xref: /freebsd/sbin/newfs/mkfs.c (revision 076ad2f8)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/param.h>
48 #include <sys/disklabel.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/resource.h>
53 #include <sys/stat.h>
54 #include <sys/wait.h>
55 #include <err.h>
56 #include <grp.h>
57 #include <limits.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <stdint.h>
62 #include <stdio.h>
63 #include <time.h>
64 #include <unistd.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include "newfs.h"
69 
70 /*
71  * make file system for cylinder-group style file systems
72  */
73 #define UMASK		0755
74 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75 
76 static struct	csum *fscs;
77 #define	sblock	disk.d_fs
78 #define	acg	disk.d_cg
79 
80 union dinode {
81 	struct ufs1_dinode dp1;
82 	struct ufs2_dinode dp2;
83 };
84 #define DIP(dp, field) \
85 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86 	(dp)->dp1.field : (dp)->dp2.field)
87 
88 static caddr_t iobuf;
89 static long iobufsize;
90 static ufs2_daddr_t alloc(int size, int mode);
91 static int charsperline(void);
92 static void clrblock(struct fs *, unsigned char *, int);
93 static void fsinit(time_t);
94 static int ilog2(int);
95 static void initcg(int, time_t);
96 static int isblock(struct fs *, unsigned char *, int);
97 static void iput(union dinode *, ino_t);
98 static int makedir(struct direct *, int);
99 static void setblock(struct fs *, unsigned char *, int);
100 static void wtfs(ufs2_daddr_t, int, char *);
101 static u_int32_t newfs_random(void);
102 
103 static int
104 do_sbwrite(struct uufsd *disk)
105 {
106 	if (!disk->d_sblock)
107 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109 	    disk->d_sblock) * disk->d_bsize)));
110 }
111 
112 void
113 mkfs(struct partition *pp, char *fsys)
114 {
115 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116 	long i, j, csfrags;
117 	uint cg;
118 	time_t utime;
119 	quad_t sizepb;
120 	int width;
121 	ino_t maxinum;
122 	int minfragsperinode;	/* minimum ratio of frags to inodes */
123 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
124 	union {
125 		struct fs fdummy;
126 		char cdummy[SBLOCKSIZE];
127 	} dummy;
128 #define fsdummy dummy.fdummy
129 #define chdummy dummy.cdummy
130 
131 	/*
132 	 * Our blocks == sector size, and the version of UFS we are using is
133 	 * specified by Oflag.
134 	 */
135 	disk.d_bsize = sectorsize;
136 	disk.d_ufs = Oflag;
137 	if (Rflag)
138 		utime = 1000000000;
139 	else
140 		time(&utime);
141 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
142 	sblock.fs_flags = 0;
143 	if (Uflag)
144 		sblock.fs_flags |= FS_DOSOFTDEP;
145 	if (Lflag)
146 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
147 	if (Jflag)
148 		sblock.fs_flags |= FS_GJOURNAL;
149 	if (lflag)
150 		sblock.fs_flags |= FS_MULTILABEL;
151 	if (tflag)
152 		sblock.fs_flags |= FS_TRIM;
153 	/*
154 	 * Validate the given file system size.
155 	 * Verify that its last block can actually be accessed.
156 	 * Convert to file system fragment sized units.
157 	 */
158 	if (fssize <= 0) {
159 		printf("preposterous size %jd\n", (intmax_t)fssize);
160 		exit(13);
161 	}
162 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
163 	    (char *)&sblock);
164 	/*
165 	 * collect and verify the file system density info
166 	 */
167 	sblock.fs_avgfilesize = avgfilesize;
168 	sblock.fs_avgfpdir = avgfilesperdir;
169 	if (sblock.fs_avgfilesize <= 0)
170 		printf("illegal expected average file size %d\n",
171 		    sblock.fs_avgfilesize), exit(14);
172 	if (sblock.fs_avgfpdir <= 0)
173 		printf("illegal expected number of files per directory %d\n",
174 		    sblock.fs_avgfpdir), exit(15);
175 
176 restart:
177 	/*
178 	 * collect and verify the block and fragment sizes
179 	 */
180 	sblock.fs_bsize = bsize;
181 	sblock.fs_fsize = fsize;
182 	if (!POWEROF2(sblock.fs_bsize)) {
183 		printf("block size must be a power of 2, not %d\n",
184 		    sblock.fs_bsize);
185 		exit(16);
186 	}
187 	if (!POWEROF2(sblock.fs_fsize)) {
188 		printf("fragment size must be a power of 2, not %d\n",
189 		    sblock.fs_fsize);
190 		exit(17);
191 	}
192 	if (sblock.fs_fsize < sectorsize) {
193 		printf("increasing fragment size from %d to sector size (%d)\n",
194 		    sblock.fs_fsize, sectorsize);
195 		sblock.fs_fsize = sectorsize;
196 	}
197 	if (sblock.fs_bsize > MAXBSIZE) {
198 		printf("decreasing block size from %d to maximum (%d)\n",
199 		    sblock.fs_bsize, MAXBSIZE);
200 		sblock.fs_bsize = MAXBSIZE;
201 	}
202 	if (sblock.fs_bsize < MINBSIZE) {
203 		printf("increasing block size from %d to minimum (%d)\n",
204 		    sblock.fs_bsize, MINBSIZE);
205 		sblock.fs_bsize = MINBSIZE;
206 	}
207 	if (sblock.fs_fsize > MAXBSIZE) {
208 		printf("decreasing fragment size from %d to maximum (%d)\n",
209 		    sblock.fs_fsize, MAXBSIZE);
210 		sblock.fs_fsize = MAXBSIZE;
211 	}
212 	if (sblock.fs_bsize < sblock.fs_fsize) {
213 		printf("increasing block size from %d to fragment size (%d)\n",
214 		    sblock.fs_bsize, sblock.fs_fsize);
215 		sblock.fs_bsize = sblock.fs_fsize;
216 	}
217 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
218 		printf(
219 		"increasing fragment size from %d to block size / %d (%d)\n",
220 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
221 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
222 	}
223 	if (maxbsize == 0)
224 		maxbsize = bsize;
225 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
226 		sblock.fs_maxbsize = sblock.fs_bsize;
227 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
228 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
229 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
230 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
231 	} else {
232 		sblock.fs_maxbsize = maxbsize;
233 	}
234 	/*
235 	 * Maxcontig sets the default for the maximum number of blocks
236 	 * that may be allocated sequentially. With file system clustering
237 	 * it is possible to allocate contiguous blocks up to the maximum
238 	 * transfer size permitted by the controller or buffering.
239 	 */
240 	if (maxcontig == 0)
241 		maxcontig = MAX(1, MAXPHYS / bsize);
242 	sblock.fs_maxcontig = maxcontig;
243 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
244 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
245 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
246 	}
247 	if (sblock.fs_maxcontig > 1)
248 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
249 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
250 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
251 	sblock.fs_qbmask = ~sblock.fs_bmask;
252 	sblock.fs_qfmask = ~sblock.fs_fmask;
253 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
254 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
255 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
256 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
257 	if (sblock.fs_frag > MAXFRAG) {
258 		printf("fragment size %d is still too small (can't happen)\n",
259 		    sblock.fs_bsize / MAXFRAG);
260 		exit(21);
261 	}
262 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
263 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
264 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
265 
266 	/*
267 	 * Before the filesystem is finally initialized, mark it
268 	 * as incompletely initialized.
269 	 */
270 	sblock.fs_magic = FS_BAD_MAGIC;
271 
272 	if (Oflag == 1) {
273 		sblock.fs_sblockloc = SBLOCK_UFS1;
274 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
275 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
276 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
277 		    sizeof(ufs1_daddr_t));
278 		sblock.fs_old_inodefmt = FS_44INODEFMT;
279 		sblock.fs_old_cgoffset = 0;
280 		sblock.fs_old_cgmask = 0xffffffff;
281 		sblock.fs_old_size = sblock.fs_size;
282 		sblock.fs_old_rotdelay = 0;
283 		sblock.fs_old_rps = 60;
284 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
285 		sblock.fs_old_cpg = 1;
286 		sblock.fs_old_interleave = 1;
287 		sblock.fs_old_trackskew = 0;
288 		sblock.fs_old_cpc = 0;
289 		sblock.fs_old_postblformat = 1;
290 		sblock.fs_old_nrpos = 1;
291 	} else {
292 		sblock.fs_sblockloc = SBLOCK_UFS2;
293 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
294 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
295 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
296 		    sizeof(ufs2_daddr_t));
297 	}
298 	sblock.fs_sblkno =
299 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
300 		sblock.fs_frag);
301 	sblock.fs_cblkno = sblock.fs_sblkno +
302 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
303 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
304 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
305 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
306 		sizepb *= NINDIR(&sblock);
307 		sblock.fs_maxfilesize += sizepb;
308 	}
309 
310 	/*
311 	 * It's impossible to create a snapshot in case that fs_maxfilesize
312 	 * is smaller than the fssize.
313 	 */
314 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
315 		warnx("WARNING: You will be unable to create snapshots on this "
316 		      "file system.  Correct by using a larger blocksize.");
317 	}
318 
319 	/*
320 	 * Calculate the number of blocks to put into each cylinder group.
321 	 *
322 	 * This algorithm selects the number of blocks per cylinder
323 	 * group. The first goal is to have at least enough data blocks
324 	 * in each cylinder group to meet the density requirement. Once
325 	 * this goal is achieved we try to expand to have at least
326 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
327 	 * pack as many blocks into each cylinder group map as will fit.
328 	 *
329 	 * We start by calculating the smallest number of blocks that we
330 	 * can put into each cylinder group. If this is too big, we reduce
331 	 * the density until it fits.
332 	 */
333 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
334 	minfragsperinode = 1 + fssize / maxinum;
335 	if (density == 0) {
336 		density = MAX(NFPI, minfragsperinode) * fsize;
337 	} else if (density < minfragsperinode * fsize) {
338 		origdensity = density;
339 		density = minfragsperinode * fsize;
340 		fprintf(stderr, "density increased from %d to %d\n",
341 		    origdensity, density);
342 	}
343 	origdensity = density;
344 	for (;;) {
345 		fragsperinode = MAX(numfrags(&sblock, density), 1);
346 		if (fragsperinode < minfragsperinode) {
347 			bsize <<= 1;
348 			fsize <<= 1;
349 			printf("Block size too small for a file system %s %d\n",
350 			     "of this size. Increasing blocksize to", bsize);
351 			goto restart;
352 		}
353 		minfpg = fragsperinode * INOPB(&sblock);
354 		if (minfpg > sblock.fs_size)
355 			minfpg = sblock.fs_size;
356 		sblock.fs_ipg = INOPB(&sblock);
357 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
358 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
359 		if (sblock.fs_fpg < minfpg)
360 			sblock.fs_fpg = minfpg;
361 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
362 		    INOPB(&sblock));
363 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
364 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
365 		if (sblock.fs_fpg < minfpg)
366 			sblock.fs_fpg = minfpg;
367 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
368 		    INOPB(&sblock));
369 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
370 			break;
371 		density -= sblock.fs_fsize;
372 	}
373 	if (density != origdensity)
374 		printf("density reduced from %d to %d\n", origdensity, density);
375 	/*
376 	 * Start packing more blocks into the cylinder group until
377 	 * it cannot grow any larger, the number of cylinder groups
378 	 * drops below MINCYLGRPS, or we reach the size requested.
379 	 * For UFS1 inodes per cylinder group are stored in an int16_t
380 	 * so fs_ipg is limited to 2^15 - 1.
381 	 */
382 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
383 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
384 		    INOPB(&sblock));
385 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
386 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
387 				break;
388 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
389 				continue;
390 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
391 				break;
392 		}
393 		sblock.fs_fpg -= sblock.fs_frag;
394 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
395 		    INOPB(&sblock));
396 		break;
397 	}
398 	/*
399 	 * Check to be sure that the last cylinder group has enough blocks
400 	 * to be viable. If it is too small, reduce the number of blocks
401 	 * per cylinder group which will have the effect of moving more
402 	 * blocks into the last cylinder group.
403 	 */
404 	optimalfpg = sblock.fs_fpg;
405 	for (;;) {
406 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
407 		lastminfpg = roundup(sblock.fs_iblkno +
408 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
409 		if (sblock.fs_size < lastminfpg) {
410 			printf("Filesystem size %jd < minimum size of %d\n",
411 			    (intmax_t)sblock.fs_size, lastminfpg);
412 			exit(28);
413 		}
414 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
415 		    sblock.fs_size % sblock.fs_fpg == 0)
416 			break;
417 		sblock.fs_fpg -= sblock.fs_frag;
418 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
419 		    INOPB(&sblock));
420 	}
421 	if (optimalfpg != sblock.fs_fpg)
422 		printf("Reduced frags per cylinder group from %d to %d %s\n",
423 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
424 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
425 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
426 	if (Oflag == 1) {
427 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
428 		sblock.fs_old_nsect = sblock.fs_old_spc;
429 		sblock.fs_old_npsect = sblock.fs_old_spc;
430 		sblock.fs_old_ncyl = sblock.fs_ncg;
431 	}
432 	/*
433 	 * fill in remaining fields of the super block
434 	 */
435 	sblock.fs_csaddr = cgdmin(&sblock, 0);
436 	sblock.fs_cssize =
437 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
438 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
439 	if (fscs == NULL)
440 		errx(31, "calloc failed");
441 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
442 	if (sblock.fs_sbsize > SBLOCKSIZE)
443 		sblock.fs_sbsize = SBLOCKSIZE;
444 	sblock.fs_minfree = minfree;
445 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
446 		sblock.fs_metaspace = blknum(&sblock, metaspace);
447 	else if (metaspace != -1)
448 		/* reserve half of minfree for metadata blocks */
449 		sblock.fs_metaspace = blknum(&sblock,
450 		    (sblock.fs_fpg * minfree) / 200);
451 	if (maxbpg == 0)
452 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
453 	else
454 		sblock.fs_maxbpg = maxbpg;
455 	sblock.fs_optim = opt;
456 	sblock.fs_cgrotor = 0;
457 	sblock.fs_pendingblocks = 0;
458 	sblock.fs_pendinginodes = 0;
459 	sblock.fs_fmod = 0;
460 	sblock.fs_ronly = 0;
461 	sblock.fs_state = 0;
462 	sblock.fs_clean = 1;
463 	sblock.fs_id[0] = (long)utime;
464 	sblock.fs_id[1] = newfs_random();
465 	sblock.fs_fsmnt[0] = '\0';
466 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
467 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
468 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
469 	sblock.fs_cstotal.cs_nbfree =
470 	    fragstoblks(&sblock, sblock.fs_dsize) -
471 	    howmany(csfrags, sblock.fs_frag);
472 	sblock.fs_cstotal.cs_nffree =
473 	    fragnum(&sblock, sblock.fs_size) +
474 	    (fragnum(&sblock, csfrags) > 0 ?
475 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
476 	sblock.fs_cstotal.cs_nifree =
477 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
478 	sblock.fs_cstotal.cs_ndir = 0;
479 	sblock.fs_dsize -= csfrags;
480 	sblock.fs_time = utime;
481 	if (Oflag == 1) {
482 		sblock.fs_old_time = utime;
483 		sblock.fs_old_dsize = sblock.fs_dsize;
484 		sblock.fs_old_csaddr = sblock.fs_csaddr;
485 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
486 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
487 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
488 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
489 	}
490 
491 	/*
492 	 * Dump out summary information about file system.
493 	 */
494 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
495 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
496 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
497 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
498 	    sblock.fs_fsize);
499 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
500 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
501 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
502 	if (sblock.fs_flags & FS_DOSOFTDEP)
503 		printf("\twith soft updates\n");
504 #	undef B2MBFACTOR
505 
506 	if (Eflag && !Nflag) {
507 		printf("Erasing sectors [%jd...%jd]\n",
508 		    sblock.fs_sblockloc / disk.d_bsize,
509 		    fsbtodb(&sblock, sblock.fs_size) - 1);
510 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
511 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
512 	}
513 	/*
514 	 * Wipe out old UFS1 superblock(s) if necessary.
515 	 */
516 	if (!Nflag && Oflag != 1) {
517 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
518 		if (i == -1)
519 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
520 
521 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
522 			fsdummy.fs_magic = 0;
523 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
524 			    chdummy, SBLOCKSIZE);
525 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
526 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
527 					break;
528 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
529 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
530 			}
531 		}
532 	}
533 	if (!Nflag)
534 		do_sbwrite(&disk);
535 	if (Xflag == 1) {
536 		printf("** Exiting on Xflag 1\n");
537 		exit(0);
538 	}
539 	if (Xflag == 2)
540 		printf("** Leaving BAD MAGIC on Xflag 2\n");
541 	else
542 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
543 
544 	/*
545 	 * Now build the cylinders group blocks and
546 	 * then print out indices of cylinder groups.
547 	 */
548 	printf("super-block backups (for fsck_ffs -b #) at:\n");
549 	i = 0;
550 	width = charsperline();
551 	/*
552 	 * allocate space for superblock, cylinder group map, and
553 	 * two sets of inode blocks.
554 	 */
555 	if (sblock.fs_bsize < SBLOCKSIZE)
556 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
557 	else
558 		iobufsize = 4 * sblock.fs_bsize;
559 	if ((iobuf = calloc(1, iobufsize)) == 0) {
560 		printf("Cannot allocate I/O buffer\n");
561 		exit(38);
562 	}
563 	/*
564 	 * Make a copy of the superblock into the buffer that we will be
565 	 * writing out in each cylinder group.
566 	 */
567 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
568 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
569 		initcg(cg, utime);
570 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
571 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
572 		    cg < (sblock.fs_ncg-1) ? "," : "");
573 		if (j < 0)
574 			tmpbuf[j = 0] = '\0';
575 		if (i + j >= width) {
576 			printf("\n");
577 			i = 0;
578 		}
579 		i += j;
580 		printf("%s", tmpbuf);
581 		fflush(stdout);
582 	}
583 	printf("\n");
584 	if (Nflag)
585 		exit(0);
586 	/*
587 	 * Now construct the initial file system,
588 	 * then write out the super-block.
589 	 */
590 	fsinit(utime);
591 	if (Oflag == 1) {
592 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
593 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
594 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
595 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
596 	}
597 	if (Xflag == 3) {
598 		printf("** Exiting on Xflag 3\n");
599 		exit(0);
600 	}
601 	if (!Nflag) {
602 		do_sbwrite(&disk);
603 		/*
604 		 * For UFS1 filesystems with a blocksize of 64K, the first
605 		 * alternate superblock resides at the location used for
606 		 * the default UFS2 superblock. As there is a valid
607 		 * superblock at this location, the boot code will use
608 		 * it as its first choice. Thus we have to ensure that
609 		 * all of its statistcs on usage are correct.
610 		 */
611 		if (Oflag == 1 && sblock.fs_bsize == 65536)
612 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
613 			    sblock.fs_bsize, (char *)&sblock);
614 	}
615 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
616 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
617 			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
618 			((char *)fscs) + i);
619 	/*
620 	 * Update information about this partition in pack
621 	 * label, to that it may be updated on disk.
622 	 */
623 	if (pp != NULL) {
624 		pp->p_fstype = FS_BSDFFS;
625 		pp->p_fsize = sblock.fs_fsize;
626 		pp->p_frag = sblock.fs_frag;
627 		pp->p_cpg = sblock.fs_fpg;
628 	}
629 }
630 
631 /*
632  * Initialize a cylinder group.
633  */
634 void
635 initcg(int cylno, time_t utime)
636 {
637 	long blkno, start;
638 	uint i, j, d, dlower, dupper;
639 	ufs2_daddr_t cbase, dmax;
640 	struct ufs1_dinode *dp1;
641 	struct ufs2_dinode *dp2;
642 	struct csum *cs;
643 
644 	/*
645 	 * Determine block bounds for cylinder group.
646 	 * Allow space for super block summary information in first
647 	 * cylinder group.
648 	 */
649 	cbase = cgbase(&sblock, cylno);
650 	dmax = cbase + sblock.fs_fpg;
651 	if (dmax > sblock.fs_size)
652 		dmax = sblock.fs_size;
653 	dlower = cgsblock(&sblock, cylno) - cbase;
654 	dupper = cgdmin(&sblock, cylno) - cbase;
655 	if (cylno == 0)
656 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
657 	cs = &fscs[cylno];
658 	memset(&acg, 0, sblock.fs_cgsize);
659 	acg.cg_time = utime;
660 	acg.cg_magic = CG_MAGIC;
661 	acg.cg_cgx = cylno;
662 	acg.cg_niblk = sblock.fs_ipg;
663 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
664 	acg.cg_ndblk = dmax - cbase;
665 	if (sblock.fs_contigsumsize > 0)
666 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
667 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
668 	if (Oflag == 2) {
669 		acg.cg_iusedoff = start;
670 	} else {
671 		acg.cg_old_ncyl = sblock.fs_old_cpg;
672 		acg.cg_old_time = acg.cg_time;
673 		acg.cg_time = 0;
674 		acg.cg_old_niblk = acg.cg_niblk;
675 		acg.cg_niblk = 0;
676 		acg.cg_initediblk = 0;
677 		acg.cg_old_btotoff = start;
678 		acg.cg_old_boff = acg.cg_old_btotoff +
679 		    sblock.fs_old_cpg * sizeof(int32_t);
680 		acg.cg_iusedoff = acg.cg_old_boff +
681 		    sblock.fs_old_cpg * sizeof(u_int16_t);
682 	}
683 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
684 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
685 	if (sblock.fs_contigsumsize > 0) {
686 		acg.cg_clustersumoff =
687 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
688 		acg.cg_clustersumoff -= sizeof(u_int32_t);
689 		acg.cg_clusteroff = acg.cg_clustersumoff +
690 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
691 		acg.cg_nextfreeoff = acg.cg_clusteroff +
692 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
693 	}
694 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
695 		printf("Panic: cylinder group too big\n");
696 		exit(37);
697 	}
698 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
699 	if (cylno == 0)
700 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
701 			setbit(cg_inosused(&acg), i);
702 			acg.cg_cs.cs_nifree--;
703 		}
704 	if (cylno > 0) {
705 		/*
706 		 * In cylno 0, beginning space is reserved
707 		 * for boot and super blocks.
708 		 */
709 		for (d = 0; d < dlower; d += sblock.fs_frag) {
710 			blkno = d / sblock.fs_frag;
711 			setblock(&sblock, cg_blksfree(&acg), blkno);
712 			if (sblock.fs_contigsumsize > 0)
713 				setbit(cg_clustersfree(&acg), blkno);
714 			acg.cg_cs.cs_nbfree++;
715 		}
716 	}
717 	if ((i = dupper % sblock.fs_frag)) {
718 		acg.cg_frsum[sblock.fs_frag - i]++;
719 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
720 			setbit(cg_blksfree(&acg), dupper);
721 			acg.cg_cs.cs_nffree++;
722 		}
723 	}
724 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
725 	     d += sblock.fs_frag) {
726 		blkno = d / sblock.fs_frag;
727 		setblock(&sblock, cg_blksfree(&acg), blkno);
728 		if (sblock.fs_contigsumsize > 0)
729 			setbit(cg_clustersfree(&acg), blkno);
730 		acg.cg_cs.cs_nbfree++;
731 	}
732 	if (d < acg.cg_ndblk) {
733 		acg.cg_frsum[acg.cg_ndblk - d]++;
734 		for (; d < acg.cg_ndblk; d++) {
735 			setbit(cg_blksfree(&acg), d);
736 			acg.cg_cs.cs_nffree++;
737 		}
738 	}
739 	if (sblock.fs_contigsumsize > 0) {
740 		int32_t *sump = cg_clustersum(&acg);
741 		u_char *mapp = cg_clustersfree(&acg);
742 		int map = *mapp++;
743 		int bit = 1;
744 		int run = 0;
745 
746 		for (i = 0; i < acg.cg_nclusterblks; i++) {
747 			if ((map & bit) != 0)
748 				run++;
749 			else if (run != 0) {
750 				if (run > sblock.fs_contigsumsize)
751 					run = sblock.fs_contigsumsize;
752 				sump[run]++;
753 				run = 0;
754 			}
755 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
756 				bit <<= 1;
757 			else {
758 				map = *mapp++;
759 				bit = 1;
760 			}
761 		}
762 		if (run != 0) {
763 			if (run > sblock.fs_contigsumsize)
764 				run = sblock.fs_contigsumsize;
765 			sump[run]++;
766 		}
767 	}
768 	*cs = acg.cg_cs;
769 	/*
770 	 * Write out the duplicate super block, the cylinder group map
771 	 * and two blocks worth of inodes in a single write.
772 	 */
773 	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
774 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
775 	start += sblock.fs_bsize;
776 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
777 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
778 	for (i = 0; i < acg.cg_initediblk; i++) {
779 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
780 			dp1->di_gen = newfs_random();
781 			dp1++;
782 		} else {
783 			dp2->di_gen = newfs_random();
784 			dp2++;
785 		}
786 	}
787 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
788 	/*
789 	 * For the old file system, we have to initialize all the inodes.
790 	 */
791 	if (Oflag == 1) {
792 		for (i = 2 * sblock.fs_frag;
793 		     i < sblock.fs_ipg / INOPF(&sblock);
794 		     i += sblock.fs_frag) {
795 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
796 			for (j = 0; j < INOPB(&sblock); j++) {
797 				dp1->di_gen = newfs_random();
798 				dp1++;
799 			}
800 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
801 			    sblock.fs_bsize, &iobuf[start]);
802 		}
803 	}
804 }
805 
806 /*
807  * initialize the file system
808  */
809 #define ROOTLINKCNT 3
810 
811 static struct direct root_dir[] = {
812 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
813 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
814 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
815 };
816 
817 #define SNAPLINKCNT 2
818 
819 static struct direct snap_dir[] = {
820 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
821 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
822 };
823 
824 void
825 fsinit(time_t utime)
826 {
827 	union dinode node;
828 	struct group *grp;
829 	gid_t gid;
830 	int entries;
831 
832 	memset(&node, 0, sizeof node);
833 	if ((grp = getgrnam("operator")) != NULL) {
834 		gid = grp->gr_gid;
835 	} else {
836 		warnx("Cannot retrieve operator gid, using gid 0.");
837 		gid = 0;
838 	}
839 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
840 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
841 		/*
842 		 * initialize the node
843 		 */
844 		node.dp1.di_atime = utime;
845 		node.dp1.di_mtime = utime;
846 		node.dp1.di_ctime = utime;
847 		/*
848 		 * create the root directory
849 		 */
850 		node.dp1.di_mode = IFDIR | UMASK;
851 		node.dp1.di_nlink = entries;
852 		node.dp1.di_size = makedir(root_dir, entries);
853 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
854 		node.dp1.di_blocks =
855 		    btodb(fragroundup(&sblock, node.dp1.di_size));
856 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
857 		    iobuf);
858 		iput(&node, UFS_ROOTINO);
859 		if (!nflag) {
860 			/*
861 			 * create the .snap directory
862 			 */
863 			node.dp1.di_mode |= 020;
864 			node.dp1.di_gid = gid;
865 			node.dp1.di_nlink = SNAPLINKCNT;
866 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
867 				node.dp1.di_db[0] =
868 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
869 			node.dp1.di_blocks =
870 			    btodb(fragroundup(&sblock, node.dp1.di_size));
871 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
872 				    sblock.fs_fsize, iobuf);
873 			iput(&node, UFS_ROOTINO + 1);
874 		}
875 	} else {
876 		/*
877 		 * initialize the node
878 		 */
879 		node.dp2.di_atime = utime;
880 		node.dp2.di_mtime = utime;
881 		node.dp2.di_ctime = utime;
882 		node.dp2.di_birthtime = utime;
883 		/*
884 		 * create the root directory
885 		 */
886 		node.dp2.di_mode = IFDIR | UMASK;
887 		node.dp2.di_nlink = entries;
888 		node.dp2.di_size = makedir(root_dir, entries);
889 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
890 		node.dp2.di_blocks =
891 		    btodb(fragroundup(&sblock, node.dp2.di_size));
892 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
893 		    iobuf);
894 		iput(&node, UFS_ROOTINO);
895 		if (!nflag) {
896 			/*
897 			 * create the .snap directory
898 			 */
899 			node.dp2.di_mode |= 020;
900 			node.dp2.di_gid = gid;
901 			node.dp2.di_nlink = SNAPLINKCNT;
902 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
903 				node.dp2.di_db[0] =
904 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
905 			node.dp2.di_blocks =
906 			    btodb(fragroundup(&sblock, node.dp2.di_size));
907 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
908 				    sblock.fs_fsize, iobuf);
909 			iput(&node, UFS_ROOTINO + 1);
910 		}
911 	}
912 }
913 
914 /*
915  * construct a set of directory entries in "iobuf".
916  * return size of directory.
917  */
918 int
919 makedir(struct direct *protodir, int entries)
920 {
921 	char *cp;
922 	int i, spcleft;
923 
924 	spcleft = DIRBLKSIZ;
925 	memset(iobuf, 0, DIRBLKSIZ);
926 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
927 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
928 		memmove(cp, &protodir[i], protodir[i].d_reclen);
929 		cp += protodir[i].d_reclen;
930 		spcleft -= protodir[i].d_reclen;
931 	}
932 	protodir[i].d_reclen = spcleft;
933 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
934 	return (DIRBLKSIZ);
935 }
936 
937 /*
938  * allocate a block or frag
939  */
940 ufs2_daddr_t
941 alloc(int size, int mode)
942 {
943 	int i, blkno, frag;
944 	uint d;
945 
946 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
947 	    sblock.fs_cgsize);
948 	if (acg.cg_magic != CG_MAGIC) {
949 		printf("cg 0: bad magic number\n");
950 		exit(38);
951 	}
952 	if (acg.cg_cs.cs_nbfree == 0) {
953 		printf("first cylinder group ran out of space\n");
954 		exit(39);
955 	}
956 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
957 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
958 			goto goth;
959 	printf("internal error: can't find block in cyl 0\n");
960 	exit(40);
961 goth:
962 	blkno = fragstoblks(&sblock, d);
963 	clrblock(&sblock, cg_blksfree(&acg), blkno);
964 	if (sblock.fs_contigsumsize > 0)
965 		clrbit(cg_clustersfree(&acg), blkno);
966 	acg.cg_cs.cs_nbfree--;
967 	sblock.fs_cstotal.cs_nbfree--;
968 	fscs[0].cs_nbfree--;
969 	if (mode & IFDIR) {
970 		acg.cg_cs.cs_ndir++;
971 		sblock.fs_cstotal.cs_ndir++;
972 		fscs[0].cs_ndir++;
973 	}
974 	if (size != sblock.fs_bsize) {
975 		frag = howmany(size, sblock.fs_fsize);
976 		fscs[0].cs_nffree += sblock.fs_frag - frag;
977 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
978 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
979 		acg.cg_frsum[sblock.fs_frag - frag]++;
980 		for (i = frag; i < sblock.fs_frag; i++)
981 			setbit(cg_blksfree(&acg), d + i);
982 	}
983 	/* XXX cgwrite(&disk, 0)??? */
984 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
985 	    (char *)&acg);
986 	return ((ufs2_daddr_t)d);
987 }
988 
989 /*
990  * Allocate an inode on the disk
991  */
992 void
993 iput(union dinode *ip, ino_t ino)
994 {
995 	ufs2_daddr_t d;
996 
997 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
998 	    sblock.fs_cgsize);
999 	if (acg.cg_magic != CG_MAGIC) {
1000 		printf("cg 0: bad magic number\n");
1001 		exit(31);
1002 	}
1003 	acg.cg_cs.cs_nifree--;
1004 	setbit(cg_inosused(&acg), ino);
1005 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1006 	    (char *)&acg);
1007 	sblock.fs_cstotal.cs_nifree--;
1008 	fscs[0].cs_nifree--;
1009 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1010 		printf("fsinit: inode value out of range (%ju).\n",
1011 		    (uintmax_t)ino);
1012 		exit(32);
1013 	}
1014 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1015 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1016 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1017 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1018 		    ip->dp1;
1019 	else
1020 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1021 		    ip->dp2;
1022 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1023 }
1024 
1025 /*
1026  * possibly write to disk
1027  */
1028 static void
1029 wtfs(ufs2_daddr_t bno, int size, char *bf)
1030 {
1031 	if (Nflag)
1032 		return;
1033 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1034 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1035 }
1036 
1037 /*
1038  * check if a block is available
1039  */
1040 static int
1041 isblock(struct fs *fs, unsigned char *cp, int h)
1042 {
1043 	unsigned char mask;
1044 
1045 	switch (fs->fs_frag) {
1046 	case 8:
1047 		return (cp[h] == 0xff);
1048 	case 4:
1049 		mask = 0x0f << ((h & 0x1) << 2);
1050 		return ((cp[h >> 1] & mask) == mask);
1051 	case 2:
1052 		mask = 0x03 << ((h & 0x3) << 1);
1053 		return ((cp[h >> 2] & mask) == mask);
1054 	case 1:
1055 		mask = 0x01 << (h & 0x7);
1056 		return ((cp[h >> 3] & mask) == mask);
1057 	default:
1058 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1059 		return (0);
1060 	}
1061 }
1062 
1063 /*
1064  * take a block out of the map
1065  */
1066 static void
1067 clrblock(struct fs *fs, unsigned char *cp, int h)
1068 {
1069 	switch ((fs)->fs_frag) {
1070 	case 8:
1071 		cp[h] = 0;
1072 		return;
1073 	case 4:
1074 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1075 		return;
1076 	case 2:
1077 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1078 		return;
1079 	case 1:
1080 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1081 		return;
1082 	default:
1083 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1084 		return;
1085 	}
1086 }
1087 
1088 /*
1089  * put a block into the map
1090  */
1091 static void
1092 setblock(struct fs *fs, unsigned char *cp, int h)
1093 {
1094 	switch (fs->fs_frag) {
1095 	case 8:
1096 		cp[h] = 0xff;
1097 		return;
1098 	case 4:
1099 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1100 		return;
1101 	case 2:
1102 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1103 		return;
1104 	case 1:
1105 		cp[h >> 3] |= (0x01 << (h & 0x7));
1106 		return;
1107 	default:
1108 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1109 		return;
1110 	}
1111 }
1112 
1113 /*
1114  * Determine the number of characters in a
1115  * single line.
1116  */
1117 
1118 static int
1119 charsperline(void)
1120 {
1121 	int columns;
1122 	char *cp;
1123 	struct winsize ws;
1124 
1125 	columns = 0;
1126 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1127 		columns = ws.ws_col;
1128 	if (columns == 0 && (cp = getenv("COLUMNS")))
1129 		columns = atoi(cp);
1130 	if (columns == 0)
1131 		columns = 80;	/* last resort */
1132 	return (columns);
1133 }
1134 
1135 static int
1136 ilog2(int val)
1137 {
1138 	u_int n;
1139 
1140 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1141 		if (1 << n == val)
1142 			return (n);
1143 	errx(1, "ilog2: %d is not a power of 2\n", val);
1144 }
1145 
1146 /*
1147  * For the regression test, return predictable random values.
1148  * Otherwise use a true random number generator.
1149  */
1150 static u_int32_t
1151 newfs_random(void)
1152 {
1153 	static int nextnum = 1;
1154 
1155 	if (Rflag)
1156 		return (nextnum++);
1157 	return (arc4random());
1158 }
1159