xref: /freebsd/sys/amd64/amd64/efirt_machdep.c (revision 069ac184)
1 /*-
2  * Copyright (c) 2004 Marcel Moolenaar
3  * Copyright (c) 2001 Doug Rabson
4  * Copyright (c) 2016 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/efi.h>
34 #include <sys/kernel.h>
35 #include <sys/linker.h>
36 #include <sys/lock.h>
37 #include <sys/module.h>
38 #include <sys/mutex.h>
39 #include <sys/clock.h>
40 #include <sys/proc.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/vmmeter.h>
46 #include <isa/rtc.h>
47 #include <machine/efi.h>
48 #include <machine/md_var.h>
49 #include <machine/vmparam.h>
50 #include <vm/vm.h>
51 #include <vm/pmap.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_pager.h>
57 
58 static pml5_entry_t *efi_pml5;
59 static pml4_entry_t *efi_pml4;
60 static vm_object_t obj_1t1_pt;
61 static vm_page_t efi_pmltop_page;
62 static vm_pindex_t efi_1t1_idx;
63 
64 void
65 efi_destroy_1t1_map(void)
66 {
67 	vm_page_t m;
68 
69 	if (obj_1t1_pt != NULL) {
70 		VM_OBJECT_RLOCK(obj_1t1_pt);
71 		TAILQ_FOREACH(m, &obj_1t1_pt->memq, listq)
72 			m->ref_count = VPRC_OBJREF;
73 		vm_wire_sub(obj_1t1_pt->resident_page_count);
74 		VM_OBJECT_RUNLOCK(obj_1t1_pt);
75 		vm_object_deallocate(obj_1t1_pt);
76 	}
77 
78 	obj_1t1_pt = NULL;
79 	efi_pml4 = NULL;
80 	efi_pml5 = NULL;
81 	efi_pmltop_page = NULL;
82 }
83 
84 /*
85  * Map a physical address from EFI runtime space into KVA space.  Returns 0 to
86  * indicate a failed mapping so that the caller may handle error.
87  */
88 vm_offset_t
89 efi_phys_to_kva(vm_paddr_t paddr)
90 {
91 
92 	if (paddr >= dmaplimit)
93 		return (0);
94 	return (PHYS_TO_DMAP(paddr));
95 }
96 
97 static vm_page_t
98 efi_1t1_page(void)
99 {
100 
101 	return (vm_page_grab(obj_1t1_pt, efi_1t1_idx++, VM_ALLOC_NOBUSY |
102 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO));
103 }
104 
105 static pt_entry_t *
106 efi_1t1_pte(vm_offset_t va)
107 {
108 	pml5_entry_t *pml5e;
109 	pml4_entry_t *pml4e;
110 	pdp_entry_t *pdpe;
111 	pd_entry_t *pde;
112 	pt_entry_t *pte;
113 	vm_page_t m;
114 	vm_pindex_t pml5_idx, pml4_idx, pdp_idx, pd_idx;
115 	vm_paddr_t mphys;
116 
117 	pml4_idx = pmap_pml4e_index(va);
118 	if (la57) {
119 		pml5_idx = pmap_pml5e_index(va);
120 		pml5e = &efi_pml5[pml5_idx];
121 		if (*pml5e == 0) {
122 			m = efi_1t1_page();
123 			mphys = VM_PAGE_TO_PHYS(m);
124 			*pml5e = mphys | X86_PG_RW | X86_PG_V;
125 		} else {
126 			mphys = *pml5e & PG_FRAME;
127 		}
128 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(mphys);
129 		pml4e = &pml4e[pml4_idx];
130 	} else {
131 		pml4e = &efi_pml4[pml4_idx];
132 	}
133 
134 	if (*pml4e == 0) {
135 		m = efi_1t1_page();
136 		mphys =  VM_PAGE_TO_PHYS(m);
137 		*pml4e = mphys | X86_PG_RW | X86_PG_V;
138 	} else {
139 		mphys = *pml4e & PG_FRAME;
140 	}
141 
142 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys);
143 	pdp_idx = pmap_pdpe_index(va);
144 	pdpe += pdp_idx;
145 	if (*pdpe == 0) {
146 		m = efi_1t1_page();
147 		mphys =  VM_PAGE_TO_PHYS(m);
148 		*pdpe = mphys | X86_PG_RW | X86_PG_V;
149 	} else {
150 		mphys = *pdpe & PG_FRAME;
151 	}
152 
153 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
154 	pd_idx = pmap_pde_index(va);
155 	pde += pd_idx;
156 	if (*pde == 0) {
157 		m = efi_1t1_page();
158 		mphys = VM_PAGE_TO_PHYS(m);
159 		*pde = mphys | X86_PG_RW | X86_PG_V;
160 	} else {
161 		mphys = *pde & PG_FRAME;
162 	}
163 
164 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
165 	pte += pmap_pte_index(va);
166 	KASSERT(*pte == 0, ("va %#jx *pt %#jx", va, *pte));
167 
168 	return (pte);
169 }
170 
171 bool
172 efi_create_1t1_map(struct efi_md *map, int ndesc, int descsz)
173 {
174 	struct efi_md *p;
175 	pt_entry_t *pte;
176 	void *pml;
177 	vm_page_t m;
178 	vm_offset_t va;
179 	uint64_t idx;
180 	int bits, i, mode;
181 
182 	obj_1t1_pt = vm_pager_allocate(OBJT_PHYS, NULL, ptoa(1 +
183 	    NPML4EPG + NPML4EPG * NPDPEPG + NPML4EPG * NPDPEPG * NPDEPG),
184 	    VM_PROT_ALL, 0, NULL);
185 	efi_1t1_idx = 0;
186 	VM_OBJECT_WLOCK(obj_1t1_pt);
187 	efi_pmltop_page = efi_1t1_page();
188 	VM_OBJECT_WUNLOCK(obj_1t1_pt);
189 	pml = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(efi_pmltop_page));
190 	if (la57) {
191 		efi_pml5 = pml;
192 		pmap_pinit_pml5(efi_pmltop_page);
193 	} else {
194 		efi_pml4 = pml;
195 		pmap_pinit_pml4(efi_pmltop_page);
196 	}
197 
198 	for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
199 	    descsz)) {
200 		if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
201 			continue;
202 		if (p->md_virt != 0 && p->md_virt != p->md_phys) {
203 			if (bootverbose)
204 				printf("EFI Runtime entry %d is mapped\n", i);
205 			goto fail;
206 		}
207 		if ((p->md_phys & EFI_PAGE_MASK) != 0) {
208 			if (bootverbose)
209 				printf("EFI Runtime entry %d is not aligned\n",
210 				    i);
211 			goto fail;
212 		}
213 		if (p->md_phys + p->md_pages * EFI_PAGE_SIZE < p->md_phys ||
214 		    p->md_phys + p->md_pages * EFI_PAGE_SIZE >=
215 		    VM_MAXUSER_ADDRESS) {
216 			printf("EFI Runtime entry %d is not in mappable for RT:"
217 			    "base %#016jx %#jx pages\n",
218 			    i, (uintmax_t)p->md_phys,
219 			    (uintmax_t)p->md_pages);
220 			goto fail;
221 		}
222 		if ((p->md_attr & EFI_MD_ATTR_WB) != 0)
223 			mode = VM_MEMATTR_WRITE_BACK;
224 		else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
225 			mode = VM_MEMATTR_WRITE_THROUGH;
226 		else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
227 			mode = VM_MEMATTR_WRITE_COMBINING;
228 		else if ((p->md_attr & EFI_MD_ATTR_WP) != 0)
229 			mode = VM_MEMATTR_WRITE_PROTECTED;
230 		else if ((p->md_attr & EFI_MD_ATTR_UC) != 0)
231 			mode = VM_MEMATTR_UNCACHEABLE;
232 		else {
233 			if (bootverbose)
234 				printf("EFI Runtime entry %d mapping "
235 				    "attributes unsupported\n", i);
236 			mode = VM_MEMATTR_UNCACHEABLE;
237 		}
238 		bits = pmap_cache_bits(kernel_pmap, mode, FALSE) | X86_PG_RW |
239 		    X86_PG_V;
240 		VM_OBJECT_WLOCK(obj_1t1_pt);
241 		for (va = p->md_phys, idx = 0; idx < p->md_pages; idx++,
242 		    va += PAGE_SIZE) {
243 			pte = efi_1t1_pte(va);
244 			pte_store(pte, va | bits);
245 
246 			m = PHYS_TO_VM_PAGE(va);
247 			if (m != NULL && VM_PAGE_TO_PHYS(m) == 0) {
248 				vm_page_init_page(m, va, -1);
249 				m->order = VM_NFREEORDER + 1; /* invalid */
250 				m->pool = VM_NFREEPOOL + 1; /* invalid */
251 				pmap_page_set_memattr_noflush(m, mode);
252 			}
253 		}
254 		VM_OBJECT_WUNLOCK(obj_1t1_pt);
255 	}
256 
257 	return (true);
258 
259 fail:
260 	efi_destroy_1t1_map();
261 	return (false);
262 }
263 
264 /*
265  * Create an environment for the EFI runtime code call.  The most
266  * important part is creating the required 1:1 physical->virtual
267  * mappings for the runtime segments.  To do that, we manually create
268  * page table which unmap userspace but gives correct kernel mapping.
269  * The 1:1 mappings for runtime segments usually occupy low 4G of the
270  * physical address map.
271  *
272  * The 1:1 mappings were chosen over the SetVirtualAddressMap() EFI RT
273  * service, because there are some BIOSes which fail to correctly
274  * relocate itself on the call, requiring both 1:1 and virtual
275  * mapping.  As result, we must provide 1:1 mapping anyway, so no
276  * reason to bother with the virtual map, and no need to add a
277  * complexity into loader.
278  *
279  * There is no need to disable interrupts around the change of %cr3,
280  * the kernel mappings are correct, while we only grabbed the
281  * userspace portion of VA.  Interrupts handlers must not access
282  * userspace.  Having interrupts enabled fixes the issue with
283  * firmware/SMM long operation, which would negatively affect IPIs,
284  * esp. TLB shootdown requests.
285  */
286 int
287 efi_arch_enter(void)
288 {
289 	pmap_t curpmap;
290 	uint64_t cr3;
291 
292 	curpmap = PCPU_GET(curpmap);
293 	PMAP_LOCK_ASSERT(curpmap, MA_OWNED);
294 	curthread->td_md.md_efirt_dis_pf = vm_fault_disable_pagefaults();
295 
296 	/*
297 	 * IPI TLB shootdown handler invltlb_pcid_handler() reloads
298 	 * %cr3 from the curpmap->pm_cr3, which would disable runtime
299 	 * segments mappings.  Block the handler's action by setting
300 	 * curpmap to impossible value.  See also comment in
301 	 * pmap.c:pmap_activate_sw().
302 	 */
303 	if (pmap_pcid_enabled && !invpcid_works)
304 		PCPU_SET(curpmap, NULL);
305 
306 	cr3 = VM_PAGE_TO_PHYS(efi_pmltop_page);
307 	if (pmap_pcid_enabled)
308 		cr3 |= pmap_get_pcid(curpmap);
309 	load_cr3(cr3);
310 	/*
311 	 * If PCID is enabled, the clear CR3_PCID_SAVE bit in the loaded %cr3
312 	 * causes TLB invalidation.
313 	 */
314 	if (!pmap_pcid_enabled)
315 		invltlb();
316 	return (0);
317 }
318 
319 void
320 efi_arch_leave(void)
321 {
322 	pmap_t curpmap;
323 	uint64_t cr3;
324 
325 	curpmap = &curproc->p_vmspace->vm_pmap;
326 	cr3 = curpmap->pm_cr3;
327 	if (pmap_pcid_enabled) {
328 		cr3 |= pmap_get_pcid(curpmap);
329 		if (!invpcid_works)
330 			PCPU_SET(curpmap, curpmap);
331 	}
332 	load_cr3(cr3);
333 	if (!pmap_pcid_enabled)
334 		invltlb();
335 	vm_fault_enable_pagefaults(curthread->td_md.md_efirt_dis_pf);
336 }
337 
338 /* XXX debug stuff */
339 static int
340 efi_time_sysctl_handler(SYSCTL_HANDLER_ARGS)
341 {
342 	struct efi_tm tm;
343 	int error, val;
344 
345 	val = 0;
346 	error = sysctl_handle_int(oidp, &val, 0, req);
347 	if (error != 0 || req->newptr == NULL)
348 		return (error);
349 	error = efi_get_time(&tm);
350 	if (error == 0) {
351 		uprintf("EFI reports: Year %d Month %d Day %d Hour %d Min %d "
352 		    "Sec %d\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
353 		    tm.tm_min, tm.tm_sec);
354 	}
355 	return (error);
356 }
357 
358 SYSCTL_PROC(_debug, OID_AUTO, efi_time,
359     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
360     efi_time_sysctl_handler, "I",
361     "");
362