xref: /freebsd/sys/amd64/amd64/mp_machdep.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1996, by Steve Passe
5  * Copyright (c) 2003, by Peter Wemm
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. The name of the developer may NOT be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_acpi.h"
33 #include "opt_cpu.h"
34 #include "opt_ddb.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_sched.h"
37 #include "opt_smp.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/cpuset.h>
43 #include <sys/domainset.h>
44 #ifdef GPROF
45 #include <sys/gmon.h>
46 #endif
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/mutex.h>
54 #include <sys/pcpu.h>
55 #include <sys/proc.h>
56 #include <sys/sched.h>
57 #include <sys/smp.h>
58 #include <sys/sysctl.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_extern.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67 
68 #include <x86/apicreg.h>
69 #include <machine/clock.h>
70 #include <machine/cputypes.h>
71 #include <machine/cpufunc.h>
72 #include <x86/mca.h>
73 #include <machine/md_var.h>
74 #include <machine/pcb.h>
75 #include <machine/psl.h>
76 #include <machine/smp.h>
77 #include <machine/specialreg.h>
78 #include <machine/tss.h>
79 #include <x86/ucode.h>
80 #include <machine/cpu.h>
81 #include <x86/init.h>
82 
83 #ifdef DEV_ACPI
84 #include <contrib/dev/acpica/include/acpi.h>
85 #include <dev/acpica/acpivar.h>
86 #endif
87 
88 #define WARMBOOT_TARGET		0
89 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
90 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
91 
92 #define CMOS_REG		(0x70)
93 #define CMOS_DATA		(0x71)
94 #define BIOS_RESET		(0x0f)
95 #define BIOS_WARM		(0x0a)
96 
97 #define GiB(v)			(v ## ULL << 30)
98 
99 #define	AP_BOOTPT_SZ		(PAGE_SIZE * 4)
100 
101 /* Temporary variables for init_secondary()  */
102 static char *doublefault_stack;
103 static char *mce_stack;
104 static char *nmi_stack;
105 static char *dbg_stack;
106 void *bootpcpu;
107 
108 extern u_int mptramp_la57;
109 extern u_int mptramp_nx;
110 
111 /*
112  * Local data and functions.
113  */
114 
115 static int start_ap(int apic_id, vm_paddr_t boot_address);
116 
117 /*
118  * Initialize the IPI handlers and start up the AP's.
119  */
120 void
121 cpu_mp_start(void)
122 {
123 	int i;
124 
125 	/* Initialize the logical ID to APIC ID table. */
126 	for (i = 0; i < MAXCPU; i++) {
127 		cpu_apic_ids[i] = -1;
128 	}
129 
130 	/* Install an inter-CPU IPI for cache and TLB invalidations. */
131 	setidt(IPI_INVLOP, pti ? IDTVEC(invlop_pti) : IDTVEC(invlop),
132 	    SDT_SYSIGT, SEL_KPL, 0);
133 
134 	/* Install an inter-CPU IPI for all-CPU rendezvous */
135 	setidt(IPI_RENDEZVOUS, pti ? IDTVEC(rendezvous_pti) :
136 	    IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
137 
138 	/* Install generic inter-CPU IPI handler */
139 	setidt(IPI_BITMAP_VECTOR, pti ? IDTVEC(ipi_intr_bitmap_handler_pti) :
140 	    IDTVEC(ipi_intr_bitmap_handler), SDT_SYSIGT, SEL_KPL, 0);
141 
142 	/* Install an inter-CPU IPI for CPU stop/restart */
143 	setidt(IPI_STOP, pti ? IDTVEC(cpustop_pti) : IDTVEC(cpustop),
144 	    SDT_SYSIGT, SEL_KPL, 0);
145 
146 	/* Install an inter-CPU IPI for CPU suspend/resume */
147 	setidt(IPI_SUSPEND, pti ? IDTVEC(cpususpend_pti) : IDTVEC(cpususpend),
148 	    SDT_SYSIGT, SEL_KPL, 0);
149 
150 	/* Install an IPI for calling delayed SWI */
151 	setidt(IPI_SWI, pti ? IDTVEC(ipi_swi_pti) : IDTVEC(ipi_swi),
152 	    SDT_SYSIGT, SEL_KPL, 0);
153 
154 	/* Set boot_cpu_id if needed. */
155 	if (boot_cpu_id == -1) {
156 		boot_cpu_id = PCPU_GET(apic_id);
157 		cpu_info[boot_cpu_id].cpu_bsp = 1;
158 	} else
159 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
160 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
161 
162 	/* Probe logical/physical core configuration. */
163 	topo_probe();
164 
165 	assign_cpu_ids();
166 
167 	mptramp_la57 = la57;
168 	mptramp_nx = pg_nx != 0;
169 	MPASS(kernel_pmap->pm_cr3 < (1UL << 32));
170 	mptramp_pagetables = kernel_pmap->pm_cr3;
171 
172 	/* Start each Application Processor */
173 	start_all_aps();
174 
175 	set_interrupt_apic_ids();
176 
177 #if defined(DEV_ACPI) && MAXMEMDOM > 1
178 	acpi_pxm_set_cpu_locality();
179 #endif
180 }
181 
182 /*
183  * AP CPU's call this to initialize themselves.
184  */
185 void
186 init_secondary(void)
187 {
188 	struct pcpu *pc;
189 	struct nmi_pcpu *np;
190 	struct user_segment_descriptor *gdt;
191 	struct region_descriptor ap_gdt;
192 	u_int64_t cr0;
193 	int cpu, gsel_tss, x;
194 
195 	/* Set by the startup code for us to use */
196 	cpu = bootAP;
197 
198 	/* Update microcode before doing anything else. */
199 	ucode_load_ap(cpu);
200 
201 	/* Initialize the PCPU area. */
202 	pc = bootpcpu;
203 	pcpu_init(pc, cpu, sizeof(struct pcpu));
204 	dpcpu_init(dpcpu, cpu);
205 	pc->pc_apic_id = cpu_apic_ids[cpu];
206 	pc->pc_prvspace = pc;
207 	pc->pc_curthread = 0;
208 	pc->pc_tssp = &pc->pc_common_tss;
209 	pc->pc_rsp0 = 0;
210 	pc->pc_pti_rsp0 = (((vm_offset_t)&pc->pc_pti_stack +
211 	    PC_PTI_STACK_SZ * sizeof(uint64_t)) & ~0xful);
212 	gdt = pc->pc_gdt;
213 	pc->pc_tss = (struct system_segment_descriptor *)&gdt[GPROC0_SEL];
214 	pc->pc_fs32p = &gdt[GUFS32_SEL];
215 	pc->pc_gs32p = &gdt[GUGS32_SEL];
216 	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL];
217 	pc->pc_ucr3_load_mask = PMAP_UCR3_NOMASK;
218 	/* See comment in pmap_bootstrap(). */
219 	pc->pc_pcid_next = PMAP_PCID_KERN + 2;
220 	pc->pc_pcid_gen = 1;
221 
222 	pc->pc_smp_tlb_gen = 1;
223 
224 	/* Init tss */
225 	pc->pc_common_tss = __pcpu[0].pc_common_tss;
226 	pc->pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
227 	    IOPERM_BITMAP_SIZE;
228 	pc->pc_common_tss.tss_rsp0 = 0;
229 
230 	/* The doublefault stack runs on IST1. */
231 	np = ((struct nmi_pcpu *)&doublefault_stack[DBLFAULT_STACK_SIZE]) - 1;
232 	np->np_pcpu = (register_t)pc;
233 	pc->pc_common_tss.tss_ist1 = (long)np;
234 
235 	/* The NMI stack runs on IST2. */
236 	np = ((struct nmi_pcpu *)&nmi_stack[NMI_STACK_SIZE]) - 1;
237 	np->np_pcpu = (register_t)pc;
238 	pc->pc_common_tss.tss_ist2 = (long)np;
239 
240 	/* The MC# stack runs on IST3. */
241 	np = ((struct nmi_pcpu *)&mce_stack[MCE_STACK_SIZE]) - 1;
242 	np->np_pcpu = (register_t)pc;
243 	pc->pc_common_tss.tss_ist3 = (long)np;
244 
245 	/* The DB# stack runs on IST4. */
246 	np = ((struct nmi_pcpu *)&dbg_stack[DBG_STACK_SIZE]) - 1;
247 	np->np_pcpu = (register_t)pc;
248 	pc->pc_common_tss.tss_ist4 = (long)np;
249 
250 	/* Prepare private GDT */
251 	gdt_segs[GPROC0_SEL].ssd_base = (long)&pc->pc_common_tss;
252 	for (x = 0; x < NGDT; x++) {
253 		if (x != GPROC0_SEL && x != GPROC0_SEL + 1 &&
254 		    x != GUSERLDT_SEL && x != GUSERLDT_SEL + 1)
255 			ssdtosd(&gdt_segs[x], &gdt[x]);
256 	}
257 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
258 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
259 	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
260 	ap_gdt.rd_base = (u_long)gdt;
261 	lgdt(&ap_gdt);			/* does magic intra-segment return */
262 
263 	wrmsr(MSR_FSBASE, 0);		/* User value */
264 	wrmsr(MSR_GSBASE, (uint64_t)pc);
265 	wrmsr(MSR_KGSBASE, 0);		/* User value */
266 	fix_cpuid();
267 
268 	lidt(&r_idt);
269 
270 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
271 	ltr(gsel_tss);
272 
273 	/*
274 	 * Set to a known state:
275 	 * Set by mpboot.s: CR0_PG, CR0_PE
276 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
277 	 */
278 	cr0 = rcr0();
279 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
280 	load_cr0(cr0);
281 
282 	amd64_conf_fast_syscall();
283 
284 	/* signal our startup to the BSP. */
285 	mp_naps++;
286 
287 	/* Spin until the BSP releases the AP's. */
288 	while (atomic_load_acq_int(&aps_ready) == 0)
289 		ia32_pause();
290 
291 	init_secondary_tail();
292 }
293 
294 /*******************************************************************
295  * local functions and data
296  */
297 
298 #ifdef NUMA
299 static void
300 mp_realloc_pcpu(int cpuid, int domain)
301 {
302 	vm_page_t m;
303 	vm_offset_t oa, na;
304 
305 	oa = (vm_offset_t)&__pcpu[cpuid];
306 	if (vm_phys_domain(pmap_kextract(oa)) == domain)
307 		return;
308 	m = vm_page_alloc_noobj_domain(domain, 0);
309 	if (m == NULL)
310 		return;
311 	na = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
312 	pagecopy((void *)oa, (void *)na);
313 	pmap_qenter((vm_offset_t)&__pcpu[cpuid], &m, 1);
314 	/* XXX old pcpu page leaked. */
315 }
316 #endif
317 
318 /*
319  * start each AP in our list
320  */
321 int
322 start_all_aps(void)
323 {
324 	vm_page_t m_boottramp, m_pml4, m_pdp, m_pd[4];
325 	pml5_entry_t old_pml45;
326 	pml4_entry_t *v_pml4;
327 	pdp_entry_t *v_pdp;
328 	pd_entry_t *v_pd;
329 	vm_paddr_t boot_address;
330 	u_int32_t mpbioswarmvec;
331 	int apic_id, cpu, domain, i;
332 	u_char mpbiosreason;
333 
334 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
335 
336 	MPASS(bootMP_size <= PAGE_SIZE);
337 	m_boottramp = vm_page_alloc_noobj_contig(0, 1, 0,
338 	    (1ULL << 20), /* Trampoline should be below 1M for real mode */
339 	    PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
340 	boot_address = VM_PAGE_TO_PHYS(m_boottramp);
341 
342 	/* Create a transient 1:1 mapping of low 4G */
343 	if (la57) {
344 		m_pml4 = pmap_page_alloc_below_4g(true);
345 		v_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
346 	} else {
347 		v_pml4 = &kernel_pmap->pm_pmltop[0];
348 	}
349 	m_pdp = pmap_page_alloc_below_4g(true);
350 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
351 	m_pd[0] = pmap_page_alloc_below_4g(false);
352 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[0]));
353 	for (i = 0; i < NPDEPG; i++)
354 		v_pd[i] = (i << PDRSHIFT) | X86_PG_V | X86_PG_RW | X86_PG_A |
355 		    X86_PG_M | PG_PS;
356 	m_pd[1] = pmap_page_alloc_below_4g(false);
357 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[1]));
358 	for (i = 0; i < NPDEPG; i++)
359 		v_pd[i] = (NBPDP + (i << PDRSHIFT)) | X86_PG_V | X86_PG_RW |
360 		    X86_PG_A | X86_PG_M | PG_PS;
361 	m_pd[2] = pmap_page_alloc_below_4g(false);
362 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[2]));
363 	for (i = 0; i < NPDEPG; i++)
364 		v_pd[i] = (2UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
365 		    X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
366 	m_pd[3] = pmap_page_alloc_below_4g(false);
367 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[3]));
368 	for (i = 0; i < NPDEPG; i++)
369 		v_pd[i] = (3UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
370 		    X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
371 	v_pdp[0] = VM_PAGE_TO_PHYS(m_pd[0]) | X86_PG_V |
372 	    X86_PG_RW | X86_PG_A | X86_PG_M;
373 	v_pdp[1] = VM_PAGE_TO_PHYS(m_pd[1]) | X86_PG_V |
374 	    X86_PG_RW | X86_PG_A | X86_PG_M;
375 	v_pdp[2] = VM_PAGE_TO_PHYS(m_pd[2]) | X86_PG_V |
376 	    X86_PG_RW | X86_PG_A | X86_PG_M;
377 	v_pdp[3] = VM_PAGE_TO_PHYS(m_pd[3]) | X86_PG_V |
378 	    X86_PG_RW | X86_PG_A | X86_PG_M;
379 	old_pml45 = kernel_pmap->pm_pmltop[0];
380 	if (la57) {
381 		kernel_pmap->pm_pmltop[0] = VM_PAGE_TO_PHYS(m_pml4) |
382 		    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
383 	}
384 	v_pml4[0] = VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V |
385 	    X86_PG_RW | X86_PG_A | X86_PG_M;
386 	pmap_invalidate_all(kernel_pmap);
387 
388 	/* copy the AP 1st level boot code */
389 	bcopy(mptramp_start, (void *)PHYS_TO_DMAP(boot_address), bootMP_size);
390 	if (bootverbose)
391 		printf("AP boot address %#lx\n", boot_address);
392 
393 	/* save the current value of the warm-start vector */
394 	if (!efi_boot)
395 		mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
396 	outb(CMOS_REG, BIOS_RESET);
397 	mpbiosreason = inb(CMOS_DATA);
398 
399 	/* setup a vector to our boot code */
400 	if (!efi_boot) {
401 		*((volatile u_short *)WARMBOOT_OFF) = WARMBOOT_TARGET;
402 		*((volatile u_short *)WARMBOOT_SEG) = (boot_address >> 4);
403 	}
404 	outb(CMOS_REG, BIOS_RESET);
405 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
406 
407 	/* Relocate pcpu areas to the correct domain. */
408 #ifdef NUMA
409 	if (vm_ndomains > 1)
410 		for (cpu = 1; cpu < mp_ncpus; cpu++) {
411 			apic_id = cpu_apic_ids[cpu];
412 			domain = acpi_pxm_get_cpu_locality(apic_id);
413 			mp_realloc_pcpu(cpu, domain);
414 		}
415 #endif
416 
417 	/* start each AP */
418 	domain = 0;
419 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
420 		apic_id = cpu_apic_ids[cpu];
421 #ifdef NUMA
422 		if (vm_ndomains > 1)
423 			domain = acpi_pxm_get_cpu_locality(apic_id);
424 #endif
425 		/* allocate and set up an idle stack data page */
426 		bootstacks[cpu] = kmem_malloc(kstack_pages * PAGE_SIZE,
427 		    M_WAITOK | M_ZERO);
428 		doublefault_stack = kmem_malloc(DBLFAULT_STACK_SIZE,
429 		    M_WAITOK | M_ZERO);
430 		mce_stack = kmem_malloc(MCE_STACK_SIZE,
431 		    M_WAITOK | M_ZERO);
432 		nmi_stack = kmem_malloc_domainset(
433 		    DOMAINSET_PREF(domain), NMI_STACK_SIZE, M_WAITOK | M_ZERO);
434 		dbg_stack = kmem_malloc_domainset(
435 		    DOMAINSET_PREF(domain), DBG_STACK_SIZE, M_WAITOK | M_ZERO);
436 		dpcpu = kmem_malloc_domainset(DOMAINSET_PREF(domain),
437 		    DPCPU_SIZE, M_WAITOK | M_ZERO);
438 
439 		bootpcpu = &__pcpu[cpu];
440 		bootSTK = (char *)bootstacks[cpu] +
441 		    kstack_pages * PAGE_SIZE - 8;
442 		bootAP = cpu;
443 
444 		/* attempt to start the Application Processor */
445 		if (!start_ap(apic_id, boot_address)) {
446 			/* restore the warmstart vector */
447 			if (!efi_boot)
448 				*(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
449 			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
450 		}
451 
452 		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
453 	}
454 
455 	/* restore the warmstart vector */
456 	if (!efi_boot)
457 		*(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
458 
459 	outb(CMOS_REG, BIOS_RESET);
460 	outb(CMOS_DATA, mpbiosreason);
461 
462 	/* Destroy transient 1:1 mapping */
463 	kernel_pmap->pm_pmltop[0] = old_pml45;
464 	invlpg(0);
465 	if (la57)
466 		vm_page_free(m_pml4);
467 	vm_page_free(m_pd[3]);
468 	vm_page_free(m_pd[2]);
469 	vm_page_free(m_pd[1]);
470 	vm_page_free(m_pd[0]);
471 	vm_page_free(m_pdp);
472 	vm_page_free(m_boottramp);
473 
474 	/* number of APs actually started */
475 	return (mp_naps);
476 }
477 
478 /*
479  * This function starts the AP (application processor) identified
480  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
481  * to accomplish this.  This is necessary because of the nuances
482  * of the different hardware we might encounter.  It isn't pretty,
483  * but it seems to work.
484  */
485 static int
486 start_ap(int apic_id, vm_paddr_t boot_address)
487 {
488 	int vector, ms;
489 	int cpus;
490 
491 	/* calculate the vector */
492 	vector = (boot_address >> 12) & 0xff;
493 
494 	/* used as a watchpoint to signal AP startup */
495 	cpus = mp_naps;
496 
497 	ipi_startup(apic_id, vector);
498 
499 	/* Wait up to 5 seconds for it to start. */
500 	for (ms = 0; ms < 5000; ms++) {
501 		if (mp_naps > cpus)
502 			return 1;	/* return SUCCESS */
503 		DELAY(1000);
504 	}
505 	return 0;		/* return FAILURE */
506 }
507 
508 /*
509  * Flush the TLB on other CPU's
510  */
511 
512 /*
513  * Invalidation request.  PCPU pc_smp_tlb_op uses u_int instead of the
514  * enum to avoid both namespace and ABI issues (with enums).
515  */
516 enum invl_op_codes {
517       INVL_OP_TLB		= 1,
518       INVL_OP_TLB_INVPCID	= 2,
519       INVL_OP_TLB_INVPCID_PTI	= 3,
520       INVL_OP_TLB_PCID		= 4,
521       INVL_OP_PGRNG		= 5,
522       INVL_OP_PGRNG_INVPCID	= 6,
523       INVL_OP_PGRNG_PCID	= 7,
524       INVL_OP_PG		= 8,
525       INVL_OP_PG_INVPCID	= 9,
526       INVL_OP_PG_PCID		= 10,
527       INVL_OP_CACHE		= 11,
528 };
529 
530 /*
531  * These variables are initialized at startup to reflect how each of
532  * the different kinds of invalidations should be performed on the
533  * current machine and environment.
534  */
535 static enum invl_op_codes invl_op_tlb;
536 static enum invl_op_codes invl_op_pgrng;
537 static enum invl_op_codes invl_op_pg;
538 
539 /*
540  * Scoreboard of IPI completion notifications from target to IPI initiator.
541  *
542  * Each CPU can initiate shootdown IPI independently from other CPUs.
543  * Initiator enters critical section, then fills its local PCPU
544  * shootdown info (pc_smp_tlb_ vars), then clears scoreboard generation
545  * at location (cpu, my_cpuid) for each target cpu.  After that IPI is
546  * sent to all targets which scan for zeroed scoreboard generation
547  * words.  Upon finding such word the shootdown data is read from
548  * corresponding cpu's pcpu, and generation is set.  Meantime initiator
549  * loops waiting for all zeroed generations in scoreboard to update.
550  */
551 static uint32_t *invl_scoreboard;
552 
553 static void
554 invl_scoreboard_init(void *arg __unused)
555 {
556 	u_int i;
557 
558 	invl_scoreboard = malloc(sizeof(uint32_t) * (mp_maxid + 1) *
559 	    (mp_maxid + 1), M_DEVBUF, M_WAITOK);
560 	for (i = 0; i < (mp_maxid + 1) * (mp_maxid + 1); i++)
561 		invl_scoreboard[i] = 1;
562 
563 	if (pmap_pcid_enabled) {
564 		if (invpcid_works) {
565 			if (pti)
566 				invl_op_tlb = INVL_OP_TLB_INVPCID_PTI;
567 			else
568 				invl_op_tlb = INVL_OP_TLB_INVPCID;
569 			invl_op_pgrng = INVL_OP_PGRNG_INVPCID;
570 			invl_op_pg = INVL_OP_PG_INVPCID;
571 		} else {
572 			invl_op_tlb = INVL_OP_TLB_PCID;
573 			invl_op_pgrng = INVL_OP_PGRNG_PCID;
574 			invl_op_pg = INVL_OP_PG_PCID;
575 		}
576 	} else {
577 		invl_op_tlb = INVL_OP_TLB;
578 		invl_op_pgrng = INVL_OP_PGRNG;
579 		invl_op_pg = INVL_OP_PG;
580 	}
581 }
582 SYSINIT(invl_ops, SI_SUB_SMP - 1, SI_ORDER_ANY, invl_scoreboard_init, NULL);
583 
584 static uint32_t *
585 invl_scoreboard_getcpu(u_int cpu)
586 {
587 	return (invl_scoreboard + cpu * (mp_maxid + 1));
588 }
589 
590 static uint32_t *
591 invl_scoreboard_slot(u_int cpu)
592 {
593 	return (invl_scoreboard_getcpu(cpu) + PCPU_GET(cpuid));
594 }
595 
596 /*
597  * Used by the pmap to request cache or TLB invalidation on local and
598  * remote processors.  Mask provides the set of remote CPUs that are
599  * to be signalled with the invalidation IPI.  As an optimization, the
600  * curcpu_cb callback is invoked on the calling CPU in a critical
601  * section while waiting for the remote CPUs to complete the operation.
602  *
603  * The callback function is called unconditionally on the caller's
604  * underlying processor, even when this processor is not set in the
605  * mask.  So, the callback function must be prepared to handle such
606  * spurious invocations.
607  *
608  * Interrupts must be enabled when calling the function with smp
609  * started, to avoid deadlock with other IPIs that are protected with
610  * smp_ipi_mtx spinlock at the initiator side.
611  *
612  * Function must be called with the thread pinned, and it unpins on
613  * completion.
614  */
615 static void
616 smp_targeted_tlb_shootdown(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2,
617     smp_invl_cb_t curcpu_cb, enum invl_op_codes op)
618 {
619 	cpuset_t mask;
620 	uint32_t generation, *p_cpudone;
621 	int cpu;
622 	bool is_all;
623 
624 	/*
625 	 * It is not necessary to signal other CPUs while booting or
626 	 * when in the debugger.
627 	 */
628 	if (__predict_false(kdb_active || KERNEL_PANICKED() || !smp_started))
629 		goto local_cb;
630 
631 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
632 
633 	/*
634 	 * Make a stable copy of the set of CPUs on which the pmap is active.
635 	 * See if we have to interrupt other CPUs.
636 	 */
637 	CPU_COPY(pmap_invalidate_cpu_mask(pmap), &mask);
638 	is_all = CPU_CMP(&mask, &all_cpus) == 0;
639 	CPU_CLR(curcpu, &mask);
640 	if (CPU_EMPTY(&mask))
641 		goto local_cb;
642 
643 	/*
644 	 * Initiator must have interrupts enabled, which prevents
645 	 * non-invalidation IPIs that take smp_ipi_mtx spinlock,
646 	 * from deadlocking with us.  On the other hand, preemption
647 	 * must be disabled to pin initiator to the instance of the
648 	 * pcpu pc_smp_tlb data and scoreboard line.
649 	 */
650 	KASSERT((read_rflags() & PSL_I) != 0,
651 	    ("smp_targeted_tlb_shootdown: interrupts disabled"));
652 	critical_enter();
653 
654 	PCPU_SET(smp_tlb_addr1, addr1);
655 	PCPU_SET(smp_tlb_addr2, addr2);
656 	PCPU_SET(smp_tlb_pmap, pmap);
657 	generation = PCPU_GET(smp_tlb_gen);
658 	if (++generation == 0)
659 		generation = 1;
660 	PCPU_SET(smp_tlb_gen, generation);
661 	PCPU_SET(smp_tlb_op, op);
662 	/* Fence between filling smp_tlb fields and clearing scoreboard. */
663 	atomic_thread_fence_rel();
664 
665 	CPU_FOREACH_ISSET(cpu, &mask) {
666 		KASSERT(*invl_scoreboard_slot(cpu) != 0,
667 		    ("IPI scoreboard is zero, initiator %d target %d",
668 		    curcpu, cpu));
669 		*invl_scoreboard_slot(cpu) = 0;
670 	}
671 
672 	/*
673 	 * IPI acts as a fence between writing to the scoreboard above
674 	 * (zeroing slot) and reading from it below (wait for
675 	 * acknowledgment).
676 	 */
677 	if (is_all) {
678 		ipi_all_but_self(IPI_INVLOP);
679 	} else {
680 		ipi_selected(mask, IPI_INVLOP);
681 	}
682 	curcpu_cb(pmap, addr1, addr2);
683 	CPU_FOREACH_ISSET(cpu, &mask) {
684 		p_cpudone = invl_scoreboard_slot(cpu);
685 		while (atomic_load_int(p_cpudone) != generation)
686 			ia32_pause();
687 	}
688 
689 	/*
690 	 * Unpin before leaving critical section.  If the thread owes
691 	 * preemption, this allows scheduler to select thread on any
692 	 * CPU from its cpuset.
693 	 */
694 	sched_unpin();
695 	critical_exit();
696 
697 	return;
698 
699 local_cb:
700 	critical_enter();
701 	curcpu_cb(pmap, addr1, addr2);
702 	sched_unpin();
703 	critical_exit();
704 }
705 
706 void
707 smp_masked_invltlb(pmap_t pmap, smp_invl_cb_t curcpu_cb)
708 {
709 	smp_targeted_tlb_shootdown(pmap, 0, 0, curcpu_cb, invl_op_tlb);
710 #ifdef COUNT_XINVLTLB_HITS
711 	ipi_global++;
712 #endif
713 }
714 
715 void
716 smp_masked_invlpg(vm_offset_t addr, pmap_t pmap, smp_invl_cb_t curcpu_cb)
717 {
718 	smp_targeted_tlb_shootdown(pmap, addr, 0, curcpu_cb, invl_op_pg);
719 #ifdef COUNT_XINVLTLB_HITS
720 	ipi_page++;
721 #endif
722 }
723 
724 void
725 smp_masked_invlpg_range(vm_offset_t addr1, vm_offset_t addr2, pmap_t pmap,
726     smp_invl_cb_t curcpu_cb)
727 {
728 	smp_targeted_tlb_shootdown(pmap, addr1, addr2, curcpu_cb,
729 	    invl_op_pgrng);
730 #ifdef COUNT_XINVLTLB_HITS
731 	ipi_range++;
732 	ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
733 #endif
734 }
735 
736 void
737 smp_cache_flush(smp_invl_cb_t curcpu_cb)
738 {
739 	smp_targeted_tlb_shootdown(kernel_pmap, 0, 0, curcpu_cb, INVL_OP_CACHE);
740 }
741 
742 /*
743  * Handlers for TLB related IPIs
744  */
745 static void
746 invltlb_handler(pmap_t smp_tlb_pmap)
747 {
748 #ifdef COUNT_XINVLTLB_HITS
749 	xhits_gbl[PCPU_GET(cpuid)]++;
750 #endif /* COUNT_XINVLTLB_HITS */
751 #ifdef COUNT_IPIS
752 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
753 #endif /* COUNT_IPIS */
754 
755 	if (smp_tlb_pmap == kernel_pmap)
756 		invltlb_glob();
757 	else
758 		invltlb();
759 }
760 
761 static void
762 invltlb_invpcid_handler(pmap_t smp_tlb_pmap)
763 {
764 	struct invpcid_descr d;
765 
766 #ifdef COUNT_XINVLTLB_HITS
767 	xhits_gbl[PCPU_GET(cpuid)]++;
768 #endif /* COUNT_XINVLTLB_HITS */
769 #ifdef COUNT_IPIS
770 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
771 #endif /* COUNT_IPIS */
772 
773 	d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
774 	d.pad = 0;
775 	d.addr = 0;
776 	invpcid(&d, smp_tlb_pmap == kernel_pmap ? INVPCID_CTXGLOB :
777 	    INVPCID_CTX);
778 }
779 
780 static void
781 invltlb_invpcid_pti_handler(pmap_t smp_tlb_pmap)
782 {
783 	struct invpcid_descr d;
784 
785 #ifdef COUNT_XINVLTLB_HITS
786 	xhits_gbl[PCPU_GET(cpuid)]++;
787 #endif /* COUNT_XINVLTLB_HITS */
788 #ifdef COUNT_IPIS
789 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
790 #endif /* COUNT_IPIS */
791 
792 	d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
793 	d.pad = 0;
794 	d.addr = 0;
795 	if (smp_tlb_pmap == kernel_pmap) {
796 		/*
797 		 * This invalidation actually needs to clear kernel
798 		 * mappings from the TLB in the current pmap, but
799 		 * since we were asked for the flush in the kernel
800 		 * pmap, achieve it by performing global flush.
801 		 */
802 		invpcid(&d, INVPCID_CTXGLOB);
803 	} else {
804 		invpcid(&d, INVPCID_CTX);
805 		if (smp_tlb_pmap == PCPU_GET(curpmap) &&
806 		    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
807 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
808 	}
809 }
810 
811 static void
812 invltlb_pcid_handler(pmap_t smp_tlb_pmap)
813 {
814 	uint32_t pcid;
815 
816 #ifdef COUNT_XINVLTLB_HITS
817 	xhits_gbl[PCPU_GET(cpuid)]++;
818 #endif /* COUNT_XINVLTLB_HITS */
819 #ifdef COUNT_IPIS
820 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
821 #endif /* COUNT_IPIS */
822 
823 	if (smp_tlb_pmap == kernel_pmap) {
824 		invltlb_glob();
825 	} else {
826 		/*
827 		 * The current pmap might not be equal to
828 		 * smp_tlb_pmap.  The clearing of the pm_gen in
829 		 * pmap_invalidate_all() takes care of TLB
830 		 * invalidation when switching to the pmap on this
831 		 * CPU.
832 		 */
833 		if (smp_tlb_pmap == PCPU_GET(curpmap)) {
834 			pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
835 			load_cr3(smp_tlb_pmap->pm_cr3 | pcid);
836 			if (smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
837 				PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
838 		}
839 	}
840 }
841 
842 static void
843 invlpg_handler(vm_offset_t smp_tlb_addr1)
844 {
845 #ifdef COUNT_XINVLTLB_HITS
846 	xhits_pg[PCPU_GET(cpuid)]++;
847 #endif /* COUNT_XINVLTLB_HITS */
848 #ifdef COUNT_IPIS
849 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
850 #endif /* COUNT_IPIS */
851 
852 	invlpg(smp_tlb_addr1);
853 }
854 
855 static void
856 invlpg_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
857 {
858 	struct invpcid_descr d;
859 
860 #ifdef COUNT_XINVLTLB_HITS
861 	xhits_pg[PCPU_GET(cpuid)]++;
862 #endif /* COUNT_XINVLTLB_HITS */
863 #ifdef COUNT_IPIS
864 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
865 #endif /* COUNT_IPIS */
866 
867 	invlpg(smp_tlb_addr1);
868 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
869 	    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
870 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
871 		d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid |
872 		    PMAP_PCID_USER_PT;
873 		d.pad = 0;
874 		d.addr = smp_tlb_addr1;
875 		invpcid(&d, INVPCID_ADDR);
876 	}
877 }
878 
879 static void
880 invlpg_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
881 {
882 	uint64_t kcr3, ucr3;
883 	uint32_t pcid;
884 
885 #ifdef COUNT_XINVLTLB_HITS
886 	xhits_pg[PCPU_GET(cpuid)]++;
887 #endif /* COUNT_XINVLTLB_HITS */
888 #ifdef COUNT_IPIS
889 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
890 #endif /* COUNT_IPIS */
891 
892 	invlpg(smp_tlb_addr1);
893 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
894 	    (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
895 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
896 		pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
897 		kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
898 		ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
899 		pmap_pti_pcid_invlpg(ucr3, kcr3, smp_tlb_addr1);
900 	}
901 }
902 
903 static void
904 invlrng_handler(vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
905 {
906 	vm_offset_t addr;
907 
908 #ifdef COUNT_XINVLTLB_HITS
909 	xhits_rng[PCPU_GET(cpuid)]++;
910 #endif /* COUNT_XINVLTLB_HITS */
911 #ifdef COUNT_IPIS
912 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
913 #endif /* COUNT_IPIS */
914 
915 	addr = smp_tlb_addr1;
916 	do {
917 		invlpg(addr);
918 		addr += PAGE_SIZE;
919 	} while (addr < smp_tlb_addr2);
920 }
921 
922 static void
923 invlrng_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
924     vm_offset_t smp_tlb_addr2)
925 {
926 	struct invpcid_descr d;
927 	vm_offset_t addr;
928 
929 #ifdef COUNT_XINVLTLB_HITS
930 	xhits_rng[PCPU_GET(cpuid)]++;
931 #endif /* COUNT_XINVLTLB_HITS */
932 #ifdef COUNT_IPIS
933 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
934 #endif /* COUNT_IPIS */
935 
936 	addr = smp_tlb_addr1;
937 	do {
938 		invlpg(addr);
939 		addr += PAGE_SIZE;
940 	} while (addr < smp_tlb_addr2);
941 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
942 	    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
943 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
944 		d.pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid |
945 		    PMAP_PCID_USER_PT;
946 		d.pad = 0;
947 		d.addr = smp_tlb_addr1;
948 		do {
949 			invpcid(&d, INVPCID_ADDR);
950 			d.addr += PAGE_SIZE;
951 		} while (d.addr < smp_tlb_addr2);
952 	}
953 }
954 
955 static void
956 invlrng_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
957     vm_offset_t smp_tlb_addr2)
958 {
959 	vm_offset_t addr;
960 	uint64_t kcr3, ucr3;
961 	uint32_t pcid;
962 
963 #ifdef COUNT_XINVLTLB_HITS
964 	xhits_rng[PCPU_GET(cpuid)]++;
965 #endif /* COUNT_XINVLTLB_HITS */
966 #ifdef COUNT_IPIS
967 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
968 #endif /* COUNT_IPIS */
969 
970 	addr = smp_tlb_addr1;
971 	do {
972 		invlpg(addr);
973 		addr += PAGE_SIZE;
974 	} while (addr < smp_tlb_addr2);
975 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
976 	    (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
977 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
978 		pcid = smp_tlb_pmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid;
979 		kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
980 		ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
981 		pmap_pti_pcid_invlrng(ucr3, kcr3, smp_tlb_addr1, smp_tlb_addr2);
982 	}
983 }
984 
985 static void
986 invlcache_handler(void)
987 {
988 #ifdef COUNT_IPIS
989 	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
990 #endif /* COUNT_IPIS */
991 	wbinvd();
992 }
993 
994 static void
995 invlop_handler_one_req(enum invl_op_codes smp_tlb_op, pmap_t smp_tlb_pmap,
996     vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
997 {
998 	switch (smp_tlb_op) {
999 	case INVL_OP_TLB:
1000 		invltlb_handler(smp_tlb_pmap);
1001 		break;
1002 	case INVL_OP_TLB_INVPCID:
1003 		invltlb_invpcid_handler(smp_tlb_pmap);
1004 		break;
1005 	case INVL_OP_TLB_INVPCID_PTI:
1006 		invltlb_invpcid_pti_handler(smp_tlb_pmap);
1007 		break;
1008 	case INVL_OP_TLB_PCID:
1009 		invltlb_pcid_handler(smp_tlb_pmap);
1010 		break;
1011 	case INVL_OP_PGRNG:
1012 		invlrng_handler(smp_tlb_addr1, smp_tlb_addr2);
1013 		break;
1014 	case INVL_OP_PGRNG_INVPCID:
1015 		invlrng_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1,
1016 		    smp_tlb_addr2);
1017 		break;
1018 	case INVL_OP_PGRNG_PCID:
1019 		invlrng_pcid_handler(smp_tlb_pmap, smp_tlb_addr1,
1020 		    smp_tlb_addr2);
1021 		break;
1022 	case INVL_OP_PG:
1023 		invlpg_handler(smp_tlb_addr1);
1024 		break;
1025 	case INVL_OP_PG_INVPCID:
1026 		invlpg_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1);
1027 		break;
1028 	case INVL_OP_PG_PCID:
1029 		invlpg_pcid_handler(smp_tlb_pmap, smp_tlb_addr1);
1030 		break;
1031 	case INVL_OP_CACHE:
1032 		invlcache_handler();
1033 		break;
1034 	default:
1035 		__assert_unreachable();
1036 		break;
1037 	}
1038 }
1039 
1040 void
1041 invlop_handler(void)
1042 {
1043 	struct pcpu *initiator_pc;
1044 	pmap_t smp_tlb_pmap;
1045 	vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
1046 	u_int initiator_cpu_id;
1047 	enum invl_op_codes smp_tlb_op;
1048 	uint32_t *scoreboard, smp_tlb_gen;
1049 
1050 	scoreboard = invl_scoreboard_getcpu(PCPU_GET(cpuid));
1051 	for (;;) {
1052 		for (initiator_cpu_id = 0; initiator_cpu_id <= mp_maxid;
1053 		    initiator_cpu_id++) {
1054 			if (atomic_load_int(&scoreboard[initiator_cpu_id]) == 0)
1055 				break;
1056 		}
1057 		if (initiator_cpu_id > mp_maxid)
1058 			break;
1059 		initiator_pc = cpuid_to_pcpu[initiator_cpu_id];
1060 
1061 		/*
1062 		 * This acquire fence and its corresponding release
1063 		 * fence in smp_targeted_tlb_shootdown() is between
1064 		 * reading zero scoreboard slot and accessing PCPU of
1065 		 * initiator for pc_smp_tlb values.
1066 		 */
1067 		atomic_thread_fence_acq();
1068 		smp_tlb_pmap = initiator_pc->pc_smp_tlb_pmap;
1069 		smp_tlb_addr1 = initiator_pc->pc_smp_tlb_addr1;
1070 		smp_tlb_addr2 = initiator_pc->pc_smp_tlb_addr2;
1071 		smp_tlb_op = initiator_pc->pc_smp_tlb_op;
1072 		smp_tlb_gen = initiator_pc->pc_smp_tlb_gen;
1073 
1074 		/*
1075 		 * Ensure that we do not make our scoreboard
1076 		 * notification visible to the initiator until the
1077 		 * pc_smp_tlb values are read.  The corresponding
1078 		 * fence is implicitly provided by the barrier in the
1079 		 * IPI send operation before the APIC ICR register
1080 		 * write.
1081 		 *
1082 		 * As an optimization, the request is acknowledged
1083 		 * before the actual invalidation is performed.  It is
1084 		 * safe because target CPU cannot return to userspace
1085 		 * before handler finishes. Only NMI can preempt the
1086 		 * handler, but NMI would see the kernel handler frame
1087 		 * and not touch not-invalidated user page table.
1088 		 */
1089 		atomic_thread_fence_acq();
1090 		atomic_store_int(&scoreboard[initiator_cpu_id], smp_tlb_gen);
1091 
1092 		invlop_handler_one_req(smp_tlb_op, smp_tlb_pmap, smp_tlb_addr1,
1093 		    smp_tlb_addr2);
1094 	}
1095 }
1096