 		if (debug)
1750 			printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1751 			    brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1752 			    brec->jb_lbn, brec->jb_frags, isat, frags);
1753 		/*
1754 		 * If we found the block at this address we still have to
1755 		 * determine if we need to free the tail end that was
1756 		 * added by adding contiguous fragments from the same block.
1757 		 */
1758 		if (isat == 1) {
1759 			if (frags == brec->jb_frags)
1760 				continue;
1761 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1762 			    brec->jb_frags);
1763 			mask >>= frags;
1764 			blk += frags;
1765 			frags = brec->jb_frags - frags;
1766 			blk_free(blk, mask, frags);
1767 			continue;
1768 		}
1769 		/*
1770 	 	 * The block wasn't found, attempt to free it.  It won't be
1771 		 * freed if it was actually reallocated.  If this was an
1772 		 * allocation we don't want to follow indirects as they
1773 		 * may not be written yet.  Any children of the indirect will
1774 		 * have their own records.  If it's a free we need to
1775 		 * recursively free children.
1776 		 */
1777 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1778 		    brec->jb_op == JOP_FREEBLK);
1779 	}
1780 }
1781 
1782 /*
1783  * Walk the list of inode records for this cg and resolve moved and duplicate
1784  * inode references now that we have a complete picture.
1785  */
1786 static void
1787 cg_build(struct suj_cg *sc)
1788 {
1789 	struct suj_ino *sino;
1790 	int i;
1791 
1792 	for (i = 0; i < SUJ_HASHSIZE; i++)
1793 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1794 			ino_build(sino);
1795 }
1796 
1797 /*
1798  * Handle inodes requiring truncation.  This must be done prior to
1799  * looking up any inodes in directories.
1800  */
1801 static void
1802 cg_trunc(struct suj_cg *sc)
1803 {
1804 	struct suj_ino *sino;
1805 	int i;
1806 
1807 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1808 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1809 			if (sino->si_trunc) {
1810 				ino_trunc(sino->si_ino,
1811 				    sino->si_trunc->jt_size);
1812 				sino->si_blkadj = 0;
1813 				sino->si_trunc = NULL;
1814 			}
1815 			if (sino->si_blkadj)
1816 				ino_adjblks(sino);
1817 		}
1818 	}
1819 }
1820 
1821 static void
1822 cg_adj_blk(struct suj_cg *sc)
1823 {
1824 	struct suj_ino *sino;
1825 	int i;
1826 
1827 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1828 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1829 			if (sino->si_blkadj)
1830 				ino_adjblks(sino);
1831 		}
1832 	}
1833 }
1834 
1835 /*
1836  * Free any partially allocated blocks and then resolve inode block
1837  * counts.
1838  */
1839 static void
1840 cg_check_blk(struct suj_cg *sc)
1841 {
1842 	struct suj_blk *sblk;
1843 	int i;
1844 
1845 
1846 	for (i = 0; i < SUJ_HASHSIZE; i++)
1847 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1848 			blk_check(sblk);
1849 }
1850 
1851 /*
1852  * Walk the list of inode records for this cg, recovering any
1853  * changes which were not complete at the time of crash.
1854  */
1855 static void
1856 cg_check_ino(struct suj_cg *sc)
1857 {
1858 	struct suj_ino *sino;
1859 	int i;
1860 
1861 	for (i = 0; i < SUJ_HASHSIZE; i++)
1862 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1863 			ino_check(sino);
1864 }
1865 
1866 /*
1867  * Write a potentially dirty cg.  Recalculate the summary information and
1868  * update the superblock summary.
1869  */
1870 static void
1871 cg_write(struct suj_cg *sc)
1872 {
1873 	ufs1_daddr_t fragno, cgbno, maxbno;
1874 	u_int8_t *blksfree;
1875 	struct cg *cgp;
1876 	int blk;
1877 	int i;
1878 
1879 	if (sc->sc_dirty == 0)
1880 		return;
1881 	/*
1882 	 * Fix the frag and cluster summary.
1883 	 */
1884 	cgp = sc->sc_cgp;
1885 	cgp->cg_cs.cs_nbfree = 0;
1886 	cgp->cg_cs.cs_nffree = 0;
1887 	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1888 	maxbno = fragstoblks(fs, fs->fs_fpg);
1889 	if (fs->fs_contigsumsize > 0) {
1890 		for (i = 1; i <= fs->fs_contigsumsize; i++)
1891 			cg_clustersum(cgp)[i] = 0;
1892 		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1893 	}
1894 	blksfree = cg_blksfree(cgp);
1895 	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1896 		if (ffs_isfreeblock(fs, blksfree, cgbno))
1897 			continue;
1898 		if (ffs_isblock(fs, blksfree, cgbno)) {
1899 			ffs_clusteracct(fs, cgp, cgbno, 1);
1900 			cgp->cg_cs.cs_nbfree++;
1901 			continue;
1902 		}
1903 		fragno = blkstofrags(fs, cgbno);
1904 		blk = blkmap(fs, blksfree, fragno);
1905 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1906 		for (i = 0; i < fs->fs_frag; i++)
1907 			if (isset(blksfree, fragno + i))
1908 				cgp->cg_cs.cs_nffree++;
1909 	}
1910 	/*
1911 	 * Update the superblock cg summary from our now correct values
1912 	 * before writing the block.
1913 	 */
1914 	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1915 	if (cgput(fswritefd, fs, cgp) == -1)
1916 		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1917 }
1918 
1919 /*
1920  * Write out any modified inodes.
1921  */
1922 static void
1923 cg_write_inos(struct suj_cg *sc)
1924 {
1925 	struct ino_blk *iblk;
1926 	int i;
1927 
1928 	for (i = 0; i < SUJ_HASHSIZE; i++)
1929 		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1930 			if (iblk->ib_dirty)
1931 				iblk_write(iblk);
1932 }
1933 
1934 static void
1935 cg_apply(void (*apply)(struct suj_cg *))
1936 {
1937 	struct suj_cg *scg;
1938 	int i;
1939 
1940 	for (i = 0; i < SUJ_HASHSIZE; i++)
1941 		LIST_FOREACH(scg, &cghash[i], sc_next)
1942 			apply(scg);
1943 }
1944 
1945 /*
1946  * Process the unlinked but referenced file list.  Freeing all inodes.
1947  */
1948 static void
1949 ino_unlinked(void)
1950 {
1951 	union dinode *ip;
1952 	uint16_t mode;
1953 	ino_t inon;
1954 	ino_t ino;
1955 
1956 	ino = fs->fs_sujfree;
1957 	fs->fs_sujfree = 0;
1958 	while (ino != 0) {
1959 		ip = ino_read(ino);
1960 		mode = DIP(ip, di_mode) & IFMT;
1961 		inon = DIP(ip, di_freelink);
1962 		DIP_SET(ip, di_freelink, 0);
1963 		ino_dirty(ino);
1964 		/*
1965 		 * XXX Should this be an errx?
1966 		 */
1967 		if (DIP(ip, di_nlink) == 0) {
1968 			if (debug)
1969 				printf("Freeing unlinked ino %ju mode %o\n",
1970 				    (uintmax_t)ino, mode);
1971 			ino_reclaim(ip, ino, mode);
1972 		} else if (debug)
1973 			printf("Skipping ino %ju mode %o with link %d\n",
1974 			    (uintmax_t)ino, mode, DIP(ip, di_nlink));
1975 		ino = inon;
1976 	}
1977 }
1978 
1979 /*
1980  * Append a new record to the list of records requiring processing.
1981  */
1982 static void
1983 ino_append(union jrec *rec)
1984 {
1985 	struct jrefrec *refrec;
1986 	struct jmvrec *mvrec;
1987 	struct suj_ino *sino;
1988 	struct suj_rec *srec;
1989 
1990 	mvrec = &rec->rec_jmvrec;
1991 	refrec = &rec->rec_jrefrec;
1992 	if (debug && mvrec->jm_op == JOP_MVREF)
1993 		printf("ino move: ino %ju, parent %ju, "
1994 		    "diroff %jd, oldoff %jd\n",
1995 		    (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
1996 		    (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
1997 	else if (debug &&
1998 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1999 		printf("ino ref: op %d, ino %ju, nlink %ju, "
2000 		    "parent %ju, diroff %jd\n",
2001 		    refrec->jr_op, (uintmax_t)refrec->jr_ino,
2002 		    (uintmax_t)refrec->jr_nlink,
2003 		    (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
2004 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
2005 	sino->si_hasrecs = 1;
2006 	srec = errmalloc(sizeof(*srec));
2007 	srec->sr_rec = rec;
2008 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
2009 }
2010 
2011 /*
2012  * Add a reference adjustment to the sino list and eliminate dups.  The
2013  * primary loop in ino_build_ref() checks for dups but new ones may be
2014  * created as a result of offset adjustments.
2015  */
2016 static void
2017 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
2018 {
2019 	struct jrefrec *refrec;
2020 	struct suj_rec *srn;
2021 	struct jrefrec *rrn;
2022 
2023 	refrec = (struct jrefrec *)srec->sr_rec;
2024 	/*
2025 	 * We walk backwards so that the oldest link count is preserved.  If
2026 	 * an add record conflicts with a remove keep the remove.  Redundant
2027 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
2028 	 * oldest record at a given location.
2029 	 */
2030 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
2031 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
2032 		rrn = (struct jrefrec *)srn->sr_rec;
2033 		if (rrn->jr_parent != refrec->jr_parent ||
2034 		    rrn->jr_diroff != refrec->jr_diroff)
2035 			continue;
2036 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2037 			rrn->jr_mode = refrec->jr_mode;
2038 			return;
2039 		}
2040 		/*
2041 		 * Adding a remove.
2042 		 *
2043 		 * Replace the record in place with the old nlink in case
2044 		 * we replace the head of the list.  Abandon srec as a dup.
2045 		 */
2046 		refrec->jr_nlink = rrn->jr_nlink;
2047 		srn->sr_rec = srec->sr_rec;
2048 		return;
2049 	}
2050 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2051 }
2052 
2053 /*
2054  * Create a duplicate of a reference at a previous location.
2055  */
2056 static void
2057 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2058 {
2059 	struct jrefrec *rrn;
2060 	struct suj_rec *srn;
2061 
2062 	rrn = errmalloc(sizeof(*refrec));
2063 	*rrn = *refrec;
2064 	rrn->jr_op = JOP_ADDREF;
2065 	rrn->jr_diroff = diroff;
2066 	srn = errmalloc(sizeof(*srn));
2067 	srn->sr_rec = (union jrec *)rrn;
2068 	ino_add_ref(sino, srn);
2069 }
2070 
2071 /*
2072  * Add a reference to the list at all known locations.  We follow the offset
2073  * changes for a single instance and create duplicate add refs at each so
2074  * that we can tolerate any version of the directory block.  Eliminate
2075  * removes which collide with adds that are seen in the journal.  They should
2076  * not adjust the link count down.
2077  */
2078 static void
2079 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2080 {
2081 	struct jrefrec *refrec;
2082 	struct jmvrec *mvrec;
2083 	struct suj_rec *srp;
2084 	struct suj_rec *srn;
2085 	struct jrefrec *rrn;
2086 	off_t diroff;
2087 
2088 	refrec = (struct jrefrec *)srec->sr_rec;
2089 	/*
2090 	 * Search for a mvrec that matches this offset.  Whether it's an add
2091 	 * or a remove we can delete the mvref after creating a dup record in
2092 	 * the old location.
2093 	 */
2094 	if (!TAILQ_EMPTY(&sino->si_movs)) {
2095 		diroff = refrec->jr_diroff;
2096 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2097 			srp = TAILQ_PREV(srn, srechd, sr_next);
2098 			mvrec = (struct jmvrec *)srn->sr_rec;
2099 			if (mvrec->jm_parent != refrec->jr_parent ||
2100 			    mvrec->jm_newoff != diroff)
2101 				continue;
2102 			diroff = mvrec->jm_oldoff;
2103 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2104 			free(srn);
2105 			ino_dup_ref(sino, refrec, diroff);
2106 		}
2107 	}
2108 	/*
2109 	 * If a remove wasn't eliminated by an earlier add just append it to
2110 	 * the list.
2111 	 */
2112 	if (refrec->jr_op == JOP_REMREF) {
2113 		ino_add_ref(sino, srec);
2114 		return;
2115 	}
2116 	/*
2117 	 * Walk the list of records waiting to be added to the list.  We
2118 	 * must check for moves that apply to our current offset and remove
2119 	 * them from the list.  Remove any duplicates to eliminate removes
2120 	 * with corresponding adds.
2121 	 */
2122 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2123 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2124 		case JOP_ADDREF:
2125 			/*
2126 			 * This should actually be an error we should
2127 			 * have a remove for every add journaled.
2128 			 */
2129 			rrn = (struct jrefrec *)srn->sr_rec;
2130 			if (rrn->jr_parent != refrec->jr_parent ||
2131 			    rrn->jr_diroff != refrec->jr_diroff)
2132 				break;
2133 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2134 			break;
2135 		case JOP_REMREF:
2136 			/*
2137 			 * Once we remove the current iteration of the
2138 			 * record at this address we're done.
2139 			 */
2140 			rrn = (struct jrefrec *)srn->sr_rec;
2141 			if (rrn->jr_parent != refrec->jr_parent ||
2142 			    rrn->jr_diroff != refrec->jr_diroff)
2143 				break;
2144 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2145 			ino_add_ref(sino, srec);
2146 			return;
2147 		case JOP_MVREF:
2148 			/*
2149 			 * Update our diroff based on any moves that match
2150 			 * and remove the move.
2151 			 */
2152 			mvrec = (struct jmvrec *)srn->sr_rec;
2153 			if (mvrec->jm_parent != refrec->jr_parent ||
2154 			    mvrec->jm_oldoff != refrec->jr_diroff)
2155 				break;
2156 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2157 			refrec->jr_diroff = mvrec->jm_newoff;
2158 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2159 			break;
2160 		default:
2161 			err_suj("ino_build_ref: Unknown op %d\n",
2162 			    srn->sr_rec->rec_jrefrec.jr_op);
2163 		}
2164 	}
2165 	ino_add_ref(sino, srec);
2166 }
2167 
2168 /*
2169  * Walk the list of new records and add them in-order resolving any
2170  * dups and adjusted offsets.
2171  */
2172 static void
2173 ino_build(struct suj_ino *sino)
2174 {
2175 	struct suj_rec *srec;
2176 
2177 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2178 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2179 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2180 		case JOP_ADDREF:
2181 		case JOP_REMREF:
2182 			ino_build_ref(sino, srec);
2183 			break;
2184 		case JOP_MVREF:
2185 			/*
2186 			 * Add this mvrec to the queue of pending mvs.
2187 			 */
2188 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2189 			break;
2190 		default:
2191 			err_suj("ino_build: Unknown op %d\n",
2192 			    srec->sr_rec->rec_jrefrec.jr_op);
2193 		}
2194 	}
2195 	if (TAILQ_EMPTY(&sino->si_recs))
2196 		sino->si_hasrecs = 0;
2197 }
2198 
2199 /*
2200  * Modify journal records so they refer to the base block number
2201  * and a start and end frag range.  This is to facilitate the discovery
2202  * of overlapping fragment allocations.
2203  */
2204 static void
2205 blk_build(struct jblkrec *blkrec)
2206 {
2207 	struct suj_rec *srec;
2208 	struct suj_blk *sblk;
2209 	struct jblkrec *blkrn;
2210 	ufs2_daddr_t blk;
2211 	int frag;
2212 
2213 	if (debug)
2214 		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2215 		    "ino %ju lbn %jd\n",
2216 		    blkrec->jb_op, (uintmax_t)blkrec->jb_blkno,
2217 		    blkrec->jb_frags, blkrec->jb_oldfrags,
2218 		    (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
2219 
2220 	blk = blknum(fs, blkrec->jb_blkno);
2221 	frag = fragnum(fs, blkrec->jb_blkno);
2222 	sblk = blk_lookup(blk, 1);
2223 	/*
2224 	 * Rewrite the record using oldfrags to indicate the offset into
2225 	 * the block.  Leave jb_frags as the actual allocated count.
2226 	 */
2227 	blkrec->jb_blkno -= frag;
2228 	blkrec->jb_oldfrags = frag;
2229 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2230 		err_suj("Invalid fragment count %d oldfrags %d\n",
2231 		    blkrec->jb_frags, frag);
2232 	/*
2233 	 * Detect dups.  If we detect a dup we always discard the oldest
2234 	 * record as it is superseded by the new record.  This speeds up
2235 	 * later stages but also eliminates free records which are used
2236 	 * to indicate that the contents of indirects can be trusted.
2237 	 */
2238 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2239 		blkrn = (struct jblkrec *)srec->sr_rec;
2240 		if (blkrn->jb_ino != blkrec->jb_ino ||
2241 		    blkrn->jb_lbn != blkrec->jb_lbn ||
2242 		    blkrn->jb_blkno != blkrec->jb_blkno ||
2243 		    blkrn->jb_frags != blkrec->jb_frags ||
2244 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2245 			continue;
2246 		if (debug)
2247 			printf("Removed dup.\n");
2248 		/* Discard the free which is a dup with an alloc. */
2249 		if (blkrec->jb_op == JOP_FREEBLK)
2250 			return;
2251 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2252 		free(srec);
2253 		break;
2254 	}
2255 	srec = errmalloc(sizeof(*srec));
2256 	srec->sr_rec = (union jrec *)blkrec;
2257 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2258 }
2259 
2260 static void
2261 ino_build_trunc(struct jtrncrec *rec)
2262 {
2263 	struct suj_ino *sino;
2264 
2265 	if (debug)
2266 		printf("ino_build_trunc: op %d ino %ju, size %jd\n",
2267 		    rec->jt_op, (uintmax_t)rec->jt_ino,
2268 		    (uintmax_t)rec->jt_size);
2269 	sino = ino_lookup(rec->jt_ino, 1);
2270 	if (rec->jt_op == JOP_SYNC) {
2271 		sino->si_trunc = NULL;
2272 		return;
2273 	}
2274 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2275 		sino->si_trunc = rec;
2276 }
2277 
2278 /*
2279  * Build up tables of the operations we need to recover.
2280  */
2281 static void
2282 suj_build(void)
2283 {
2284 	struct suj_seg *seg;
2285 	union jrec *rec;
2286 	int off;
2287 	int i;
2288 
2289 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2290 		if (debug)
2291 			printf("seg %jd has %d records, oldseq %jd.\n",
2292 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2293 			    seg->ss_rec.jsr_oldest);
2294 		off = 0;
2295 		rec = (union jrec *)seg->ss_blk;
2296 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2297 			/* skip the segrec. */
2298 			if ((off % real_dev_bsize) == 0)
2299 				continue;
2300 			switch (rec->rec_jrefrec.jr_op) {
2301 			case JOP_ADDREF:
2302 			case JOP_REMREF:
2303 			case JOP_MVREF:
2304 				ino_append(rec);
2305 				break;
2306 			case JOP_NEWBLK:
2307 			case JOP_FREEBLK:
2308 				blk_build((struct jblkrec *)rec);
2309 				break;
2310 			case JOP_TRUNC:
2311 			case JOP_SYNC:
2312 				ino_build_trunc((struct jtrncrec *)rec);
2313 				break;
2314 			default:
2315 				err_suj("Unknown journal operation %d (%d)\n",
2316 				    rec->rec_jrefrec.jr_op, off);
2317 			}
2318 			i++;
2319 		}
2320 	}
2321 }
2322 
2323 /*
2324  * Prune the journal segments to those we care about based on the
2325  * oldest sequence in the newest segment.  Order the segment list
2326  * based on sequence number.
2327  */
2328 static void
2329 suj_prune(void)
2330 {
2331 	struct suj_seg *seg;
2332 	struct suj_seg *segn;
2333 	uint64_t newseq;
2334 	int discard;
2335 
2336 	if (debug)
2337 		printf("Pruning up to %jd\n", oldseq);
2338 	/* First free the expired segments. */
2339 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2340 		if (seg->ss_rec.jsr_seq >= oldseq)
2341 			continue;
2342 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2343 		free(seg->ss_blk);
2344 		free(seg);
2345 	}
2346 	/* Next ensure that segments are ordered properly. */
2347 	seg = TAILQ_FIRST(&allsegs);
2348 	if (seg == NULL) {
2349 		if (debug)
2350 			printf("Empty journal\n");
2351 		return;
2352 	}
2353 	newseq = seg->ss_rec.jsr_seq;
2354 	for (;;) {
2355 		seg = TAILQ_LAST(&allsegs, seghd);
2356 		if (seg->ss_rec.jsr_seq >= newseq)
2357 			break;
2358 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2359 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2360 		newseq = seg->ss_rec.jsr_seq;
2361 
2362 	}
2363 	if (newseq != oldseq) {
2364 		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2365 			printf("%jd, ", seg->ss_rec.jsr_seq);
2366 		}
2367 		printf("\n");
2368 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2369 		    newseq, oldseq);
2370 	}
2371 	/*
2372 	 * The kernel may asynchronously write segments which can create
2373 	 * gaps in the sequence space.  Throw away any segments after the
2374 	 * gap as the kernel guarantees only those that are contiguously
2375 	 * reachable are marked as completed.
2376 	 */
2377 	discard = 0;
2378 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2379 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2380 			jrecs += seg->ss_rec.jsr_cnt;
2381 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2382 			continue;
2383 		}
2384 		discard = 1;
2385 		if (debug)
2386 			printf("Journal order mismatch %jd != %jd pruning\n",
2387 			    newseq-1, seg->ss_rec.jsr_seq);
2388 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2389 		free(seg->ss_blk);
2390 		free(seg);
2391 	}
2392 	if (debug)
2393 		printf("Processing journal segments from %jd to %jd\n",
2394 		    oldseq, newseq-1);
2395 }
2396 
2397 /*
2398  * Verify the journal inode before attempting to read records.
2399  */
2400 static int
2401 suj_verifyino(union dinode *ip)
2402 {
2403 
2404 	if (DIP(ip, di_nlink) != 1) {
2405 		printf("Invalid link count %d for journal inode %ju\n",
2406 		    DIP(ip, di_nlink), (uintmax_t)sujino);
2407 		return (-1);
2408 	}
2409 
2410 	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2411 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2412 		printf("Invalid flags 0x%X for journal inode %ju\n",
2413 		    DIP(ip, di_flags), (uintmax_t)sujino);
2414 		return (-1);
2415 	}
2416 
2417 	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2418 		printf("Invalid mode %o for journal inode %ju\n",
2419 		    DIP(ip, di_mode), (uintmax_t)sujino);
2420 		return (-1);
2421 	}
2422 
2423 	if (DIP(ip, di_size) < SUJ_MIN) {
2424 		printf("Invalid size %jd for journal inode %ju\n",
2425 		    DIP(ip, di_size), (uintmax_t)sujino);
2426 		return (-1);
2427 	}
2428 
2429 	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2430 		printf("Journal timestamp does not match fs mount time\n");
2431 		return (-1);
2432 	}
2433 
2434 	return (0);
2435 }
2436 
2437 struct jblocks {
2438 	struct jextent *jb_extent;	/* Extent array. */
2439 	int		jb_avail;	/* Available extents. */
2440 	int		jb_used;	/* Last used extent. */
2441 	int		jb_head;	/* Allocator head. */
2442 	int		jb_off;		/* Allocator extent offset. */
2443 };
2444 struct jextent {
2445 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2446 	int		je_blocks;	/* Disk block count. */
2447 };
2448 
2449 static struct jblocks *suj_jblocks;
2450 
2451 static struct jblocks *
2452 jblocks_create(void)
2453 {
2454 	struct jblocks *jblocks;
2455 	int size;
2456 
2457 	jblocks = errmalloc(sizeof(*jblocks));
2458 	jblocks->jb_avail = 10;
2459 	jblocks->jb_used = 0;
2460 	jblocks->jb_head = 0;
2461 	jblocks->jb_off = 0;
2462 	size = sizeof(struct jextent) * jblocks->jb_avail;
2463 	jblocks->jb_extent = errmalloc(size);
2464 	bzero(jblocks->jb_extent, size);
2465 
2466 	return (jblocks);
2467 }
2468 
2469 /*
2470  * Return the next available disk block and the amount of contiguous
2471  * free space it contains.
2472  */
2473 static ufs2_daddr_t
2474 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2475 {
2476 	struct jextent *jext;
2477 	ufs2_daddr_t daddr;
2478 	int freecnt;
2479 	int blocks;
2480 
2481 	blocks = bytes / disk.d_bsize;
2482 	jext = &jblocks->jb_extent[jblocks->jb_head];
2483 	freecnt = jext->je_blocks - jblocks->jb_off;
2484 	if (freecnt == 0) {
2485 		jblocks->jb_off = 0;
2486 		if (++jblocks->jb_head > jblocks->jb_used)
2487 			return (0);
2488 		jext = &jblocks->jb_extent[jblocks->jb_head];
2489 		freecnt = jext->je_blocks;
2490 	}
2491 	if (freecnt > blocks)
2492 		freecnt = blocks;
2493 	*actual = freecnt * disk.d_bsize;
2494 	daddr = jext->je_daddr + jblocks->jb_off;
2495 
2496 	return (daddr);
2497 }
2498 
2499 /*
2500  * Advance the allocation head by a specified number of bytes, consuming
2501  * one journal segment.
2502  */
2503 static void
2504 jblocks_advance(struct jblocks *jblocks, int bytes)
2505 {
2506 
2507 	jblocks->jb_off += bytes / disk.d_bsize;
2508 }
2509 
2510 static void
2511 jblocks_destroy(struct jblocks *jblocks)
2512 {
2513 
2514 	free(jblocks->jb_extent);
2515 	free(jblocks);
2516 }
2517 
2518 static void
2519 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2520 {
2521 	struct jextent *jext;
2522 	int size;
2523 
2524 	jext = &jblocks->jb_extent[jblocks->jb_used];
2525 	/* Adding the first block. */
2526 	if (jext->je_daddr == 0) {
2527 		jext->je_daddr = daddr;
2528 		jext->je_blocks = blocks;
2529 		return;
2530 	}
2531 	/* Extending the last extent. */
2532 	if (jext->je_daddr + jext->je_blocks == daddr) {
2533 		jext->je_blocks += blocks;
2534 		return;
2535 	}
2536 	/* Adding a new extent. */
2537 	if (++jblocks->jb_used == jblocks->jb_avail) {
2538 		jblocks->jb_avail *= 2;
2539 		size = sizeof(struct jextent) * jblocks->jb_avail;
2540 		jext = errmalloc(size);
2541 		bzero(jext, size);
2542 		bcopy(jblocks->jb_extent, jext,
2543 		    sizeof(struct jextent) * jblocks->jb_used);
2544 		free(jblocks->jb_extent);
2545 		jblocks->jb_extent = jext;
2546 	}
2547 	jext = &jblocks->jb_extent[jblocks->jb_used];
2548 	jext->je_daddr = daddr;
2549 	jext->je_blocks = blocks;
2550 
2551 	return;
2552 }
2553 
2554 /*
2555  * Add a file block from the journal to the extent map.  We can't read
2556  * each file block individually because the kernel treats it as a circular
2557  * buffer and segments may span mutliple contiguous blocks.
2558  */
2559 static void
2560 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2561 {
2562 
2563 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2564 }
2565 
2566 static void
2567 suj_read(void)
2568 {
2569 	uint8_t block[1 * 1024 * 1024];
2570 	struct suj_seg *seg;
2571 	struct jsegrec *recn;
2572 	struct jsegrec *rec;
2573 	ufs2_daddr_t blk;
2574 	int readsize;
2575 	int blocks;
2576 	int recsize;
2577 	int size;
2578 	int i;
2579 
2580 	/*
2581 	 * Read records until we exhaust the journal space.  If we find
2582 	 * an invalid record we start searching for a valid segment header
2583 	 * at the next block.  This is because we don't have a head/tail
2584 	 * pointer and must recover the information indirectly.  At the gap
2585 	 * between the head and tail we won't necessarily have a valid
2586 	 * segment.
2587 	 */
2588 restart:
2589 	for (;;) {
2590 		size = sizeof(block);
2591 		blk = jblocks_next(suj_jblocks, size, &readsize);
2592 		if (blk == 0)
2593 			return;
2594 		size = readsize;
2595 		/*
2596 		 * Read 1MB at a time and scan for records within this block.
2597 		 */
2598 		if (bread(&disk, blk, &block, size) == -1) {
2599 			err_suj("Error reading journal block %jd\n",
2600 			    (intmax_t)blk);
2601 		}
2602 		for (rec = (void *)block; size; size -= recsize,
2603 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2604 			recsize = real_dev_bsize;
2605 			if (rec->jsr_time != fs->fs_mtime) {
2606 				if (debug)
2607 					printf("Rec time %jd != fs mtime %jd\n",
2608 					    rec->jsr_time, fs->fs_mtime);
2609 				jblocks_advance(suj_jblocks, recsize);
2610 				continue;
2611 			}
2612 			if (rec->jsr_cnt == 0) {
2613 				if (debug)
2614 					printf("Found illegal count %d\n",
2615 					    rec->jsr_cnt);
2616 				jblocks_advance(suj_jblocks, recsize);
2617 				continue;
2618 			}
2619 			blocks = rec->jsr_blocks;
2620 			recsize = blocks * real_dev_bsize;
2621 			if (recsize > size) {
2622 				/*
2623 				 * We may just have run out of buffer, restart
2624 				 * the loop to re-read from this spot.
2625 				 */
2626 				if (size < fs->fs_bsize &&
2627 				    size != readsize &&
2628 				    recsize <= fs->fs_bsize)
2629 					goto restart;
2630 				if (debug)
2631 					printf("Found invalid segsize %d > %d\n",
2632 					    recsize, size);
2633 				recsize = real_dev_bsize;
2634 				jblocks_advance(suj_jblocks, recsize);
2635 				continue;
2636 			}
2637 			/*
2638 			 * Verify that all blocks in the segment are present.
2639 			 */
2640 			for (i = 1; i < blocks; i++) {
2641 				recn = (void *)((uintptr_t)rec) + i *
2642 				    real_dev_bsize;
2643 				if (recn->jsr_seq == rec->jsr_seq &&
2644 				    recn->jsr_time == rec->jsr_time)
2645 					continue;
2646 				if (debug)
2647 					printf("Incomplete record %jd (%d)\n",
2648 					    rec->jsr_seq, i);
2649 				recsize = i * real_dev_bsize;
2650 				jblocks_advance(suj_jblocks, recsize);
2651 				goto restart;
2652 			}
2653 			seg = errmalloc(sizeof(*seg));
2654 			seg->ss_blk = errmalloc(recsize);
2655 			seg->ss_rec = *rec;
2656 			bcopy((void *)rec, seg->ss_blk, recsize);
2657 			if (rec->jsr_oldest > oldseq)
2658 				oldseq = rec->jsr_oldest;
2659 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2660 			jblocks_advance(suj_jblocks, recsize);
2661 		}
2662 	}
2663 }
2664 
2665 /*
2666  * Search a directory block for the SUJ_FILE.
2667  */
2668 static void
2669 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2670 {
2671 	char block[MAXBSIZE];
2672 	struct direct *dp;
2673 	int bytes;
2674 	int off;
2675 
2676 	if (sujino)
2677 		return;
2678 	bytes = lfragtosize(fs, frags);
2679 	if (bread(&disk, fsbtodb(fs, blk), block, bytes) <= 0)
2680 		err_suj("Failed to read UFS_ROOTINO directory block %jd\n",
2681 		    blk);
2682 	for (off = 0; off < bytes; off += dp->d_reclen) {
2683 		dp = (struct direct *)&block[off];
2684 		if (dp->d_reclen == 0)
2685 			break;
2686 		if (dp->d_ino == 0)
2687 			continue;
2688 		if (dp->d_namlen != strlen(SUJ_FILE))
2689 			continue;
2690 		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2691 			continue;
2692 		sujino = dp->d_ino;
2693 		return;
2694 	}
2695 }
2696 
2697 /*
2698  * Orchestrate the verification of a filesystem via the softupdates journal.
2699  */
2700 int
2701 suj_check(const char *filesys)
2702 {
2703 	union dinode *jip;
2704 	union dinode *ip;
2705 	uint64_t blocks;
2706 	int retval;
2707 	struct suj_seg *seg;
2708 	struct suj_seg *segn;
2709 
2710 	initsuj();
2711 	fs = &sblock;
2712 	if (real_dev_bsize == 0 && ioctl(disk.d_fd, DIOCGSECTORSIZE,
2713 	    &real_dev_bsize) == -1)
2714 		real_dev_bsize = secsize;
2715 	if (debug)
2716 		printf("dev_bsize %u\n", real_dev_bsize);
2717 
2718 	/*
2719 	 * Set an exit point when SUJ check failed
2720 	 */
2721 	retval = setjmp(jmpbuf);
2722 	if (retval != 0) {
2723 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2724 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2725 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2726 				free(seg->ss_blk);
2727 				free(seg);
2728 		}
2729 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2730 			ckfini(0);
2731 			exit(EEXIT);
2732 		} else
2733 			return (-1);
2734 	}
2735 
2736 	/*
2737 	 * Find the journal inode.
2738 	 */
2739 	ip = ino_read(UFS_ROOTINO);
2740 	sujino = 0;
2741 	ino_visit(ip, UFS_ROOTINO, suj_find, 0);
2742 	if (sujino == 0) {
2743 		printf("Journal inode removed.  Use tunefs to re-create.\n");
2744 		sblock.fs_flags &= ~FS_SUJ;
2745 		sblock.fs_sujfree = 0;
2746 		return (-1);
2747 	}
2748 	/*
2749 	 * Fetch the journal inode and verify it.
2750 	 */
2751 	jip = ino_read(sujino);
2752 	printf("** SU+J Recovering %s\n", filesys);
2753 	if (suj_verifyino(jip) != 0)
2754 		return (-1);
2755 	if (!preen && !reply("USE JOURNAL"))
2756 		return (-1);
2757 	/*
2758 	 * Build a list of journal blocks in jblocks before parsing the
2759 	 * available journal blocks in with suj_read().
2760 	 */
2761 	printf("** Reading %jd byte journal from inode %ju.\n",
2762 	    DIP(jip, di_size), (uintmax_t)sujino);
2763 	suj_jblocks = jblocks_create();
2764 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2765 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2766 		printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2767 		return (-1);
2768 	}
2769 	suj_read();
2770 	jblocks_destroy(suj_jblocks);
2771 	suj_jblocks = NULL;
2772 	if (preen || reply("RECOVER")) {
2773 		printf("** Building recovery table.\n");
2774 		suj_prune();
2775 		suj_build();
2776 		cg_apply(cg_build);
2777 		printf("** Resolving unreferenced inode list.\n");
2778 		ino_unlinked();
2779 		printf("** Processing journal entries.\n");
2780 		cg_apply(cg_trunc);
2781 		cg_apply(cg_check_blk);
2782 		cg_apply(cg_adj_blk);
2783 		cg_apply(cg_check_ino);
2784 	}
2785 	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2786 		return (0);
2787 	/*
2788 	 * To remain idempotent with partial truncations the free bitmaps
2789 	 * must be written followed by indirect blocks and lastly inode
2790 	 * blocks.  This preserves access to the modified pointers until
2791 	 * they are freed.
2792 	 */
2793 	cg_apply(cg_write);
2794 	dblk_write();
2795 	cg_apply(cg_write_inos);
2796 	/* Write back superblock. */
2797 	closedisk(filesys);
2798 	if (jrecs > 0 || jbytes > 0) {
2799 		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2800 		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2801 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2802 		    freeinos, freedir, freeblocks, freefrags);
2803 	}
2804 
2805 	return (0);
2806 }
2807 
2808 static void
2809 initsuj(void)
2810 {
2811 	int i;
2812 
2813 	for (i = 0; i < SUJ_HASHSIZE; i++) {
2814 		LIST_INIT(&cghash[i]);
2815 		LIST_INIT(&dbhash[i]);
2816 	}
2817 	lastcg = NULL;
2818 	lastblk = NULL;
2819 	TAILQ_INIT(&allsegs);
2820 	oldseq = 0;
2821 	fs = NULL;
2822 	sujino = 0;
2823 	freefrags = 0;
2824 	freeblocks = 0;
2825 	freeinos = 0;
2826 	freedir = 0;
2827 	jbytes = 0;
2828 	jrecs = 0;
2829 	suj_jblocks = NULL;
2830 }
2831