xref: /freebsd/stand/efi/loader/main.c (revision 1323ec57)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #ifdef EFI_ZFS_BOOT
40 #include <sys/zfs_bootenv.h>
41 #endif
42 #include <paths.h>
43 #include <netinet/in.h>
44 #include <netinet/in_systm.h>
45 #include <stdint.h>
46 #include <string.h>
47 #include <setjmp.h>
48 #include <disk.h>
49 #include <dev_net.h>
50 #include <net.h>
51 
52 #include <efi.h>
53 #include <efilib.h>
54 #include <efichar.h>
55 #include <efirng.h>
56 
57 #include <uuid.h>
58 
59 #include <bootstrap.h>
60 #include <smbios.h>
61 
62 #include "efizfs.h"
63 
64 #include "loader_efi.h"
65 
66 struct arch_switch archsw;	/* MI/MD interface boundary */
67 
68 EFI_GUID acpi = ACPI_TABLE_GUID;
69 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
70 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
71 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
72 EFI_GUID mps = MPS_TABLE_GUID;
73 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
74 EFI_GUID smbios = SMBIOS_TABLE_GUID;
75 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
76 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
77 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
78 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
79 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
80 EFI_GUID esrt = ESRT_TABLE_GUID;
81 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
82 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
83 EFI_GUID fdtdtb = FDT_TABLE_GUID;
84 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
85 
86 /*
87  * Number of seconds to wait for a keystroke before exiting with failure
88  * in the event no currdev is found. -2 means always break, -1 means
89  * never break, 0 means poll once and then reboot, > 0 means wait for
90  * that many seconds. "fail_timeout" can be set in the environment as
91  * well.
92  */
93 static int fail_timeout = 5;
94 
95 /*
96  * Current boot variable
97  */
98 UINT16 boot_current;
99 
100 /*
101  * Image that we booted from.
102  */
103 EFI_LOADED_IMAGE *boot_img;
104 
105 static bool
106 has_keyboard(void)
107 {
108 	EFI_STATUS status;
109 	EFI_DEVICE_PATH *path;
110 	EFI_HANDLE *hin, *hin_end, *walker;
111 	UINTN sz;
112 	bool retval = false;
113 
114 	/*
115 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
116 	 * do the typical dance to get the right sized buffer.
117 	 */
118 	sz = 0;
119 	hin = NULL;
120 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
121 	if (status == EFI_BUFFER_TOO_SMALL) {
122 		hin = (EFI_HANDLE *)malloc(sz);
123 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
124 		    hin);
125 		if (EFI_ERROR(status))
126 			free(hin);
127 	}
128 	if (EFI_ERROR(status))
129 		return retval;
130 
131 	/*
132 	 * Look at each of the handles. If it supports the device path protocol,
133 	 * use it to get the device path for this handle. Then see if that
134 	 * device path matches either the USB device path for keyboards or the
135 	 * legacy device path for keyboards.
136 	 */
137 	hin_end = &hin[sz / sizeof(*hin)];
138 	for (walker = hin; walker < hin_end; walker++) {
139 		status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
140 		if (EFI_ERROR(status))
141 			continue;
142 
143 		while (!IsDevicePathEnd(path)) {
144 			/*
145 			 * Check for the ACPI keyboard node. All PNP3xx nodes
146 			 * are keyboards of different flavors. Note: It is
147 			 * unclear of there's always a keyboard node when
148 			 * there's a keyboard controller, or if there's only one
149 			 * when a keyboard is detected at boot.
150 			 */
151 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
152 			    (DevicePathSubType(path) == ACPI_DP ||
153 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
154 				ACPI_HID_DEVICE_PATH  *acpi;
155 
156 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
157 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
158 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
159 					retval = true;
160 					goto out;
161 				}
162 			/*
163 			 * Check for USB keyboard node, if present. Unlike a
164 			 * PS/2 keyboard, these definitely only appear when
165 			 * connected to the system.
166 			 */
167 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
168 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
169 				USB_CLASS_DEVICE_PATH *usb;
170 
171 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
172 				if (usb->DeviceClass == 3 && /* HID */
173 				    usb->DeviceSubClass == 1 && /* Boot devices */
174 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
175 					retval = true;
176 					goto out;
177 				}
178 			}
179 			path = NextDevicePathNode(path);
180 		}
181 	}
182 out:
183 	free(hin);
184 	return retval;
185 }
186 
187 static void
188 set_currdev(const char *devname)
189 {
190 
191 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev,
192 	    env_nounset);
193 	/*
194 	 * Don't execute hook here; the loaddev hook makes it immutable
195 	 * once we've determined what the proper currdev is.
196 	 */
197 	env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset,
198 	    env_nounset);
199 }
200 
201 static void
202 set_currdev_devdesc(struct devdesc *currdev)
203 {
204 	const char *devname;
205 
206 	devname = efi_fmtdev(currdev);
207 	printf("Setting currdev to %s\n", devname);
208 	set_currdev(devname);
209 }
210 
211 static void
212 set_currdev_devsw(struct devsw *dev, int unit)
213 {
214 	struct devdesc currdev;
215 
216 	currdev.d_dev = dev;
217 	currdev.d_unit = unit;
218 
219 	set_currdev_devdesc(&currdev);
220 }
221 
222 static void
223 set_currdev_pdinfo(pdinfo_t *dp)
224 {
225 
226 	/*
227 	 * Disks are special: they have partitions. if the parent
228 	 * pointer is non-null, we're a partition not a full disk
229 	 * and we need to adjust currdev appropriately.
230 	 */
231 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
232 		struct disk_devdesc currdev;
233 
234 		currdev.dd.d_dev = dp->pd_devsw;
235 		if (dp->pd_parent == NULL) {
236 			currdev.dd.d_unit = dp->pd_unit;
237 			currdev.d_slice = D_SLICENONE;
238 			currdev.d_partition = D_PARTNONE;
239 		} else {
240 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
241 			currdev.d_slice = dp->pd_unit;
242 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
243 		}
244 		set_currdev_devdesc((struct devdesc *)&currdev);
245 	} else {
246 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
247 	}
248 }
249 
250 static bool
251 sanity_check_currdev(void)
252 {
253 	struct stat st;
254 
255 	return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
256 #ifdef PATH_BOOTABLE_TOKEN
257 	    stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
258 #endif
259 	    stat(PATH_KERNEL, &st) == 0);
260 }
261 
262 #ifdef EFI_ZFS_BOOT
263 static bool
264 probe_zfs_currdev(uint64_t guid)
265 {
266 	char *devname;
267 	struct zfs_devdesc currdev;
268 	char *buf = NULL;
269 	bool rv;
270 
271 	currdev.dd.d_dev = &zfs_dev;
272 	currdev.dd.d_unit = 0;
273 	currdev.pool_guid = guid;
274 	currdev.root_guid = 0;
275 	set_currdev_devdesc((struct devdesc *)&currdev);
276 	devname = efi_fmtdev(&currdev);
277 	init_zfs_boot_options(devname);
278 
279 	rv = sanity_check_currdev();
280 	if (rv) {
281 		buf = malloc(VDEV_PAD_SIZE);
282 		if (buf != NULL) {
283 			if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf,
284 			    VDEV_PAD_SIZE) == 0) {
285 				printf("zfs bootonce: %s\n", buf);
286 				set_currdev(buf);
287 				setenv("zfs-bootonce", buf, 1);
288 			}
289 			free(buf);
290 			(void) zfs_attach_nvstore(&currdev);
291 		}
292 	}
293 	return (rv);
294 }
295 #endif
296 
297 #ifdef MD_IMAGE_SIZE
298 static bool
299 probe_md_currdev(void)
300 {
301 	extern struct devsw md_dev;
302 	bool rv;
303 
304 	set_currdev_devsw(&md_dev, 0);
305 	rv = sanity_check_currdev();
306 	if (!rv)
307 		printf("MD not present\n");
308 	return (rv);
309 }
310 #endif
311 
312 static bool
313 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
314 {
315 	uint64_t guid;
316 
317 #ifdef EFI_ZFS_BOOT
318 	/*
319 	 * If there's a zpool on this device, try it as a ZFS
320 	 * filesystem, which has somewhat different setup than all
321 	 * other types of fs due to imperfect loader integration.
322 	 * This all stems from ZFS being both a device (zpool) and
323 	 * a filesystem, plus the boot env feature.
324 	 */
325 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
326 		return (probe_zfs_currdev(guid));
327 #endif
328 	/*
329 	 * All other filesystems just need the pdinfo
330 	 * initialized in the standard way.
331 	 */
332 	set_currdev_pdinfo(pp);
333 	return (sanity_check_currdev());
334 }
335 
336 /*
337  * Sometimes we get filenames that are all upper case
338  * and/or have backslashes in them. Filter all this out
339  * if it looks like we need to do so.
340  */
341 static void
342 fix_dosisms(char *p)
343 {
344 	while (*p) {
345 		if (isupper(*p))
346 			*p = tolower(*p);
347 		else if (*p == '\\')
348 			*p = '/';
349 		p++;
350 	}
351 }
352 
353 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
354 
355 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
356 static int
357 match_boot_info(char *boot_info, size_t bisz)
358 {
359 	uint32_t attr;
360 	uint16_t fplen;
361 	size_t len;
362 	char *walker, *ep;
363 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
364 	pdinfo_t *pp;
365 	CHAR16 *descr;
366 	char *kernel = NULL;
367 	FILEPATH_DEVICE_PATH  *fp;
368 	struct stat st;
369 	CHAR16 *text;
370 
371 	/*
372 	 * FreeBSD encodes its boot loading path into the boot loader
373 	 * BootXXXX variable. We look for the last one in the path
374 	 * and use that to load the kernel. However, if we only find
375 	 * one DEVICE_PATH, then there's nothing specific and we should
376 	 * fall back.
377 	 *
378 	 * In an ideal world, we'd look at the image handle we were
379 	 * passed, match up with the loader we are and then return the
380 	 * next one in the path. This would be most flexible and cover
381 	 * many chain booting scenarios where you need to use this
382 	 * boot loader to get to the next boot loader. However, that
383 	 * doesn't work. We rarely have the path to the image booted
384 	 * (just the device) so we can't count on that. So, we do the
385 	 * next best thing: we look through the device path(s) passed
386 	 * in the BootXXXX variable. If there's only one, we return
387 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
388 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
389 	 * return BAD_CHOICE for the caller to sort out.
390 	 */
391 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
392 		return NOT_SPECIFIC;
393 	walker = boot_info;
394 	ep = walker + bisz;
395 	memcpy(&attr, walker, sizeof(attr));
396 	walker += sizeof(attr);
397 	memcpy(&fplen, walker, sizeof(fplen));
398 	walker += sizeof(fplen);
399 	descr = (CHAR16 *)(intptr_t)walker;
400 	len = ucs2len(descr);
401 	walker += (len + 1) * sizeof(CHAR16);
402 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
403 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
404 	if ((char *)edp > ep)
405 		return NOT_SPECIFIC;
406 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
407 		text = efi_devpath_name(dp);
408 		if (text != NULL) {
409 			printf("   BootInfo Path: %S\n", text);
410 			efi_free_devpath_name(text);
411 		}
412 		last_dp = dp;
413 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
414 	}
415 
416 	/*
417 	 * If there's only one item in the list, then nothing was
418 	 * specified. Or if the last path doesn't have a media
419 	 * path in it. Those show up as various VenHw() nodes
420 	 * which are basically opaque to us. Don't count those
421 	 * as something specifc.
422 	 */
423 	if (last_dp == first_dp) {
424 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
425 		return NOT_SPECIFIC;
426 	}
427 	if (efi_devpath_to_media_path(last_dp) == NULL) {
428 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
429 		return NOT_SPECIFIC;
430 	}
431 
432 	/*
433 	 * OK. At this point we either have a good path or a bad one.
434 	 * Let's check.
435 	 */
436 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
437 	if (pp == NULL) {
438 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
439 		return BAD_CHOICE;
440 	}
441 	set_currdev_pdinfo(pp);
442 	if (!sanity_check_currdev()) {
443 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
444 		return BAD_CHOICE;
445 	}
446 
447 	/*
448 	 * OK. We've found a device that matches, next we need to check the last
449 	 * component of the path. If it's a file, then we set the default kernel
450 	 * to that. Otherwise, just use this as the default root.
451 	 *
452 	 * Reminder: we're running very early, before we've parsed the defaults
453 	 * file, so we may need to have a hack override.
454 	 */
455 	dp = efi_devpath_last_node(last_dp);
456 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
457 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
458 		printf("Using Boot%04x for root partition\n", boot_current);
459 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
460 	}
461 	fp = (FILEPATH_DEVICE_PATH *)dp;
462 	ucs2_to_utf8(fp->PathName, &kernel);
463 	if (kernel == NULL) {
464 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
465 		return (BAD_CHOICE);
466 	}
467 	if (*kernel == '\\' || isupper(*kernel))
468 		fix_dosisms(kernel);
469 	if (stat(kernel, &st) != 0) {
470 		free(kernel);
471 		printf("Not using Boot%04x: can't find %s\n", boot_current,
472 		    kernel);
473 		return (BAD_CHOICE);
474 	}
475 	setenv("kernel", kernel, 1);
476 	free(kernel);
477 	text = efi_devpath_name(last_dp);
478 	if (text) {
479 		printf("Using Boot%04x %S + %s\n", boot_current, text,
480 		    kernel);
481 		efi_free_devpath_name(text);
482 	}
483 
484 	return (BOOT_INFO_OK);
485 }
486 
487 /*
488  * Look at the passed-in boot_info, if any. If we find it then we need
489  * to see if we can find ourselves in the boot chain. If we can, and
490  * there's another specified thing to boot next, assume that the file
491  * is loaded from / and use that for the root filesystem. If can't
492  * find the specified thing, we must fail the boot. If we're last on
493  * the list, then we fallback to looking for the first available /
494  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
495  * partition that has either /boot/defaults/loader.conf on it or
496  * /boot/kernel/kernel (the default kernel) that we can use.
497  *
498  * We always fail if we can't find the right thing. However, as
499  * a concession to buggy UEFI implementations, like u-boot, if
500  * we have determined that the host is violating the UEFI boot
501  * manager protocol, we'll signal the rest of the program that
502  * a drop to the OK boot loader prompt is possible.
503  */
504 static int
505 find_currdev(bool do_bootmgr, bool is_last,
506     char *boot_info, size_t boot_info_sz)
507 {
508 	pdinfo_t *dp, *pp;
509 	EFI_DEVICE_PATH *devpath, *copy;
510 	EFI_HANDLE h;
511 	CHAR16 *text;
512 	struct devsw *dev;
513 	int unit;
514 	uint64_t extra;
515 	int rv;
516 	char *rootdev;
517 
518 	/*
519 	 * First choice: if rootdev is already set, use that, even if
520 	 * it's wrong.
521 	 */
522 	rootdev = getenv("rootdev");
523 	if (rootdev != NULL) {
524 		printf("    Setting currdev to configured rootdev %s\n",
525 		    rootdev);
526 		set_currdev(rootdev);
527 		return (0);
528 	}
529 
530 	/*
531 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
532 	 * path to the loader's internal name and use that.
533 	 */
534 	do {
535 		rootdev = getenv("uefi_rootdev");
536 		if (rootdev == NULL)
537 			break;
538 		devpath = efi_name_to_devpath(rootdev);
539 		if (devpath == NULL)
540 			break;
541 		dp = efiblk_get_pdinfo_by_device_path(devpath);
542 		efi_devpath_free(devpath);
543 		if (dp == NULL)
544 			break;
545 		printf("    Setting currdev to UEFI path %s\n",
546 		    rootdev);
547 		set_currdev_pdinfo(dp);
548 		return (0);
549 	} while (0);
550 
551 	/*
552 	 * Third choice: If we can find out image boot_info, and there's
553 	 * a follow-on boot image in that boot_info, use that. In this
554 	 * case root will be the partition specified in that image and
555 	 * we'll load the kernel specified by the file path. Should there
556 	 * not be a filepath, we use the default. This filepath overrides
557 	 * loader.conf.
558 	 */
559 	if (do_bootmgr) {
560 		rv = match_boot_info(boot_info, boot_info_sz);
561 		switch (rv) {
562 		case BOOT_INFO_OK:	/* We found it */
563 			return (0);
564 		case BAD_CHOICE:	/* specified file not found -> error */
565 			/* XXX do we want to have an escape hatch for last in boot order? */
566 			return (ENOENT);
567 		} /* Nothing specified, try normal match */
568 	}
569 
570 #ifdef EFI_ZFS_BOOT
571 	/*
572 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
573 	 * it found, if it's sane. ZFS is the only thing that looks for
574 	 * disks and pools to boot. This may change in the future, however,
575 	 * if we allow specifying which pool to boot from via UEFI variables
576 	 * rather than the bootenv stuff that FreeBSD uses today.
577 	 */
578 	if (pool_guid != 0) {
579 		printf("Trying ZFS pool\n");
580 		if (probe_zfs_currdev(pool_guid))
581 			return (0);
582 	}
583 #endif /* EFI_ZFS_BOOT */
584 
585 #ifdef MD_IMAGE_SIZE
586 	/*
587 	 * If there is an embedded MD, try to use that.
588 	 */
589 	printf("Trying MD\n");
590 	if (probe_md_currdev())
591 		return (0);
592 #endif /* MD_IMAGE_SIZE */
593 
594 	/*
595 	 * Try to find the block device by its handle based on the
596 	 * image we're booting. If we can't find a sane partition,
597 	 * search all the other partitions of the disk. We do not
598 	 * search other disks because it's a violation of the UEFI
599 	 * boot protocol to do so. We fail and let UEFI go on to
600 	 * the next candidate.
601 	 */
602 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
603 	if (dp != NULL) {
604 		text = efi_devpath_name(dp->pd_devpath);
605 		if (text != NULL) {
606 			printf("Trying ESP: %S\n", text);
607 			efi_free_devpath_name(text);
608 		}
609 		set_currdev_pdinfo(dp);
610 		if (sanity_check_currdev())
611 			return (0);
612 		if (dp->pd_parent != NULL) {
613 			pdinfo_t *espdp = dp;
614 			dp = dp->pd_parent;
615 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
616 				/* Already tried the ESP */
617 				if (espdp == pp)
618 					continue;
619 				/*
620 				 * Roll up the ZFS special case
621 				 * for those partitions that have
622 				 * zpools on them.
623 				 */
624 				text = efi_devpath_name(pp->pd_devpath);
625 				if (text != NULL) {
626 					printf("Trying: %S\n", text);
627 					efi_free_devpath_name(text);
628 				}
629 				if (try_as_currdev(dp, pp))
630 					return (0);
631 			}
632 		}
633 	}
634 
635 	/*
636 	 * Try the device handle from our loaded image first.  If that
637 	 * fails, use the device path from the loaded image and see if
638 	 * any of the nodes in that path match one of the enumerated
639 	 * handles. Currently, this handle list is only for netboot.
640 	 */
641 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
642 		set_currdev_devsw(dev, unit);
643 		if (sanity_check_currdev())
644 			return (0);
645 	}
646 
647 	copy = NULL;
648 	devpath = efi_lookup_image_devpath(IH);
649 	while (devpath != NULL) {
650 		h = efi_devpath_handle(devpath);
651 		if (h == NULL)
652 			break;
653 
654 		free(copy);
655 		copy = NULL;
656 
657 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
658 			set_currdev_devsw(dev, unit);
659 			if (sanity_check_currdev())
660 				return (0);
661 		}
662 
663 		devpath = efi_lookup_devpath(h);
664 		if (devpath != NULL) {
665 			copy = efi_devpath_trim(devpath);
666 			devpath = copy;
667 		}
668 	}
669 	free(copy);
670 
671 	return (ENOENT);
672 }
673 
674 static bool
675 interactive_interrupt(const char *msg)
676 {
677 	time_t now, then, last;
678 
679 	last = 0;
680 	now = then = getsecs();
681 	printf("%s\n", msg);
682 	if (fail_timeout == -2)		/* Always break to OK */
683 		return (true);
684 	if (fail_timeout == -1)		/* Never break to OK */
685 		return (false);
686 	do {
687 		if (last != now) {
688 			printf("press any key to interrupt reboot in %d seconds\r",
689 			    fail_timeout - (int)(now - then));
690 			last = now;
691 		}
692 
693 		/* XXX no pause or timeout wait for char */
694 		if (ischar())
695 			return (true);
696 		now = getsecs();
697 	} while (now - then < fail_timeout);
698 	return (false);
699 }
700 
701 static int
702 parse_args(int argc, CHAR16 *argv[])
703 {
704 	int i, j, howto;
705 	bool vargood;
706 	char var[128];
707 
708 	/*
709 	 * Parse the args to set the console settings, etc
710 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
711 	 * or iPXE may be setup to pass these in. Or the optional argument in the
712 	 * boot environment was used to pass these arguments in (in which case
713 	 * neither /boot.config nor /boot/config are consulted).
714 	 *
715 	 * Loop through the args, and for each one that contains an '=' that is
716 	 * not the first character, add it to the environment.  This allows
717 	 * loader and kernel env vars to be passed on the command line.  Convert
718 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
719 	 * method is flawed for non-ASCII characters).
720 	 */
721 	howto = 0;
722 	for (i = 1; i < argc; i++) {
723 		cpy16to8(argv[i], var, sizeof(var));
724 		howto |= boot_parse_arg(var);
725 	}
726 
727 	return (howto);
728 }
729 
730 static void
731 setenv_int(const char *key, int val)
732 {
733 	char buf[20];
734 
735 	snprintf(buf, sizeof(buf), "%d", val);
736 	setenv(key, buf, 1);
737 }
738 
739 /*
740  * Parse ConOut (the list of consoles active) and see if we can find a
741  * serial port and/or a video port. It would be nice to also walk the
742  * ACPI name space to map the UID for the serial port to a port. The
743  * latter is especially hard.
744  */
745 int
746 parse_uefi_con_out(void)
747 {
748 	int how, rv;
749 	int vid_seen = 0, com_seen = 0, seen = 0;
750 	size_t sz;
751 	char buf[4096], *ep;
752 	EFI_DEVICE_PATH *node;
753 	ACPI_HID_DEVICE_PATH  *acpi;
754 	UART_DEVICE_PATH  *uart;
755 	bool pci_pending;
756 
757 	how = 0;
758 	sz = sizeof(buf);
759 	rv = efi_global_getenv("ConOut", buf, &sz);
760 	if (rv != EFI_SUCCESS)
761 		rv = efi_global_getenv("ConOutDev", buf, &sz);
762 	if (rv != EFI_SUCCESS) {
763 		/* If we don't have any ConOut default to serial */
764 		how = RB_SERIAL;
765 		goto out;
766 	}
767 	ep = buf + sz;
768 	node = (EFI_DEVICE_PATH *)buf;
769 	while ((char *)node < ep) {
770 		if (IsDevicePathEndType(node)) {
771 			if (pci_pending && vid_seen == 0)
772 				vid_seen = ++seen;
773 		}
774 		pci_pending = false;
775 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
776 		    (DevicePathSubType(node) == ACPI_DP ||
777 		    DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
778 			/* Check for Serial node */
779 			acpi = (void *)node;
780 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
781 				setenv_int("efi_8250_uid", acpi->UID);
782 				com_seen = ++seen;
783 			}
784 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
785 		    DevicePathSubType(node) == MSG_UART_DP) {
786 			com_seen = ++seen;
787 			uart = (void *)node;
788 			setenv_int("efi_com_speed", uart->BaudRate);
789 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
790 		    DevicePathSubType(node) == ACPI_ADR_DP) {
791 			/* Check for AcpiAdr() Node for video */
792 			vid_seen = ++seen;
793 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
794 		    DevicePathSubType(node) == HW_PCI_DP) {
795 			/*
796 			 * Note, vmware fusion has a funky console device
797 			 *	PciRoot(0x0)/Pci(0xf,0x0)
798 			 * which we can only detect at the end since we also
799 			 * have to cope with:
800 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
801 			 * so only match it if it's last.
802 			 */
803 			pci_pending = true;
804 		}
805 		node = NextDevicePathNode(node);
806 	}
807 
808 	/*
809 	 * Truth table for RB_MULTIPLE | RB_SERIAL
810 	 * Value		Result
811 	 * 0			Use only video console
812 	 * RB_SERIAL		Use only serial console
813 	 * RB_MULTIPLE		Use both video and serial console
814 	 *			(but video is primary so gets rc messages)
815 	 * both			Use both video and serial console
816 	 *			(but serial is primary so gets rc messages)
817 	 *
818 	 * Try to honor this as best we can. If only one of serial / video
819 	 * found, then use that. Otherwise, use the first one we found.
820 	 * This also implies if we found nothing, default to video.
821 	 */
822 	how = 0;
823 	if (vid_seen && com_seen) {
824 		how |= RB_MULTIPLE;
825 		if (com_seen < vid_seen)
826 			how |= RB_SERIAL;
827 	} else if (com_seen)
828 		how |= RB_SERIAL;
829 out:
830 	return (how);
831 }
832 
833 void
834 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
835 {
836 	pdinfo_t *dp;
837 	struct stat st;
838 	int fd = -1;
839 	char *env = NULL;
840 
841 	dp = efiblk_get_pdinfo_by_handle(h);
842 	if (dp == NULL)
843 		return;
844 	set_currdev_pdinfo(dp);
845 	if (stat(env_fn, &st) != 0)
846 		return;
847 	fd = open(env_fn, O_RDONLY);
848 	if (fd == -1)
849 		return;
850 	env = malloc(st.st_size + 1);
851 	if (env == NULL)
852 		goto out;
853 	if (read(fd, env, st.st_size) != st.st_size)
854 		goto out;
855 	env[st.st_size] = '\0';
856 	boot_parse_cmdline(env);
857 out:
858 	free(env);
859 	close(fd);
860 }
861 
862 static void
863 read_loader_env(const char *name, char *def_fn, bool once)
864 {
865 	UINTN len;
866 	char *fn, *freeme = NULL;
867 
868 	len = 0;
869 	fn = def_fn;
870 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
871 		freeme = fn = malloc(len + 1);
872 		if (fn != NULL) {
873 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
874 				free(fn);
875 				fn = NULL;
876 				printf(
877 			    "Can't fetch FreeBSD::%s we know is there\n", name);
878 			} else {
879 				/*
880 				 * if tagged as 'once' delete the env variable so we
881 				 * only use it once.
882 				 */
883 				if (once)
884 					efi_freebsd_delenv(name);
885 				/*
886 				 * We malloced 1 more than len above, then redid the call.
887 				 * so now we have room at the end of the string to NUL terminate
888 				 * it here, even if the typical idium would have '- 1' here to
889 				 * not overflow. len should be the same on return both times.
890 				 */
891 				fn[len] = '\0';
892 			}
893 		} else {
894 			printf(
895 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
896 			    len, name);
897 		}
898 	}
899 	if (fn) {
900 		printf("    Reading loader env vars from %s\n", fn);
901 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
902 	}
903 }
904 
905 caddr_t
906 ptov(uintptr_t x)
907 {
908 	return ((caddr_t)x);
909 }
910 
911 EFI_STATUS
912 main(int argc, CHAR16 *argv[])
913 {
914 	EFI_GUID *guid;
915 	int howto, i, uhowto;
916 	UINTN k;
917 	bool has_kbd, is_last;
918 	char *s;
919 	EFI_DEVICE_PATH *imgpath;
920 	CHAR16 *text;
921 	EFI_STATUS rv;
922 	size_t sz, bosz = 0, bisz = 0;
923 	UINT16 boot_order[100];
924 	char boot_info[4096];
925 	char buf[32];
926 	bool uefi_boot_mgr;
927 
928 	archsw.arch_autoload = efi_autoload;
929 	archsw.arch_getdev = efi_getdev;
930 	archsw.arch_copyin = efi_copyin;
931 	archsw.arch_copyout = efi_copyout;
932 #ifdef __amd64__
933 	archsw.arch_hypervisor = x86_hypervisor;
934 #endif
935 	archsw.arch_readin = efi_readin;
936 	archsw.arch_zfs_probe = efi_zfs_probe;
937 
938         /* Get our loaded image protocol interface structure. */
939 	(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
940 
941 	/*
942 	 * Chicken-and-egg problem; we want to have console output early, but
943 	 * some console attributes may depend on reading from eg. the boot
944 	 * device, which we can't do yet.  We can use printf() etc. once this is
945 	 * done. So, we set it to the efi console, then call console init. This
946 	 * gets us printf early, but also primes the pump for all future console
947 	 * changes to take effect, regardless of where they come from.
948 	 */
949 	setenv("console", "efi", 1);
950 	uhowto = parse_uefi_con_out();
951 #if defined(__riscv)
952 	if ((uhowto & RB_SERIAL) != 0)
953 		setenv("console", "comconsole", 1);
954 #endif
955 	cons_probe();
956 
957 	/* Set up currdev variable to have hooks in place. */
958 	env_setenv("currdev", EV_VOLATILE, "", efi_setcurrdev, env_nounset);
959 
960 	/* Init the time source */
961 	efi_time_init();
962 
963 	/*
964 	 * Initialise the block cache. Set the upper limit.
965 	 */
966 	bcache_init(32768, 512);
967 
968 	/*
969 	 * Scan the BLOCK IO MEDIA handles then
970 	 * march through the device switch probing for things.
971 	 */
972 	i = efipart_inithandles();
973 	if (i != 0 && i != ENOENT) {
974 		printf("efipart_inithandles failed with ERRNO %d, expect "
975 		    "failures\n", i);
976 	}
977 
978 	for (i = 0; devsw[i] != NULL; i++)
979 		if (devsw[i]->dv_init != NULL)
980 			(devsw[i]->dv_init)();
981 
982 	/*
983 	 * Detect console settings two different ways: one via the command
984 	 * args (eg -h) or via the UEFI ConOut variable.
985 	 */
986 	has_kbd = has_keyboard();
987 	howto = parse_args(argc, argv);
988 	if (!has_kbd && (howto & RB_PROBE))
989 		howto |= RB_SERIAL | RB_MULTIPLE;
990 	howto &= ~RB_PROBE;
991 
992 	/*
993 	 * Read additional environment variables from the boot device's
994 	 * "LoaderEnv" file. Any boot loader environment variable may be set
995 	 * there, which are subtly different than loader.conf variables. Only
996 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
997 	 * for two reasons.  First, the parser is simplistic and doesn't grok
998 	 * quotes.  Second, because the variables that cause an action to happen
999 	 * are parsed by the lua, 4th or whatever code that's not yet
1000 	 * loaded. This is relative to the root directory when loader.efi is
1001 	 * loaded off the UFS root drive (when chain booted), or from the ESP
1002 	 * when directly loaded by the BIOS.
1003 	 *
1004 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
1005 	 * functionality to be implemented and to override anything in LoaderEnv.
1006 	 */
1007 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1008 	read_loader_env("NextLoaderEnv", NULL, true);
1009 
1010 	/*
1011 	 * We now have two notions of console. howto should be viewed as
1012 	 * overrides. If console is already set, don't set it again.
1013 	 */
1014 #define	VIDEO_ONLY	0
1015 #define	SERIAL_ONLY	RB_SERIAL
1016 #define	VID_SER_BOTH	RB_MULTIPLE
1017 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
1018 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
1019 	if (strcmp(getenv("console"), "efi") == 0) {
1020 		if ((howto & CON_MASK) == 0) {
1021 			/* No override, uhowto is controlling and efi cons is perfect */
1022 			howto = howto | (uhowto & CON_MASK);
1023 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1024 			/* override matches what UEFI told us, efi console is perfect */
1025 		} else if ((uhowto & (CON_MASK)) != 0) {
1026 			/*
1027 			 * We detected a serial console on ConOut. All possible
1028 			 * overrides include serial. We can't really override what efi
1029 			 * gives us, so we use it knowing it's the best choice.
1030 			 */
1031 			/* Do nothing */
1032 		} else {
1033 			/*
1034 			 * We detected some kind of serial in the override, but ConOut
1035 			 * has no serial, so we have to sort out which case it really is.
1036 			 */
1037 			switch (howto & CON_MASK) {
1038 			case SERIAL_ONLY:
1039 				setenv("console", "comconsole", 1);
1040 				break;
1041 			case VID_SER_BOTH:
1042 				setenv("console", "efi comconsole", 1);
1043 				break;
1044 			case SER_VID_BOTH:
1045 				setenv("console", "comconsole efi", 1);
1046 				break;
1047 				/* case VIDEO_ONLY can't happen -- it's the first if above */
1048 			}
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * howto is set now how we want to export the flags to the kernel, so
1054 	 * set the env based on it.
1055 	 */
1056 	boot_howto_to_env(howto);
1057 
1058 	if (efi_copy_init()) {
1059 		printf("failed to allocate staging area\n");
1060 		return (EFI_BUFFER_TOO_SMALL);
1061 	}
1062 
1063 	if ((s = getenv("fail_timeout")) != NULL)
1064 		fail_timeout = strtol(s, NULL, 10);
1065 
1066 	printf("%s\n", bootprog_info);
1067 	printf("   Command line arguments:");
1068 	for (i = 0; i < argc; i++)
1069 		printf(" %S", argv[i]);
1070 	printf("\n");
1071 
1072 	printf("   Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1073 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1074 	    ST->Hdr.Revision & 0xffff);
1075 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1076 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1077 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
1078 
1079 	/* Determine the devpath of our image so we can prefer it. */
1080 	text = efi_devpath_name(boot_img->FilePath);
1081 	if (text != NULL) {
1082 		printf("   Load Path: %S\n", text);
1083 		efi_setenv_freebsd_wcs("LoaderPath", text);
1084 		efi_free_devpath_name(text);
1085 	}
1086 
1087 	rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1088 	    (void **)&imgpath);
1089 	if (rv == EFI_SUCCESS) {
1090 		text = efi_devpath_name(imgpath);
1091 		if (text != NULL) {
1092 			printf("   Load Device: %S\n", text);
1093 			efi_setenv_freebsd_wcs("LoaderDev", text);
1094 			efi_free_devpath_name(text);
1095 		}
1096 	}
1097 
1098 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1099 		printf("    Ignoring UEFI boot manager\n");
1100 		uefi_boot_mgr = false;
1101 	} else {
1102 		uefi_boot_mgr = true;
1103 		boot_current = 0;
1104 		sz = sizeof(boot_current);
1105 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1106 		if (rv == EFI_SUCCESS)
1107 			printf("   BootCurrent: %04x\n", boot_current);
1108 		else {
1109 			boot_current = 0xffff;
1110 			uefi_boot_mgr = false;
1111 		}
1112 
1113 		sz = sizeof(boot_order);
1114 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1115 		if (rv == EFI_SUCCESS) {
1116 			printf("   BootOrder:");
1117 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1118 				printf(" %04x%s", boot_order[i],
1119 				    boot_order[i] == boot_current ? "[*]" : "");
1120 			printf("\n");
1121 			is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1122 			bosz = sz;
1123 		} else if (uefi_boot_mgr) {
1124 			/*
1125 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1126 			 * boot manager protocol. So we fake it here and don't consider it
1127 			 * a failure.
1128 			 */
1129 			bosz = sizeof(boot_order[0]);
1130 			boot_order[0] = boot_current;
1131 			is_last = true;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * Next, find the boot info structure the UEFI boot manager is
1137 	 * supposed to setup. We need this so we can walk through it to
1138 	 * find where we are in the booting process and what to try to
1139 	 * boot next.
1140 	 */
1141 	if (uefi_boot_mgr) {
1142 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1143 		sz = sizeof(boot_info);
1144 		rv = efi_global_getenv(buf, &boot_info, &sz);
1145 		if (rv == EFI_SUCCESS)
1146 			bisz = sz;
1147 		else
1148 			uefi_boot_mgr = false;
1149 	}
1150 
1151 	/*
1152 	 * Disable the watchdog timer. By default the boot manager sets
1153 	 * the timer to 5 minutes before invoking a boot option. If we
1154 	 * want to return to the boot manager, we have to disable the
1155 	 * watchdog timer and since we're an interactive program, we don't
1156 	 * want to wait until the user types "quit". The timer may have
1157 	 * fired by then. We don't care if this fails. It does not prevent
1158 	 * normal functioning in any way...
1159 	 */
1160 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1161 
1162 	/*
1163 	 * Initialize the trusted/forbidden certificates from UEFI.
1164 	 * They will be later used to verify the manifest(s),
1165 	 * which should contain hashes of verified files.
1166 	 * This needs to be initialized before any configuration files
1167 	 * are loaded.
1168 	 */
1169 #ifdef EFI_SECUREBOOT
1170 	ve_efi_init();
1171 #endif
1172 
1173 	/*
1174 	 * Try and find a good currdev based on the image that was booted.
1175 	 * It might be desirable here to have a short pause to allow falling
1176 	 * through to the boot loader instead of returning instantly to follow
1177 	 * the boot protocol and also allow an escape hatch for users wishing
1178 	 * to try something different.
1179 	 */
1180 	if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1181 		if (uefi_boot_mgr &&
1182 		    !interactive_interrupt("Failed to find bootable partition"))
1183 			return (EFI_NOT_FOUND);
1184 
1185 	autoload_font(false);	/* Set up the font list for console. */
1186 	efi_init_environment();
1187 
1188 #if !defined(__arm__)
1189 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1190 		guid = &ST->ConfigurationTable[k].VendorGuid;
1191 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
1192 			char buf[40];
1193 
1194 			snprintf(buf, sizeof(buf), "%p",
1195 			    ST->ConfigurationTable[k].VendorTable);
1196 			setenv("hint.smbios.0.mem", buf, 1);
1197 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
1198 			break;
1199 		}
1200 	}
1201 #endif
1202 
1203 	interact();			/* doesn't return */
1204 
1205 	return (EFI_SUCCESS);		/* keep compiler happy */
1206 }
1207 
1208 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1209 
1210 static int
1211 command_seed_entropy(int argc, char *argv[])
1212 {
1213 	EFI_STATUS status;
1214 	EFI_RNG_PROTOCOL *rng;
1215 	unsigned int size = 2048;
1216 	void *buf;
1217 
1218 	if (argc > 1) {
1219 		size = strtol(argv[1], NULL, 0);
1220 	}
1221 
1222 	status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1223 	if (status != EFI_SUCCESS) {
1224 		command_errmsg = "RNG protocol not found";
1225 		return (CMD_ERROR);
1226 	}
1227 
1228 	if ((buf = malloc(size)) == NULL) {
1229 		command_errmsg = "out of memory";
1230 		return (CMD_ERROR);
1231 	}
1232 
1233 	status = rng->GetRNG(rng, NULL, size, (UINT8 *)buf);
1234 	if (status != EFI_SUCCESS) {
1235 		free(buf);
1236 		command_errmsg = "GetRNG failed";
1237 		return (CMD_ERROR);
1238 	}
1239 
1240 	if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1241 		free(buf);
1242 		return (CMD_ERROR);
1243 	}
1244 
1245 	free(buf);
1246 	return (CMD_OK);
1247 }
1248 
1249 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1250 
1251 static int
1252 command_poweroff(int argc __unused, char *argv[] __unused)
1253 {
1254 	int i;
1255 
1256 	for (i = 0; devsw[i] != NULL; ++i)
1257 		if (devsw[i]->dv_cleanup != NULL)
1258 			(devsw[i]->dv_cleanup)();
1259 
1260 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1261 
1262 	/* NOTREACHED */
1263 	return (CMD_ERROR);
1264 }
1265 
1266 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1267 
1268 static int
1269 command_reboot(int argc, char *argv[])
1270 {
1271 	int i;
1272 
1273 	for (i = 0; devsw[i] != NULL; ++i)
1274 		if (devsw[i]->dv_cleanup != NULL)
1275 			(devsw[i]->dv_cleanup)();
1276 
1277 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1278 
1279 	/* NOTREACHED */
1280 	return (CMD_ERROR);
1281 }
1282 
1283 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1284 
1285 static int
1286 command_quit(int argc, char *argv[])
1287 {
1288 	exit(0);
1289 	return (CMD_OK);
1290 }
1291 
1292 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1293 
1294 static int
1295 command_memmap(int argc __unused, char *argv[] __unused)
1296 {
1297 	UINTN sz;
1298 	EFI_MEMORY_DESCRIPTOR *map, *p;
1299 	UINTN key, dsz;
1300 	UINT32 dver;
1301 	EFI_STATUS status;
1302 	int i, ndesc;
1303 	char line[80];
1304 
1305 	sz = 0;
1306 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1307 	if (status != EFI_BUFFER_TOO_SMALL) {
1308 		printf("Can't determine memory map size\n");
1309 		return (CMD_ERROR);
1310 	}
1311 	map = malloc(sz);
1312 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1313 	if (EFI_ERROR(status)) {
1314 		printf("Can't read memory map\n");
1315 		return (CMD_ERROR);
1316 	}
1317 
1318 	ndesc = sz / dsz;
1319 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1320 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1321 	pager_open();
1322 	if (pager_output(line)) {
1323 		pager_close();
1324 		return (CMD_OK);
1325 	}
1326 
1327 	for (i = 0, p = map; i < ndesc;
1328 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1329 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1330 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1331 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1332 		if (pager_output(line))
1333 			break;
1334 
1335 		if (p->Attribute & EFI_MEMORY_UC)
1336 			printf("UC ");
1337 		if (p->Attribute & EFI_MEMORY_WC)
1338 			printf("WC ");
1339 		if (p->Attribute & EFI_MEMORY_WT)
1340 			printf("WT ");
1341 		if (p->Attribute & EFI_MEMORY_WB)
1342 			printf("WB ");
1343 		if (p->Attribute & EFI_MEMORY_UCE)
1344 			printf("UCE ");
1345 		if (p->Attribute & EFI_MEMORY_WP)
1346 			printf("WP ");
1347 		if (p->Attribute & EFI_MEMORY_RP)
1348 			printf("RP ");
1349 		if (p->Attribute & EFI_MEMORY_XP)
1350 			printf("XP ");
1351 		if (p->Attribute & EFI_MEMORY_NV)
1352 			printf("NV ");
1353 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1354 			printf("MR ");
1355 		if (p->Attribute & EFI_MEMORY_RO)
1356 			printf("RO ");
1357 		if (pager_output("\n"))
1358 			break;
1359 	}
1360 
1361 	pager_close();
1362 	return (CMD_OK);
1363 }
1364 
1365 COMMAND_SET(configuration, "configuration", "print configuration tables",
1366     command_configuration);
1367 
1368 static int
1369 command_configuration(int argc, char *argv[])
1370 {
1371 	UINTN i;
1372 	char *name;
1373 
1374 	printf("NumberOfTableEntries=%lu\n",
1375 		(unsigned long)ST->NumberOfTableEntries);
1376 
1377 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1378 		EFI_GUID *guid;
1379 
1380 		printf("  ");
1381 		guid = &ST->ConfigurationTable[i].VendorGuid;
1382 
1383 		if (efi_guid_to_name(guid, &name) == true) {
1384 			printf(name);
1385 			free(name);
1386 		} else {
1387 			printf("Error while translating UUID to name");
1388 		}
1389 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1390 	}
1391 
1392 	return (CMD_OK);
1393 }
1394 
1395 
1396 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1397 
1398 static int
1399 command_mode(int argc, char *argv[])
1400 {
1401 	UINTN cols, rows;
1402 	unsigned int mode;
1403 	int i;
1404 	char *cp;
1405 	EFI_STATUS status;
1406 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1407 
1408 	conout = ST->ConOut;
1409 
1410 	if (argc > 1) {
1411 		mode = strtol(argv[1], &cp, 0);
1412 		if (cp[0] != '\0') {
1413 			printf("Invalid mode\n");
1414 			return (CMD_ERROR);
1415 		}
1416 		status = conout->QueryMode(conout, mode, &cols, &rows);
1417 		if (EFI_ERROR(status)) {
1418 			printf("invalid mode %d\n", mode);
1419 			return (CMD_ERROR);
1420 		}
1421 		status = conout->SetMode(conout, mode);
1422 		if (EFI_ERROR(status)) {
1423 			printf("couldn't set mode %d\n", mode);
1424 			return (CMD_ERROR);
1425 		}
1426 		(void) cons_update_mode(true);
1427 		return (CMD_OK);
1428 	}
1429 
1430 	printf("Current mode: %d\n", conout->Mode->Mode);
1431 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1432 		status = conout->QueryMode(conout, i, &cols, &rows);
1433 		if (EFI_ERROR(status))
1434 			continue;
1435 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1436 		    (unsigned)rows);
1437 	}
1438 
1439 	if (i != 0)
1440 		printf("Select a mode with the command \"mode <number>\"\n");
1441 
1442 	return (CMD_OK);
1443 }
1444 
1445 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1446 
1447 static void
1448 lsefi_print_handle_info(EFI_HANDLE handle)
1449 {
1450 	EFI_DEVICE_PATH *devpath;
1451 	EFI_DEVICE_PATH *imagepath;
1452 	CHAR16 *dp_name;
1453 
1454 	imagepath = efi_lookup_image_devpath(handle);
1455 	if (imagepath != NULL) {
1456 		dp_name = efi_devpath_name(imagepath);
1457 		printf("Handle for image %S", dp_name);
1458 		efi_free_devpath_name(dp_name);
1459 		return;
1460 	}
1461 	devpath = efi_lookup_devpath(handle);
1462 	if (devpath != NULL) {
1463 		dp_name = efi_devpath_name(devpath);
1464 		printf("Handle for device %S", dp_name);
1465 		efi_free_devpath_name(dp_name);
1466 		return;
1467 	}
1468 	printf("Handle %p", handle);
1469 }
1470 
1471 static int
1472 command_lsefi(int argc __unused, char *argv[] __unused)
1473 {
1474 	char *name;
1475 	EFI_HANDLE *buffer = NULL;
1476 	EFI_HANDLE handle;
1477 	UINTN bufsz = 0, i, j;
1478 	EFI_STATUS status;
1479 	int ret = 0;
1480 
1481 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1482 	if (status != EFI_BUFFER_TOO_SMALL) {
1483 		snprintf(command_errbuf, sizeof (command_errbuf),
1484 		    "unexpected error: %lld", (long long)status);
1485 		return (CMD_ERROR);
1486 	}
1487 	if ((buffer = malloc(bufsz)) == NULL) {
1488 		sprintf(command_errbuf, "out of memory");
1489 		return (CMD_ERROR);
1490 	}
1491 
1492 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1493 	if (EFI_ERROR(status)) {
1494 		free(buffer);
1495 		snprintf(command_errbuf, sizeof (command_errbuf),
1496 		    "LocateHandle() error: %lld", (long long)status);
1497 		return (CMD_ERROR);
1498 	}
1499 
1500 	pager_open();
1501 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1502 		UINTN nproto = 0;
1503 		EFI_GUID **protocols = NULL;
1504 
1505 		handle = buffer[i];
1506 		lsefi_print_handle_info(handle);
1507 		if (pager_output("\n"))
1508 			break;
1509 		/* device path */
1510 
1511 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1512 		if (EFI_ERROR(status)) {
1513 			snprintf(command_errbuf, sizeof (command_errbuf),
1514 			    "ProtocolsPerHandle() error: %lld",
1515 			    (long long)status);
1516 			continue;
1517 		}
1518 
1519 		for (j = 0; j < nproto; j++) {
1520 			if (efi_guid_to_name(protocols[j], &name) == true) {
1521 				printf("  %s", name);
1522 				free(name);
1523 			} else {
1524 				printf("Error while translating UUID to name");
1525 			}
1526 			if ((ret = pager_output("\n")) != 0)
1527 				break;
1528 		}
1529 		BS->FreePool(protocols);
1530 		if (ret != 0)
1531 			break;
1532 	}
1533 	pager_close();
1534 	free(buffer);
1535 	return (CMD_OK);
1536 }
1537 
1538 #ifdef LOADER_FDT_SUPPORT
1539 extern int command_fdt_internal(int argc, char *argv[]);
1540 
1541 /*
1542  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1543  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1544  * (which uses static pointer), we're defining wrapper function, which
1545  * calls the proper fdt handling routine.
1546  */
1547 static int
1548 command_fdt(int argc, char *argv[])
1549 {
1550 
1551 	return (command_fdt_internal(argc, argv));
1552 }
1553 
1554 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1555 #endif
1556 
1557 /*
1558  * Chain load another efi loader.
1559  */
1560 static int
1561 command_chain(int argc, char *argv[])
1562 {
1563 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1564 	EFI_HANDLE loaderhandle;
1565 	EFI_LOADED_IMAGE *loaded_image;
1566 	EFI_STATUS status;
1567 	struct stat st;
1568 	struct devdesc *dev;
1569 	char *name, *path;
1570 	void *buf;
1571 	int fd;
1572 
1573 	if (argc < 2) {
1574 		command_errmsg = "wrong number of arguments";
1575 		return (CMD_ERROR);
1576 	}
1577 
1578 	name = argv[1];
1579 
1580 	if ((fd = open(name, O_RDONLY)) < 0) {
1581 		command_errmsg = "no such file";
1582 		return (CMD_ERROR);
1583 	}
1584 
1585 #ifdef LOADER_VERIEXEC
1586 	if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1587 		sprintf(command_errbuf, "can't verify: %s", name);
1588 		close(fd);
1589 		return (CMD_ERROR);
1590 	}
1591 #endif
1592 
1593 	if (fstat(fd, &st) < -1) {
1594 		command_errmsg = "stat failed";
1595 		close(fd);
1596 		return (CMD_ERROR);
1597 	}
1598 
1599 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1600 	if (status != EFI_SUCCESS) {
1601 		command_errmsg = "failed to allocate buffer";
1602 		close(fd);
1603 		return (CMD_ERROR);
1604 	}
1605 	if (read(fd, buf, st.st_size) != st.st_size) {
1606 		command_errmsg = "error while reading the file";
1607 		(void)BS->FreePool(buf);
1608 		close(fd);
1609 		return (CMD_ERROR);
1610 	}
1611 	close(fd);
1612 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1613 	(void)BS->FreePool(buf);
1614 	if (status != EFI_SUCCESS) {
1615 		command_errmsg = "LoadImage failed";
1616 		return (CMD_ERROR);
1617 	}
1618 	status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1619 	    (void **)&loaded_image);
1620 
1621 	if (argc > 2) {
1622 		int i, len = 0;
1623 		CHAR16 *argp;
1624 
1625 		for (i = 2; i < argc; i++)
1626 			len += strlen(argv[i]) + 1;
1627 
1628 		len *= sizeof (*argp);
1629 		loaded_image->LoadOptions = argp = malloc (len);
1630 		loaded_image->LoadOptionsSize = len;
1631 		for (i = 2; i < argc; i++) {
1632 			char *ptr = argv[i];
1633 			while (*ptr)
1634 				*(argp++) = *(ptr++);
1635 			*(argp++) = ' ';
1636 		}
1637 		*(--argv) = 0;
1638 	}
1639 
1640 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1641 #ifdef EFI_ZFS_BOOT
1642 		struct zfs_devdesc *z_dev;
1643 #endif
1644 		struct disk_devdesc *d_dev;
1645 		pdinfo_t *hd, *pd;
1646 
1647 		switch (dev->d_dev->dv_type) {
1648 #ifdef EFI_ZFS_BOOT
1649 		case DEVT_ZFS:
1650 			z_dev = (struct zfs_devdesc *)dev;
1651 			loaded_image->DeviceHandle =
1652 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1653 			break;
1654 #endif
1655 		case DEVT_NET:
1656 			loaded_image->DeviceHandle =
1657 			    efi_find_handle(dev->d_dev, dev->d_unit);
1658 			break;
1659 		default:
1660 			hd = efiblk_get_pdinfo(dev);
1661 			if (STAILQ_EMPTY(&hd->pd_part)) {
1662 				loaded_image->DeviceHandle = hd->pd_handle;
1663 				break;
1664 			}
1665 			d_dev = (struct disk_devdesc *)dev;
1666 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1667 				/*
1668 				 * d_partition should be 255
1669 				 */
1670 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1671 					loaded_image->DeviceHandle =
1672 					    pd->pd_handle;
1673 					break;
1674 				}
1675 			}
1676 			break;
1677 		}
1678 	}
1679 
1680 	dev_cleanup();
1681 	status = BS->StartImage(loaderhandle, NULL, NULL);
1682 	if (status != EFI_SUCCESS) {
1683 		command_errmsg = "StartImage failed";
1684 		free(loaded_image->LoadOptions);
1685 		loaded_image->LoadOptions = NULL;
1686 		status = BS->UnloadImage(loaded_image);
1687 		return (CMD_ERROR);
1688 	}
1689 
1690 	return (CMD_ERROR);	/* not reached */
1691 }
1692 
1693 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1694 
1695 extern struct in_addr servip;
1696 static int
1697 command_netserver(int argc, char *argv[])
1698 {
1699 	char *proto;
1700 	n_long rootaddr;
1701 
1702 	if (argc > 2) {
1703 		command_errmsg = "wrong number of arguments";
1704 		return (CMD_ERROR);
1705 	}
1706 	if (argc < 2) {
1707 		proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
1708 		printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
1709 		    rootpath);
1710 		return (CMD_OK);
1711 	}
1712 	if (argc == 2) {
1713 		strncpy(rootpath, argv[1], sizeof(rootpath));
1714 		rootpath[sizeof(rootpath) -1] = '\0';
1715 		if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
1716 			servip.s_addr = rootip.s_addr = rootaddr;
1717 		return (CMD_OK);
1718 	}
1719 	return (CMD_ERROR);	/* not reached */
1720 
1721 }
1722 
1723 COMMAND_SET(netserver, "netserver", "change or display netserver URI",
1724     command_netserver);
1725