xref: /freebsd/sys/amd64/amd64/machdep.c (revision a0ee8cc6)
1 /*-
2  * Copyright (c) 2003 Peter Wemm.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_atpic.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_inet.h"
49 #include "opt_isa.h"
50 #include "opt_kstack_pages.h"
51 #include "opt_maxmem.h"
52 #include "opt_mp_watchdog.h"
53 #include "opt_perfmon.h"
54 #include "opt_platform.h"
55 #include "opt_sched.h"
56 
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/systm.h>
60 #include <sys/bio.h>
61 #include <sys/buf.h>
62 #include <sys/bus.h>
63 #include <sys/callout.h>
64 #include <sys/cons.h>
65 #include <sys/cpu.h>
66 #include <sys/efi.h>
67 #include <sys/eventhandler.h>
68 #include <sys/exec.h>
69 #include <sys/imgact.h>
70 #include <sys/kdb.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/linker.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/memrange.h>
77 #include <sys/msgbuf.h>
78 #include <sys/mutex.h>
79 #include <sys/pcpu.h>
80 #include <sys/ptrace.h>
81 #include <sys/reboot.h>
82 #include <sys/rwlock.h>
83 #include <sys/sched.h>
84 #include <sys/signalvar.h>
85 #ifdef SMP
86 #include <sys/smp.h>
87 #endif
88 #include <sys/syscallsubr.h>
89 #include <sys/sysctl.h>
90 #include <sys/sysent.h>
91 #include <sys/sysproto.h>
92 #include <sys/ucontext.h>
93 #include <sys/vmmeter.h>
94 
95 #include <vm/vm.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_param.h>
103 
104 #ifdef DDB
105 #ifndef KDB
106 #error KDB must be enabled in order for DDB to work!
107 #endif
108 #include <ddb/ddb.h>
109 #include <ddb/db_sym.h>
110 #endif
111 
112 #include <net/netisr.h>
113 
114 #include <machine/clock.h>
115 #include <machine/cpu.h>
116 #include <machine/cputypes.h>
117 #include <machine/intr_machdep.h>
118 #include <x86/mca.h>
119 #include <machine/md_var.h>
120 #include <machine/metadata.h>
121 #include <machine/mp_watchdog.h>
122 #include <machine/pc/bios.h>
123 #include <machine/pcb.h>
124 #include <machine/proc.h>
125 #include <machine/reg.h>
126 #include <machine/sigframe.h>
127 #include <machine/specialreg.h>
128 #ifdef PERFMON
129 #include <machine/perfmon.h>
130 #endif
131 #include <machine/tss.h>
132 #ifdef SMP
133 #include <machine/smp.h>
134 #endif
135 #ifdef FDT
136 #include <x86/fdt.h>
137 #endif
138 
139 #ifdef DEV_ATPIC
140 #include <x86/isa/icu.h>
141 #else
142 #include <x86/apicvar.h>
143 #endif
144 
145 #include <isa/isareg.h>
146 #include <isa/rtc.h>
147 #include <x86/init.h>
148 
149 /* Sanity check for __curthread() */
150 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
151 
152 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
153 
154 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
155 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
156 
157 static void cpu_startup(void *);
158 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
159     char *xfpusave, size_t xfpusave_len);
160 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
161     char *xfpustate, size_t xfpustate_len);
162 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
163 
164 /* Preload data parse function */
165 static caddr_t native_parse_preload_data(u_int64_t);
166 
167 /* Native function to fetch and parse the e820 map */
168 static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
169 
170 /* Default init_ops implementation. */
171 struct init_ops init_ops = {
172 	.parse_preload_data =	native_parse_preload_data,
173 	.early_clock_source_init =	i8254_init,
174 	.early_delay =			i8254_delay,
175 	.parse_memmap =			native_parse_memmap,
176 #ifdef SMP
177 	.mp_bootaddress =		mp_bootaddress,
178 	.start_all_aps =		native_start_all_aps,
179 #endif
180 	.msi_init =			msi_init,
181 };
182 
183 /*
184  * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
185  * the physical address at which the kernel is loaded.
186  */
187 extern char kernphys[];
188 
189 struct msgbuf *msgbufp;
190 
191 /*
192  * Physical address of the EFI System Table. Stashed from the metadata hints
193  * passed into the kernel and used by the EFI code to call runtime services.
194  */
195 vm_paddr_t efi_systbl;
196 
197 /* Intel ICH registers */
198 #define ICH_PMBASE	0x400
199 #define ICH_SMI_EN	ICH_PMBASE + 0x30
200 
201 int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
202 
203 int cold = 1;
204 
205 long Maxmem = 0;
206 long realmem = 0;
207 
208 /*
209  * The number of PHYSMAP entries must be one less than the number of
210  * PHYSSEG entries because the PHYSMAP entry that spans the largest
211  * physical address that is accessible by ISA DMA is split into two
212  * PHYSSEG entries.
213  */
214 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
215 
216 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
217 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
218 
219 /* must be 2 less so 0 0 can signal end of chunks */
220 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
221 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
222 
223 struct kva_md_info kmi;
224 
225 static struct trapframe proc0_tf;
226 struct region_descriptor r_gdt, r_idt;
227 
228 struct pcpu __pcpu[MAXCPU];
229 
230 struct mtx icu_lock;
231 
232 struct mem_range_softc mem_range_softc;
233 
234 struct mtx dt_lock;	/* lock for GDT and LDT */
235 
236 void (*vmm_resume_p)(void);
237 
238 static void
239 cpu_startup(dummy)
240 	void *dummy;
241 {
242 	uintmax_t memsize;
243 	char *sysenv;
244 
245 	/*
246 	 * On MacBooks, we need to disallow the legacy USB circuit to
247 	 * generate an SMI# because this can cause several problems,
248 	 * namely: incorrect CPU frequency detection and failure to
249 	 * start the APs.
250 	 * We do this by disabling a bit in the SMI_EN (SMI Control and
251 	 * Enable register) of the Intel ICH LPC Interface Bridge.
252 	 */
253 	sysenv = kern_getenv("smbios.system.product");
254 	if (sysenv != NULL) {
255 		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
256 		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
257 		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
258 		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
259 		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
260 		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
261 		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
262 		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
263 			if (bootverbose)
264 				printf("Disabling LEGACY_USB_EN bit on "
265 				    "Intel ICH.\n");
266 			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
267 		}
268 		freeenv(sysenv);
269 	}
270 
271 	/*
272 	 * Good {morning,afternoon,evening,night}.
273 	 */
274 	startrtclock();
275 	printcpuinfo();
276 	panicifcpuunsupported();
277 #ifdef PERFMON
278 	perfmon_init();
279 #endif
280 
281 	/*
282 	 * Display physical memory if SMBIOS reports reasonable amount.
283 	 */
284 	memsize = 0;
285 	sysenv = kern_getenv("smbios.memory.enabled");
286 	if (sysenv != NULL) {
287 		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
288 		freeenv(sysenv);
289 	}
290 	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
291 		memsize = ptoa((uintmax_t)Maxmem);
292 	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
293 	realmem = atop(memsize);
294 
295 	/*
296 	 * Display any holes after the first chunk of extended memory.
297 	 */
298 	if (bootverbose) {
299 		int indx;
300 
301 		printf("Physical memory chunk(s):\n");
302 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303 			vm_paddr_t size;
304 
305 			size = phys_avail[indx + 1] - phys_avail[indx];
306 			printf(
307 			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
308 			    (uintmax_t)phys_avail[indx],
309 			    (uintmax_t)phys_avail[indx + 1] - 1,
310 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
311 		}
312 	}
313 
314 	vm_ksubmap_init(&kmi);
315 
316 	printf("avail memory = %ju (%ju MB)\n",
317 	    ptoa((uintmax_t)vm_cnt.v_free_count),
318 	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
319 
320 	/*
321 	 * Set up buffers, so they can be used to read disk labels.
322 	 */
323 	bufinit();
324 	vm_pager_bufferinit();
325 
326 	cpu_setregs();
327 }
328 
329 /*
330  * Send an interrupt to process.
331  *
332  * Stack is set up to allow sigcode stored
333  * at top to call routine, followed by call
334  * to sigreturn routine below.  After sigreturn
335  * resets the signal mask, the stack, and the
336  * frame pointer, it returns to the user
337  * specified pc, psl.
338  */
339 void
340 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
341 {
342 	struct sigframe sf, *sfp;
343 	struct pcb *pcb;
344 	struct proc *p;
345 	struct thread *td;
346 	struct sigacts *psp;
347 	char *sp;
348 	struct trapframe *regs;
349 	char *xfpusave;
350 	size_t xfpusave_len;
351 	int sig;
352 	int oonstack;
353 
354 	td = curthread;
355 	pcb = td->td_pcb;
356 	p = td->td_proc;
357 	PROC_LOCK_ASSERT(p, MA_OWNED);
358 	sig = ksi->ksi_signo;
359 	psp = p->p_sigacts;
360 	mtx_assert(&psp->ps_mtx, MA_OWNED);
361 	regs = td->td_frame;
362 	oonstack = sigonstack(regs->tf_rsp);
363 
364 	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
365 		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
366 		xfpusave = __builtin_alloca(xfpusave_len);
367 	} else {
368 		xfpusave_len = 0;
369 		xfpusave = NULL;
370 	}
371 
372 	/* Save user context. */
373 	bzero(&sf, sizeof(sf));
374 	sf.sf_uc.uc_sigmask = *mask;
375 	sf.sf_uc.uc_stack = td->td_sigstk;
376 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
377 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
378 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
379 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
380 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
381 	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
382 	fpstate_drop(td);
383 	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
384 	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
385 	bzero(sf.sf_uc.uc_mcontext.mc_spare,
386 	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
387 	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
388 
389 	/* Allocate space for the signal handler context. */
390 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
391 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
392 		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
393 #if defined(COMPAT_43)
394 		td->td_sigstk.ss_flags |= SS_ONSTACK;
395 #endif
396 	} else
397 		sp = (char *)regs->tf_rsp - 128;
398 	if (xfpusave != NULL) {
399 		sp -= xfpusave_len;
400 		sp = (char *)((unsigned long)sp & ~0x3Ful);
401 		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
402 	}
403 	sp -= sizeof(struct sigframe);
404 	/* Align to 16 bytes. */
405 	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
406 
407 	/* Build the argument list for the signal handler. */
408 	regs->tf_rdi = sig;			/* arg 1 in %rdi */
409 	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
410 	bzero(&sf.sf_si, sizeof(sf.sf_si));
411 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
412 		/* Signal handler installed with SA_SIGINFO. */
413 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
414 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
415 
416 		/* Fill in POSIX parts */
417 		sf.sf_si = ksi->ksi_info;
418 		sf.sf_si.si_signo = sig; /* maybe a translated signal */
419 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
420 	} else {
421 		/* Old FreeBSD-style arguments. */
422 		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
423 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
424 		sf.sf_ahu.sf_handler = catcher;
425 	}
426 	mtx_unlock(&psp->ps_mtx);
427 	PROC_UNLOCK(p);
428 
429 	/*
430 	 * Copy the sigframe out to the user's stack.
431 	 */
432 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
433 	    (xfpusave != NULL && copyout(xfpusave,
434 	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
435 	    != 0)) {
436 #ifdef DEBUG
437 		printf("process %ld has trashed its stack\n", (long)p->p_pid);
438 #endif
439 		PROC_LOCK(p);
440 		sigexit(td, SIGILL);
441 	}
442 
443 	regs->tf_rsp = (long)sfp;
444 	regs->tf_rip = p->p_sysent->sv_sigcode_base;
445 	regs->tf_rflags &= ~(PSL_T | PSL_D);
446 	regs->tf_cs = _ucodesel;
447 	regs->tf_ds = _udatasel;
448 	regs->tf_ss = _udatasel;
449 	regs->tf_es = _udatasel;
450 	regs->tf_fs = _ufssel;
451 	regs->tf_gs = _ugssel;
452 	regs->tf_flags = TF_HASSEGS;
453 	set_pcb_flags(pcb, PCB_FULL_IRET);
454 	PROC_LOCK(p);
455 	mtx_lock(&psp->ps_mtx);
456 }
457 
458 /*
459  * System call to cleanup state after a signal
460  * has been taken.  Reset signal mask and
461  * stack state from context left by sendsig (above).
462  * Return to previous pc and psl as specified by
463  * context left by sendsig. Check carefully to
464  * make sure that the user has not modified the
465  * state to gain improper privileges.
466  *
467  * MPSAFE
468  */
469 int
470 sys_sigreturn(td, uap)
471 	struct thread *td;
472 	struct sigreturn_args /* {
473 		const struct __ucontext *sigcntxp;
474 	} */ *uap;
475 {
476 	ucontext_t uc;
477 	struct pcb *pcb;
478 	struct proc *p;
479 	struct trapframe *regs;
480 	ucontext_t *ucp;
481 	char *xfpustate;
482 	size_t xfpustate_len;
483 	long rflags;
484 	int cs, error, ret;
485 	ksiginfo_t ksi;
486 
487 	pcb = td->td_pcb;
488 	p = td->td_proc;
489 
490 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
491 	if (error != 0) {
492 		uprintf("pid %d (%s): sigreturn copyin failed\n",
493 		    p->p_pid, td->td_name);
494 		return (error);
495 	}
496 	ucp = &uc;
497 	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
498 		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
499 		    td->td_name, ucp->uc_mcontext.mc_flags);
500 		return (EINVAL);
501 	}
502 	regs = td->td_frame;
503 	rflags = ucp->uc_mcontext.mc_rflags;
504 	/*
505 	 * Don't allow users to change privileged or reserved flags.
506 	 */
507 	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
508 		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
509 		    td->td_name, rflags);
510 		return (EINVAL);
511 	}
512 
513 	/*
514 	 * Don't allow users to load a valid privileged %cs.  Let the
515 	 * hardware check for invalid selectors, excess privilege in
516 	 * other selectors, invalid %eip's and invalid %esp's.
517 	 */
518 	cs = ucp->uc_mcontext.mc_cs;
519 	if (!CS_SECURE(cs)) {
520 		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
521 		    td->td_name, cs);
522 		ksiginfo_init_trap(&ksi);
523 		ksi.ksi_signo = SIGBUS;
524 		ksi.ksi_code = BUS_OBJERR;
525 		ksi.ksi_trapno = T_PROTFLT;
526 		ksi.ksi_addr = (void *)regs->tf_rip;
527 		trapsignal(td, &ksi);
528 		return (EINVAL);
529 	}
530 
531 	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
532 		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
533 		if (xfpustate_len > cpu_max_ext_state_size -
534 		    sizeof(struct savefpu)) {
535 			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
536 			    p->p_pid, td->td_name, xfpustate_len);
537 			return (EINVAL);
538 		}
539 		xfpustate = __builtin_alloca(xfpustate_len);
540 		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
541 		    xfpustate, xfpustate_len);
542 		if (error != 0) {
543 			uprintf(
544 	"pid %d (%s): sigreturn copying xfpustate failed\n",
545 			    p->p_pid, td->td_name);
546 			return (error);
547 		}
548 	} else {
549 		xfpustate = NULL;
550 		xfpustate_len = 0;
551 	}
552 	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
553 	if (ret != 0) {
554 		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
555 		    p->p_pid, td->td_name, ret);
556 		return (ret);
557 	}
558 	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
559 	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
560 	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
561 
562 #if defined(COMPAT_43)
563 	if (ucp->uc_mcontext.mc_onstack & 1)
564 		td->td_sigstk.ss_flags |= SS_ONSTACK;
565 	else
566 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
567 #endif
568 
569 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
570 	set_pcb_flags(pcb, PCB_FULL_IRET);
571 	return (EJUSTRETURN);
572 }
573 
574 #ifdef COMPAT_FREEBSD4
575 int
576 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
577 {
578 
579 	return sys_sigreturn(td, (struct sigreturn_args *)uap);
580 }
581 #endif
582 
583 /*
584  * Reset registers to default values on exec.
585  */
586 void
587 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
588 {
589 	struct trapframe *regs = td->td_frame;
590 	struct pcb *pcb = td->td_pcb;
591 
592 	mtx_lock(&dt_lock);
593 	if (td->td_proc->p_md.md_ldt != NULL)
594 		user_ldt_free(td);
595 	else
596 		mtx_unlock(&dt_lock);
597 
598 	pcb->pcb_fsbase = 0;
599 	pcb->pcb_gsbase = 0;
600 	clear_pcb_flags(pcb, PCB_32BIT);
601 	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
602 	set_pcb_flags(pcb, PCB_FULL_IRET);
603 
604 	bzero((char *)regs, sizeof(struct trapframe));
605 	regs->tf_rip = imgp->entry_addr;
606 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
607 	regs->tf_rdi = stack;		/* argv */
608 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
609 	regs->tf_ss = _udatasel;
610 	regs->tf_cs = _ucodesel;
611 	regs->tf_ds = _udatasel;
612 	regs->tf_es = _udatasel;
613 	regs->tf_fs = _ufssel;
614 	regs->tf_gs = _ugssel;
615 	regs->tf_flags = TF_HASSEGS;
616 	td->td_retval[1] = 0;
617 
618 	/*
619 	 * Reset the hardware debug registers if they were in use.
620 	 * They won't have any meaning for the newly exec'd process.
621 	 */
622 	if (pcb->pcb_flags & PCB_DBREGS) {
623 		pcb->pcb_dr0 = 0;
624 		pcb->pcb_dr1 = 0;
625 		pcb->pcb_dr2 = 0;
626 		pcb->pcb_dr3 = 0;
627 		pcb->pcb_dr6 = 0;
628 		pcb->pcb_dr7 = 0;
629 		if (pcb == curpcb) {
630 			/*
631 			 * Clear the debug registers on the running
632 			 * CPU, otherwise they will end up affecting
633 			 * the next process we switch to.
634 			 */
635 			reset_dbregs();
636 		}
637 		clear_pcb_flags(pcb, PCB_DBREGS);
638 	}
639 
640 	/*
641 	 * Drop the FP state if we hold it, so that the process gets a
642 	 * clean FP state if it uses the FPU again.
643 	 */
644 	fpstate_drop(td);
645 }
646 
647 void
648 cpu_setregs(void)
649 {
650 	register_t cr0;
651 
652 	cr0 = rcr0();
653 	/*
654 	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
655 	 * BSP.  See the comments there about why we set them.
656 	 */
657 	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
658 	load_cr0(cr0);
659 }
660 
661 /*
662  * Initialize amd64 and configure to run kernel
663  */
664 
665 /*
666  * Initialize segments & interrupt table
667  */
668 
669 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
670 static struct gate_descriptor idt0[NIDT];
671 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
672 
673 static char dblfault_stack[PAGE_SIZE] __aligned(16);
674 
675 static char nmi0_stack[PAGE_SIZE] __aligned(16);
676 CTASSERT(sizeof(struct nmi_pcpu) == 16);
677 
678 struct amd64tss common_tss[MAXCPU];
679 
680 /*
681  * Software prototypes -- in more palatable form.
682  *
683  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
684  * slots as corresponding segments for i386 kernel.
685  */
686 struct soft_segment_descriptor gdt_segs[] = {
687 /* GNULL_SEL	0 Null Descriptor */
688 {	.ssd_base = 0x0,
689 	.ssd_limit = 0x0,
690 	.ssd_type = 0,
691 	.ssd_dpl = 0,
692 	.ssd_p = 0,
693 	.ssd_long = 0,
694 	.ssd_def32 = 0,
695 	.ssd_gran = 0		},
696 /* GNULL2_SEL	1 Null Descriptor */
697 {	.ssd_base = 0x0,
698 	.ssd_limit = 0x0,
699 	.ssd_type = 0,
700 	.ssd_dpl = 0,
701 	.ssd_p = 0,
702 	.ssd_long = 0,
703 	.ssd_def32 = 0,
704 	.ssd_gran = 0		},
705 /* GUFS32_SEL	2 32 bit %gs Descriptor for user */
706 {	.ssd_base = 0x0,
707 	.ssd_limit = 0xfffff,
708 	.ssd_type = SDT_MEMRWA,
709 	.ssd_dpl = SEL_UPL,
710 	.ssd_p = 1,
711 	.ssd_long = 0,
712 	.ssd_def32 = 1,
713 	.ssd_gran = 1		},
714 /* GUGS32_SEL	3 32 bit %fs Descriptor for user */
715 {	.ssd_base = 0x0,
716 	.ssd_limit = 0xfffff,
717 	.ssd_type = SDT_MEMRWA,
718 	.ssd_dpl = SEL_UPL,
719 	.ssd_p = 1,
720 	.ssd_long = 0,
721 	.ssd_def32 = 1,
722 	.ssd_gran = 1		},
723 /* GCODE_SEL	4 Code Descriptor for kernel */
724 {	.ssd_base = 0x0,
725 	.ssd_limit = 0xfffff,
726 	.ssd_type = SDT_MEMERA,
727 	.ssd_dpl = SEL_KPL,
728 	.ssd_p = 1,
729 	.ssd_long = 1,
730 	.ssd_def32 = 0,
731 	.ssd_gran = 1		},
732 /* GDATA_SEL	5 Data Descriptor for kernel */
733 {	.ssd_base = 0x0,
734 	.ssd_limit = 0xfffff,
735 	.ssd_type = SDT_MEMRWA,
736 	.ssd_dpl = SEL_KPL,
737 	.ssd_p = 1,
738 	.ssd_long = 1,
739 	.ssd_def32 = 0,
740 	.ssd_gran = 1		},
741 /* GUCODE32_SEL	6 32 bit Code Descriptor for user */
742 {	.ssd_base = 0x0,
743 	.ssd_limit = 0xfffff,
744 	.ssd_type = SDT_MEMERA,
745 	.ssd_dpl = SEL_UPL,
746 	.ssd_p = 1,
747 	.ssd_long = 0,
748 	.ssd_def32 = 1,
749 	.ssd_gran = 1		},
750 /* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
751 {	.ssd_base = 0x0,
752 	.ssd_limit = 0xfffff,
753 	.ssd_type = SDT_MEMRWA,
754 	.ssd_dpl = SEL_UPL,
755 	.ssd_p = 1,
756 	.ssd_long = 0,
757 	.ssd_def32 = 1,
758 	.ssd_gran = 1		},
759 /* GUCODE_SEL	8 64 bit Code Descriptor for user */
760 {	.ssd_base = 0x0,
761 	.ssd_limit = 0xfffff,
762 	.ssd_type = SDT_MEMERA,
763 	.ssd_dpl = SEL_UPL,
764 	.ssd_p = 1,
765 	.ssd_long = 1,
766 	.ssd_def32 = 0,
767 	.ssd_gran = 1		},
768 /* GPROC0_SEL	9 Proc 0 Tss Descriptor */
769 {	.ssd_base = 0x0,
770 	.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
771 	.ssd_type = SDT_SYSTSS,
772 	.ssd_dpl = SEL_KPL,
773 	.ssd_p = 1,
774 	.ssd_long = 0,
775 	.ssd_def32 = 0,
776 	.ssd_gran = 0		},
777 /* Actually, the TSS is a system descriptor which is double size */
778 {	.ssd_base = 0x0,
779 	.ssd_limit = 0x0,
780 	.ssd_type = 0,
781 	.ssd_dpl = 0,
782 	.ssd_p = 0,
783 	.ssd_long = 0,
784 	.ssd_def32 = 0,
785 	.ssd_gran = 0		},
786 /* GUSERLDT_SEL	11 LDT Descriptor */
787 {	.ssd_base = 0x0,
788 	.ssd_limit = 0x0,
789 	.ssd_type = 0,
790 	.ssd_dpl = 0,
791 	.ssd_p = 0,
792 	.ssd_long = 0,
793 	.ssd_def32 = 0,
794 	.ssd_gran = 0		},
795 /* GUSERLDT_SEL	12 LDT Descriptor, double size */
796 {	.ssd_base = 0x0,
797 	.ssd_limit = 0x0,
798 	.ssd_type = 0,
799 	.ssd_dpl = 0,
800 	.ssd_p = 0,
801 	.ssd_long = 0,
802 	.ssd_def32 = 0,
803 	.ssd_gran = 0		},
804 };
805 
806 void
807 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
808 {
809 	struct gate_descriptor *ip;
810 
811 	ip = idt + idx;
812 	ip->gd_looffset = (uintptr_t)func;
813 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
814 	ip->gd_ist = ist;
815 	ip->gd_xx = 0;
816 	ip->gd_type = typ;
817 	ip->gd_dpl = dpl;
818 	ip->gd_p = 1;
819 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
820 }
821 
822 extern inthand_t
823 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
824 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
825 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
826 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
827 	IDTVEC(xmm), IDTVEC(dblfault),
828 #ifdef KDTRACE_HOOKS
829 	IDTVEC(dtrace_ret),
830 #endif
831 #ifdef XENHVM
832 	IDTVEC(xen_intr_upcall),
833 #endif
834 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
835 
836 #ifdef DDB
837 /*
838  * Display the index and function name of any IDT entries that don't use
839  * the default 'rsvd' entry point.
840  */
841 DB_SHOW_COMMAND(idt, db_show_idt)
842 {
843 	struct gate_descriptor *ip;
844 	int idx;
845 	uintptr_t func;
846 
847 	ip = idt;
848 	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
849 		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
850 		if (func != (uintptr_t)&IDTVEC(rsvd)) {
851 			db_printf("%3d\t", idx);
852 			db_printsym(func, DB_STGY_PROC);
853 			db_printf("\n");
854 		}
855 		ip++;
856 	}
857 }
858 
859 /* Show privileged registers. */
860 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
861 {
862 	struct {
863 		uint16_t limit;
864 		uint64_t base;
865 	} __packed idtr, gdtr;
866 	uint16_t ldt, tr;
867 
868 	__asm __volatile("sidt %0" : "=m" (idtr));
869 	db_printf("idtr\t0x%016lx/%04x\n",
870 	    (u_long)idtr.base, (u_int)idtr.limit);
871 	__asm __volatile("sgdt %0" : "=m" (gdtr));
872 	db_printf("gdtr\t0x%016lx/%04x\n",
873 	    (u_long)gdtr.base, (u_int)gdtr.limit);
874 	__asm __volatile("sldt %0" : "=r" (ldt));
875 	db_printf("ldtr\t0x%04x\n", ldt);
876 	__asm __volatile("str %0" : "=r" (tr));
877 	db_printf("tr\t0x%04x\n", tr);
878 	db_printf("cr0\t0x%016lx\n", rcr0());
879 	db_printf("cr2\t0x%016lx\n", rcr2());
880 	db_printf("cr3\t0x%016lx\n", rcr3());
881 	db_printf("cr4\t0x%016lx\n", rcr4());
882 	if (rcr4() & CR4_XSAVE)
883 		db_printf("xcr0\t0x%016lx\n", rxcr(0));
884 	db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
885 	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
886 		db_printf("FEATURES_CTL\t%016lx\n",
887 		    rdmsr(MSR_IA32_FEATURE_CONTROL));
888 	db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
889 	db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
890 	db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
891 }
892 
893 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
894 {
895 
896 	db_printf("dr0\t0x%016lx\n", rdr0());
897 	db_printf("dr1\t0x%016lx\n", rdr1());
898 	db_printf("dr2\t0x%016lx\n", rdr2());
899 	db_printf("dr3\t0x%016lx\n", rdr3());
900 	db_printf("dr6\t0x%016lx\n", rdr6());
901 	db_printf("dr7\t0x%016lx\n", rdr7());
902 }
903 #endif
904 
905 void
906 sdtossd(sd, ssd)
907 	struct user_segment_descriptor *sd;
908 	struct soft_segment_descriptor *ssd;
909 {
910 
911 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
912 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
913 	ssd->ssd_type  = sd->sd_type;
914 	ssd->ssd_dpl   = sd->sd_dpl;
915 	ssd->ssd_p     = sd->sd_p;
916 	ssd->ssd_long  = sd->sd_long;
917 	ssd->ssd_def32 = sd->sd_def32;
918 	ssd->ssd_gran  = sd->sd_gran;
919 }
920 
921 void
922 ssdtosd(ssd, sd)
923 	struct soft_segment_descriptor *ssd;
924 	struct user_segment_descriptor *sd;
925 {
926 
927 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
928 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
929 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
930 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
931 	sd->sd_type  = ssd->ssd_type;
932 	sd->sd_dpl   = ssd->ssd_dpl;
933 	sd->sd_p     = ssd->ssd_p;
934 	sd->sd_long  = ssd->ssd_long;
935 	sd->sd_def32 = ssd->ssd_def32;
936 	sd->sd_gran  = ssd->ssd_gran;
937 }
938 
939 void
940 ssdtosyssd(ssd, sd)
941 	struct soft_segment_descriptor *ssd;
942 	struct system_segment_descriptor *sd;
943 {
944 
945 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
946 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
947 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
948 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
949 	sd->sd_type  = ssd->ssd_type;
950 	sd->sd_dpl   = ssd->ssd_dpl;
951 	sd->sd_p     = ssd->ssd_p;
952 	sd->sd_gran  = ssd->ssd_gran;
953 }
954 
955 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
956 #include <isa/isavar.h>
957 #include <isa/isareg.h>
958 /*
959  * Return a bitmap of the current interrupt requests.  This is 8259-specific
960  * and is only suitable for use at probe time.
961  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
962  * It shouldn't be here.  There should probably be an APIC centric
963  * implementation in the apic driver code, if at all.
964  */
965 intrmask_t
966 isa_irq_pending(void)
967 {
968 	u_char irr1;
969 	u_char irr2;
970 
971 	irr1 = inb(IO_ICU1);
972 	irr2 = inb(IO_ICU2);
973 	return ((irr2 << 8) | irr1);
974 }
975 #endif
976 
977 u_int basemem;
978 
979 static int
980 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
981     int *physmap_idxp)
982 {
983 	int i, insert_idx, physmap_idx;
984 
985 	physmap_idx = *physmap_idxp;
986 
987 	if (length == 0)
988 		return (1);
989 
990 	/*
991 	 * Find insertion point while checking for overlap.  Start off by
992 	 * assuming the new entry will be added to the end.
993 	 *
994 	 * NB: physmap_idx points to the next free slot.
995 	 */
996 	insert_idx = physmap_idx;
997 	for (i = 0; i <= physmap_idx; i += 2) {
998 		if (base < physmap[i + 1]) {
999 			if (base + length <= physmap[i]) {
1000 				insert_idx = i;
1001 				break;
1002 			}
1003 			if (boothowto & RB_VERBOSE)
1004 				printf(
1005 		    "Overlapping memory regions, ignoring second region\n");
1006 			return (1);
1007 		}
1008 	}
1009 
1010 	/* See if we can prepend to the next entry. */
1011 	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1012 		physmap[insert_idx] = base;
1013 		return (1);
1014 	}
1015 
1016 	/* See if we can append to the previous entry. */
1017 	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1018 		physmap[insert_idx - 1] += length;
1019 		return (1);
1020 	}
1021 
1022 	physmap_idx += 2;
1023 	*physmap_idxp = physmap_idx;
1024 	if (physmap_idx == PHYSMAP_SIZE) {
1025 		printf(
1026 		"Too many segments in the physical address map, giving up\n");
1027 		return (0);
1028 	}
1029 
1030 	/*
1031 	 * Move the last 'N' entries down to make room for the new
1032 	 * entry if needed.
1033 	 */
1034 	for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
1035 		physmap[i] = physmap[i - 2];
1036 		physmap[i + 1] = physmap[i - 1];
1037 	}
1038 
1039 	/* Insert the new entry. */
1040 	physmap[insert_idx] = base;
1041 	physmap[insert_idx + 1] = base + length;
1042 	return (1);
1043 }
1044 
1045 void
1046 bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
1047                       vm_paddr_t *physmap, int *physmap_idx)
1048 {
1049 	struct bios_smap *smap, *smapend;
1050 
1051 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1052 
1053 	for (smap = smapbase; smap < smapend; smap++) {
1054 		if (boothowto & RB_VERBOSE)
1055 			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1056 			    smap->type, smap->base, smap->length);
1057 
1058 		if (smap->type != SMAP_TYPE_MEMORY)
1059 			continue;
1060 
1061 		if (!add_physmap_entry(smap->base, smap->length, physmap,
1062 		    physmap_idx))
1063 			break;
1064 	}
1065 }
1066 
1067 #define efi_next_descriptor(ptr, size) \
1068 	((struct efi_md *)(((uint8_t *) ptr) + size))
1069 
1070 static void
1071 add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1072     int *physmap_idx)
1073 {
1074 	struct efi_md *map, *p;
1075 	const char *type;
1076 	size_t efisz;
1077 	int ndesc, i;
1078 
1079 	static const char *types[] = {
1080 		"Reserved",
1081 		"LoaderCode",
1082 		"LoaderData",
1083 		"BootServicesCode",
1084 		"BootServicesData",
1085 		"RuntimeServicesCode",
1086 		"RuntimeServicesData",
1087 		"ConventionalMemory",
1088 		"UnusableMemory",
1089 		"ACPIReclaimMemory",
1090 		"ACPIMemoryNVS",
1091 		"MemoryMappedIO",
1092 		"MemoryMappedIOPortSpace",
1093 		"PalCode"
1094 	};
1095 
1096 	/*
1097 	 * Memory map data provided by UEFI via the GetMemoryMap
1098 	 * Boot Services API.
1099 	 */
1100 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1101 	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1102 
1103 	if (efihdr->descriptor_size == 0)
1104 		return;
1105 	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1106 
1107 	if (boothowto & RB_VERBOSE)
1108 		printf("%23s %12s %12s %8s %4s\n",
1109 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1110 
1111 	for (i = 0, p = map; i < ndesc; i++,
1112 	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1113 		if (boothowto & RB_VERBOSE) {
1114 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1115 				type = types[p->md_type];
1116 			else
1117 				type = "<INVALID>";
1118 			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1119 			    p->md_virt, p->md_pages);
1120 			if (p->md_attr & EFI_MD_ATTR_UC)
1121 				printf("UC ");
1122 			if (p->md_attr & EFI_MD_ATTR_WC)
1123 				printf("WC ");
1124 			if (p->md_attr & EFI_MD_ATTR_WT)
1125 				printf("WT ");
1126 			if (p->md_attr & EFI_MD_ATTR_WB)
1127 				printf("WB ");
1128 			if (p->md_attr & EFI_MD_ATTR_UCE)
1129 				printf("UCE ");
1130 			if (p->md_attr & EFI_MD_ATTR_WP)
1131 				printf("WP ");
1132 			if (p->md_attr & EFI_MD_ATTR_RP)
1133 				printf("RP ");
1134 			if (p->md_attr & EFI_MD_ATTR_XP)
1135 				printf("XP ");
1136 			if (p->md_attr & EFI_MD_ATTR_RT)
1137 				printf("RUNTIME");
1138 			printf("\n");
1139 		}
1140 
1141 		switch (p->md_type) {
1142 		case EFI_MD_TYPE_CODE:
1143 		case EFI_MD_TYPE_DATA:
1144 		case EFI_MD_TYPE_BS_CODE:
1145 		case EFI_MD_TYPE_BS_DATA:
1146 		case EFI_MD_TYPE_FREE:
1147 			/*
1148 			 * We're allowed to use any entry with these types.
1149 			 */
1150 			break;
1151 		default:
1152 			continue;
1153 		}
1154 
1155 		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1156 		    physmap, physmap_idx))
1157 			break;
1158 	}
1159 }
1160 
1161 static char bootmethod[16] = "";
1162 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1163     "System firmware boot method");
1164 
1165 static void
1166 native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
1167 {
1168 	struct bios_smap *smap;
1169 	struct efi_map_header *efihdr;
1170 	u_int32_t size;
1171 
1172 	/*
1173 	 * Memory map from INT 15:E820.
1174 	 *
1175 	 * subr_module.c says:
1176 	 * "Consumer may safely assume that size value precedes data."
1177 	 * ie: an int32_t immediately precedes smap.
1178 	 */
1179 
1180 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1181 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1182 	smap = (struct bios_smap *)preload_search_info(kmdp,
1183 	    MODINFO_METADATA | MODINFOMD_SMAP);
1184 	if (efihdr == NULL && smap == NULL)
1185 		panic("No BIOS smap or EFI map info from loader!");
1186 
1187 	if (efihdr != NULL) {
1188 		add_efi_map_entries(efihdr, physmap, physmap_idx);
1189 		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1190 	} else {
1191 		size = *((u_int32_t *)smap - 1);
1192 		bios_add_smap_entries(smap, size, physmap, physmap_idx);
1193 		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1194 	}
1195 }
1196 
1197 #define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1198 
1199 /*
1200  * Populate the (physmap) array with base/bound pairs describing the
1201  * available physical memory in the system, then test this memory and
1202  * build the phys_avail array describing the actually-available memory.
1203  *
1204  * Total memory size may be set by the kernel environment variable
1205  * hw.physmem or the compile-time define MAXMEM.
1206  *
1207  * XXX first should be vm_paddr_t.
1208  */
1209 static void
1210 getmemsize(caddr_t kmdp, u_int64_t first)
1211 {
1212 	int i, physmap_idx, pa_indx, da_indx;
1213 	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1214 	u_long physmem_start, physmem_tunable, memtest;
1215 	pt_entry_t *pte;
1216 	quad_t dcons_addr, dcons_size;
1217 	int page_counter;
1218 
1219 	bzero(physmap, sizeof(physmap));
1220 	physmap_idx = 0;
1221 
1222 	init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
1223 	physmap_idx -= 2;
1224 
1225 	/*
1226 	 * Find the 'base memory' segment for SMP
1227 	 */
1228 	basemem = 0;
1229 	for (i = 0; i <= physmap_idx; i += 2) {
1230 		if (physmap[i] <= 0xA0000) {
1231 			basemem = physmap[i + 1] / 1024;
1232 			break;
1233 		}
1234 	}
1235 	if (basemem == 0 || basemem > 640) {
1236 		if (bootverbose)
1237 			printf(
1238 		"Memory map doesn't contain a basemem segment, faking it");
1239 		basemem = 640;
1240 	}
1241 
1242 	/*
1243 	 * Make hole for "AP -> long mode" bootstrap code.  The
1244 	 * mp_bootaddress vector is only available when the kernel
1245 	 * is configured to support APs and APs for the system start
1246 	 * in 32bit mode (e.g. SMP bare metal).
1247 	 */
1248 	if (init_ops.mp_bootaddress) {
1249 		if (physmap[1] >= 0x100000000)
1250 			panic(
1251 	"Basemem segment is not suitable for AP bootstrap code!");
1252 		physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
1253 	}
1254 
1255 	/*
1256 	 * Maxmem isn't the "maximum memory", it's one larger than the
1257 	 * highest page of the physical address space.  It should be
1258 	 * called something like "Maxphyspage".  We may adjust this
1259 	 * based on ``hw.physmem'' and the results of the memory test.
1260 	 */
1261 	Maxmem = atop(physmap[physmap_idx + 1]);
1262 
1263 #ifdef MAXMEM
1264 	Maxmem = MAXMEM / 4;
1265 #endif
1266 
1267 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1268 		Maxmem = atop(physmem_tunable);
1269 
1270 	/*
1271 	 * The boot memory test is disabled by default, as it takes a
1272 	 * significant amount of time on large-memory systems, and is
1273 	 * unfriendly to virtual machines as it unnecessarily touches all
1274 	 * pages.
1275 	 *
1276 	 * A general name is used as the code may be extended to support
1277 	 * additional tests beyond the current "page present" test.
1278 	 */
1279 	memtest = 0;
1280 	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1281 
1282 	/*
1283 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1284 	 * in the system.
1285 	 */
1286 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1287 		Maxmem = atop(physmap[physmap_idx + 1]);
1288 
1289 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1290 	    (boothowto & RB_VERBOSE))
1291 		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1292 
1293 	/* call pmap initialization to make new kernel address space */
1294 	pmap_bootstrap(&first);
1295 
1296 	/*
1297 	 * Size up each available chunk of physical memory.
1298 	 *
1299 	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1300 	 * By default, mask off the first 16 pages unless we appear to be
1301 	 * running in a VM.
1302 	 */
1303 	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1304 	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1305 	if (physmap[0] < physmem_start) {
1306 		if (physmem_start < PAGE_SIZE)
1307 			physmap[0] = PAGE_SIZE;
1308 		else if (physmem_start >= physmap[1])
1309 			physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1310 		else
1311 			physmap[0] = round_page(physmem_start);
1312 	}
1313 	pa_indx = 0;
1314 	da_indx = 1;
1315 	phys_avail[pa_indx++] = physmap[0];
1316 	phys_avail[pa_indx] = physmap[0];
1317 	dump_avail[da_indx] = physmap[0];
1318 	pte = CMAP1;
1319 
1320 	/*
1321 	 * Get dcons buffer address
1322 	 */
1323 	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1324 	    getenv_quad("dcons.size", &dcons_size) == 0)
1325 		dcons_addr = 0;
1326 
1327 	/*
1328 	 * physmap is in bytes, so when converting to page boundaries,
1329 	 * round up the start address and round down the end address.
1330 	 */
1331 	page_counter = 0;
1332 	if (memtest != 0)
1333 		printf("Testing system memory");
1334 	for (i = 0; i <= physmap_idx; i += 2) {
1335 		vm_paddr_t end;
1336 
1337 		end = ptoa((vm_paddr_t)Maxmem);
1338 		if (physmap[i + 1] < end)
1339 			end = trunc_page(physmap[i + 1]);
1340 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1341 			int tmp, page_bad, full;
1342 			int *ptr = (int *)CADDR1;
1343 
1344 			full = FALSE;
1345 			/*
1346 			 * block out kernel memory as not available.
1347 			 */
1348 			if (pa >= (vm_paddr_t)kernphys && pa < first)
1349 				goto do_dump_avail;
1350 
1351 			/*
1352 			 * block out dcons buffer
1353 			 */
1354 			if (dcons_addr > 0
1355 			    && pa >= trunc_page(dcons_addr)
1356 			    && pa < dcons_addr + dcons_size)
1357 				goto do_dump_avail;
1358 
1359 			page_bad = FALSE;
1360 			if (memtest == 0)
1361 				goto skip_memtest;
1362 
1363 			/*
1364 			 * Print a "." every GB to show we're making
1365 			 * progress.
1366 			 */
1367 			page_counter++;
1368 			if ((page_counter % PAGES_PER_GB) == 0)
1369 				printf(".");
1370 
1371 			/*
1372 			 * map page into kernel: valid, read/write,non-cacheable
1373 			 */
1374 			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1375 			invltlb();
1376 
1377 			tmp = *(int *)ptr;
1378 			/*
1379 			 * Test for alternating 1's and 0's
1380 			 */
1381 			*(volatile int *)ptr = 0xaaaaaaaa;
1382 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1383 				page_bad = TRUE;
1384 			/*
1385 			 * Test for alternating 0's and 1's
1386 			 */
1387 			*(volatile int *)ptr = 0x55555555;
1388 			if (*(volatile int *)ptr != 0x55555555)
1389 				page_bad = TRUE;
1390 			/*
1391 			 * Test for all 1's
1392 			 */
1393 			*(volatile int *)ptr = 0xffffffff;
1394 			if (*(volatile int *)ptr != 0xffffffff)
1395 				page_bad = TRUE;
1396 			/*
1397 			 * Test for all 0's
1398 			 */
1399 			*(volatile int *)ptr = 0x0;
1400 			if (*(volatile int *)ptr != 0x0)
1401 				page_bad = TRUE;
1402 			/*
1403 			 * Restore original value.
1404 			 */
1405 			*(int *)ptr = tmp;
1406 
1407 skip_memtest:
1408 			/*
1409 			 * Adjust array of valid/good pages.
1410 			 */
1411 			if (page_bad == TRUE)
1412 				continue;
1413 			/*
1414 			 * If this good page is a continuation of the
1415 			 * previous set of good pages, then just increase
1416 			 * the end pointer. Otherwise start a new chunk.
1417 			 * Note that "end" points one higher than end,
1418 			 * making the range >= start and < end.
1419 			 * If we're also doing a speculative memory
1420 			 * test and we at or past the end, bump up Maxmem
1421 			 * so that we keep going. The first bad page
1422 			 * will terminate the loop.
1423 			 */
1424 			if (phys_avail[pa_indx] == pa) {
1425 				phys_avail[pa_indx] += PAGE_SIZE;
1426 			} else {
1427 				pa_indx++;
1428 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1429 					printf(
1430 		"Too many holes in the physical address space, giving up\n");
1431 					pa_indx--;
1432 					full = TRUE;
1433 					goto do_dump_avail;
1434 				}
1435 				phys_avail[pa_indx++] = pa;	/* start */
1436 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1437 			}
1438 			physmem++;
1439 do_dump_avail:
1440 			if (dump_avail[da_indx] == pa) {
1441 				dump_avail[da_indx] += PAGE_SIZE;
1442 			} else {
1443 				da_indx++;
1444 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1445 					da_indx--;
1446 					goto do_next;
1447 				}
1448 				dump_avail[da_indx++] = pa; /* start */
1449 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1450 			}
1451 do_next:
1452 			if (full)
1453 				break;
1454 		}
1455 	}
1456 	*pte = 0;
1457 	invltlb();
1458 	if (memtest != 0)
1459 		printf("\n");
1460 
1461 	/*
1462 	 * XXX
1463 	 * The last chunk must contain at least one page plus the message
1464 	 * buffer to avoid complicating other code (message buffer address
1465 	 * calculation, etc.).
1466 	 */
1467 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1468 	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1469 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1470 		phys_avail[pa_indx--] = 0;
1471 		phys_avail[pa_indx--] = 0;
1472 	}
1473 
1474 	Maxmem = atop(phys_avail[pa_indx]);
1475 
1476 	/* Trim off space for the message buffer. */
1477 	phys_avail[pa_indx] -= round_page(msgbufsize);
1478 
1479 	/* Map the message buffer. */
1480 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1481 }
1482 
1483 static caddr_t
1484 native_parse_preload_data(u_int64_t modulep)
1485 {
1486 	caddr_t kmdp;
1487 	char *envp;
1488 #ifdef DDB
1489 	vm_offset_t ksym_start;
1490 	vm_offset_t ksym_end;
1491 #endif
1492 
1493 	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1494 	preload_bootstrap_relocate(KERNBASE);
1495 	kmdp = preload_search_by_type("elf kernel");
1496 	if (kmdp == NULL)
1497 		kmdp = preload_search_by_type("elf64 kernel");
1498 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1499 	envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
1500 	if (envp != NULL)
1501 		envp += KERNBASE;
1502 	init_static_kenv(envp, 0);
1503 #ifdef DDB
1504 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1505 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1506 	db_fetch_ksymtab(ksym_start, ksym_end);
1507 #endif
1508 	efi_systbl = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
1509 
1510 	return (kmdp);
1511 }
1512 
1513 u_int64_t
1514 hammer_time(u_int64_t modulep, u_int64_t physfree)
1515 {
1516 	caddr_t kmdp;
1517 	int gsel_tss, x;
1518 	struct pcpu *pc;
1519 	struct nmi_pcpu *np;
1520 	struct xstate_hdr *xhdr;
1521 	u_int64_t msr;
1522 	char *env;
1523 	size_t kstack0_sz;
1524 
1525 	/*
1526  	 * This may be done better later if it gets more high level
1527  	 * components in it. If so just link td->td_proc here.
1528 	 */
1529 	proc_linkup0(&proc0, &thread0);
1530 
1531 	kmdp = init_ops.parse_preload_data(modulep);
1532 
1533 	/* Init basic tunables, hz etc */
1534 	init_param1();
1535 
1536 	thread0.td_kstack = physfree + KERNBASE;
1537 	thread0.td_kstack_pages = kstack_pages;
1538 	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1539 	bzero((void *)thread0.td_kstack, kstack0_sz);
1540 	physfree += kstack0_sz;
1541 
1542 	/*
1543 	 * make gdt memory segments
1544 	 */
1545 	for (x = 0; x < NGDT; x++) {
1546 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1547 		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1548 			ssdtosd(&gdt_segs[x], &gdt[x]);
1549 	}
1550 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1551 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1552 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1553 
1554 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1555 	r_gdt.rd_base =  (long) gdt;
1556 	lgdt(&r_gdt);
1557 	pc = &__pcpu[0];
1558 
1559 	wrmsr(MSR_FSBASE, 0);		/* User value */
1560 	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1561 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1562 
1563 	pcpu_init(pc, 0, sizeof(struct pcpu));
1564 	dpcpu_init((void *)(physfree + KERNBASE), 0);
1565 	physfree += DPCPU_SIZE;
1566 	PCPU_SET(prvspace, pc);
1567 	PCPU_SET(curthread, &thread0);
1568 	PCPU_SET(tssp, &common_tss[0]);
1569 	PCPU_SET(commontssp, &common_tss[0]);
1570 	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1571 	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1572 	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1573 	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1574 
1575 	/*
1576 	 * Initialize mutexes.
1577 	 *
1578 	 * icu_lock: in order to allow an interrupt to occur in a critical
1579 	 * 	     section, to set pcpu->ipending (etc...) properly, we
1580 	 *	     must be able to get the icu lock, so it can't be
1581 	 *	     under witness.
1582 	 */
1583 	mutex_init();
1584 	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1585 	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1586 
1587 	/* exceptions */
1588 	for (x = 0; x < NIDT; x++)
1589 		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1590 	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1591 	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1592 	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1593  	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1594 	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1595 	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1596 	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1597 	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1598 	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1599 	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1600 	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1601 	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1602 	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1603 	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1604 	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1605 	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1606 	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1607 	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1608 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1609 #ifdef KDTRACE_HOOKS
1610 	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1611 #endif
1612 #ifdef XENHVM
1613 	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1614 #endif
1615 
1616 	r_idt.rd_limit = sizeof(idt0) - 1;
1617 	r_idt.rd_base = (long) idt;
1618 	lidt(&r_idt);
1619 
1620 	/*
1621 	 * Initialize the clock before the console so that console
1622 	 * initialization can use DELAY().
1623 	 */
1624 	clock_init();
1625 
1626 	/*
1627 	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1628 	 * transition).
1629 	 * Once bootblocks have updated, we can test directly for
1630 	 * efi_systbl != NULL here...
1631 	 */
1632 	if (preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP)
1633 	    != NULL)
1634 		vty_set_preferred(VTY_VT);
1635 
1636 	identify_cpu();		/* Final stage of CPU initialization */
1637 	initializecpu();	/* Initialize CPU registers */
1638 	initializecpucache();
1639 
1640 	/* doublefault stack space, runs on ist1 */
1641 	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1642 
1643 	/*
1644 	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1645 	 * above the start of the ist2 stack.
1646 	 */
1647 	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1648 	np->np_pcpu = (register_t) pc;
1649 	common_tss[0].tss_ist2 = (long) np;
1650 
1651 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1652 	common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
1653 
1654 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1655 	ltr(gsel_tss);
1656 
1657 	/* Set up the fast syscall stuff */
1658 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1659 	wrmsr(MSR_EFER, msr);
1660 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1661 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1662 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1663 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1664 	wrmsr(MSR_STAR, msr);
1665 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1666 
1667 	getmemsize(kmdp, physfree);
1668 	init_param2(physmem);
1669 
1670 	/* now running on new page tables, configured,and u/iom is accessible */
1671 
1672 	cninit();
1673 
1674 #ifdef DEV_ISA
1675 #ifdef DEV_ATPIC
1676 	elcr_probe();
1677 	atpic_startup();
1678 #else
1679 	/* Reset and mask the atpics and leave them shut down. */
1680 	atpic_reset();
1681 
1682 	/*
1683 	 * Point the ICU spurious interrupt vectors at the APIC spurious
1684 	 * interrupt handler.
1685 	 */
1686 	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1687 	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1688 #endif
1689 #else
1690 #error "have you forgotten the isa device?";
1691 #endif
1692 
1693 	kdb_init();
1694 
1695 #ifdef KDB
1696 	if (boothowto & RB_KDB)
1697 		kdb_enter(KDB_WHY_BOOTFLAGS,
1698 		    "Boot flags requested debugger");
1699 #endif
1700 
1701 	msgbufinit(msgbufp, msgbufsize);
1702 	fpuinit();
1703 
1704 	/*
1705 	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1706 	 * area size.  Zero out the extended state header in fpu save
1707 	 * area.
1708 	 */
1709 	thread0.td_pcb = get_pcb_td(&thread0);
1710 	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1711 	if (use_xsave) {
1712 		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1713 		    1);
1714 		xhdr->xstate_bv = xsave_mask;
1715 	}
1716 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1717 	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1718 	/* Ensure the stack is aligned to 16 bytes */
1719 	common_tss[0].tss_rsp0 &= ~0xFul;
1720 	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1721 	PCPU_SET(curpcb, thread0.td_pcb);
1722 
1723 	/* transfer to user mode */
1724 
1725 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1726 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1727 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1728 	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1729 	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1730 
1731 	load_ds(_udatasel);
1732 	load_es(_udatasel);
1733 	load_fs(_ufssel);
1734 
1735 	/* setup proc 0's pcb */
1736 	thread0.td_pcb->pcb_flags = 0;
1737 	thread0.td_frame = &proc0_tf;
1738 
1739         env = kern_getenv("kernelname");
1740 	if (env != NULL)
1741 		strlcpy(kernelname, env, sizeof(kernelname));
1742 
1743 	cpu_probe_amdc1e();
1744 
1745 #ifdef FDT
1746 	x86_init_fdt();
1747 #endif
1748 
1749 	/* Location of kernel stack for locore */
1750 	return ((u_int64_t)thread0.td_pcb);
1751 }
1752 
1753 void
1754 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1755 {
1756 
1757 	pcpu->pc_acpi_id = 0xffffffff;
1758 }
1759 
1760 static int
1761 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1762 {
1763 	struct bios_smap *smapbase;
1764 	struct bios_smap_xattr smap;
1765 	caddr_t kmdp;
1766 	uint32_t *smapattr;
1767 	int count, error, i;
1768 
1769 	/* Retrieve the system memory map from the loader. */
1770 	kmdp = preload_search_by_type("elf kernel");
1771 	if (kmdp == NULL)
1772 		kmdp = preload_search_by_type("elf64 kernel");
1773 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1774 	    MODINFO_METADATA | MODINFOMD_SMAP);
1775 	if (smapbase == NULL)
1776 		return (0);
1777 	smapattr = (uint32_t *)preload_search_info(kmdp,
1778 	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1779 	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
1780 	error = 0;
1781 	for (i = 0; i < count; i++) {
1782 		smap.base = smapbase[i].base;
1783 		smap.length = smapbase[i].length;
1784 		smap.type = smapbase[i].type;
1785 		if (smapattr != NULL)
1786 			smap.xattr = smapattr[i];
1787 		else
1788 			smap.xattr = 0;
1789 		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1790 	}
1791 	return (error);
1792 }
1793 SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1794     smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
1795 
1796 static int
1797 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1798 {
1799 	struct efi_map_header *efihdr;
1800 	caddr_t kmdp;
1801 	uint32_t efisize;
1802 
1803 	kmdp = preload_search_by_type("elf kernel");
1804 	if (kmdp == NULL)
1805 		kmdp = preload_search_by_type("elf64 kernel");
1806 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1807 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1808 	if (efihdr == NULL)
1809 		return (0);
1810 	efisize = *((uint32_t *)efihdr - 1);
1811 	return (SYSCTL_OUT(req, efihdr, efisize));
1812 }
1813 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1814     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1815 
1816 void
1817 spinlock_enter(void)
1818 {
1819 	struct thread *td;
1820 	register_t flags;
1821 
1822 	td = curthread;
1823 	if (td->td_md.md_spinlock_count == 0) {
1824 		flags = intr_disable();
1825 		td->td_md.md_spinlock_count = 1;
1826 		td->td_md.md_saved_flags = flags;
1827 	} else
1828 		td->td_md.md_spinlock_count++;
1829 	critical_enter();
1830 }
1831 
1832 void
1833 spinlock_exit(void)
1834 {
1835 	struct thread *td;
1836 	register_t flags;
1837 
1838 	td = curthread;
1839 	critical_exit();
1840 	flags = td->td_md.md_saved_flags;
1841 	td->td_md.md_spinlock_count--;
1842 	if (td->td_md.md_spinlock_count == 0)
1843 		intr_restore(flags);
1844 }
1845 
1846 /*
1847  * Construct a PCB from a trapframe. This is called from kdb_trap() where
1848  * we want to start a backtrace from the function that caused us to enter
1849  * the debugger. We have the context in the trapframe, but base the trace
1850  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1851  * enough for a backtrace.
1852  */
1853 void
1854 makectx(struct trapframe *tf, struct pcb *pcb)
1855 {
1856 
1857 	pcb->pcb_r12 = tf->tf_r12;
1858 	pcb->pcb_r13 = tf->tf_r13;
1859 	pcb->pcb_r14 = tf->tf_r14;
1860 	pcb->pcb_r15 = tf->tf_r15;
1861 	pcb->pcb_rbp = tf->tf_rbp;
1862 	pcb->pcb_rbx = tf->tf_rbx;
1863 	pcb->pcb_rip = tf->tf_rip;
1864 	pcb->pcb_rsp = tf->tf_rsp;
1865 }
1866 
1867 int
1868 ptrace_set_pc(struct thread *td, unsigned long addr)
1869 {
1870 
1871 	td->td_frame->tf_rip = addr;
1872 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1873 	return (0);
1874 }
1875 
1876 int
1877 ptrace_single_step(struct thread *td)
1878 {
1879 	td->td_frame->tf_rflags |= PSL_T;
1880 	return (0);
1881 }
1882 
1883 int
1884 ptrace_clear_single_step(struct thread *td)
1885 {
1886 	td->td_frame->tf_rflags &= ~PSL_T;
1887 	return (0);
1888 }
1889 
1890 int
1891 fill_regs(struct thread *td, struct reg *regs)
1892 {
1893 	struct trapframe *tp;
1894 
1895 	tp = td->td_frame;
1896 	return (fill_frame_regs(tp, regs));
1897 }
1898 
1899 int
1900 fill_frame_regs(struct trapframe *tp, struct reg *regs)
1901 {
1902 	regs->r_r15 = tp->tf_r15;
1903 	regs->r_r14 = tp->tf_r14;
1904 	regs->r_r13 = tp->tf_r13;
1905 	regs->r_r12 = tp->tf_r12;
1906 	regs->r_r11 = tp->tf_r11;
1907 	regs->r_r10 = tp->tf_r10;
1908 	regs->r_r9  = tp->tf_r9;
1909 	regs->r_r8  = tp->tf_r8;
1910 	regs->r_rdi = tp->tf_rdi;
1911 	regs->r_rsi = tp->tf_rsi;
1912 	regs->r_rbp = tp->tf_rbp;
1913 	regs->r_rbx = tp->tf_rbx;
1914 	regs->r_rdx = tp->tf_rdx;
1915 	regs->r_rcx = tp->tf_rcx;
1916 	regs->r_rax = tp->tf_rax;
1917 	regs->r_rip = tp->tf_rip;
1918 	regs->r_cs = tp->tf_cs;
1919 	regs->r_rflags = tp->tf_rflags;
1920 	regs->r_rsp = tp->tf_rsp;
1921 	regs->r_ss = tp->tf_ss;
1922 	if (tp->tf_flags & TF_HASSEGS) {
1923 		regs->r_ds = tp->tf_ds;
1924 		regs->r_es = tp->tf_es;
1925 		regs->r_fs = tp->tf_fs;
1926 		regs->r_gs = tp->tf_gs;
1927 	} else {
1928 		regs->r_ds = 0;
1929 		regs->r_es = 0;
1930 		regs->r_fs = 0;
1931 		regs->r_gs = 0;
1932 	}
1933 	return (0);
1934 }
1935 
1936 int
1937 set_regs(struct thread *td, struct reg *regs)
1938 {
1939 	struct trapframe *tp;
1940 	register_t rflags;
1941 
1942 	tp = td->td_frame;
1943 	rflags = regs->r_rflags & 0xffffffff;
1944 	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1945 		return (EINVAL);
1946 	tp->tf_r15 = regs->r_r15;
1947 	tp->tf_r14 = regs->r_r14;
1948 	tp->tf_r13 = regs->r_r13;
1949 	tp->tf_r12 = regs->r_r12;
1950 	tp->tf_r11 = regs->r_r11;
1951 	tp->tf_r10 = regs->r_r10;
1952 	tp->tf_r9  = regs->r_r9;
1953 	tp->tf_r8  = regs->r_r8;
1954 	tp->tf_rdi = regs->r_rdi;
1955 	tp->tf_rsi = regs->r_rsi;
1956 	tp->tf_rbp = regs->r_rbp;
1957 	tp->tf_rbx = regs->r_rbx;
1958 	tp->tf_rdx = regs->r_rdx;
1959 	tp->tf_rcx = regs->r_rcx;
1960 	tp->tf_rax = regs->r_rax;
1961 	tp->tf_rip = regs->r_rip;
1962 	tp->tf_cs = regs->r_cs;
1963 	tp->tf_rflags = rflags;
1964 	tp->tf_rsp = regs->r_rsp;
1965 	tp->tf_ss = regs->r_ss;
1966 	if (0) {	/* XXXKIB */
1967 		tp->tf_ds = regs->r_ds;
1968 		tp->tf_es = regs->r_es;
1969 		tp->tf_fs = regs->r_fs;
1970 		tp->tf_gs = regs->r_gs;
1971 		tp->tf_flags = TF_HASSEGS;
1972 	}
1973 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
1974 	return (0);
1975 }
1976 
1977 /* XXX check all this stuff! */
1978 /* externalize from sv_xmm */
1979 static void
1980 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1981 {
1982 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1983 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1984 	int i;
1985 
1986 	/* pcb -> fpregs */
1987 	bzero(fpregs, sizeof(*fpregs));
1988 
1989 	/* FPU control/status */
1990 	penv_fpreg->en_cw = penv_xmm->en_cw;
1991 	penv_fpreg->en_sw = penv_xmm->en_sw;
1992 	penv_fpreg->en_tw = penv_xmm->en_tw;
1993 	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1994 	penv_fpreg->en_rip = penv_xmm->en_rip;
1995 	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1996 	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1997 	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1998 
1999 	/* FPU registers */
2000 	for (i = 0; i < 8; ++i)
2001 		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2002 
2003 	/* SSE registers */
2004 	for (i = 0; i < 16; ++i)
2005 		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2006 }
2007 
2008 /* internalize from fpregs into sv_xmm */
2009 static void
2010 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2011 {
2012 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2013 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2014 	int i;
2015 
2016 	/* fpregs -> pcb */
2017 	/* FPU control/status */
2018 	penv_xmm->en_cw = penv_fpreg->en_cw;
2019 	penv_xmm->en_sw = penv_fpreg->en_sw;
2020 	penv_xmm->en_tw = penv_fpreg->en_tw;
2021 	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2022 	penv_xmm->en_rip = penv_fpreg->en_rip;
2023 	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2024 	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2025 	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2026 
2027 	/* FPU registers */
2028 	for (i = 0; i < 8; ++i)
2029 		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2030 
2031 	/* SSE registers */
2032 	for (i = 0; i < 16; ++i)
2033 		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2034 }
2035 
2036 /* externalize from td->pcb */
2037 int
2038 fill_fpregs(struct thread *td, struct fpreg *fpregs)
2039 {
2040 
2041 	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2042 	    P_SHOULDSTOP(td->td_proc),
2043 	    ("not suspended thread %p", td));
2044 	fpugetregs(td);
2045 	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2046 	return (0);
2047 }
2048 
2049 /* internalize to td->pcb */
2050 int
2051 set_fpregs(struct thread *td, struct fpreg *fpregs)
2052 {
2053 
2054 	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2055 	fpuuserinited(td);
2056 	return (0);
2057 }
2058 
2059 /*
2060  * Get machine context.
2061  */
2062 int
2063 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2064 {
2065 	struct pcb *pcb;
2066 	struct trapframe *tp;
2067 
2068 	pcb = td->td_pcb;
2069 	tp = td->td_frame;
2070 	PROC_LOCK(curthread->td_proc);
2071 	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2072 	PROC_UNLOCK(curthread->td_proc);
2073 	mcp->mc_r15 = tp->tf_r15;
2074 	mcp->mc_r14 = tp->tf_r14;
2075 	mcp->mc_r13 = tp->tf_r13;
2076 	mcp->mc_r12 = tp->tf_r12;
2077 	mcp->mc_r11 = tp->tf_r11;
2078 	mcp->mc_r10 = tp->tf_r10;
2079 	mcp->mc_r9  = tp->tf_r9;
2080 	mcp->mc_r8  = tp->tf_r8;
2081 	mcp->mc_rdi = tp->tf_rdi;
2082 	mcp->mc_rsi = tp->tf_rsi;
2083 	mcp->mc_rbp = tp->tf_rbp;
2084 	mcp->mc_rbx = tp->tf_rbx;
2085 	mcp->mc_rcx = tp->tf_rcx;
2086 	mcp->mc_rflags = tp->tf_rflags;
2087 	if (flags & GET_MC_CLEAR_RET) {
2088 		mcp->mc_rax = 0;
2089 		mcp->mc_rdx = 0;
2090 		mcp->mc_rflags &= ~PSL_C;
2091 	} else {
2092 		mcp->mc_rax = tp->tf_rax;
2093 		mcp->mc_rdx = tp->tf_rdx;
2094 	}
2095 	mcp->mc_rip = tp->tf_rip;
2096 	mcp->mc_cs = tp->tf_cs;
2097 	mcp->mc_rsp = tp->tf_rsp;
2098 	mcp->mc_ss = tp->tf_ss;
2099 	mcp->mc_ds = tp->tf_ds;
2100 	mcp->mc_es = tp->tf_es;
2101 	mcp->mc_fs = tp->tf_fs;
2102 	mcp->mc_gs = tp->tf_gs;
2103 	mcp->mc_flags = tp->tf_flags;
2104 	mcp->mc_len = sizeof(*mcp);
2105 	get_fpcontext(td, mcp, NULL, 0);
2106 	mcp->mc_fsbase = pcb->pcb_fsbase;
2107 	mcp->mc_gsbase = pcb->pcb_gsbase;
2108 	mcp->mc_xfpustate = 0;
2109 	mcp->mc_xfpustate_len = 0;
2110 	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2111 	return (0);
2112 }
2113 
2114 /*
2115  * Set machine context.
2116  *
2117  * However, we don't set any but the user modifiable flags, and we won't
2118  * touch the cs selector.
2119  */
2120 int
2121 set_mcontext(struct thread *td, mcontext_t *mcp)
2122 {
2123 	struct pcb *pcb;
2124 	struct trapframe *tp;
2125 	char *xfpustate;
2126 	long rflags;
2127 	int ret;
2128 
2129 	pcb = td->td_pcb;
2130 	tp = td->td_frame;
2131 	if (mcp->mc_len != sizeof(*mcp) ||
2132 	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2133 		return (EINVAL);
2134 	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2135 	    (tp->tf_rflags & ~PSL_USERCHANGE);
2136 	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2137 		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2138 		    sizeof(struct savefpu))
2139 			return (EINVAL);
2140 		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2141 		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2142 		    mcp->mc_xfpustate_len);
2143 		if (ret != 0)
2144 			return (ret);
2145 	} else
2146 		xfpustate = NULL;
2147 	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2148 	if (ret != 0)
2149 		return (ret);
2150 	tp->tf_r15 = mcp->mc_r15;
2151 	tp->tf_r14 = mcp->mc_r14;
2152 	tp->tf_r13 = mcp->mc_r13;
2153 	tp->tf_r12 = mcp->mc_r12;
2154 	tp->tf_r11 = mcp->mc_r11;
2155 	tp->tf_r10 = mcp->mc_r10;
2156 	tp->tf_r9  = mcp->mc_r9;
2157 	tp->tf_r8  = mcp->mc_r8;
2158 	tp->tf_rdi = mcp->mc_rdi;
2159 	tp->tf_rsi = mcp->mc_rsi;
2160 	tp->tf_rbp = mcp->mc_rbp;
2161 	tp->tf_rbx = mcp->mc_rbx;
2162 	tp->tf_rdx = mcp->mc_rdx;
2163 	tp->tf_rcx = mcp->mc_rcx;
2164 	tp->tf_rax = mcp->mc_rax;
2165 	tp->tf_rip = mcp->mc_rip;
2166 	tp->tf_rflags = rflags;
2167 	tp->tf_rsp = mcp->mc_rsp;
2168 	tp->tf_ss = mcp->mc_ss;
2169 	tp->tf_flags = mcp->mc_flags;
2170 	if (tp->tf_flags & TF_HASSEGS) {
2171 		tp->tf_ds = mcp->mc_ds;
2172 		tp->tf_es = mcp->mc_es;
2173 		tp->tf_fs = mcp->mc_fs;
2174 		tp->tf_gs = mcp->mc_gs;
2175 	}
2176 	if (mcp->mc_flags & _MC_HASBASES) {
2177 		pcb->pcb_fsbase = mcp->mc_fsbase;
2178 		pcb->pcb_gsbase = mcp->mc_gsbase;
2179 	}
2180 	set_pcb_flags(pcb, PCB_FULL_IRET);
2181 	return (0);
2182 }
2183 
2184 static void
2185 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2186     size_t xfpusave_len)
2187 {
2188 	size_t max_len, len;
2189 
2190 	mcp->mc_ownedfp = fpugetregs(td);
2191 	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2192 	    sizeof(mcp->mc_fpstate));
2193 	mcp->mc_fpformat = fpuformat();
2194 	if (!use_xsave || xfpusave_len == 0)
2195 		return;
2196 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2197 	len = xfpusave_len;
2198 	if (len > max_len) {
2199 		len = max_len;
2200 		bzero(xfpusave + max_len, len - max_len);
2201 	}
2202 	mcp->mc_flags |= _MC_HASFPXSTATE;
2203 	mcp->mc_xfpustate_len = len;
2204 	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2205 }
2206 
2207 static int
2208 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2209     size_t xfpustate_len)
2210 {
2211 	struct savefpu *fpstate;
2212 	int error;
2213 
2214 	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2215 		return (0);
2216 	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2217 		return (EINVAL);
2218 	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2219 		/* We don't care what state is left in the FPU or PCB. */
2220 		fpstate_drop(td);
2221 		error = 0;
2222 	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2223 	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2224 		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2225 		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2226 		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2227 	} else
2228 		return (EINVAL);
2229 	return (error);
2230 }
2231 
2232 void
2233 fpstate_drop(struct thread *td)
2234 {
2235 
2236 	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2237 	critical_enter();
2238 	if (PCPU_GET(fpcurthread) == td)
2239 		fpudrop();
2240 	/*
2241 	 * XXX force a full drop of the fpu.  The above only drops it if we
2242 	 * owned it.
2243 	 *
2244 	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2245 	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2246 	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2247 	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2248 	 * have too many layers.
2249 	 */
2250 	clear_pcb_flags(curthread->td_pcb,
2251 	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2252 	critical_exit();
2253 }
2254 
2255 int
2256 fill_dbregs(struct thread *td, struct dbreg *dbregs)
2257 {
2258 	struct pcb *pcb;
2259 
2260 	if (td == NULL) {
2261 		dbregs->dr[0] = rdr0();
2262 		dbregs->dr[1] = rdr1();
2263 		dbregs->dr[2] = rdr2();
2264 		dbregs->dr[3] = rdr3();
2265 		dbregs->dr[6] = rdr6();
2266 		dbregs->dr[7] = rdr7();
2267 	} else {
2268 		pcb = td->td_pcb;
2269 		dbregs->dr[0] = pcb->pcb_dr0;
2270 		dbregs->dr[1] = pcb->pcb_dr1;
2271 		dbregs->dr[2] = pcb->pcb_dr2;
2272 		dbregs->dr[3] = pcb->pcb_dr3;
2273 		dbregs->dr[6] = pcb->pcb_dr6;
2274 		dbregs->dr[7] = pcb->pcb_dr7;
2275 	}
2276 	dbregs->dr[4] = 0;
2277 	dbregs->dr[5] = 0;
2278 	dbregs->dr[8] = 0;
2279 	dbregs->dr[9] = 0;
2280 	dbregs->dr[10] = 0;
2281 	dbregs->dr[11] = 0;
2282 	dbregs->dr[12] = 0;
2283 	dbregs->dr[13] = 0;
2284 	dbregs->dr[14] = 0;
2285 	dbregs->dr[15] = 0;
2286 	return (0);
2287 }
2288 
2289 int
2290 set_dbregs(struct thread *td, struct dbreg *dbregs)
2291 {
2292 	struct pcb *pcb;
2293 	int i;
2294 
2295 	if (td == NULL) {
2296 		load_dr0(dbregs->dr[0]);
2297 		load_dr1(dbregs->dr[1]);
2298 		load_dr2(dbregs->dr[2]);
2299 		load_dr3(dbregs->dr[3]);
2300 		load_dr6(dbregs->dr[6]);
2301 		load_dr7(dbregs->dr[7]);
2302 	} else {
2303 		/*
2304 		 * Don't let an illegal value for dr7 get set.  Specifically,
2305 		 * check for undefined settings.  Setting these bit patterns
2306 		 * result in undefined behaviour and can lead to an unexpected
2307 		 * TRCTRAP or a general protection fault right here.
2308 		 * Upper bits of dr6 and dr7 must not be set
2309 		 */
2310 		for (i = 0; i < 4; i++) {
2311 			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2312 				return (EINVAL);
2313 			if (td->td_frame->tf_cs == _ucode32sel &&
2314 			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2315 				return (EINVAL);
2316 		}
2317 		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2318 		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2319 			return (EINVAL);
2320 
2321 		pcb = td->td_pcb;
2322 
2323 		/*
2324 		 * Don't let a process set a breakpoint that is not within the
2325 		 * process's address space.  If a process could do this, it
2326 		 * could halt the system by setting a breakpoint in the kernel
2327 		 * (if ddb was enabled).  Thus, we need to check to make sure
2328 		 * that no breakpoints are being enabled for addresses outside
2329 		 * process's address space.
2330 		 *
2331 		 * XXX - what about when the watched area of the user's
2332 		 * address space is written into from within the kernel
2333 		 * ... wouldn't that still cause a breakpoint to be generated
2334 		 * from within kernel mode?
2335 		 */
2336 
2337 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2338 			/* dr0 is enabled */
2339 			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2340 				return (EINVAL);
2341 		}
2342 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2343 			/* dr1 is enabled */
2344 			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2345 				return (EINVAL);
2346 		}
2347 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2348 			/* dr2 is enabled */
2349 			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2350 				return (EINVAL);
2351 		}
2352 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2353 			/* dr3 is enabled */
2354 			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2355 				return (EINVAL);
2356 		}
2357 
2358 		pcb->pcb_dr0 = dbregs->dr[0];
2359 		pcb->pcb_dr1 = dbregs->dr[1];
2360 		pcb->pcb_dr2 = dbregs->dr[2];
2361 		pcb->pcb_dr3 = dbregs->dr[3];
2362 		pcb->pcb_dr6 = dbregs->dr[6];
2363 		pcb->pcb_dr7 = dbregs->dr[7];
2364 
2365 		set_pcb_flags(pcb, PCB_DBREGS);
2366 	}
2367 
2368 	return (0);
2369 }
2370 
2371 void
2372 reset_dbregs(void)
2373 {
2374 
2375 	load_dr7(0);	/* Turn off the control bits first */
2376 	load_dr0(0);
2377 	load_dr1(0);
2378 	load_dr2(0);
2379 	load_dr3(0);
2380 	load_dr6(0);
2381 }
2382 
2383 /*
2384  * Return > 0 if a hardware breakpoint has been hit, and the
2385  * breakpoint was in user space.  Return 0, otherwise.
2386  */
2387 int
2388 user_dbreg_trap(void)
2389 {
2390         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2391         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2392         int nbp;            /* number of breakpoints that triggered */
2393         caddr_t addr[4];    /* breakpoint addresses */
2394         int i;
2395 
2396         dr7 = rdr7();
2397         if ((dr7 & 0x000000ff) == 0) {
2398                 /*
2399                  * all GE and LE bits in the dr7 register are zero,
2400                  * thus the trap couldn't have been caused by the
2401                  * hardware debug registers
2402                  */
2403                 return 0;
2404         }
2405 
2406         nbp = 0;
2407         dr6 = rdr6();
2408         bp = dr6 & 0x0000000f;
2409 
2410         if (!bp) {
2411                 /*
2412                  * None of the breakpoint bits are set meaning this
2413                  * trap was not caused by any of the debug registers
2414                  */
2415                 return 0;
2416         }
2417 
2418         /*
2419          * at least one of the breakpoints were hit, check to see
2420          * which ones and if any of them are user space addresses
2421          */
2422 
2423         if (bp & 0x01) {
2424                 addr[nbp++] = (caddr_t)rdr0();
2425         }
2426         if (bp & 0x02) {
2427                 addr[nbp++] = (caddr_t)rdr1();
2428         }
2429         if (bp & 0x04) {
2430                 addr[nbp++] = (caddr_t)rdr2();
2431         }
2432         if (bp & 0x08) {
2433                 addr[nbp++] = (caddr_t)rdr3();
2434         }
2435 
2436         for (i = 0; i < nbp; i++) {
2437                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2438                         /*
2439                          * addr[i] is in user space
2440                          */
2441                         return nbp;
2442                 }
2443         }
2444 
2445         /*
2446          * None of the breakpoints are in user space.
2447          */
2448         return 0;
2449 }
2450 
2451 #ifdef KDB
2452 
2453 /*
2454  * Provide inb() and outb() as functions.  They are normally only available as
2455  * inline functions, thus cannot be called from the debugger.
2456  */
2457 
2458 /* silence compiler warnings */
2459 u_char inb_(u_short);
2460 void outb_(u_short, u_char);
2461 
2462 u_char
2463 inb_(u_short port)
2464 {
2465 	return inb(port);
2466 }
2467 
2468 void
2469 outb_(u_short port, u_char data)
2470 {
2471 	outb(port, data);
2472 }
2473 
2474 #endif /* KDB */
2475