xref: /freebsd/sys/amd64/amd64/pmap.c (revision 076ad2f8)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * All rights reserved.
50  *
51  * This software was developed for the FreeBSD Project by Jake Burkholder,
52  * Safeport Network Services, and Network Associates Laboratories, the
53  * Security Research Division of Network Associates, Inc. under
54  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55  * CHATS research program.
56  *
57  * Redistribution and use in source and binary forms, with or without
58  * modification, are permitted provided that the following conditions
59  * are met:
60  * 1. Redistributions of source code must retain the above copyright
61  *    notice, this list of conditions and the following disclaimer.
62  * 2. Redistributions in binary form must reproduce the above copyright
63  *    notice, this list of conditions and the following disclaimer in the
64  *    documentation and/or other materials provided with the distribution.
65  *
66  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
67  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
70  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76  * SUCH DAMAGE.
77  */
78 
79 #define	AMD64_NPT_AWARE
80 
81 #include <sys/cdefs.h>
82 __FBSDID("$FreeBSD$");
83 
84 /*
85  *	Manages physical address maps.
86  *
87  *	Since the information managed by this module is
88  *	also stored by the logical address mapping module,
89  *	this module may throw away valid virtual-to-physical
90  *	mappings at almost any time.  However, invalidations
91  *	of virtual-to-physical mappings must be done as
92  *	requested.
93  *
94  *	In order to cope with hardware architectures which
95  *	make virtual-to-physical map invalidates expensive,
96  *	this module may delay invalidate or reduced protection
97  *	operations until such time as they are actually
98  *	necessary.  This module is given full information as
99  *	to which processors are currently using which maps,
100  *	and to when physical maps must be made correct.
101  */
102 
103 #include "opt_pmap.h"
104 #include "opt_vm.h"
105 
106 #include <sys/param.h>
107 #include <sys/bitstring.h>
108 #include <sys/bus.h>
109 #include <sys/systm.h>
110 #include <sys/kernel.h>
111 #include <sys/ktr.h>
112 #include <sys/lock.h>
113 #include <sys/malloc.h>
114 #include <sys/mman.h>
115 #include <sys/mutex.h>
116 #include <sys/proc.h>
117 #include <sys/rwlock.h>
118 #include <sys/sx.h>
119 #include <sys/turnstile.h>
120 #include <sys/vmem.h>
121 #include <sys/vmmeter.h>
122 #include <sys/sched.h>
123 #include <sys/sysctl.h>
124 #include <sys/smp.h>
125 
126 #include <vm/vm.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_page.h>
130 #include <vm/vm_map.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_extern.h>
133 #include <vm/vm_pageout.h>
134 #include <vm/vm_pager.h>
135 #include <vm/vm_phys.h>
136 #include <vm/vm_radix.h>
137 #include <vm/vm_reserv.h>
138 #include <vm/uma.h>
139 
140 #include <machine/intr_machdep.h>
141 #include <x86/apicvar.h>
142 #include <machine/cpu.h>
143 #include <machine/cputypes.h>
144 #include <machine/md_var.h>
145 #include <machine/pcb.h>
146 #include <machine/specialreg.h>
147 #ifdef SMP
148 #include <machine/smp.h>
149 #endif
150 
151 static __inline boolean_t
152 pmap_type_guest(pmap_t pmap)
153 {
154 
155 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
156 }
157 
158 static __inline boolean_t
159 pmap_emulate_ad_bits(pmap_t pmap)
160 {
161 
162 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
163 }
164 
165 static __inline pt_entry_t
166 pmap_valid_bit(pmap_t pmap)
167 {
168 	pt_entry_t mask;
169 
170 	switch (pmap->pm_type) {
171 	case PT_X86:
172 	case PT_RVI:
173 		mask = X86_PG_V;
174 		break;
175 	case PT_EPT:
176 		if (pmap_emulate_ad_bits(pmap))
177 			mask = EPT_PG_EMUL_V;
178 		else
179 			mask = EPT_PG_READ;
180 		break;
181 	default:
182 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
183 	}
184 
185 	return (mask);
186 }
187 
188 static __inline pt_entry_t
189 pmap_rw_bit(pmap_t pmap)
190 {
191 	pt_entry_t mask;
192 
193 	switch (pmap->pm_type) {
194 	case PT_X86:
195 	case PT_RVI:
196 		mask = X86_PG_RW;
197 		break;
198 	case PT_EPT:
199 		if (pmap_emulate_ad_bits(pmap))
200 			mask = EPT_PG_EMUL_RW;
201 		else
202 			mask = EPT_PG_WRITE;
203 		break;
204 	default:
205 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
206 	}
207 
208 	return (mask);
209 }
210 
211 static __inline pt_entry_t
212 pmap_global_bit(pmap_t pmap)
213 {
214 	pt_entry_t mask;
215 
216 	switch (pmap->pm_type) {
217 	case PT_X86:
218 		mask = X86_PG_G;
219 		break;
220 	case PT_RVI:
221 	case PT_EPT:
222 		mask = 0;
223 		break;
224 	default:
225 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
226 	}
227 
228 	return (mask);
229 }
230 
231 static __inline pt_entry_t
232 pmap_accessed_bit(pmap_t pmap)
233 {
234 	pt_entry_t mask;
235 
236 	switch (pmap->pm_type) {
237 	case PT_X86:
238 	case PT_RVI:
239 		mask = X86_PG_A;
240 		break;
241 	case PT_EPT:
242 		if (pmap_emulate_ad_bits(pmap))
243 			mask = EPT_PG_READ;
244 		else
245 			mask = EPT_PG_A;
246 		break;
247 	default:
248 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
249 	}
250 
251 	return (mask);
252 }
253 
254 static __inline pt_entry_t
255 pmap_modified_bit(pmap_t pmap)
256 {
257 	pt_entry_t mask;
258 
259 	switch (pmap->pm_type) {
260 	case PT_X86:
261 	case PT_RVI:
262 		mask = X86_PG_M;
263 		break;
264 	case PT_EPT:
265 		if (pmap_emulate_ad_bits(pmap))
266 			mask = EPT_PG_WRITE;
267 		else
268 			mask = EPT_PG_M;
269 		break;
270 	default:
271 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
272 	}
273 
274 	return (mask);
275 }
276 
277 extern	struct pcpu __pcpu[];
278 
279 #if !defined(DIAGNOSTIC)
280 #ifdef __GNUC_GNU_INLINE__
281 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
282 #else
283 #define PMAP_INLINE	extern inline
284 #endif
285 #else
286 #define PMAP_INLINE
287 #endif
288 
289 #ifdef PV_STATS
290 #define PV_STAT(x)	do { x ; } while (0)
291 #else
292 #define PV_STAT(x)	do { } while (0)
293 #endif
294 
295 #define	pa_index(pa)	((pa) >> PDRSHIFT)
296 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
297 
298 #define	NPV_LIST_LOCKS	MAXCPU
299 
300 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
301 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
302 
303 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
304 	struct rwlock **_lockp = (lockp);		\
305 	struct rwlock *_new_lock;			\
306 							\
307 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
308 	if (_new_lock != *_lockp) {			\
309 		if (*_lockp != NULL)			\
310 			rw_wunlock(*_lockp);		\
311 		*_lockp = _new_lock;			\
312 		rw_wlock(*_lockp);			\
313 	}						\
314 } while (0)
315 
316 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
317 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
318 
319 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
320 	struct rwlock **_lockp = (lockp);		\
321 							\
322 	if (*_lockp != NULL) {				\
323 		rw_wunlock(*_lockp);			\
324 		*_lockp = NULL;				\
325 	}						\
326 } while (0)
327 
328 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
329 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
330 
331 struct pmap kernel_pmap_store;
332 
333 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
334 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
335 
336 int nkpt;
337 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
338     "Number of kernel page table pages allocated on bootup");
339 
340 static int ndmpdp;
341 vm_paddr_t dmaplimit;
342 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
343 pt_entry_t pg_nx;
344 
345 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
346 
347 static int pat_works = 1;
348 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
349     "Is page attribute table fully functional?");
350 
351 static int pg_ps_enabled = 1;
352 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
353     &pg_ps_enabled, 0, "Are large page mappings enabled?");
354 
355 #define	PAT_INDEX_SIZE	8
356 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
357 
358 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
359 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
360 u_int64_t		KPDPphys;	/* phys addr of kernel level 3 */
361 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
362 
363 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
364 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
365 static int		ndmpdpphys;	/* number of DMPDPphys pages */
366 
367 /*
368  * pmap_mapdev support pre initialization (i.e. console)
369  */
370 #define	PMAP_PREINIT_MAPPING_COUNT	8
371 static struct pmap_preinit_mapping {
372 	vm_paddr_t	pa;
373 	vm_offset_t	va;
374 	vm_size_t	sz;
375 	int		mode;
376 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
377 static int pmap_initialized;
378 
379 /*
380  * Data for the pv entry allocation mechanism.
381  * Updates to pv_invl_gen are protected by the pv_list_locks[]
382  * elements, but reads are not.
383  */
384 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
385 static struct mtx pv_chunks_mutex;
386 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
387 static u_long pv_invl_gen[NPV_LIST_LOCKS];
388 static struct md_page *pv_table;
389 static struct md_page pv_dummy;
390 
391 /*
392  * All those kernel PT submaps that BSD is so fond of
393  */
394 pt_entry_t *CMAP1 = NULL;
395 caddr_t CADDR1 = 0;
396 static vm_offset_t qframe = 0;
397 static struct mtx qframe_mtx;
398 
399 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
400 
401 int pmap_pcid_enabled = 1;
402 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
403     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
404 int invpcid_works = 0;
405 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
406     "Is the invpcid instruction available ?");
407 
408 static int
409 pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
410 {
411 	int i;
412 	uint64_t res;
413 
414 	res = 0;
415 	CPU_FOREACH(i) {
416 		res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
417 	}
418 	return (sysctl_handle_64(oidp, &res, 0, req));
419 }
420 SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RW |
421     CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
422     "Count of saved TLB context on switch");
423 
424 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
425     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
426 static struct mtx invl_gen_mtx;
427 static u_long pmap_invl_gen = 0;
428 /* Fake lock object to satisfy turnstiles interface. */
429 static struct lock_object invl_gen_ts = {
430 	.lo_name = "invlts",
431 };
432 
433 #define	PMAP_ASSERT_NOT_IN_DI() \
434     KASSERT(curthread->td_md.md_invl_gen.gen == 0, ("DI already started"))
435 
436 /*
437  * Start a new Delayed Invalidation (DI) block of code, executed by
438  * the current thread.  Within a DI block, the current thread may
439  * destroy both the page table and PV list entries for a mapping and
440  * then release the corresponding PV list lock before ensuring that
441  * the mapping is flushed from the TLBs of any processors with the
442  * pmap active.
443  */
444 static void
445 pmap_delayed_invl_started(void)
446 {
447 	struct pmap_invl_gen *invl_gen;
448 	u_long currgen;
449 
450 	invl_gen = &curthread->td_md.md_invl_gen;
451 	PMAP_ASSERT_NOT_IN_DI();
452 	mtx_lock(&invl_gen_mtx);
453 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
454 		currgen = pmap_invl_gen;
455 	else
456 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
457 	invl_gen->gen = currgen + 1;
458 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
459 	mtx_unlock(&invl_gen_mtx);
460 }
461 
462 /*
463  * Finish the DI block, previously started by the current thread.  All
464  * required TLB flushes for the pages marked by
465  * pmap_delayed_invl_page() must be finished before this function is
466  * called.
467  *
468  * This function works by bumping the global DI generation number to
469  * the generation number of the current thread's DI, unless there is a
470  * pending DI that started earlier.  In the latter case, bumping the
471  * global DI generation number would incorrectly signal that the
472  * earlier DI had finished.  Instead, this function bumps the earlier
473  * DI's generation number to match the generation number of the
474  * current thread's DI.
475  */
476 static void
477 pmap_delayed_invl_finished(void)
478 {
479 	struct pmap_invl_gen *invl_gen, *next;
480 	struct turnstile *ts;
481 
482 	invl_gen = &curthread->td_md.md_invl_gen;
483 	KASSERT(invl_gen->gen != 0, ("missed invl_started"));
484 	mtx_lock(&invl_gen_mtx);
485 	next = LIST_NEXT(invl_gen, link);
486 	if (next == NULL) {
487 		turnstile_chain_lock(&invl_gen_ts);
488 		ts = turnstile_lookup(&invl_gen_ts);
489 		pmap_invl_gen = invl_gen->gen;
490 		if (ts != NULL) {
491 			turnstile_broadcast(ts, TS_SHARED_QUEUE);
492 			turnstile_unpend(ts, TS_SHARED_LOCK);
493 		}
494 		turnstile_chain_unlock(&invl_gen_ts);
495 	} else {
496 		next->gen = invl_gen->gen;
497 	}
498 	LIST_REMOVE(invl_gen, link);
499 	mtx_unlock(&invl_gen_mtx);
500 	invl_gen->gen = 0;
501 }
502 
503 #ifdef PV_STATS
504 static long invl_wait;
505 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait, CTLFLAG_RD, &invl_wait, 0,
506     "Number of times DI invalidation blocked pmap_remove_all/write");
507 #endif
508 
509 static u_long *
510 pmap_delayed_invl_genp(vm_page_t m)
511 {
512 
513 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
514 }
515 
516 /*
517  * Ensure that all currently executing DI blocks, that need to flush
518  * TLB for the given page m, actually flushed the TLB at the time the
519  * function returned.  If the page m has an empty PV list and we call
520  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
521  * valid mapping for the page m in either its page table or TLB.
522  *
523  * This function works by blocking until the global DI generation
524  * number catches up with the generation number associated with the
525  * given page m and its PV list.  Since this function's callers
526  * typically own an object lock and sometimes own a page lock, it
527  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
528  * processor.
529  */
530 static void
531 pmap_delayed_invl_wait(vm_page_t m)
532 {
533 	struct thread *td;
534 	struct turnstile *ts;
535 	u_long *m_gen;
536 #ifdef PV_STATS
537 	bool accounted = false;
538 #endif
539 
540 	td = curthread;
541 	m_gen = pmap_delayed_invl_genp(m);
542 	while (*m_gen > pmap_invl_gen) {
543 #ifdef PV_STATS
544 		if (!accounted) {
545 			atomic_add_long(&invl_wait, 1);
546 			accounted = true;
547 		}
548 #endif
549 		ts = turnstile_trywait(&invl_gen_ts);
550 		if (*m_gen > pmap_invl_gen)
551 			turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
552 		else
553 			turnstile_cancel(ts);
554 	}
555 }
556 
557 /*
558  * Mark the page m's PV list as participating in the current thread's
559  * DI block.  Any threads concurrently using m's PV list to remove or
560  * restrict all mappings to m will wait for the current thread's DI
561  * block to complete before proceeding.
562  *
563  * The function works by setting the DI generation number for m's PV
564  * list to at least the DI generation number of the current thread.
565  * This forces a caller of pmap_delayed_invl_wait() to block until
566  * current thread calls pmap_delayed_invl_finished().
567  */
568 static void
569 pmap_delayed_invl_page(vm_page_t m)
570 {
571 	u_long gen, *m_gen;
572 
573 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
574 	gen = curthread->td_md.md_invl_gen.gen;
575 	if (gen == 0)
576 		return;
577 	m_gen = pmap_delayed_invl_genp(m);
578 	if (*m_gen < gen)
579 		*m_gen = gen;
580 }
581 
582 /*
583  * Crashdump maps.
584  */
585 static caddr_t crashdumpmap;
586 
587 static void	free_pv_chunk(struct pv_chunk *pc);
588 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
589 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
590 static int	popcnt_pc_map_pq(uint64_t *map);
591 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
592 static void	reserve_pv_entries(pmap_t pmap, int needed,
593 		    struct rwlock **lockp);
594 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
595 		    struct rwlock **lockp);
596 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
597 		    struct rwlock **lockp);
598 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
599 		    struct rwlock **lockp);
600 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
601 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
602 		    vm_offset_t va);
603 
604 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
605 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
606 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
607     vm_offset_t va, struct rwlock **lockp);
608 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
609     vm_offset_t va);
610 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
611     vm_prot_t prot, struct rwlock **lockp);
612 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
613     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
614 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
615 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
616 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
617 		    pd_entry_t pde);
618 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
619 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask);
620 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
621     struct rwlock **lockp);
622 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
623     vm_prot_t prot);
624 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask);
625 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
626     struct spglist *free, struct rwlock **lockp);
627 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
628     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
629 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
630 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
631     struct spglist *free);
632 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
633     vm_page_t m, struct rwlock **lockp);
634 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
635     pd_entry_t newpde);
636 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
637 
638 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
639 		struct rwlock **lockp);
640 static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va,
641 		struct rwlock **lockp);
642 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
643 		struct rwlock **lockp);
644 
645 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
646     struct spglist *free);
647 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
648 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
649 
650 /*
651  * Move the kernel virtual free pointer to the next
652  * 2MB.  This is used to help improve performance
653  * by using a large (2MB) page for much of the kernel
654  * (.text, .data, .bss)
655  */
656 static vm_offset_t
657 pmap_kmem_choose(vm_offset_t addr)
658 {
659 	vm_offset_t newaddr = addr;
660 
661 	newaddr = roundup2(addr, NBPDR);
662 	return (newaddr);
663 }
664 
665 /********************/
666 /* Inline functions */
667 /********************/
668 
669 /* Return a non-clipped PD index for a given VA */
670 static __inline vm_pindex_t
671 pmap_pde_pindex(vm_offset_t va)
672 {
673 	return (va >> PDRSHIFT);
674 }
675 
676 
677 /* Return a pointer to the PML4 slot that corresponds to a VA */
678 static __inline pml4_entry_t *
679 pmap_pml4e(pmap_t pmap, vm_offset_t va)
680 {
681 
682 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
683 }
684 
685 /* Return a pointer to the PDP slot that corresponds to a VA */
686 static __inline pdp_entry_t *
687 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
688 {
689 	pdp_entry_t *pdpe;
690 
691 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
692 	return (&pdpe[pmap_pdpe_index(va)]);
693 }
694 
695 /* Return a pointer to the PDP slot that corresponds to a VA */
696 static __inline pdp_entry_t *
697 pmap_pdpe(pmap_t pmap, vm_offset_t va)
698 {
699 	pml4_entry_t *pml4e;
700 	pt_entry_t PG_V;
701 
702 	PG_V = pmap_valid_bit(pmap);
703 	pml4e = pmap_pml4e(pmap, va);
704 	if ((*pml4e & PG_V) == 0)
705 		return (NULL);
706 	return (pmap_pml4e_to_pdpe(pml4e, va));
707 }
708 
709 /* Return a pointer to the PD slot that corresponds to a VA */
710 static __inline pd_entry_t *
711 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
712 {
713 	pd_entry_t *pde;
714 
715 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
716 	return (&pde[pmap_pde_index(va)]);
717 }
718 
719 /* Return a pointer to the PD slot that corresponds to a VA */
720 static __inline pd_entry_t *
721 pmap_pde(pmap_t pmap, vm_offset_t va)
722 {
723 	pdp_entry_t *pdpe;
724 	pt_entry_t PG_V;
725 
726 	PG_V = pmap_valid_bit(pmap);
727 	pdpe = pmap_pdpe(pmap, va);
728 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
729 		return (NULL);
730 	return (pmap_pdpe_to_pde(pdpe, va));
731 }
732 
733 /* Return a pointer to the PT slot that corresponds to a VA */
734 static __inline pt_entry_t *
735 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
736 {
737 	pt_entry_t *pte;
738 
739 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
740 	return (&pte[pmap_pte_index(va)]);
741 }
742 
743 /* Return a pointer to the PT slot that corresponds to a VA */
744 static __inline pt_entry_t *
745 pmap_pte(pmap_t pmap, vm_offset_t va)
746 {
747 	pd_entry_t *pde;
748 	pt_entry_t PG_V;
749 
750 	PG_V = pmap_valid_bit(pmap);
751 	pde = pmap_pde(pmap, va);
752 	if (pde == NULL || (*pde & PG_V) == 0)
753 		return (NULL);
754 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
755 		return ((pt_entry_t *)pde);
756 	return (pmap_pde_to_pte(pde, va));
757 }
758 
759 static __inline void
760 pmap_resident_count_inc(pmap_t pmap, int count)
761 {
762 
763 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
764 	pmap->pm_stats.resident_count += count;
765 }
766 
767 static __inline void
768 pmap_resident_count_dec(pmap_t pmap, int count)
769 {
770 
771 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
772 	KASSERT(pmap->pm_stats.resident_count >= count,
773 	    ("pmap %p resident count underflow %ld %d", pmap,
774 	    pmap->pm_stats.resident_count, count));
775 	pmap->pm_stats.resident_count -= count;
776 }
777 
778 PMAP_INLINE pt_entry_t *
779 vtopte(vm_offset_t va)
780 {
781 	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
782 
783 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
784 
785 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
786 }
787 
788 static __inline pd_entry_t *
789 vtopde(vm_offset_t va)
790 {
791 	u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
792 
793 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
794 
795 	return (PDmap + ((va >> PDRSHIFT) & mask));
796 }
797 
798 static u_int64_t
799 allocpages(vm_paddr_t *firstaddr, int n)
800 {
801 	u_int64_t ret;
802 
803 	ret = *firstaddr;
804 	bzero((void *)ret, n * PAGE_SIZE);
805 	*firstaddr += n * PAGE_SIZE;
806 	return (ret);
807 }
808 
809 CTASSERT(powerof2(NDMPML4E));
810 
811 /* number of kernel PDP slots */
812 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
813 
814 static void
815 nkpt_init(vm_paddr_t addr)
816 {
817 	int pt_pages;
818 
819 #ifdef NKPT
820 	pt_pages = NKPT;
821 #else
822 	pt_pages = howmany(addr, 1 << PDRSHIFT);
823 	pt_pages += NKPDPE(pt_pages);
824 
825 	/*
826 	 * Add some slop beyond the bare minimum required for bootstrapping
827 	 * the kernel.
828 	 *
829 	 * This is quite important when allocating KVA for kernel modules.
830 	 * The modules are required to be linked in the negative 2GB of
831 	 * the address space.  If we run out of KVA in this region then
832 	 * pmap_growkernel() will need to allocate page table pages to map
833 	 * the entire 512GB of KVA space which is an unnecessary tax on
834 	 * physical memory.
835 	 *
836 	 * Secondly, device memory mapped as part of setting up the low-
837 	 * level console(s) is taken from KVA, starting at virtual_avail.
838 	 * This is because cninit() is called after pmap_bootstrap() but
839 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
840 	 * not uncommon.
841 	 */
842 	pt_pages += 32;		/* 64MB additional slop. */
843 #endif
844 	nkpt = pt_pages;
845 }
846 
847 static void
848 create_pagetables(vm_paddr_t *firstaddr)
849 {
850 	int i, j, ndm1g, nkpdpe;
851 	pt_entry_t *pt_p;
852 	pd_entry_t *pd_p;
853 	pdp_entry_t *pdp_p;
854 	pml4_entry_t *p4_p;
855 
856 	/* Allocate page table pages for the direct map */
857 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
858 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
859 		ndmpdp = 4;
860 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
861 	if (ndmpdpphys > NDMPML4E) {
862 		/*
863 		 * Each NDMPML4E allows 512 GB, so limit to that,
864 		 * and then readjust ndmpdp and ndmpdpphys.
865 		 */
866 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
867 		Maxmem = atop(NDMPML4E * NBPML4);
868 		ndmpdpphys = NDMPML4E;
869 		ndmpdp = NDMPML4E * NPDEPG;
870 	}
871 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
872 	ndm1g = 0;
873 	if ((amd_feature & AMDID_PAGE1GB) != 0)
874 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
875 	if (ndm1g < ndmpdp)
876 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
877 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
878 
879 	/* Allocate pages */
880 	KPML4phys = allocpages(firstaddr, 1);
881 	KPDPphys = allocpages(firstaddr, NKPML4E);
882 
883 	/*
884 	 * Allocate the initial number of kernel page table pages required to
885 	 * bootstrap.  We defer this until after all memory-size dependent
886 	 * allocations are done (e.g. direct map), so that we don't have to
887 	 * build in too much slop in our estimate.
888 	 *
889 	 * Note that when NKPML4E > 1, we have an empty page underneath
890 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
891 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
892 	 */
893 	nkpt_init(*firstaddr);
894 	nkpdpe = NKPDPE(nkpt);
895 
896 	KPTphys = allocpages(firstaddr, nkpt);
897 	KPDphys = allocpages(firstaddr, nkpdpe);
898 
899 	/* Fill in the underlying page table pages */
900 	/* Nominally read-only (but really R/W) from zero to physfree */
901 	/* XXX not fully used, underneath 2M pages */
902 	pt_p = (pt_entry_t *)KPTphys;
903 	for (i = 0; ptoa(i) < *firstaddr; i++)
904 		pt_p[i] = ptoa(i) | X86_PG_RW | X86_PG_V | X86_PG_G;
905 
906 	/* Now map the page tables at their location within PTmap */
907 	pd_p = (pd_entry_t *)KPDphys;
908 	for (i = 0; i < nkpt; i++)
909 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
910 
911 	/* Map from zero to end of allocations under 2M pages */
912 	/* This replaces some of the KPTphys entries above */
913 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++)
914 		pd_p[i] = (i << PDRSHIFT) | X86_PG_RW | X86_PG_V | PG_PS |
915 		    X86_PG_G;
916 
917 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
918 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
919 	for (i = 0; i < nkpdpe; i++)
920 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
921 		    PG_U;
922 
923 	/*
924 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
925 	 * the end of physical memory is not aligned to a 1GB page boundary,
926 	 * then the residual physical memory is mapped with 2MB pages.  Later,
927 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
928 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
929 	 * that are partially used.
930 	 */
931 	pd_p = (pd_entry_t *)DMPDphys;
932 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
933 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
934 		/* Preset PG_M and PG_A because demotion expects it. */
935 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
936 		    X86_PG_M | X86_PG_A;
937 	}
938 	pdp_p = (pdp_entry_t *)DMPDPphys;
939 	for (i = 0; i < ndm1g; i++) {
940 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
941 		/* Preset PG_M and PG_A because demotion expects it. */
942 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
943 		    X86_PG_M | X86_PG_A;
944 	}
945 	for (j = 0; i < ndmpdp; i++, j++) {
946 		pdp_p[i] = DMPDphys + ptoa(j);
947 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_U;
948 	}
949 
950 	/* And recursively map PML4 to itself in order to get PTmap */
951 	p4_p = (pml4_entry_t *)KPML4phys;
952 	p4_p[PML4PML4I] = KPML4phys;
953 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | PG_U;
954 
955 	/* Connect the Direct Map slot(s) up to the PML4. */
956 	for (i = 0; i < ndmpdpphys; i++) {
957 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
958 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | PG_U;
959 	}
960 
961 	/* Connect the KVA slots up to the PML4 */
962 	for (i = 0; i < NKPML4E; i++) {
963 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
964 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V | PG_U;
965 	}
966 }
967 
968 /*
969  *	Bootstrap the system enough to run with virtual memory.
970  *
971  *	On amd64 this is called after mapping has already been enabled
972  *	and just syncs the pmap module with what has already been done.
973  *	[We can't call it easily with mapping off since the kernel is not
974  *	mapped with PA == VA, hence we would have to relocate every address
975  *	from the linked base (virtual) address "KERNBASE" to the actual
976  *	(physical) address starting relative to 0]
977  */
978 void
979 pmap_bootstrap(vm_paddr_t *firstaddr)
980 {
981 	vm_offset_t va;
982 	pt_entry_t *pte;
983 	int i;
984 
985 	/*
986 	 * Create an initial set of page tables to run the kernel in.
987 	 */
988 	create_pagetables(firstaddr);
989 
990 	/*
991 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
992 	 * preallocated kernel page table pages so that vm_page structures
993 	 * representing these pages will be created.  The vm_page structures
994 	 * are required for promotion of the corresponding kernel virtual
995 	 * addresses to superpage mappings.
996 	 */
997 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
998 
999 	virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
1000 	virtual_avail = pmap_kmem_choose(virtual_avail);
1001 
1002 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1003 
1004 
1005 	/* XXX do %cr0 as well */
1006 	load_cr4(rcr4() | CR4_PGE);
1007 	load_cr3(KPML4phys);
1008 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1009 		load_cr4(rcr4() | CR4_SMEP);
1010 
1011 	/*
1012 	 * Initialize the kernel pmap (which is statically allocated).
1013 	 */
1014 	PMAP_LOCK_INIT(kernel_pmap);
1015 	kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
1016 	kernel_pmap->pm_cr3 = KPML4phys;
1017 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
1018 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1019 	kernel_pmap->pm_flags = pmap_flags;
1020 
1021  	/*
1022 	 * Initialize the TLB invalidations generation number lock.
1023 	 */
1024 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1025 
1026 	/*
1027 	 * Reserve some special page table entries/VA space for temporary
1028 	 * mapping of pages.
1029 	 */
1030 #define	SYSMAP(c, p, v, n)	\
1031 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1032 
1033 	va = virtual_avail;
1034 	pte = vtopte(va);
1035 
1036 	/*
1037 	 * Crashdump maps.  The first page is reused as CMAP1 for the
1038 	 * memory test.
1039 	 */
1040 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
1041 	CADDR1 = crashdumpmap;
1042 
1043 	virtual_avail = va;
1044 
1045 	/*
1046 	 * Initialize the PAT MSR.
1047 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
1048 	 * side-effect, invalidates stale PG_G TLB entries that might
1049 	 * have been created in our pre-boot environment.
1050 	 */
1051 	pmap_init_pat();
1052 
1053 	/* Initialize TLB Context Id. */
1054 	TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled);
1055 	if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) {
1056 		/* Check for INVPCID support */
1057 		invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID)
1058 		    != 0;
1059 		for (i = 0; i < MAXCPU; i++) {
1060 			kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
1061 			kernel_pmap->pm_pcids[i].pm_gen = 1;
1062 		}
1063 		__pcpu[0].pc_pcid_next = PMAP_PCID_KERN + 1;
1064 		__pcpu[0].pc_pcid_gen = 1;
1065 		/*
1066 		 * pcpu area for APs is zeroed during AP startup.
1067 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
1068 		 * during pcpu setup.
1069 		 */
1070 		load_cr4(rcr4() | CR4_PCIDE);
1071 	} else {
1072 		pmap_pcid_enabled = 0;
1073 	}
1074 }
1075 
1076 /*
1077  * Setup the PAT MSR.
1078  */
1079 void
1080 pmap_init_pat(void)
1081 {
1082 	int pat_table[PAT_INDEX_SIZE];
1083 	uint64_t pat_msr;
1084 	u_long cr0, cr4;
1085 	int i;
1086 
1087 	/* Bail if this CPU doesn't implement PAT. */
1088 	if ((cpu_feature & CPUID_PAT) == 0)
1089 		panic("no PAT??");
1090 
1091 	/* Set default PAT index table. */
1092 	for (i = 0; i < PAT_INDEX_SIZE; i++)
1093 		pat_table[i] = -1;
1094 	pat_table[PAT_WRITE_BACK] = 0;
1095 	pat_table[PAT_WRITE_THROUGH] = 1;
1096 	pat_table[PAT_UNCACHEABLE] = 3;
1097 	pat_table[PAT_WRITE_COMBINING] = 3;
1098 	pat_table[PAT_WRITE_PROTECTED] = 3;
1099 	pat_table[PAT_UNCACHED] = 3;
1100 
1101 	/* Initialize default PAT entries. */
1102 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
1103 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
1104 	    PAT_VALUE(2, PAT_UNCACHED) |
1105 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
1106 	    PAT_VALUE(4, PAT_WRITE_BACK) |
1107 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
1108 	    PAT_VALUE(6, PAT_UNCACHED) |
1109 	    PAT_VALUE(7, PAT_UNCACHEABLE);
1110 
1111 	if (pat_works) {
1112 		/*
1113 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
1114 		 * Program 5 and 6 as WP and WC.
1115 		 * Leave 4 and 7 as WB and UC.
1116 		 */
1117 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
1118 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
1119 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
1120 		pat_table[PAT_UNCACHED] = 2;
1121 		pat_table[PAT_WRITE_PROTECTED] = 5;
1122 		pat_table[PAT_WRITE_COMBINING] = 6;
1123 	} else {
1124 		/*
1125 		 * Just replace PAT Index 2 with WC instead of UC-.
1126 		 */
1127 		pat_msr &= ~PAT_MASK(2);
1128 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
1129 		pat_table[PAT_WRITE_COMBINING] = 2;
1130 	}
1131 
1132 	/* Disable PGE. */
1133 	cr4 = rcr4();
1134 	load_cr4(cr4 & ~CR4_PGE);
1135 
1136 	/* Disable caches (CD = 1, NW = 0). */
1137 	cr0 = rcr0();
1138 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1139 
1140 	/* Flushes caches and TLBs. */
1141 	wbinvd();
1142 	invltlb();
1143 
1144 	/* Update PAT and index table. */
1145 	wrmsr(MSR_PAT, pat_msr);
1146 	for (i = 0; i < PAT_INDEX_SIZE; i++)
1147 		pat_index[i] = pat_table[i];
1148 
1149 	/* Flush caches and TLBs again. */
1150 	wbinvd();
1151 	invltlb();
1152 
1153 	/* Restore caches and PGE. */
1154 	load_cr0(cr0);
1155 	load_cr4(cr4);
1156 }
1157 
1158 /*
1159  *	Initialize a vm_page's machine-dependent fields.
1160  */
1161 void
1162 pmap_page_init(vm_page_t m)
1163 {
1164 
1165 	TAILQ_INIT(&m->md.pv_list);
1166 	m->md.pat_mode = PAT_WRITE_BACK;
1167 }
1168 
1169 /*
1170  *	Initialize the pmap module.
1171  *	Called by vm_init, to initialize any structures that the pmap
1172  *	system needs to map virtual memory.
1173  */
1174 void
1175 pmap_init(void)
1176 {
1177 	struct pmap_preinit_mapping *ppim;
1178 	vm_page_t mpte;
1179 	vm_size_t s;
1180 	int error, i, pv_npg;
1181 
1182 	/*
1183 	 * Initialize the vm page array entries for the kernel pmap's
1184 	 * page table pages.
1185 	 */
1186 	for (i = 0; i < nkpt; i++) {
1187 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
1188 		KASSERT(mpte >= vm_page_array &&
1189 		    mpte < &vm_page_array[vm_page_array_size],
1190 		    ("pmap_init: page table page is out of range"));
1191 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
1192 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
1193 	}
1194 
1195 	/*
1196 	 * If the kernel is running on a virtual machine, then it must assume
1197 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1198 	 * be prepared for the hypervisor changing the vendor and family that
1199 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1200 	 * 10h Erratum 383 is enabled if the processor's feature set does not
1201 	 * include at least one feature that is only supported by older Intel
1202 	 * or newer AMD processors.
1203 	 */
1204 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1205 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1206 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1207 	    AMDID2_FMA4)) == 0)
1208 		workaround_erratum383 = 1;
1209 
1210 	/*
1211 	 * Are large page mappings enabled?
1212 	 */
1213 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1214 	if (pg_ps_enabled) {
1215 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1216 		    ("pmap_init: can't assign to pagesizes[1]"));
1217 		pagesizes[1] = NBPDR;
1218 	}
1219 
1220 	/*
1221 	 * Initialize the pv chunk list mutex.
1222 	 */
1223 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
1224 
1225 	/*
1226 	 * Initialize the pool of pv list locks.
1227 	 */
1228 	for (i = 0; i < NPV_LIST_LOCKS; i++)
1229 		rw_init(&pv_list_locks[i], "pmap pv list");
1230 
1231 	/*
1232 	 * Calculate the size of the pv head table for superpages.
1233 	 */
1234 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
1235 
1236 	/*
1237 	 * Allocate memory for the pv head table for superpages.
1238 	 */
1239 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1240 	s = round_page(s);
1241 	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1242 	    M_WAITOK | M_ZERO);
1243 	for (i = 0; i < pv_npg; i++)
1244 		TAILQ_INIT(&pv_table[i].pv_list);
1245 	TAILQ_INIT(&pv_dummy.pv_list);
1246 
1247 	pmap_initialized = 1;
1248 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1249 		ppim = pmap_preinit_mapping + i;
1250 		if (ppim->va == 0)
1251 			continue;
1252 		/* Make the direct map consistent */
1253 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz < dmaplimit) {
1254 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
1255 			    ppim->sz, ppim->mode);
1256 		}
1257 		if (!bootverbose)
1258 			continue;
1259 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
1260 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
1261 	}
1262 
1263 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
1264 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
1265 	    (vmem_addr_t *)&qframe);
1266 	if (error != 0)
1267 		panic("qframe allocation failed");
1268 }
1269 
1270 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
1271     "2MB page mapping counters");
1272 
1273 static u_long pmap_pde_demotions;
1274 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
1275     &pmap_pde_demotions, 0, "2MB page demotions");
1276 
1277 static u_long pmap_pde_mappings;
1278 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
1279     &pmap_pde_mappings, 0, "2MB page mappings");
1280 
1281 static u_long pmap_pde_p_failures;
1282 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
1283     &pmap_pde_p_failures, 0, "2MB page promotion failures");
1284 
1285 static u_long pmap_pde_promotions;
1286 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
1287     &pmap_pde_promotions, 0, "2MB page promotions");
1288 
1289 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
1290     "1GB page mapping counters");
1291 
1292 static u_long pmap_pdpe_demotions;
1293 SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
1294     &pmap_pdpe_demotions, 0, "1GB page demotions");
1295 
1296 /***************************************************
1297  * Low level helper routines.....
1298  ***************************************************/
1299 
1300 static pt_entry_t
1301 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
1302 {
1303 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
1304 
1305 	switch (pmap->pm_type) {
1306 	case PT_X86:
1307 	case PT_RVI:
1308 		/* Verify that both PAT bits are not set at the same time */
1309 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
1310 		    ("Invalid PAT bits in entry %#lx", entry));
1311 
1312 		/* Swap the PAT bits if one of them is set */
1313 		if ((entry & x86_pat_bits) != 0)
1314 			entry ^= x86_pat_bits;
1315 		break;
1316 	case PT_EPT:
1317 		/*
1318 		 * Nothing to do - the memory attributes are represented
1319 		 * the same way for regular pages and superpages.
1320 		 */
1321 		break;
1322 	default:
1323 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
1324 	}
1325 
1326 	return (entry);
1327 }
1328 
1329 /*
1330  * Determine the appropriate bits to set in a PTE or PDE for a specified
1331  * caching mode.
1332  */
1333 int
1334 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
1335 {
1336 	int cache_bits, pat_flag, pat_idx;
1337 
1338 	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
1339 		panic("Unknown caching mode %d\n", mode);
1340 
1341 	switch (pmap->pm_type) {
1342 	case PT_X86:
1343 	case PT_RVI:
1344 		/* The PAT bit is different for PTE's and PDE's. */
1345 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
1346 
1347 		/* Map the caching mode to a PAT index. */
1348 		pat_idx = pat_index[mode];
1349 
1350 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1351 		cache_bits = 0;
1352 		if (pat_idx & 0x4)
1353 			cache_bits |= pat_flag;
1354 		if (pat_idx & 0x2)
1355 			cache_bits |= PG_NC_PCD;
1356 		if (pat_idx & 0x1)
1357 			cache_bits |= PG_NC_PWT;
1358 		break;
1359 
1360 	case PT_EPT:
1361 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
1362 		break;
1363 
1364 	default:
1365 		panic("unsupported pmap type %d", pmap->pm_type);
1366 	}
1367 
1368 	return (cache_bits);
1369 }
1370 
1371 static int
1372 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
1373 {
1374 	int mask;
1375 
1376 	switch (pmap->pm_type) {
1377 	case PT_X86:
1378 	case PT_RVI:
1379 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
1380 		break;
1381 	case PT_EPT:
1382 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
1383 		break;
1384 	default:
1385 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
1386 	}
1387 
1388 	return (mask);
1389 }
1390 
1391 static __inline boolean_t
1392 pmap_ps_enabled(pmap_t pmap)
1393 {
1394 
1395 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
1396 }
1397 
1398 static void
1399 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
1400 {
1401 
1402 	switch (pmap->pm_type) {
1403 	case PT_X86:
1404 		break;
1405 	case PT_RVI:
1406 	case PT_EPT:
1407 		/*
1408 		 * XXX
1409 		 * This is a little bogus since the generation number is
1410 		 * supposed to be bumped up when a region of the address
1411 		 * space is invalidated in the page tables.
1412 		 *
1413 		 * In this case the old PDE entry is valid but yet we want
1414 		 * to make sure that any mappings using the old entry are
1415 		 * invalidated in the TLB.
1416 		 *
1417 		 * The reason this works as expected is because we rendezvous
1418 		 * "all" host cpus and force any vcpu context to exit as a
1419 		 * side-effect.
1420 		 */
1421 		atomic_add_acq_long(&pmap->pm_eptgen, 1);
1422 		break;
1423 	default:
1424 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
1425 	}
1426 	pde_store(pde, newpde);
1427 }
1428 
1429 /*
1430  * After changing the page size for the specified virtual address in the page
1431  * table, flush the corresponding entries from the processor's TLB.  Only the
1432  * calling processor's TLB is affected.
1433  *
1434  * The calling thread must be pinned to a processor.
1435  */
1436 static void
1437 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
1438 {
1439 	pt_entry_t PG_G;
1440 
1441 	if (pmap_type_guest(pmap))
1442 		return;
1443 
1444 	KASSERT(pmap->pm_type == PT_X86,
1445 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
1446 
1447 	PG_G = pmap_global_bit(pmap);
1448 
1449 	if ((newpde & PG_PS) == 0)
1450 		/* Demotion: flush a specific 2MB page mapping. */
1451 		invlpg(va);
1452 	else if ((newpde & PG_G) == 0)
1453 		/*
1454 		 * Promotion: flush every 4KB page mapping from the TLB
1455 		 * because there are too many to flush individually.
1456 		 */
1457 		invltlb();
1458 	else {
1459 		/*
1460 		 * Promotion: flush every 4KB page mapping from the TLB,
1461 		 * including any global (PG_G) mappings.
1462 		 */
1463 		invltlb_glob();
1464 	}
1465 }
1466 #ifdef SMP
1467 
1468 /*
1469  * For SMP, these functions have to use the IPI mechanism for coherence.
1470  *
1471  * N.B.: Before calling any of the following TLB invalidation functions,
1472  * the calling processor must ensure that all stores updating a non-
1473  * kernel page table are globally performed.  Otherwise, another
1474  * processor could cache an old, pre-update entry without being
1475  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1476  * active on another processor after its pm_active field is checked by
1477  * one of the following functions but before a store updating the page
1478  * table is globally performed. (2) The pmap becomes active on another
1479  * processor before its pm_active field is checked but due to
1480  * speculative loads one of the following functions stills reads the
1481  * pmap as inactive on the other processor.
1482  *
1483  * The kernel page table is exempt because its pm_active field is
1484  * immutable.  The kernel page table is always active on every
1485  * processor.
1486  */
1487 
1488 /*
1489  * Interrupt the cpus that are executing in the guest context.
1490  * This will force the vcpu to exit and the cached EPT mappings
1491  * will be invalidated by the host before the next vmresume.
1492  */
1493 static __inline void
1494 pmap_invalidate_ept(pmap_t pmap)
1495 {
1496 	int ipinum;
1497 
1498 	sched_pin();
1499 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1500 	    ("pmap_invalidate_ept: absurd pm_active"));
1501 
1502 	/*
1503 	 * The TLB mappings associated with a vcpu context are not
1504 	 * flushed each time a different vcpu is chosen to execute.
1505 	 *
1506 	 * This is in contrast with a process's vtop mappings that
1507 	 * are flushed from the TLB on each context switch.
1508 	 *
1509 	 * Therefore we need to do more than just a TLB shootdown on
1510 	 * the active cpus in 'pmap->pm_active'. To do this we keep
1511 	 * track of the number of invalidations performed on this pmap.
1512 	 *
1513 	 * Each vcpu keeps a cache of this counter and compares it
1514 	 * just before a vmresume. If the counter is out-of-date an
1515 	 * invept will be done to flush stale mappings from the TLB.
1516 	 */
1517 	atomic_add_acq_long(&pmap->pm_eptgen, 1);
1518 
1519 	/*
1520 	 * Force the vcpu to exit and trap back into the hypervisor.
1521 	 */
1522 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
1523 	ipi_selected(pmap->pm_active, ipinum);
1524 	sched_unpin();
1525 }
1526 
1527 void
1528 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1529 {
1530 	cpuset_t *mask;
1531 	u_int cpuid, i;
1532 
1533 	if (pmap_type_guest(pmap)) {
1534 		pmap_invalidate_ept(pmap);
1535 		return;
1536 	}
1537 
1538 	KASSERT(pmap->pm_type == PT_X86,
1539 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
1540 
1541 	sched_pin();
1542 	if (pmap == kernel_pmap) {
1543 		invlpg(va);
1544 		mask = &all_cpus;
1545 	} else {
1546 		cpuid = PCPU_GET(cpuid);
1547 		if (pmap == PCPU_GET(curpmap))
1548 			invlpg(va);
1549 		else if (pmap_pcid_enabled)
1550 			pmap->pm_pcids[cpuid].pm_gen = 0;
1551 		if (pmap_pcid_enabled) {
1552 			CPU_FOREACH(i) {
1553 				if (cpuid != i)
1554 					pmap->pm_pcids[i].pm_gen = 0;
1555 			}
1556 		}
1557 		mask = &pmap->pm_active;
1558 	}
1559 	smp_masked_invlpg(*mask, va);
1560 	sched_unpin();
1561 }
1562 
1563 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1564 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1565 
1566 void
1567 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1568 {
1569 	cpuset_t *mask;
1570 	vm_offset_t addr;
1571 	u_int cpuid, i;
1572 
1573 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1574 		pmap_invalidate_all(pmap);
1575 		return;
1576 	}
1577 
1578 	if (pmap_type_guest(pmap)) {
1579 		pmap_invalidate_ept(pmap);
1580 		return;
1581 	}
1582 
1583 	KASSERT(pmap->pm_type == PT_X86,
1584 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
1585 
1586 	sched_pin();
1587 	cpuid = PCPU_GET(cpuid);
1588 	if (pmap == kernel_pmap) {
1589 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1590 			invlpg(addr);
1591 		mask = &all_cpus;
1592 	} else {
1593 		if (pmap == PCPU_GET(curpmap)) {
1594 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1595 				invlpg(addr);
1596 		} else if (pmap_pcid_enabled) {
1597 			pmap->pm_pcids[cpuid].pm_gen = 0;
1598 		}
1599 		if (pmap_pcid_enabled) {
1600 			CPU_FOREACH(i) {
1601 				if (cpuid != i)
1602 					pmap->pm_pcids[i].pm_gen = 0;
1603 			}
1604 		}
1605 		mask = &pmap->pm_active;
1606 	}
1607 	smp_masked_invlpg_range(*mask, sva, eva);
1608 	sched_unpin();
1609 }
1610 
1611 void
1612 pmap_invalidate_all(pmap_t pmap)
1613 {
1614 	cpuset_t *mask;
1615 	struct invpcid_descr d;
1616 	u_int cpuid, i;
1617 
1618 	if (pmap_type_guest(pmap)) {
1619 		pmap_invalidate_ept(pmap);
1620 		return;
1621 	}
1622 
1623 	KASSERT(pmap->pm_type == PT_X86,
1624 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
1625 
1626 	sched_pin();
1627 	if (pmap == kernel_pmap) {
1628 		if (pmap_pcid_enabled && invpcid_works) {
1629 			bzero(&d, sizeof(d));
1630 			invpcid(&d, INVPCID_CTXGLOB);
1631 		} else {
1632 			invltlb_glob();
1633 		}
1634 		mask = &all_cpus;
1635 	} else {
1636 		cpuid = PCPU_GET(cpuid);
1637 		if (pmap == PCPU_GET(curpmap)) {
1638 			if (pmap_pcid_enabled) {
1639 				if (invpcid_works) {
1640 					d.pcid = pmap->pm_pcids[cpuid].pm_pcid;
1641 					d.pad = 0;
1642 					d.addr = 0;
1643 					invpcid(&d, INVPCID_CTX);
1644 				} else {
1645 					load_cr3(pmap->pm_cr3 | pmap->pm_pcids
1646 					    [PCPU_GET(cpuid)].pm_pcid);
1647 				}
1648 			} else {
1649 				invltlb();
1650 			}
1651 		} else if (pmap_pcid_enabled) {
1652 			pmap->pm_pcids[cpuid].pm_gen = 0;
1653 		}
1654 		if (pmap_pcid_enabled) {
1655 			CPU_FOREACH(i) {
1656 				if (cpuid != i)
1657 					pmap->pm_pcids[i].pm_gen = 0;
1658 			}
1659 		}
1660 		mask = &pmap->pm_active;
1661 	}
1662 	smp_masked_invltlb(*mask, pmap);
1663 	sched_unpin();
1664 }
1665 
1666 void
1667 pmap_invalidate_cache(void)
1668 {
1669 
1670 	sched_pin();
1671 	wbinvd();
1672 	smp_cache_flush();
1673 	sched_unpin();
1674 }
1675 
1676 struct pde_action {
1677 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1678 	pmap_t pmap;
1679 	vm_offset_t va;
1680 	pd_entry_t *pde;
1681 	pd_entry_t newpde;
1682 	u_int store;		/* processor that updates the PDE */
1683 };
1684 
1685 static void
1686 pmap_update_pde_action(void *arg)
1687 {
1688 	struct pde_action *act = arg;
1689 
1690 	if (act->store == PCPU_GET(cpuid))
1691 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
1692 }
1693 
1694 static void
1695 pmap_update_pde_teardown(void *arg)
1696 {
1697 	struct pde_action *act = arg;
1698 
1699 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1700 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
1701 }
1702 
1703 /*
1704  * Change the page size for the specified virtual address in a way that
1705  * prevents any possibility of the TLB ever having two entries that map the
1706  * same virtual address using different page sizes.  This is the recommended
1707  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1708  * machine check exception for a TLB state that is improperly diagnosed as a
1709  * hardware error.
1710  */
1711 static void
1712 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1713 {
1714 	struct pde_action act;
1715 	cpuset_t active, other_cpus;
1716 	u_int cpuid;
1717 
1718 	sched_pin();
1719 	cpuid = PCPU_GET(cpuid);
1720 	other_cpus = all_cpus;
1721 	CPU_CLR(cpuid, &other_cpus);
1722 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
1723 		active = all_cpus;
1724 	else {
1725 		active = pmap->pm_active;
1726 	}
1727 	if (CPU_OVERLAP(&active, &other_cpus)) {
1728 		act.store = cpuid;
1729 		act.invalidate = active;
1730 		act.va = va;
1731 		act.pmap = pmap;
1732 		act.pde = pde;
1733 		act.newpde = newpde;
1734 		CPU_SET(cpuid, &active);
1735 		smp_rendezvous_cpus(active,
1736 		    smp_no_rendevous_barrier, pmap_update_pde_action,
1737 		    pmap_update_pde_teardown, &act);
1738 	} else {
1739 		pmap_update_pde_store(pmap, pde, newpde);
1740 		if (CPU_ISSET(cpuid, &active))
1741 			pmap_update_pde_invalidate(pmap, va, newpde);
1742 	}
1743 	sched_unpin();
1744 }
1745 #else /* !SMP */
1746 /*
1747  * Normal, non-SMP, invalidation functions.
1748  */
1749 void
1750 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1751 {
1752 
1753 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
1754 		pmap->pm_eptgen++;
1755 		return;
1756 	}
1757 	KASSERT(pmap->pm_type == PT_X86,
1758 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
1759 
1760 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
1761 		invlpg(va);
1762 	else if (pmap_pcid_enabled)
1763 		pmap->pm_pcids[0].pm_gen = 0;
1764 }
1765 
1766 void
1767 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1768 {
1769 	vm_offset_t addr;
1770 
1771 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
1772 		pmap->pm_eptgen++;
1773 		return;
1774 	}
1775 	KASSERT(pmap->pm_type == PT_X86,
1776 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
1777 
1778 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
1779 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1780 			invlpg(addr);
1781 	} else if (pmap_pcid_enabled) {
1782 		pmap->pm_pcids[0].pm_gen = 0;
1783 	}
1784 }
1785 
1786 void
1787 pmap_invalidate_all(pmap_t pmap)
1788 {
1789 	struct invpcid_descr d;
1790 
1791 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
1792 		pmap->pm_eptgen++;
1793 		return;
1794 	}
1795 	KASSERT(pmap->pm_type == PT_X86,
1796 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
1797 
1798 	if (pmap == kernel_pmap) {
1799 		if (pmap_pcid_enabled && invpcid_works) {
1800 			bzero(&d, sizeof(d));
1801 			invpcid(&d, INVPCID_CTXGLOB);
1802 		} else {
1803 			invltlb_glob();
1804 		}
1805 	} else if (pmap == PCPU_GET(curpmap)) {
1806 		if (pmap_pcid_enabled) {
1807 			if (invpcid_works) {
1808 				d.pcid = pmap->pm_pcids[0].pm_pcid;
1809 				d.pad = 0;
1810 				d.addr = 0;
1811 				invpcid(&d, INVPCID_CTX);
1812 			} else {
1813 				load_cr3(pmap->pm_cr3 | pmap->pm_pcids[0].
1814 				    pm_pcid);
1815 			}
1816 		} else {
1817 			invltlb();
1818 		}
1819 	} else if (pmap_pcid_enabled) {
1820 		pmap->pm_pcids[0].pm_gen = 0;
1821 	}
1822 }
1823 
1824 PMAP_INLINE void
1825 pmap_invalidate_cache(void)
1826 {
1827 
1828 	wbinvd();
1829 }
1830 
1831 static void
1832 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1833 {
1834 
1835 	pmap_update_pde_store(pmap, pde, newpde);
1836 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
1837 		pmap_update_pde_invalidate(pmap, va, newpde);
1838 	else
1839 		pmap->pm_pcids[0].pm_gen = 0;
1840 }
1841 #endif /* !SMP */
1842 
1843 static void
1844 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1845 {
1846 
1847 	/*
1848 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1849 	 * by a promotion that did not invalidate the 512 4KB page mappings
1850 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1851 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1852 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
1853 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1854 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
1855 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1856 	 * TLB.
1857 	 */
1858 	if ((pde & PG_PROMOTED) != 0)
1859 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
1860 	else
1861 		pmap_invalidate_page(pmap, va);
1862 }
1863 
1864 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
1865 
1866 void
1867 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1868 {
1869 
1870 	if (force) {
1871 		sva &= ~(vm_offset_t)cpu_clflush_line_size;
1872 	} else {
1873 		KASSERT((sva & PAGE_MASK) == 0,
1874 		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1875 		KASSERT((eva & PAGE_MASK) == 0,
1876 		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1877 	}
1878 
1879 	if ((cpu_feature & CPUID_SS) != 0 && !force)
1880 		; /* If "Self Snoop" is supported and allowed, do nothing. */
1881 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
1882 	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1883 		/*
1884 		 * XXX: Some CPUs fault, hang, or trash the local APIC
1885 		 * registers if we use CLFLUSH on the local APIC
1886 		 * range.  The local APIC is always uncached, so we
1887 		 * don't need to flush for that range anyway.
1888 		 */
1889 		if (pmap_kextract(sva) == lapic_paddr)
1890 			return;
1891 
1892 		/*
1893 		 * Otherwise, do per-cache line flush.  Use the sfence
1894 		 * instruction to insure that previous stores are
1895 		 * included in the write-back.  The processor
1896 		 * propagates flush to other processors in the cache
1897 		 * coherence domain.
1898 		 */
1899 		sfence();
1900 		for (; sva < eva; sva += cpu_clflush_line_size)
1901 			clflushopt(sva);
1902 		sfence();
1903 	} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1904 	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1905 		if (pmap_kextract(sva) == lapic_paddr)
1906 			return;
1907 		/*
1908 		 * Writes are ordered by CLFLUSH on Intel CPUs.
1909 		 */
1910 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1911 			mfence();
1912 		for (; sva < eva; sva += cpu_clflush_line_size)
1913 			clflush(sva);
1914 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1915 			mfence();
1916 	} else {
1917 
1918 		/*
1919 		 * No targeted cache flush methods are supported by CPU,
1920 		 * or the supplied range is bigger than 2MB.
1921 		 * Globally invalidate cache.
1922 		 */
1923 		pmap_invalidate_cache();
1924 	}
1925 }
1926 
1927 /*
1928  * Remove the specified set of pages from the data and instruction caches.
1929  *
1930  * In contrast to pmap_invalidate_cache_range(), this function does not
1931  * rely on the CPU's self-snoop feature, because it is intended for use
1932  * when moving pages into a different cache domain.
1933  */
1934 void
1935 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1936 {
1937 	vm_offset_t daddr, eva;
1938 	int i;
1939 	bool useclflushopt;
1940 
1941 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
1942 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1943 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
1944 		pmap_invalidate_cache();
1945 	else {
1946 		if (useclflushopt)
1947 			sfence();
1948 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
1949 			mfence();
1950 		for (i = 0; i < count; i++) {
1951 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1952 			eva = daddr + PAGE_SIZE;
1953 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
1954 				if (useclflushopt)
1955 					clflushopt(daddr);
1956 				else
1957 					clflush(daddr);
1958 			}
1959 		}
1960 		if (useclflushopt)
1961 			sfence();
1962 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
1963 			mfence();
1964 	}
1965 }
1966 
1967 /*
1968  *	Routine:	pmap_extract
1969  *	Function:
1970  *		Extract the physical page address associated
1971  *		with the given map/virtual_address pair.
1972  */
1973 vm_paddr_t
1974 pmap_extract(pmap_t pmap, vm_offset_t va)
1975 {
1976 	pdp_entry_t *pdpe;
1977 	pd_entry_t *pde;
1978 	pt_entry_t *pte, PG_V;
1979 	vm_paddr_t pa;
1980 
1981 	pa = 0;
1982 	PG_V = pmap_valid_bit(pmap);
1983 	PMAP_LOCK(pmap);
1984 	pdpe = pmap_pdpe(pmap, va);
1985 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
1986 		if ((*pdpe & PG_PS) != 0)
1987 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
1988 		else {
1989 			pde = pmap_pdpe_to_pde(pdpe, va);
1990 			if ((*pde & PG_V) != 0) {
1991 				if ((*pde & PG_PS) != 0) {
1992 					pa = (*pde & PG_PS_FRAME) |
1993 					    (va & PDRMASK);
1994 				} else {
1995 					pte = pmap_pde_to_pte(pde, va);
1996 					pa = (*pte & PG_FRAME) |
1997 					    (va & PAGE_MASK);
1998 				}
1999 			}
2000 		}
2001 	}
2002 	PMAP_UNLOCK(pmap);
2003 	return (pa);
2004 }
2005 
2006 /*
2007  *	Routine:	pmap_extract_and_hold
2008  *	Function:
2009  *		Atomically extract and hold the physical page
2010  *		with the given pmap and virtual address pair
2011  *		if that mapping permits the given protection.
2012  */
2013 vm_page_t
2014 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
2015 {
2016 	pd_entry_t pde, *pdep;
2017 	pt_entry_t pte, PG_RW, PG_V;
2018 	vm_paddr_t pa;
2019 	vm_page_t m;
2020 
2021 	pa = 0;
2022 	m = NULL;
2023 	PG_RW = pmap_rw_bit(pmap);
2024 	PG_V = pmap_valid_bit(pmap);
2025 	PMAP_LOCK(pmap);
2026 retry:
2027 	pdep = pmap_pde(pmap, va);
2028 	if (pdep != NULL && (pde = *pdep)) {
2029 		if (pde & PG_PS) {
2030 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
2031 				if (vm_page_pa_tryrelock(pmap, (pde &
2032 				    PG_PS_FRAME) | (va & PDRMASK), &pa))
2033 					goto retry;
2034 				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
2035 				    (va & PDRMASK));
2036 				vm_page_hold(m);
2037 			}
2038 		} else {
2039 			pte = *pmap_pde_to_pte(pdep, va);
2040 			if ((pte & PG_V) &&
2041 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
2042 				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
2043 				    &pa))
2044 					goto retry;
2045 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2046 				vm_page_hold(m);
2047 			}
2048 		}
2049 	}
2050 	PA_UNLOCK_COND(pa);
2051 	PMAP_UNLOCK(pmap);
2052 	return (m);
2053 }
2054 
2055 vm_paddr_t
2056 pmap_kextract(vm_offset_t va)
2057 {
2058 	pd_entry_t pde;
2059 	vm_paddr_t pa;
2060 
2061 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
2062 		pa = DMAP_TO_PHYS(va);
2063 	} else {
2064 		pde = *vtopde(va);
2065 		if (pde & PG_PS) {
2066 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
2067 		} else {
2068 			/*
2069 			 * Beware of a concurrent promotion that changes the
2070 			 * PDE at this point!  For example, vtopte() must not
2071 			 * be used to access the PTE because it would use the
2072 			 * new PDE.  It is, however, safe to use the old PDE
2073 			 * because the page table page is preserved by the
2074 			 * promotion.
2075 			 */
2076 			pa = *pmap_pde_to_pte(&pde, va);
2077 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
2078 		}
2079 	}
2080 	return (pa);
2081 }
2082 
2083 /***************************************************
2084  * Low level mapping routines.....
2085  ***************************************************/
2086 
2087 /*
2088  * Add a wired page to the kva.
2089  * Note: not SMP coherent.
2090  */
2091 PMAP_INLINE void
2092 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2093 {
2094 	pt_entry_t *pte;
2095 
2096 	pte = vtopte(va);
2097 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G);
2098 }
2099 
2100 static __inline void
2101 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
2102 {
2103 	pt_entry_t *pte;
2104 	int cache_bits;
2105 
2106 	pte = vtopte(va);
2107 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
2108 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G | cache_bits);
2109 }
2110 
2111 /*
2112  * Remove a page from the kernel pagetables.
2113  * Note: not SMP coherent.
2114  */
2115 PMAP_INLINE void
2116 pmap_kremove(vm_offset_t va)
2117 {
2118 	pt_entry_t *pte;
2119 
2120 	pte = vtopte(va);
2121 	pte_clear(pte);
2122 }
2123 
2124 /*
2125  *	Used to map a range of physical addresses into kernel
2126  *	virtual address space.
2127  *
2128  *	The value passed in '*virt' is a suggested virtual address for
2129  *	the mapping. Architectures which can support a direct-mapped
2130  *	physical to virtual region can return the appropriate address
2131  *	within that region, leaving '*virt' unchanged. Other
2132  *	architectures should map the pages starting at '*virt' and
2133  *	update '*virt' with the first usable address after the mapped
2134  *	region.
2135  */
2136 vm_offset_t
2137 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
2138 {
2139 	return PHYS_TO_DMAP(start);
2140 }
2141 
2142 
2143 /*
2144  * Add a list of wired pages to the kva
2145  * this routine is only used for temporary
2146  * kernel mappings that do not need to have
2147  * page modification or references recorded.
2148  * Note that old mappings are simply written
2149  * over.  The page *must* be wired.
2150  * Note: SMP coherent.  Uses a ranged shootdown IPI.
2151  */
2152 void
2153 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
2154 {
2155 	pt_entry_t *endpte, oldpte, pa, *pte;
2156 	vm_page_t m;
2157 	int cache_bits;
2158 
2159 	oldpte = 0;
2160 	pte = vtopte(sva);
2161 	endpte = pte + count;
2162 	while (pte < endpte) {
2163 		m = *ma++;
2164 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
2165 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
2166 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
2167 			oldpte |= *pte;
2168 			pte_store(pte, pa | X86_PG_G | X86_PG_RW | X86_PG_V);
2169 		}
2170 		pte++;
2171 	}
2172 	if (__predict_false((oldpte & X86_PG_V) != 0))
2173 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
2174 		    PAGE_SIZE);
2175 }
2176 
2177 /*
2178  * This routine tears out page mappings from the
2179  * kernel -- it is meant only for temporary mappings.
2180  * Note: SMP coherent.  Uses a ranged shootdown IPI.
2181  */
2182 void
2183 pmap_qremove(vm_offset_t sva, int count)
2184 {
2185 	vm_offset_t va;
2186 
2187 	va = sva;
2188 	while (count-- > 0) {
2189 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
2190 		pmap_kremove(va);
2191 		va += PAGE_SIZE;
2192 	}
2193 	pmap_invalidate_range(kernel_pmap, sva, va);
2194 }
2195 
2196 /***************************************************
2197  * Page table page management routines.....
2198  ***************************************************/
2199 static __inline void
2200 pmap_free_zero_pages(struct spglist *free)
2201 {
2202 	vm_page_t m;
2203 
2204 	while ((m = SLIST_FIRST(free)) != NULL) {
2205 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2206 		/* Preserve the page's PG_ZERO setting. */
2207 		vm_page_free_toq(m);
2208 	}
2209 }
2210 
2211 /*
2212  * Schedule the specified unused page table page to be freed.  Specifically,
2213  * add the page to the specified list of pages that will be released to the
2214  * physical memory manager after the TLB has been updated.
2215  */
2216 static __inline void
2217 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
2218     boolean_t set_PG_ZERO)
2219 {
2220 
2221 	if (set_PG_ZERO)
2222 		m->flags |= PG_ZERO;
2223 	else
2224 		m->flags &= ~PG_ZERO;
2225 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2226 }
2227 
2228 /*
2229  * Inserts the specified page table page into the specified pmap's collection
2230  * of idle page table pages.  Each of a pmap's page table pages is responsible
2231  * for mapping a distinct range of virtual addresses.  The pmap's collection is
2232  * ordered by this virtual address range.
2233  */
2234 static __inline int
2235 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
2236 {
2237 
2238 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2239 	return (vm_radix_insert(&pmap->pm_root, mpte));
2240 }
2241 
2242 /*
2243  * Removes the page table page mapping the specified virtual address from the
2244  * specified pmap's collection of idle page table pages, and returns it.
2245  * Otherwise, returns NULL if there is no page table page corresponding to the
2246  * specified virtual address.
2247  */
2248 static __inline vm_page_t
2249 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
2250 {
2251 
2252 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2253 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
2254 }
2255 
2256 /*
2257  * Decrements a page table page's wire count, which is used to record the
2258  * number of valid page table entries within the page.  If the wire count
2259  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
2260  * page table page was unmapped and FALSE otherwise.
2261  */
2262 static inline boolean_t
2263 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2264 {
2265 
2266 	--m->wire_count;
2267 	if (m->wire_count == 0) {
2268 		_pmap_unwire_ptp(pmap, va, m, free);
2269 		return (TRUE);
2270 	} else
2271 		return (FALSE);
2272 }
2273 
2274 static void
2275 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2276 {
2277 
2278 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2279 	/*
2280 	 * unmap the page table page
2281 	 */
2282 	if (m->pindex >= (NUPDE + NUPDPE)) {
2283 		/* PDP page */
2284 		pml4_entry_t *pml4;
2285 		pml4 = pmap_pml4e(pmap, va);
2286 		*pml4 = 0;
2287 	} else if (m->pindex >= NUPDE) {
2288 		/* PD page */
2289 		pdp_entry_t *pdp;
2290 		pdp = pmap_pdpe(pmap, va);
2291 		*pdp = 0;
2292 	} else {
2293 		/* PTE page */
2294 		pd_entry_t *pd;
2295 		pd = pmap_pde(pmap, va);
2296 		*pd = 0;
2297 	}
2298 	pmap_resident_count_dec(pmap, 1);
2299 	if (m->pindex < NUPDE) {
2300 		/* We just released a PT, unhold the matching PD */
2301 		vm_page_t pdpg;
2302 
2303 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
2304 		pmap_unwire_ptp(pmap, va, pdpg, free);
2305 	}
2306 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
2307 		/* We just released a PD, unhold the matching PDP */
2308 		vm_page_t pdppg;
2309 
2310 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
2311 		pmap_unwire_ptp(pmap, va, pdppg, free);
2312 	}
2313 
2314 	/*
2315 	 * This is a release store so that the ordinary store unmapping
2316 	 * the page table page is globally performed before TLB shoot-
2317 	 * down is begun.
2318 	 */
2319 	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
2320 
2321 	/*
2322 	 * Put page on a list so that it is released after
2323 	 * *ALL* TLB shootdown is done
2324 	 */
2325 	pmap_add_delayed_free_list(m, free, TRUE);
2326 }
2327 
2328 /*
2329  * After removing a page table entry, this routine is used to
2330  * conditionally free the page, and manage the hold/wire counts.
2331  */
2332 static int
2333 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
2334     struct spglist *free)
2335 {
2336 	vm_page_t mpte;
2337 
2338 	if (va >= VM_MAXUSER_ADDRESS)
2339 		return (0);
2340 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
2341 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2342 	return (pmap_unwire_ptp(pmap, va, mpte, free));
2343 }
2344 
2345 void
2346 pmap_pinit0(pmap_t pmap)
2347 {
2348 	int i;
2349 
2350 	PMAP_LOCK_INIT(pmap);
2351 	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
2352 	pmap->pm_cr3 = KPML4phys;
2353 	pmap->pm_root.rt_root = 0;
2354 	CPU_ZERO(&pmap->pm_active);
2355 	TAILQ_INIT(&pmap->pm_pvchunk);
2356 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2357 	pmap->pm_flags = pmap_flags;
2358 	CPU_FOREACH(i) {
2359 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
2360 		pmap->pm_pcids[i].pm_gen = 0;
2361 	}
2362 	PCPU_SET(curpmap, kernel_pmap);
2363 	pmap_activate(curthread);
2364 	CPU_FILL(&kernel_pmap->pm_active);
2365 }
2366 
2367 void
2368 pmap_pinit_pml4(vm_page_t pml4pg)
2369 {
2370 	pml4_entry_t *pm_pml4;
2371 	int i;
2372 
2373 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
2374 
2375 	/* Wire in kernel global address entries. */
2376 	for (i = 0; i < NKPML4E; i++) {
2377 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
2378 		    X86_PG_V | PG_U;
2379 	}
2380 	for (i = 0; i < ndmpdpphys; i++) {
2381 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
2382 		    X86_PG_V | PG_U;
2383 	}
2384 
2385 	/* install self-referential address mapping entry(s) */
2386 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
2387 	    X86_PG_A | X86_PG_M;
2388 }
2389 
2390 /*
2391  * Initialize a preallocated and zeroed pmap structure,
2392  * such as one in a vmspace structure.
2393  */
2394 int
2395 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
2396 {
2397 	vm_page_t pml4pg;
2398 	vm_paddr_t pml4phys;
2399 	int i;
2400 
2401 	/*
2402 	 * allocate the page directory page
2403 	 */
2404 	while ((pml4pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2405 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
2406 		VM_WAIT;
2407 
2408 	pml4phys = VM_PAGE_TO_PHYS(pml4pg);
2409 	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(pml4phys);
2410 	CPU_FOREACH(i) {
2411 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
2412 		pmap->pm_pcids[i].pm_gen = 0;
2413 	}
2414 	pmap->pm_cr3 = ~0;	/* initialize to an invalid value */
2415 
2416 	if ((pml4pg->flags & PG_ZERO) == 0)
2417 		pagezero(pmap->pm_pml4);
2418 
2419 	/*
2420 	 * Do not install the host kernel mappings in the nested page
2421 	 * tables. These mappings are meaningless in the guest physical
2422 	 * address space.
2423 	 */
2424 	if ((pmap->pm_type = pm_type) == PT_X86) {
2425 		pmap->pm_cr3 = pml4phys;
2426 		pmap_pinit_pml4(pml4pg);
2427 	}
2428 
2429 	pmap->pm_root.rt_root = 0;
2430 	CPU_ZERO(&pmap->pm_active);
2431 	TAILQ_INIT(&pmap->pm_pvchunk);
2432 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2433 	pmap->pm_flags = flags;
2434 	pmap->pm_eptgen = 0;
2435 
2436 	return (1);
2437 }
2438 
2439 int
2440 pmap_pinit(pmap_t pmap)
2441 {
2442 
2443 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
2444 }
2445 
2446 /*
2447  * This routine is called if the desired page table page does not exist.
2448  *
2449  * If page table page allocation fails, this routine may sleep before
2450  * returning NULL.  It sleeps only if a lock pointer was given.
2451  *
2452  * Note: If a page allocation fails at page table level two or three,
2453  * one or two pages may be held during the wait, only to be released
2454  * afterwards.  This conservative approach is easily argued to avoid
2455  * race conditions.
2456  */
2457 static vm_page_t
2458 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
2459 {
2460 	vm_page_t m, pdppg, pdpg;
2461 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
2462 
2463 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2464 
2465 	PG_A = pmap_accessed_bit(pmap);
2466 	PG_M = pmap_modified_bit(pmap);
2467 	PG_V = pmap_valid_bit(pmap);
2468 	PG_RW = pmap_rw_bit(pmap);
2469 
2470 	/*
2471 	 * Allocate a page table page.
2472 	 */
2473 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2474 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2475 		if (lockp != NULL) {
2476 			RELEASE_PV_LIST_LOCK(lockp);
2477 			PMAP_UNLOCK(pmap);
2478 			PMAP_ASSERT_NOT_IN_DI();
2479 			VM_WAIT;
2480 			PMAP_LOCK(pmap);
2481 		}
2482 
2483 		/*
2484 		 * Indicate the need to retry.  While waiting, the page table
2485 		 * page may have been allocated.
2486 		 */
2487 		return (NULL);
2488 	}
2489 	if ((m->flags & PG_ZERO) == 0)
2490 		pmap_zero_page(m);
2491 
2492 	/*
2493 	 * Map the pagetable page into the process address space, if
2494 	 * it isn't already there.
2495 	 */
2496 
2497 	if (ptepindex >= (NUPDE + NUPDPE)) {
2498 		pml4_entry_t *pml4;
2499 		vm_pindex_t pml4index;
2500 
2501 		/* Wire up a new PDPE page */
2502 		pml4index = ptepindex - (NUPDE + NUPDPE);
2503 		pml4 = &pmap->pm_pml4[pml4index];
2504 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2505 
2506 	} else if (ptepindex >= NUPDE) {
2507 		vm_pindex_t pml4index;
2508 		vm_pindex_t pdpindex;
2509 		pml4_entry_t *pml4;
2510 		pdp_entry_t *pdp;
2511 
2512 		/* Wire up a new PDE page */
2513 		pdpindex = ptepindex - NUPDE;
2514 		pml4index = pdpindex >> NPML4EPGSHIFT;
2515 
2516 		pml4 = &pmap->pm_pml4[pml4index];
2517 		if ((*pml4 & PG_V) == 0) {
2518 			/* Have to allocate a new pdp, recurse */
2519 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
2520 			    lockp) == NULL) {
2521 				--m->wire_count;
2522 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2523 				vm_page_free_zero(m);
2524 				return (NULL);
2525 			}
2526 		} else {
2527 			/* Add reference to pdp page */
2528 			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
2529 			pdppg->wire_count++;
2530 		}
2531 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2532 
2533 		/* Now find the pdp page */
2534 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2535 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2536 
2537 	} else {
2538 		vm_pindex_t pml4index;
2539 		vm_pindex_t pdpindex;
2540 		pml4_entry_t *pml4;
2541 		pdp_entry_t *pdp;
2542 		pd_entry_t *pd;
2543 
2544 		/* Wire up a new PTE page */
2545 		pdpindex = ptepindex >> NPDPEPGSHIFT;
2546 		pml4index = pdpindex >> NPML4EPGSHIFT;
2547 
2548 		/* First, find the pdp and check that its valid. */
2549 		pml4 = &pmap->pm_pml4[pml4index];
2550 		if ((*pml4 & PG_V) == 0) {
2551 			/* Have to allocate a new pd, recurse */
2552 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
2553 			    lockp) == NULL) {
2554 				--m->wire_count;
2555 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2556 				vm_page_free_zero(m);
2557 				return (NULL);
2558 			}
2559 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2560 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2561 		} else {
2562 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
2563 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
2564 			if ((*pdp & PG_V) == 0) {
2565 				/* Have to allocate a new pd, recurse */
2566 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
2567 				    lockp) == NULL) {
2568 					--m->wire_count;
2569 					atomic_subtract_int(&vm_cnt.v_wire_count,
2570 					    1);
2571 					vm_page_free_zero(m);
2572 					return (NULL);
2573 				}
2574 			} else {
2575 				/* Add reference to the pd page */
2576 				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2577 				pdpg->wire_count++;
2578 			}
2579 		}
2580 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
2581 
2582 		/* Now we know where the page directory page is */
2583 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
2584 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
2585 	}
2586 
2587 	pmap_resident_count_inc(pmap, 1);
2588 
2589 	return (m);
2590 }
2591 
2592 static vm_page_t
2593 pmap_allocpde(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2594 {
2595 	vm_pindex_t pdpindex, ptepindex;
2596 	pdp_entry_t *pdpe, PG_V;
2597 	vm_page_t pdpg;
2598 
2599 	PG_V = pmap_valid_bit(pmap);
2600 
2601 retry:
2602 	pdpe = pmap_pdpe(pmap, va);
2603 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
2604 		/* Add a reference to the pd page. */
2605 		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
2606 		pdpg->wire_count++;
2607 	} else {
2608 		/* Allocate a pd page. */
2609 		ptepindex = pmap_pde_pindex(va);
2610 		pdpindex = ptepindex >> NPDPEPGSHIFT;
2611 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
2612 		if (pdpg == NULL && lockp != NULL)
2613 			goto retry;
2614 	}
2615 	return (pdpg);
2616 }
2617 
2618 static vm_page_t
2619 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2620 {
2621 	vm_pindex_t ptepindex;
2622 	pd_entry_t *pd, PG_V;
2623 	vm_page_t m;
2624 
2625 	PG_V = pmap_valid_bit(pmap);
2626 
2627 	/*
2628 	 * Calculate pagetable page index
2629 	 */
2630 	ptepindex = pmap_pde_pindex(va);
2631 retry:
2632 	/*
2633 	 * Get the page directory entry
2634 	 */
2635 	pd = pmap_pde(pmap, va);
2636 
2637 	/*
2638 	 * This supports switching from a 2MB page to a
2639 	 * normal 4K page.
2640 	 */
2641 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
2642 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
2643 			/*
2644 			 * Invalidation of the 2MB page mapping may have caused
2645 			 * the deallocation of the underlying PD page.
2646 			 */
2647 			pd = NULL;
2648 		}
2649 	}
2650 
2651 	/*
2652 	 * If the page table page is mapped, we just increment the
2653 	 * hold count, and activate it.
2654 	 */
2655 	if (pd != NULL && (*pd & PG_V) != 0) {
2656 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2657 		m->wire_count++;
2658 	} else {
2659 		/*
2660 		 * Here if the pte page isn't mapped, or if it has been
2661 		 * deallocated.
2662 		 */
2663 		m = _pmap_allocpte(pmap, ptepindex, lockp);
2664 		if (m == NULL && lockp != NULL)
2665 			goto retry;
2666 	}
2667 	return (m);
2668 }
2669 
2670 
2671 /***************************************************
2672  * Pmap allocation/deallocation routines.
2673  ***************************************************/
2674 
2675 /*
2676  * Release any resources held by the given physical map.
2677  * Called when a pmap initialized by pmap_pinit is being released.
2678  * Should only be called if the map contains no valid mappings.
2679  */
2680 void
2681 pmap_release(pmap_t pmap)
2682 {
2683 	vm_page_t m;
2684 	int i;
2685 
2686 	KASSERT(pmap->pm_stats.resident_count == 0,
2687 	    ("pmap_release: pmap resident count %ld != 0",
2688 	    pmap->pm_stats.resident_count));
2689 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2690 	    ("pmap_release: pmap has reserved page table page(s)"));
2691 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2692 	    ("releasing active pmap %p", pmap));
2693 
2694 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4));
2695 
2696 	for (i = 0; i < NKPML4E; i++)	/* KVA */
2697 		pmap->pm_pml4[KPML4BASE + i] = 0;
2698 	for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
2699 		pmap->pm_pml4[DMPML4I + i] = 0;
2700 	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
2701 
2702 	m->wire_count--;
2703 	atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2704 	vm_page_free_zero(m);
2705 }
2706 
2707 static int
2708 kvm_size(SYSCTL_HANDLER_ARGS)
2709 {
2710 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
2711 
2712 	return sysctl_handle_long(oidp, &ksize, 0, req);
2713 }
2714 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2715     0, 0, kvm_size, "LU", "Size of KVM");
2716 
2717 static int
2718 kvm_free(SYSCTL_HANDLER_ARGS)
2719 {
2720 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2721 
2722 	return sysctl_handle_long(oidp, &kfree, 0, req);
2723 }
2724 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2725     0, 0, kvm_free, "LU", "Amount of KVM free");
2726 
2727 /*
2728  * grow the number of kernel page table entries, if needed
2729  */
2730 void
2731 pmap_growkernel(vm_offset_t addr)
2732 {
2733 	vm_paddr_t paddr;
2734 	vm_page_t nkpg;
2735 	pd_entry_t *pde, newpdir;
2736 	pdp_entry_t *pdpe;
2737 
2738 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2739 
2740 	/*
2741 	 * Return if "addr" is within the range of kernel page table pages
2742 	 * that were preallocated during pmap bootstrap.  Moreover, leave
2743 	 * "kernel_vm_end" and the kernel page table as they were.
2744 	 *
2745 	 * The correctness of this action is based on the following
2746 	 * argument: vm_map_insert() allocates contiguous ranges of the
2747 	 * kernel virtual address space.  It calls this function if a range
2748 	 * ends after "kernel_vm_end".  If the kernel is mapped between
2749 	 * "kernel_vm_end" and "addr", then the range cannot begin at
2750 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
2751 	 * than the kernel.  Thus, there is no immediate need to allocate
2752 	 * any new kernel page table pages between "kernel_vm_end" and
2753 	 * "KERNBASE".
2754 	 */
2755 	if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
2756 		return;
2757 
2758 	addr = roundup2(addr, NBPDR);
2759 	if (addr - 1 >= kernel_map->max_offset)
2760 		addr = kernel_map->max_offset;
2761 	while (kernel_vm_end < addr) {
2762 		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
2763 		if ((*pdpe & X86_PG_V) == 0) {
2764 			/* We need a new PDP entry */
2765 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
2766 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2767 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2768 			if (nkpg == NULL)
2769 				panic("pmap_growkernel: no memory to grow kernel");
2770 			if ((nkpg->flags & PG_ZERO) == 0)
2771 				pmap_zero_page(nkpg);
2772 			paddr = VM_PAGE_TO_PHYS(nkpg);
2773 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
2774 			    X86_PG_A | X86_PG_M);
2775 			continue; /* try again */
2776 		}
2777 		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
2778 		if ((*pde & X86_PG_V) != 0) {
2779 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2780 			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2781 				kernel_vm_end = kernel_map->max_offset;
2782 				break;
2783 			}
2784 			continue;
2785 		}
2786 
2787 		nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
2788 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2789 		    VM_ALLOC_ZERO);
2790 		if (nkpg == NULL)
2791 			panic("pmap_growkernel: no memory to grow kernel");
2792 		if ((nkpg->flags & PG_ZERO) == 0)
2793 			pmap_zero_page(nkpg);
2794 		paddr = VM_PAGE_TO_PHYS(nkpg);
2795 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
2796 		pde_store(pde, newpdir);
2797 
2798 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2799 		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2800 			kernel_vm_end = kernel_map->max_offset;
2801 			break;
2802 		}
2803 	}
2804 }
2805 
2806 
2807 /***************************************************
2808  * page management routines.
2809  ***************************************************/
2810 
2811 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2812 CTASSERT(_NPCM == 3);
2813 CTASSERT(_NPCPV == 168);
2814 
2815 static __inline struct pv_chunk *
2816 pv_to_chunk(pv_entry_t pv)
2817 {
2818 
2819 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2820 }
2821 
2822 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2823 
2824 #define	PC_FREE0	0xfffffffffffffffful
2825 #define	PC_FREE1	0xfffffffffffffffful
2826 #define	PC_FREE2	0x000000fffffffffful
2827 
2828 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
2829 
2830 #ifdef PV_STATS
2831 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2832 
2833 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2834 	"Current number of pv entry chunks");
2835 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2836 	"Current number of pv entry chunks allocated");
2837 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2838 	"Current number of pv entry chunks frees");
2839 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2840 	"Number of times tried to get a chunk page but failed.");
2841 
2842 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
2843 static int pv_entry_spare;
2844 
2845 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2846 	"Current number of pv entry frees");
2847 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2848 	"Current number of pv entry allocs");
2849 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2850 	"Current number of pv entries");
2851 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2852 	"Current number of spare pv entries");
2853 #endif
2854 
2855 /*
2856  * We are in a serious low memory condition.  Resort to
2857  * drastic measures to free some pages so we can allocate
2858  * another pv entry chunk.
2859  *
2860  * Returns NULL if PV entries were reclaimed from the specified pmap.
2861  *
2862  * We do not, however, unmap 2mpages because subsequent accesses will
2863  * allocate per-page pv entries until repromotion occurs, thereby
2864  * exacerbating the shortage of free pv entries.
2865  */
2866 static vm_page_t
2867 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2868 {
2869 	struct pch new_tail;
2870 	struct pv_chunk *pc;
2871 	struct md_page *pvh;
2872 	pd_entry_t *pde;
2873 	pmap_t pmap;
2874 	pt_entry_t *pte, tpte;
2875 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
2876 	pv_entry_t pv;
2877 	vm_offset_t va;
2878 	vm_page_t m, m_pc;
2879 	struct spglist free;
2880 	uint64_t inuse;
2881 	int bit, field, freed;
2882 
2883 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2884 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
2885 	pmap = NULL;
2886 	m_pc = NULL;
2887 	PG_G = PG_A = PG_M = PG_RW = 0;
2888 	SLIST_INIT(&free);
2889 	TAILQ_INIT(&new_tail);
2890 	pmap_delayed_invl_started();
2891 	mtx_lock(&pv_chunks_mutex);
2892 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) {
2893 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2894 		mtx_unlock(&pv_chunks_mutex);
2895 		if (pmap != pc->pc_pmap) {
2896 			if (pmap != NULL) {
2897 				pmap_invalidate_all(pmap);
2898 				if (pmap != locked_pmap)
2899 					PMAP_UNLOCK(pmap);
2900 			}
2901 			pmap_delayed_invl_finished();
2902 			pmap_delayed_invl_started();
2903 			pmap = pc->pc_pmap;
2904 			/* Avoid deadlock and lock recursion. */
2905 			if (pmap > locked_pmap) {
2906 				RELEASE_PV_LIST_LOCK(lockp);
2907 				PMAP_LOCK(pmap);
2908 			} else if (pmap != locked_pmap &&
2909 			    !PMAP_TRYLOCK(pmap)) {
2910 				pmap = NULL;
2911 				TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2912 				mtx_lock(&pv_chunks_mutex);
2913 				continue;
2914 			}
2915 			PG_G = pmap_global_bit(pmap);
2916 			PG_A = pmap_accessed_bit(pmap);
2917 			PG_M = pmap_modified_bit(pmap);
2918 			PG_RW = pmap_rw_bit(pmap);
2919 		}
2920 
2921 		/*
2922 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2923 		 */
2924 		freed = 0;
2925 		for (field = 0; field < _NPCM; field++) {
2926 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2927 			    inuse != 0; inuse &= ~(1UL << bit)) {
2928 				bit = bsfq(inuse);
2929 				pv = &pc->pc_pventry[field * 64 + bit];
2930 				va = pv->pv_va;
2931 				pde = pmap_pde(pmap, va);
2932 				if ((*pde & PG_PS) != 0)
2933 					continue;
2934 				pte = pmap_pde_to_pte(pde, va);
2935 				if ((*pte & PG_W) != 0)
2936 					continue;
2937 				tpte = pte_load_clear(pte);
2938 				if ((tpte & PG_G) != 0)
2939 					pmap_invalidate_page(pmap, va);
2940 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2941 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2942 					vm_page_dirty(m);
2943 				if ((tpte & PG_A) != 0)
2944 					vm_page_aflag_set(m, PGA_REFERENCED);
2945 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2946 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2947 				m->md.pv_gen++;
2948 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2949 				    (m->flags & PG_FICTITIOUS) == 0) {
2950 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2951 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2952 						vm_page_aflag_clear(m,
2953 						    PGA_WRITEABLE);
2954 					}
2955 				}
2956 				pmap_delayed_invl_page(m);
2957 				pc->pc_map[field] |= 1UL << bit;
2958 				pmap_unuse_pt(pmap, va, *pde, &free);
2959 				freed++;
2960 			}
2961 		}
2962 		if (freed == 0) {
2963 			TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2964 			mtx_lock(&pv_chunks_mutex);
2965 			continue;
2966 		}
2967 		/* Every freed mapping is for a 4 KB page. */
2968 		pmap_resident_count_dec(pmap, freed);
2969 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2970 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2971 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2972 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2973 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2974 		    pc->pc_map[2] == PC_FREE2) {
2975 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2976 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2977 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2978 			/* Entire chunk is free; return it. */
2979 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2980 			dump_drop_page(m_pc->phys_addr);
2981 			mtx_lock(&pv_chunks_mutex);
2982 			break;
2983 		}
2984 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2985 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2986 		mtx_lock(&pv_chunks_mutex);
2987 		/* One freed pv entry in locked_pmap is sufficient. */
2988 		if (pmap == locked_pmap)
2989 			break;
2990 	}
2991 	TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2992 	mtx_unlock(&pv_chunks_mutex);
2993 	if (pmap != NULL) {
2994 		pmap_invalidate_all(pmap);
2995 		if (pmap != locked_pmap)
2996 			PMAP_UNLOCK(pmap);
2997 	}
2998 	pmap_delayed_invl_finished();
2999 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
3000 		m_pc = SLIST_FIRST(&free);
3001 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3002 		/* Recycle a freed page table page. */
3003 		m_pc->wire_count = 1;
3004 		atomic_add_int(&vm_cnt.v_wire_count, 1);
3005 	}
3006 	pmap_free_zero_pages(&free);
3007 	return (m_pc);
3008 }
3009 
3010 /*
3011  * free the pv_entry back to the free list
3012  */
3013 static void
3014 free_pv_entry(pmap_t pmap, pv_entry_t pv)
3015 {
3016 	struct pv_chunk *pc;
3017 	int idx, field, bit;
3018 
3019 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3020 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
3021 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
3022 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
3023 	pc = pv_to_chunk(pv);
3024 	idx = pv - &pc->pc_pventry[0];
3025 	field = idx / 64;
3026 	bit = idx % 64;
3027 	pc->pc_map[field] |= 1ul << bit;
3028 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
3029 	    pc->pc_map[2] != PC_FREE2) {
3030 		/* 98% of the time, pc is already at the head of the list. */
3031 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
3032 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3033 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3034 		}
3035 		return;
3036 	}
3037 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3038 	free_pv_chunk(pc);
3039 }
3040 
3041 static void
3042 free_pv_chunk(struct pv_chunk *pc)
3043 {
3044 	vm_page_t m;
3045 
3046 	mtx_lock(&pv_chunks_mutex);
3047  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
3048 	mtx_unlock(&pv_chunks_mutex);
3049 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
3050 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
3051 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
3052 	/* entire chunk is free, return it */
3053 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
3054 	dump_drop_page(m->phys_addr);
3055 	vm_page_unwire(m, PQ_NONE);
3056 	vm_page_free(m);
3057 }
3058 
3059 /*
3060  * Returns a new PV entry, allocating a new PV chunk from the system when
3061  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
3062  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
3063  * returned.
3064  *
3065  * The given PV list lock may be released.
3066  */
3067 static pv_entry_t
3068 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
3069 {
3070 	int bit, field;
3071 	pv_entry_t pv;
3072 	struct pv_chunk *pc;
3073 	vm_page_t m;
3074 
3075 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3076 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
3077 retry:
3078 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3079 	if (pc != NULL) {
3080 		for (field = 0; field < _NPCM; field++) {
3081 			if (pc->pc_map[field]) {
3082 				bit = bsfq(pc->pc_map[field]);
3083 				break;
3084 			}
3085 		}
3086 		if (field < _NPCM) {
3087 			pv = &pc->pc_pventry[field * 64 + bit];
3088 			pc->pc_map[field] &= ~(1ul << bit);
3089 			/* If this was the last item, move it to tail */
3090 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
3091 			    pc->pc_map[2] == 0) {
3092 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3093 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
3094 				    pc_list);
3095 			}
3096 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
3097 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
3098 			return (pv);
3099 		}
3100 	}
3101 	/* No free items, allocate another chunk */
3102 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
3103 	    VM_ALLOC_WIRED);
3104 	if (m == NULL) {
3105 		if (lockp == NULL) {
3106 			PV_STAT(pc_chunk_tryfail++);
3107 			return (NULL);
3108 		}
3109 		m = reclaim_pv_chunk(pmap, lockp);
3110 		if (m == NULL)
3111 			goto retry;
3112 	}
3113 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3114 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3115 	dump_add_page(m->phys_addr);
3116 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3117 	pc->pc_pmap = pmap;
3118 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
3119 	pc->pc_map[1] = PC_FREE1;
3120 	pc->pc_map[2] = PC_FREE2;
3121 	mtx_lock(&pv_chunks_mutex);
3122 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3123 	mtx_unlock(&pv_chunks_mutex);
3124 	pv = &pc->pc_pventry[0];
3125 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3126 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
3127 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
3128 	return (pv);
3129 }
3130 
3131 /*
3132  * Returns the number of one bits within the given PV chunk map.
3133  *
3134  * The erratas for Intel processors state that "POPCNT Instruction May
3135  * Take Longer to Execute Than Expected".  It is believed that the
3136  * issue is the spurious dependency on the destination register.
3137  * Provide a hint to the register rename logic that the destination
3138  * value is overwritten, by clearing it, as suggested in the
3139  * optimization manual.  It should be cheap for unaffected processors
3140  * as well.
3141  *
3142  * Reference numbers for erratas are
3143  * 4th Gen Core: HSD146
3144  * 5th Gen Core: BDM85
3145  * 6th Gen Core: SKL029
3146  */
3147 static int
3148 popcnt_pc_map_pq(uint64_t *map)
3149 {
3150 	u_long result, tmp;
3151 
3152 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
3153 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
3154 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
3155 	    : "=&r" (result), "=&r" (tmp)
3156 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
3157 	return (result);
3158 }
3159 
3160 /*
3161  * Ensure that the number of spare PV entries in the specified pmap meets or
3162  * exceeds the given count, "needed".
3163  *
3164  * The given PV list lock may be released.
3165  */
3166 static void
3167 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
3168 {
3169 	struct pch new_tail;
3170 	struct pv_chunk *pc;
3171 	int avail, free;
3172 	vm_page_t m;
3173 
3174 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3175 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
3176 
3177 	/*
3178 	 * Newly allocated PV chunks must be stored in a private list until
3179 	 * the required number of PV chunks have been allocated.  Otherwise,
3180 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
3181 	 * contrast, these chunks must be added to the pmap upon allocation.
3182 	 */
3183 	TAILQ_INIT(&new_tail);
3184 retry:
3185 	avail = 0;
3186 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
3187 #ifndef __POPCNT__
3188 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
3189 			bit_count((bitstr_t *)pc->pc_map, 0,
3190 			    sizeof(pc->pc_map) * NBBY, &free);
3191 		else
3192 #endif
3193 		free = popcnt_pc_map_pq(pc->pc_map);
3194 		if (free == 0)
3195 			break;
3196 		avail += free;
3197 		if (avail >= needed)
3198 			break;
3199 	}
3200 	for (; avail < needed; avail += _NPCPV) {
3201 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
3202 		    VM_ALLOC_WIRED);
3203 		if (m == NULL) {
3204 			m = reclaim_pv_chunk(pmap, lockp);
3205 			if (m == NULL)
3206 				goto retry;
3207 		}
3208 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3209 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3210 		dump_add_page(m->phys_addr);
3211 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3212 		pc->pc_pmap = pmap;
3213 		pc->pc_map[0] = PC_FREE0;
3214 		pc->pc_map[1] = PC_FREE1;
3215 		pc->pc_map[2] = PC_FREE2;
3216 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3217 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
3218 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
3219 	}
3220 	if (!TAILQ_EMPTY(&new_tail)) {
3221 		mtx_lock(&pv_chunks_mutex);
3222 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
3223 		mtx_unlock(&pv_chunks_mutex);
3224 	}
3225 }
3226 
3227 /*
3228  * First find and then remove the pv entry for the specified pmap and virtual
3229  * address from the specified pv list.  Returns the pv entry if found and NULL
3230  * otherwise.  This operation can be performed on pv lists for either 4KB or
3231  * 2MB page mappings.
3232  */
3233 static __inline pv_entry_t
3234 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3235 {
3236 	pv_entry_t pv;
3237 
3238 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3239 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3240 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3241 			pvh->pv_gen++;
3242 			break;
3243 		}
3244 	}
3245 	return (pv);
3246 }
3247 
3248 /*
3249  * After demotion from a 2MB page mapping to 512 4KB page mappings,
3250  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
3251  * entries for each of the 4KB page mappings.
3252  */
3253 static void
3254 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3255     struct rwlock **lockp)
3256 {
3257 	struct md_page *pvh;
3258 	struct pv_chunk *pc;
3259 	pv_entry_t pv;
3260 	vm_offset_t va_last;
3261 	vm_page_t m;
3262 	int bit, field;
3263 
3264 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3265 	KASSERT((pa & PDRMASK) == 0,
3266 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
3267 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3268 
3269 	/*
3270 	 * Transfer the 2mpage's pv entry for this mapping to the first
3271 	 * page's pv list.  Once this transfer begins, the pv list lock
3272 	 * must not be released until the last pv entry is reinstantiated.
3273 	 */
3274 	pvh = pa_to_pvh(pa);
3275 	va = trunc_2mpage(va);
3276 	pv = pmap_pvh_remove(pvh, pmap, va);
3277 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
3278 	m = PHYS_TO_VM_PAGE(pa);
3279 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3280 	m->md.pv_gen++;
3281 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
3282 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
3283 	va_last = va + NBPDR - PAGE_SIZE;
3284 	for (;;) {
3285 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3286 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
3287 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
3288 		for (field = 0; field < _NPCM; field++) {
3289 			while (pc->pc_map[field]) {
3290 				bit = bsfq(pc->pc_map[field]);
3291 				pc->pc_map[field] &= ~(1ul << bit);
3292 				pv = &pc->pc_pventry[field * 64 + bit];
3293 				va += PAGE_SIZE;
3294 				pv->pv_va = va;
3295 				m++;
3296 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3297 			    ("pmap_pv_demote_pde: page %p is not managed", m));
3298 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3299 				m->md.pv_gen++;
3300 				if (va == va_last)
3301 					goto out;
3302 			}
3303 		}
3304 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3305 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3306 	}
3307 out:
3308 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
3309 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3310 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3311 	}
3312 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
3313 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
3314 }
3315 
3316 /*
3317  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3318  * replace the many pv entries for the 4KB page mappings by a single pv entry
3319  * for the 2MB page mapping.
3320  */
3321 static void
3322 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3323     struct rwlock **lockp)
3324 {
3325 	struct md_page *pvh;
3326 	pv_entry_t pv;
3327 	vm_offset_t va_last;
3328 	vm_page_t m;
3329 
3330 	KASSERT((pa & PDRMASK) == 0,
3331 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
3332 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3333 
3334 	/*
3335 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
3336 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3337 	 * a transfer avoids the possibility that get_pv_entry() calls
3338 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3339 	 * mappings that is being promoted.
3340 	 */
3341 	m = PHYS_TO_VM_PAGE(pa);
3342 	va = trunc_2mpage(va);
3343 	pv = pmap_pvh_remove(&m->md, pmap, va);
3344 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
3345 	pvh = pa_to_pvh(pa);
3346 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3347 	pvh->pv_gen++;
3348 	/* Free the remaining NPTEPG - 1 pv entries. */
3349 	va_last = va + NBPDR - PAGE_SIZE;
3350 	do {
3351 		m++;
3352 		va += PAGE_SIZE;
3353 		pmap_pvh_free(&m->md, pmap, va);
3354 	} while (va < va_last);
3355 }
3356 
3357 /*
3358  * First find and then destroy the pv entry for the specified pmap and virtual
3359  * address.  This operation can be performed on pv lists for either 4KB or 2MB
3360  * page mappings.
3361  */
3362 static void
3363 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3364 {
3365 	pv_entry_t pv;
3366 
3367 	pv = pmap_pvh_remove(pvh, pmap, va);
3368 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3369 	free_pv_entry(pmap, pv);
3370 }
3371 
3372 /*
3373  * Conditionally create the PV entry for a 4KB page mapping if the required
3374  * memory can be allocated without resorting to reclamation.
3375  */
3376 static boolean_t
3377 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
3378     struct rwlock **lockp)
3379 {
3380 	pv_entry_t pv;
3381 
3382 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3383 	/* Pass NULL instead of the lock pointer to disable reclamation. */
3384 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3385 		pv->pv_va = va;
3386 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3387 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3388 		m->md.pv_gen++;
3389 		return (TRUE);
3390 	} else
3391 		return (FALSE);
3392 }
3393 
3394 /*
3395  * Conditionally create the PV entry for a 2MB page mapping if the required
3396  * memory can be allocated without resorting to reclamation.
3397  */
3398 static boolean_t
3399 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3400     struct rwlock **lockp)
3401 {
3402 	struct md_page *pvh;
3403 	pv_entry_t pv;
3404 
3405 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3406 	/* Pass NULL instead of the lock pointer to disable reclamation. */
3407 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3408 		pv->pv_va = va;
3409 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3410 		pvh = pa_to_pvh(pa);
3411 		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3412 		pvh->pv_gen++;
3413 		return (TRUE);
3414 	} else
3415 		return (FALSE);
3416 }
3417 
3418 /*
3419  * Fills a page table page with mappings to consecutive physical pages.
3420  */
3421 static void
3422 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
3423 {
3424 	pt_entry_t *pte;
3425 
3426 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
3427 		*pte = newpte;
3428 		newpte += PAGE_SIZE;
3429 	}
3430 }
3431 
3432 /*
3433  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
3434  * mapping is invalidated.
3435  */
3436 static boolean_t
3437 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3438 {
3439 	struct rwlock *lock;
3440 	boolean_t rv;
3441 
3442 	lock = NULL;
3443 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
3444 	if (lock != NULL)
3445 		rw_wunlock(lock);
3446 	return (rv);
3447 }
3448 
3449 static boolean_t
3450 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
3451     struct rwlock **lockp)
3452 {
3453 	pd_entry_t newpde, oldpde;
3454 	pt_entry_t *firstpte, newpte;
3455 	pt_entry_t PG_A, PG_G, PG_M, PG_RW, PG_V;
3456 	vm_paddr_t mptepa;
3457 	vm_page_t mpte;
3458 	struct spglist free;
3459 	vm_offset_t sva;
3460 	int PG_PTE_CACHE;
3461 
3462 	PG_G = pmap_global_bit(pmap);
3463 	PG_A = pmap_accessed_bit(pmap);
3464 	PG_M = pmap_modified_bit(pmap);
3465 	PG_RW = pmap_rw_bit(pmap);
3466 	PG_V = pmap_valid_bit(pmap);
3467 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
3468 
3469 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3470 	oldpde = *pde;
3471 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
3472 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
3473 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
3474 	    NULL) {
3475 		KASSERT((oldpde & PG_W) == 0,
3476 		    ("pmap_demote_pde: page table page for a wired mapping"
3477 		    " is missing"));
3478 
3479 		/*
3480 		 * Invalidate the 2MB page mapping and return "failure" if the
3481 		 * mapping was never accessed or the allocation of the new
3482 		 * page table page fails.  If the 2MB page mapping belongs to
3483 		 * the direct map region of the kernel's address space, then
3484 		 * the page allocation request specifies the highest possible
3485 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
3486 		 * normal.  Page table pages are preallocated for every other
3487 		 * part of the kernel address space, so the direct map region
3488 		 * is the only part of the kernel address space that must be
3489 		 * handled here.
3490 		 */
3491 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
3492 		    pmap_pde_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
3493 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
3494 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3495 			SLIST_INIT(&free);
3496 			sva = trunc_2mpage(va);
3497 			pmap_remove_pde(pmap, pde, sva, &free, lockp);
3498 			if ((oldpde & PG_G) == 0)
3499 				pmap_invalidate_pde_page(pmap, sva, oldpde);
3500 			pmap_free_zero_pages(&free);
3501 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
3502 			    " in pmap %p", va, pmap);
3503 			return (FALSE);
3504 		}
3505 		if (va < VM_MAXUSER_ADDRESS)
3506 			pmap_resident_count_inc(pmap, 1);
3507 	}
3508 	mptepa = VM_PAGE_TO_PHYS(mpte);
3509 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
3510 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
3511 	KASSERT((oldpde & PG_A) != 0,
3512 	    ("pmap_demote_pde: oldpde is missing PG_A"));
3513 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
3514 	    ("pmap_demote_pde: oldpde is missing PG_M"));
3515 	newpte = oldpde & ~PG_PS;
3516 	newpte = pmap_swap_pat(pmap, newpte);
3517 
3518 	/*
3519 	 * If the page table page is new, initialize it.
3520 	 */
3521 	if (mpte->wire_count == 1) {
3522 		mpte->wire_count = NPTEPG;
3523 		pmap_fill_ptp(firstpte, newpte);
3524 	}
3525 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
3526 	    ("pmap_demote_pde: firstpte and newpte map different physical"
3527 	    " addresses"));
3528 
3529 	/*
3530 	 * If the mapping has changed attributes, update the page table
3531 	 * entries.
3532 	 */
3533 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
3534 		pmap_fill_ptp(firstpte, newpte);
3535 
3536 	/*
3537 	 * The spare PV entries must be reserved prior to demoting the
3538 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
3539 	 * of the PDE and the PV lists will be inconsistent, which can result
3540 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
3541 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
3542 	 * PV entry for the 2MB page mapping that is being demoted.
3543 	 */
3544 	if ((oldpde & PG_MANAGED) != 0)
3545 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
3546 
3547 	/*
3548 	 * Demote the mapping.  This pmap is locked.  The old PDE has
3549 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
3550 	 * set.  Thus, there is no danger of a race with another
3551 	 * processor changing the setting of PG_A and/or PG_M between
3552 	 * the read above and the store below.
3553 	 */
3554 	if (workaround_erratum383)
3555 		pmap_update_pde(pmap, va, pde, newpde);
3556 	else
3557 		pde_store(pde, newpde);
3558 
3559 	/*
3560 	 * Invalidate a stale recursive mapping of the page table page.
3561 	 */
3562 	if (va >= VM_MAXUSER_ADDRESS)
3563 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
3564 
3565 	/*
3566 	 * Demote the PV entry.
3567 	 */
3568 	if ((oldpde & PG_MANAGED) != 0)
3569 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
3570 
3571 	atomic_add_long(&pmap_pde_demotions, 1);
3572 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
3573 	    " in pmap %p", va, pmap);
3574 	return (TRUE);
3575 }
3576 
3577 /*
3578  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
3579  */
3580 static void
3581 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3582 {
3583 	pd_entry_t newpde;
3584 	vm_paddr_t mptepa;
3585 	vm_page_t mpte;
3586 
3587 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
3588 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3589 	mpte = pmap_remove_pt_page(pmap, va);
3590 	if (mpte == NULL)
3591 		panic("pmap_remove_kernel_pde: Missing pt page.");
3592 
3593 	mptepa = VM_PAGE_TO_PHYS(mpte);
3594 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
3595 
3596 	/*
3597 	 * Initialize the page table page.
3598 	 */
3599 	pagezero((void *)PHYS_TO_DMAP(mptepa));
3600 
3601 	/*
3602 	 * Demote the mapping.
3603 	 */
3604 	if (workaround_erratum383)
3605 		pmap_update_pde(pmap, va, pde, newpde);
3606 	else
3607 		pde_store(pde, newpde);
3608 
3609 	/*
3610 	 * Invalidate a stale recursive mapping of the page table page.
3611 	 */
3612 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
3613 }
3614 
3615 /*
3616  * pmap_remove_pde: do the things to unmap a superpage in a process
3617  */
3618 static int
3619 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
3620     struct spglist *free, struct rwlock **lockp)
3621 {
3622 	struct md_page *pvh;
3623 	pd_entry_t oldpde;
3624 	vm_offset_t eva, va;
3625 	vm_page_t m, mpte;
3626 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
3627 
3628 	PG_G = pmap_global_bit(pmap);
3629 	PG_A = pmap_accessed_bit(pmap);
3630 	PG_M = pmap_modified_bit(pmap);
3631 	PG_RW = pmap_rw_bit(pmap);
3632 
3633 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3634 	KASSERT((sva & PDRMASK) == 0,
3635 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
3636 	oldpde = pte_load_clear(pdq);
3637 	if (oldpde & PG_W)
3638 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
3639 	if ((oldpde & PG_G) != 0)
3640 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3641 	pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
3642 	if (oldpde & PG_MANAGED) {
3643 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
3644 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
3645 		pmap_pvh_free(pvh, pmap, sva);
3646 		eva = sva + NBPDR;
3647 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3648 		    va < eva; va += PAGE_SIZE, m++) {
3649 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3650 				vm_page_dirty(m);
3651 			if (oldpde & PG_A)
3652 				vm_page_aflag_set(m, PGA_REFERENCED);
3653 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3654 			    TAILQ_EMPTY(&pvh->pv_list))
3655 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3656 			pmap_delayed_invl_page(m);
3657 		}
3658 	}
3659 	if (pmap == kernel_pmap) {
3660 		pmap_remove_kernel_pde(pmap, pdq, sva);
3661 	} else {
3662 		mpte = pmap_remove_pt_page(pmap, sva);
3663 		if (mpte != NULL) {
3664 			pmap_resident_count_dec(pmap, 1);
3665 			KASSERT(mpte->wire_count == NPTEPG,
3666 			    ("pmap_remove_pde: pte page wire count error"));
3667 			mpte->wire_count = 0;
3668 			pmap_add_delayed_free_list(mpte, free, FALSE);
3669 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3670 		}
3671 	}
3672 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
3673 }
3674 
3675 /*
3676  * pmap_remove_pte: do the things to unmap a page in a process
3677  */
3678 static int
3679 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
3680     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
3681 {
3682 	struct md_page *pvh;
3683 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
3684 	vm_page_t m;
3685 
3686 	PG_A = pmap_accessed_bit(pmap);
3687 	PG_M = pmap_modified_bit(pmap);
3688 	PG_RW = pmap_rw_bit(pmap);
3689 
3690 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3691 	oldpte = pte_load_clear(ptq);
3692 	if (oldpte & PG_W)
3693 		pmap->pm_stats.wired_count -= 1;
3694 	pmap_resident_count_dec(pmap, 1);
3695 	if (oldpte & PG_MANAGED) {
3696 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3697 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3698 			vm_page_dirty(m);
3699 		if (oldpte & PG_A)
3700 			vm_page_aflag_set(m, PGA_REFERENCED);
3701 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3702 		pmap_pvh_free(&m->md, pmap, va);
3703 		if (TAILQ_EMPTY(&m->md.pv_list) &&
3704 		    (m->flags & PG_FICTITIOUS) == 0) {
3705 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3706 			if (TAILQ_EMPTY(&pvh->pv_list))
3707 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3708 		}
3709 		pmap_delayed_invl_page(m);
3710 	}
3711 	return (pmap_unuse_pt(pmap, va, ptepde, free));
3712 }
3713 
3714 /*
3715  * Remove a single page from a process address space
3716  */
3717 static void
3718 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
3719     struct spglist *free)
3720 {
3721 	struct rwlock *lock;
3722 	pt_entry_t *pte, PG_V;
3723 
3724 	PG_V = pmap_valid_bit(pmap);
3725 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3726 	if ((*pde & PG_V) == 0)
3727 		return;
3728 	pte = pmap_pde_to_pte(pde, va);
3729 	if ((*pte & PG_V) == 0)
3730 		return;
3731 	lock = NULL;
3732 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
3733 	if (lock != NULL)
3734 		rw_wunlock(lock);
3735 	pmap_invalidate_page(pmap, va);
3736 }
3737 
3738 /*
3739  *	Remove the given range of addresses from the specified map.
3740  *
3741  *	It is assumed that the start and end are properly
3742  *	rounded to the page size.
3743  */
3744 void
3745 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3746 {
3747 	struct rwlock *lock;
3748 	vm_offset_t va, va_next;
3749 	pml4_entry_t *pml4e;
3750 	pdp_entry_t *pdpe;
3751 	pd_entry_t ptpaddr, *pde;
3752 	pt_entry_t *pte, PG_G, PG_V;
3753 	struct spglist free;
3754 	int anyvalid;
3755 
3756 	PG_G = pmap_global_bit(pmap);
3757 	PG_V = pmap_valid_bit(pmap);
3758 
3759 	/*
3760 	 * Perform an unsynchronized read.  This is, however, safe.
3761 	 */
3762 	if (pmap->pm_stats.resident_count == 0)
3763 		return;
3764 
3765 	anyvalid = 0;
3766 	SLIST_INIT(&free);
3767 
3768 	pmap_delayed_invl_started();
3769 	PMAP_LOCK(pmap);
3770 
3771 	/*
3772 	 * special handling of removing one page.  a very
3773 	 * common operation and easy to short circuit some
3774 	 * code.
3775 	 */
3776 	if (sva + PAGE_SIZE == eva) {
3777 		pde = pmap_pde(pmap, sva);
3778 		if (pde && (*pde & PG_PS) == 0) {
3779 			pmap_remove_page(pmap, sva, pde, &free);
3780 			goto out;
3781 		}
3782 	}
3783 
3784 	lock = NULL;
3785 	for (; sva < eva; sva = va_next) {
3786 
3787 		if (pmap->pm_stats.resident_count == 0)
3788 			break;
3789 
3790 		pml4e = pmap_pml4e(pmap, sva);
3791 		if ((*pml4e & PG_V) == 0) {
3792 			va_next = (sva + NBPML4) & ~PML4MASK;
3793 			if (va_next < sva)
3794 				va_next = eva;
3795 			continue;
3796 		}
3797 
3798 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3799 		if ((*pdpe & PG_V) == 0) {
3800 			va_next = (sva + NBPDP) & ~PDPMASK;
3801 			if (va_next < sva)
3802 				va_next = eva;
3803 			continue;
3804 		}
3805 
3806 		/*
3807 		 * Calculate index for next page table.
3808 		 */
3809 		va_next = (sva + NBPDR) & ~PDRMASK;
3810 		if (va_next < sva)
3811 			va_next = eva;
3812 
3813 		pde = pmap_pdpe_to_pde(pdpe, sva);
3814 		ptpaddr = *pde;
3815 
3816 		/*
3817 		 * Weed out invalid mappings.
3818 		 */
3819 		if (ptpaddr == 0)
3820 			continue;
3821 
3822 		/*
3823 		 * Check for large page.
3824 		 */
3825 		if ((ptpaddr & PG_PS) != 0) {
3826 			/*
3827 			 * Are we removing the entire large page?  If not,
3828 			 * demote the mapping and fall through.
3829 			 */
3830 			if (sva + NBPDR == va_next && eva >= va_next) {
3831 				/*
3832 				 * The TLB entry for a PG_G mapping is
3833 				 * invalidated by pmap_remove_pde().
3834 				 */
3835 				if ((ptpaddr & PG_G) == 0)
3836 					anyvalid = 1;
3837 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
3838 				continue;
3839 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
3840 			    &lock)) {
3841 				/* The large page mapping was destroyed. */
3842 				continue;
3843 			} else
3844 				ptpaddr = *pde;
3845 		}
3846 
3847 		/*
3848 		 * Limit our scan to either the end of the va represented
3849 		 * by the current page table page, or to the end of the
3850 		 * range being removed.
3851 		 */
3852 		if (va_next > eva)
3853 			va_next = eva;
3854 
3855 		va = va_next;
3856 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3857 		    sva += PAGE_SIZE) {
3858 			if (*pte == 0) {
3859 				if (va != va_next) {
3860 					pmap_invalidate_range(pmap, va, sva);
3861 					va = va_next;
3862 				}
3863 				continue;
3864 			}
3865 			if ((*pte & PG_G) == 0)
3866 				anyvalid = 1;
3867 			else if (va == va_next)
3868 				va = sva;
3869 			if (pmap_remove_pte(pmap, pte, sva, ptpaddr, &free,
3870 			    &lock)) {
3871 				sva += PAGE_SIZE;
3872 				break;
3873 			}
3874 		}
3875 		if (va != va_next)
3876 			pmap_invalidate_range(pmap, va, sva);
3877 	}
3878 	if (lock != NULL)
3879 		rw_wunlock(lock);
3880 out:
3881 	if (anyvalid)
3882 		pmap_invalidate_all(pmap);
3883 	PMAP_UNLOCK(pmap);
3884 	pmap_delayed_invl_finished();
3885 	pmap_free_zero_pages(&free);
3886 }
3887 
3888 /*
3889  *	Routine:	pmap_remove_all
3890  *	Function:
3891  *		Removes this physical page from
3892  *		all physical maps in which it resides.
3893  *		Reflects back modify bits to the pager.
3894  *
3895  *	Notes:
3896  *		Original versions of this routine were very
3897  *		inefficient because they iteratively called
3898  *		pmap_remove (slow...)
3899  */
3900 
3901 void
3902 pmap_remove_all(vm_page_t m)
3903 {
3904 	struct md_page *pvh;
3905 	pv_entry_t pv;
3906 	pmap_t pmap;
3907 	struct rwlock *lock;
3908 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
3909 	pd_entry_t *pde;
3910 	vm_offset_t va;
3911 	struct spglist free;
3912 	int pvh_gen, md_gen;
3913 
3914 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3915 	    ("pmap_remove_all: page %p is not managed", m));
3916 	SLIST_INIT(&free);
3917 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3918 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
3919 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
3920 retry:
3921 	rw_wlock(lock);
3922 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3923 		pmap = PV_PMAP(pv);
3924 		if (!PMAP_TRYLOCK(pmap)) {
3925 			pvh_gen = pvh->pv_gen;
3926 			rw_wunlock(lock);
3927 			PMAP_LOCK(pmap);
3928 			rw_wlock(lock);
3929 			if (pvh_gen != pvh->pv_gen) {
3930 				rw_wunlock(lock);
3931 				PMAP_UNLOCK(pmap);
3932 				goto retry;
3933 			}
3934 		}
3935 		va = pv->pv_va;
3936 		pde = pmap_pde(pmap, va);
3937 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
3938 		PMAP_UNLOCK(pmap);
3939 	}
3940 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3941 		pmap = PV_PMAP(pv);
3942 		if (!PMAP_TRYLOCK(pmap)) {
3943 			pvh_gen = pvh->pv_gen;
3944 			md_gen = m->md.pv_gen;
3945 			rw_wunlock(lock);
3946 			PMAP_LOCK(pmap);
3947 			rw_wlock(lock);
3948 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3949 				rw_wunlock(lock);
3950 				PMAP_UNLOCK(pmap);
3951 				goto retry;
3952 			}
3953 		}
3954 		PG_A = pmap_accessed_bit(pmap);
3955 		PG_M = pmap_modified_bit(pmap);
3956 		PG_RW = pmap_rw_bit(pmap);
3957 		pmap_resident_count_dec(pmap, 1);
3958 		pde = pmap_pde(pmap, pv->pv_va);
3959 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3960 		    " a 2mpage in page %p's pv list", m));
3961 		pte = pmap_pde_to_pte(pde, pv->pv_va);
3962 		tpte = pte_load_clear(pte);
3963 		if (tpte & PG_W)
3964 			pmap->pm_stats.wired_count--;
3965 		if (tpte & PG_A)
3966 			vm_page_aflag_set(m, PGA_REFERENCED);
3967 
3968 		/*
3969 		 * Update the vm_page_t clean and reference bits.
3970 		 */
3971 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3972 			vm_page_dirty(m);
3973 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
3974 		pmap_invalidate_page(pmap, pv->pv_va);
3975 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3976 		m->md.pv_gen++;
3977 		free_pv_entry(pmap, pv);
3978 		PMAP_UNLOCK(pmap);
3979 	}
3980 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3981 	rw_wunlock(lock);
3982 	pmap_delayed_invl_wait(m);
3983 	pmap_free_zero_pages(&free);
3984 }
3985 
3986 /*
3987  * pmap_protect_pde: do the things to protect a 2mpage in a process
3988  */
3989 static boolean_t
3990 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3991 {
3992 	pd_entry_t newpde, oldpde;
3993 	vm_offset_t eva, va;
3994 	vm_page_t m;
3995 	boolean_t anychanged;
3996 	pt_entry_t PG_G, PG_M, PG_RW;
3997 
3998 	PG_G = pmap_global_bit(pmap);
3999 	PG_M = pmap_modified_bit(pmap);
4000 	PG_RW = pmap_rw_bit(pmap);
4001 
4002 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4003 	KASSERT((sva & PDRMASK) == 0,
4004 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
4005 	anychanged = FALSE;
4006 retry:
4007 	oldpde = newpde = *pde;
4008 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4009 	    (PG_MANAGED | PG_M | PG_RW)) {
4010 		eva = sva + NBPDR;
4011 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4012 		    va < eva; va += PAGE_SIZE, m++)
4013 			vm_page_dirty(m);
4014 	}
4015 	if ((prot & VM_PROT_WRITE) == 0)
4016 		newpde &= ~(PG_RW | PG_M);
4017 	if ((prot & VM_PROT_EXECUTE) == 0)
4018 		newpde |= pg_nx;
4019 	if (newpde != oldpde) {
4020 		/*
4021 		 * As an optimization to future operations on this PDE, clear
4022 		 * PG_PROMOTED.  The impending invalidation will remove any
4023 		 * lingering 4KB page mappings from the TLB.
4024 		 */
4025 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
4026 			goto retry;
4027 		if ((oldpde & PG_G) != 0)
4028 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
4029 		else
4030 			anychanged = TRUE;
4031 	}
4032 	return (anychanged);
4033 }
4034 
4035 /*
4036  *	Set the physical protection on the
4037  *	specified range of this map as requested.
4038  */
4039 void
4040 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4041 {
4042 	vm_offset_t va_next;
4043 	pml4_entry_t *pml4e;
4044 	pdp_entry_t *pdpe;
4045 	pd_entry_t ptpaddr, *pde;
4046 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
4047 	boolean_t anychanged;
4048 
4049 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4050 	if (prot == VM_PROT_NONE) {
4051 		pmap_remove(pmap, sva, eva);
4052 		return;
4053 	}
4054 
4055 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4056 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4057 		return;
4058 
4059 	PG_G = pmap_global_bit(pmap);
4060 	PG_M = pmap_modified_bit(pmap);
4061 	PG_V = pmap_valid_bit(pmap);
4062 	PG_RW = pmap_rw_bit(pmap);
4063 	anychanged = FALSE;
4064 
4065 	PMAP_LOCK(pmap);
4066 	for (; sva < eva; sva = va_next) {
4067 
4068 		pml4e = pmap_pml4e(pmap, sva);
4069 		if ((*pml4e & PG_V) == 0) {
4070 			va_next = (sva + NBPML4) & ~PML4MASK;
4071 			if (va_next < sva)
4072 				va_next = eva;
4073 			continue;
4074 		}
4075 
4076 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
4077 		if ((*pdpe & PG_V) == 0) {
4078 			va_next = (sva + NBPDP) & ~PDPMASK;
4079 			if (va_next < sva)
4080 				va_next = eva;
4081 			continue;
4082 		}
4083 
4084 		va_next = (sva + NBPDR) & ~PDRMASK;
4085 		if (va_next < sva)
4086 			va_next = eva;
4087 
4088 		pde = pmap_pdpe_to_pde(pdpe, sva);
4089 		ptpaddr = *pde;
4090 
4091 		/*
4092 		 * Weed out invalid mappings.
4093 		 */
4094 		if (ptpaddr == 0)
4095 			continue;
4096 
4097 		/*
4098 		 * Check for large page.
4099 		 */
4100 		if ((ptpaddr & PG_PS) != 0) {
4101 			/*
4102 			 * Are we protecting the entire large page?  If not,
4103 			 * demote the mapping and fall through.
4104 			 */
4105 			if (sva + NBPDR == va_next && eva >= va_next) {
4106 				/*
4107 				 * The TLB entry for a PG_G mapping is
4108 				 * invalidated by pmap_protect_pde().
4109 				 */
4110 				if (pmap_protect_pde(pmap, pde, sva, prot))
4111 					anychanged = TRUE;
4112 				continue;
4113 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
4114 				/*
4115 				 * The large page mapping was destroyed.
4116 				 */
4117 				continue;
4118 			}
4119 		}
4120 
4121 		if (va_next > eva)
4122 			va_next = eva;
4123 
4124 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
4125 		    sva += PAGE_SIZE) {
4126 			pt_entry_t obits, pbits;
4127 			vm_page_t m;
4128 
4129 retry:
4130 			obits = pbits = *pte;
4131 			if ((pbits & PG_V) == 0)
4132 				continue;
4133 
4134 			if ((prot & VM_PROT_WRITE) == 0) {
4135 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4136 				    (PG_MANAGED | PG_M | PG_RW)) {
4137 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4138 					vm_page_dirty(m);
4139 				}
4140 				pbits &= ~(PG_RW | PG_M);
4141 			}
4142 			if ((prot & VM_PROT_EXECUTE) == 0)
4143 				pbits |= pg_nx;
4144 
4145 			if (pbits != obits) {
4146 				if (!atomic_cmpset_long(pte, obits, pbits))
4147 					goto retry;
4148 				if (obits & PG_G)
4149 					pmap_invalidate_page(pmap, sva);
4150 				else
4151 					anychanged = TRUE;
4152 			}
4153 		}
4154 	}
4155 	if (anychanged)
4156 		pmap_invalidate_all(pmap);
4157 	PMAP_UNLOCK(pmap);
4158 }
4159 
4160 /*
4161  * Tries to promote the 512, contiguous 4KB page mappings that are within a
4162  * single page table page (PTP) to a single 2MB page mapping.  For promotion
4163  * to occur, two conditions must be met: (1) the 4KB page mappings must map
4164  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
4165  * identical characteristics.
4166  */
4167 static void
4168 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
4169     struct rwlock **lockp)
4170 {
4171 	pd_entry_t newpde;
4172 	pt_entry_t *firstpte, oldpte, pa, *pte;
4173 	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V;
4174 	vm_page_t mpte;
4175 	int PG_PTE_CACHE;
4176 
4177 	PG_A = pmap_accessed_bit(pmap);
4178 	PG_G = pmap_global_bit(pmap);
4179 	PG_M = pmap_modified_bit(pmap);
4180 	PG_V = pmap_valid_bit(pmap);
4181 	PG_RW = pmap_rw_bit(pmap);
4182 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
4183 
4184 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4185 
4186 	/*
4187 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
4188 	 * either invalid, unused, or does not map the first 4KB physical page
4189 	 * within a 2MB page.
4190 	 */
4191 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
4192 setpde:
4193 	newpde = *firstpte;
4194 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
4195 		atomic_add_long(&pmap_pde_p_failures, 1);
4196 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4197 		    " in pmap %p", va, pmap);
4198 		return;
4199 	}
4200 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
4201 		/*
4202 		 * When PG_M is already clear, PG_RW can be cleared without
4203 		 * a TLB invalidation.
4204 		 */
4205 		if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
4206 			goto setpde;
4207 		newpde &= ~PG_RW;
4208 	}
4209 
4210 	/*
4211 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
4212 	 * PTE maps an unexpected 4KB physical page or does not have identical
4213 	 * characteristics to the first PTE.
4214 	 */
4215 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
4216 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
4217 setpte:
4218 		oldpte = *pte;
4219 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
4220 			atomic_add_long(&pmap_pde_p_failures, 1);
4221 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4222 			    " in pmap %p", va, pmap);
4223 			return;
4224 		}
4225 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
4226 			/*
4227 			 * When PG_M is already clear, PG_RW can be cleared
4228 			 * without a TLB invalidation.
4229 			 */
4230 			if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
4231 				goto setpte;
4232 			oldpte &= ~PG_RW;
4233 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
4234 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
4235 			    (va & ~PDRMASK), pmap);
4236 		}
4237 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
4238 			atomic_add_long(&pmap_pde_p_failures, 1);
4239 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
4240 			    " in pmap %p", va, pmap);
4241 			return;
4242 		}
4243 		pa -= PAGE_SIZE;
4244 	}
4245 
4246 	/*
4247 	 * Save the page table page in its current state until the PDE
4248 	 * mapping the superpage is demoted by pmap_demote_pde() or
4249 	 * destroyed by pmap_remove_pde().
4250 	 */
4251 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4252 	KASSERT(mpte >= vm_page_array &&
4253 	    mpte < &vm_page_array[vm_page_array_size],
4254 	    ("pmap_promote_pde: page table page is out of range"));
4255 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
4256 	    ("pmap_promote_pde: page table page's pindex is wrong"));
4257 	if (pmap_insert_pt_page(pmap, mpte)) {
4258 		atomic_add_long(&pmap_pde_p_failures, 1);
4259 		CTR2(KTR_PMAP,
4260 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
4261 		    pmap);
4262 		return;
4263 	}
4264 
4265 	/*
4266 	 * Promote the pv entries.
4267 	 */
4268 	if ((newpde & PG_MANAGED) != 0)
4269 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
4270 
4271 	/*
4272 	 * Propagate the PAT index to its proper position.
4273 	 */
4274 	newpde = pmap_swap_pat(pmap, newpde);
4275 
4276 	/*
4277 	 * Map the superpage.
4278 	 */
4279 	if (workaround_erratum383)
4280 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
4281 	else
4282 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
4283 
4284 	atomic_add_long(&pmap_pde_promotions, 1);
4285 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
4286 	    " in pmap %p", va, pmap);
4287 }
4288 
4289 /*
4290  *	Insert the given physical page (p) at
4291  *	the specified virtual address (v) in the
4292  *	target physical map with the protection requested.
4293  *
4294  *	If specified, the page will be wired down, meaning
4295  *	that the related pte can not be reclaimed.
4296  *
4297  *	NB:  This is the only routine which MAY NOT lazy-evaluate
4298  *	or lose information.  That is, this routine must actually
4299  *	insert this page into the given map NOW.
4300  *
4301  *	When destroying both a page table and PV entry, this function
4302  *	performs the TLB invalidation before releasing the PV list
4303  *	lock, so we do not need pmap_delayed_invl_page() calls here.
4304  */
4305 int
4306 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4307     u_int flags, int8_t psind __unused)
4308 {
4309 	struct rwlock *lock;
4310 	pd_entry_t *pde;
4311 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
4312 	pt_entry_t newpte, origpte;
4313 	pv_entry_t pv;
4314 	vm_paddr_t opa, pa;
4315 	vm_page_t mpte, om;
4316 	boolean_t nosleep;
4317 
4318 	PG_A = pmap_accessed_bit(pmap);
4319 	PG_G = pmap_global_bit(pmap);
4320 	PG_M = pmap_modified_bit(pmap);
4321 	PG_V = pmap_valid_bit(pmap);
4322 	PG_RW = pmap_rw_bit(pmap);
4323 
4324 	va = trunc_page(va);
4325 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
4326 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
4327 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
4328 	    va));
4329 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
4330 	    va >= kmi.clean_eva,
4331 	    ("pmap_enter: managed mapping within the clean submap"));
4332 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
4333 		VM_OBJECT_ASSERT_LOCKED(m->object);
4334 	pa = VM_PAGE_TO_PHYS(m);
4335 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
4336 	if ((flags & VM_PROT_WRITE) != 0)
4337 		newpte |= PG_M;
4338 	if ((prot & VM_PROT_WRITE) != 0)
4339 		newpte |= PG_RW;
4340 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
4341 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
4342 	if ((prot & VM_PROT_EXECUTE) == 0)
4343 		newpte |= pg_nx;
4344 	if ((flags & PMAP_ENTER_WIRED) != 0)
4345 		newpte |= PG_W;
4346 	if (va < VM_MAXUSER_ADDRESS)
4347 		newpte |= PG_U;
4348 	if (pmap == kernel_pmap)
4349 		newpte |= PG_G;
4350 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, 0);
4351 
4352 	/*
4353 	 * Set modified bit gratuitously for writeable mappings if
4354 	 * the page is unmanaged. We do not want to take a fault
4355 	 * to do the dirty bit accounting for these mappings.
4356 	 */
4357 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4358 		if ((newpte & PG_RW) != 0)
4359 			newpte |= PG_M;
4360 	} else
4361 		newpte |= PG_MANAGED;
4362 
4363 	mpte = NULL;
4364 
4365 	lock = NULL;
4366 	PMAP_LOCK(pmap);
4367 
4368 	/*
4369 	 * In the case that a page table page is not
4370 	 * resident, we are creating it here.
4371 	 */
4372 retry:
4373 	pde = pmap_pde(pmap, va);
4374 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
4375 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
4376 		pte = pmap_pde_to_pte(pde, va);
4377 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
4378 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4379 			mpte->wire_count++;
4380 		}
4381 	} else if (va < VM_MAXUSER_ADDRESS) {
4382 		/*
4383 		 * Here if the pte page isn't mapped, or if it has been
4384 		 * deallocated.
4385 		 */
4386 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
4387 		mpte = _pmap_allocpte(pmap, pmap_pde_pindex(va),
4388 		    nosleep ? NULL : &lock);
4389 		if (mpte == NULL && nosleep) {
4390 			if (lock != NULL)
4391 				rw_wunlock(lock);
4392 			PMAP_UNLOCK(pmap);
4393 			return (KERN_RESOURCE_SHORTAGE);
4394 		}
4395 		goto retry;
4396 	} else
4397 		panic("pmap_enter: invalid page directory va=%#lx", va);
4398 
4399 	origpte = *pte;
4400 
4401 	/*
4402 	 * Is the specified virtual address already mapped?
4403 	 */
4404 	if ((origpte & PG_V) != 0) {
4405 		/*
4406 		 * Wiring change, just update stats. We don't worry about
4407 		 * wiring PT pages as they remain resident as long as there
4408 		 * are valid mappings in them. Hence, if a user page is wired,
4409 		 * the PT page will be also.
4410 		 */
4411 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
4412 			pmap->pm_stats.wired_count++;
4413 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
4414 			pmap->pm_stats.wired_count--;
4415 
4416 		/*
4417 		 * Remove the extra PT page reference.
4418 		 */
4419 		if (mpte != NULL) {
4420 			mpte->wire_count--;
4421 			KASSERT(mpte->wire_count > 0,
4422 			    ("pmap_enter: missing reference to page table page,"
4423 			     " va: 0x%lx", va));
4424 		}
4425 
4426 		/*
4427 		 * Has the physical page changed?
4428 		 */
4429 		opa = origpte & PG_FRAME;
4430 		if (opa == pa) {
4431 			/*
4432 			 * No, might be a protection or wiring change.
4433 			 */
4434 			if ((origpte & PG_MANAGED) != 0 &&
4435 			    (newpte & PG_RW) != 0)
4436 				vm_page_aflag_set(m, PGA_WRITEABLE);
4437 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
4438 				goto unchanged;
4439 			goto validate;
4440 		}
4441 	} else {
4442 		/*
4443 		 * Increment the counters.
4444 		 */
4445 		if ((newpte & PG_W) != 0)
4446 			pmap->pm_stats.wired_count++;
4447 		pmap_resident_count_inc(pmap, 1);
4448 	}
4449 
4450 	/*
4451 	 * Enter on the PV list if part of our managed memory.
4452 	 */
4453 	if ((newpte & PG_MANAGED) != 0) {
4454 		pv = get_pv_entry(pmap, &lock);
4455 		pv->pv_va = va;
4456 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
4457 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4458 		m->md.pv_gen++;
4459 		if ((newpte & PG_RW) != 0)
4460 			vm_page_aflag_set(m, PGA_WRITEABLE);
4461 	}
4462 
4463 	/*
4464 	 * Update the PTE.
4465 	 */
4466 	if ((origpte & PG_V) != 0) {
4467 validate:
4468 		origpte = pte_load_store(pte, newpte);
4469 		opa = origpte & PG_FRAME;
4470 		if (opa != pa) {
4471 			if ((origpte & PG_MANAGED) != 0) {
4472 				om = PHYS_TO_VM_PAGE(opa);
4473 				if ((origpte & (PG_M | PG_RW)) == (PG_M |
4474 				    PG_RW))
4475 					vm_page_dirty(om);
4476 				if ((origpte & PG_A) != 0)
4477 					vm_page_aflag_set(om, PGA_REFERENCED);
4478 				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
4479 				pmap_pvh_free(&om->md, pmap, va);
4480 				if ((om->aflags & PGA_WRITEABLE) != 0 &&
4481 				    TAILQ_EMPTY(&om->md.pv_list) &&
4482 				    ((om->flags & PG_FICTITIOUS) != 0 ||
4483 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4484 					vm_page_aflag_clear(om, PGA_WRITEABLE);
4485 			}
4486 		} else if ((newpte & PG_M) == 0 && (origpte & (PG_M |
4487 		    PG_RW)) == (PG_M | PG_RW)) {
4488 			if ((origpte & PG_MANAGED) != 0)
4489 				vm_page_dirty(m);
4490 
4491 			/*
4492 			 * Although the PTE may still have PG_RW set, TLB
4493 			 * invalidation may nonetheless be required because
4494 			 * the PTE no longer has PG_M set.
4495 			 */
4496 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
4497 			/*
4498 			 * This PTE change does not require TLB invalidation.
4499 			 */
4500 			goto unchanged;
4501 		}
4502 		if ((origpte & PG_A) != 0)
4503 			pmap_invalidate_page(pmap, va);
4504 	} else
4505 		pte_store(pte, newpte);
4506 
4507 unchanged:
4508 
4509 	/*
4510 	 * If both the page table page and the reservation are fully
4511 	 * populated, then attempt promotion.
4512 	 */
4513 	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
4514 	    pmap_ps_enabled(pmap) &&
4515 	    (m->flags & PG_FICTITIOUS) == 0 &&
4516 	    vm_reserv_level_iffullpop(m) == 0)
4517 		pmap_promote_pde(pmap, pde, va, &lock);
4518 
4519 	if (lock != NULL)
4520 		rw_wunlock(lock);
4521 	PMAP_UNLOCK(pmap);
4522 	return (KERN_SUCCESS);
4523 }
4524 
4525 /*
4526  * Tries to create a 2MB page mapping.  Returns TRUE if successful and FALSE
4527  * otherwise.  Fails if (1) a page table page cannot be allocated without
4528  * blocking, (2) a mapping already exists at the specified virtual address, or
4529  * (3) a pv entry cannot be allocated without reclaiming another pv entry.
4530  */
4531 static boolean_t
4532 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4533     struct rwlock **lockp)
4534 {
4535 	pd_entry_t *pde, newpde;
4536 	pt_entry_t PG_V;
4537 	vm_page_t mpde;
4538 	struct spglist free;
4539 
4540 	PG_V = pmap_valid_bit(pmap);
4541 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4542 
4543 	if ((mpde = pmap_allocpde(pmap, va, NULL)) == NULL) {
4544 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4545 		    " in pmap %p", va, pmap);
4546 		return (FALSE);
4547 	}
4548 	pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpde));
4549 	pde = &pde[pmap_pde_index(va)];
4550 	if ((*pde & PG_V) != 0) {
4551 		KASSERT(mpde->wire_count > 1,
4552 		    ("pmap_enter_pde: mpde's wire count is too low"));
4553 		mpde->wire_count--;
4554 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4555 		    " in pmap %p", va, pmap);
4556 		return (FALSE);
4557 	}
4558 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
4559 	    PG_PS | PG_V;
4560 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4561 		newpde |= PG_MANAGED;
4562 
4563 		/*
4564 		 * Abort this mapping if its PV entry could not be created.
4565 		 */
4566 		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m),
4567 		    lockp)) {
4568 			SLIST_INIT(&free);
4569 			if (pmap_unwire_ptp(pmap, va, mpde, &free)) {
4570 				/*
4571 				 * Although "va" is not mapped, paging-
4572 				 * structure caches could nonetheless have
4573 				 * entries that refer to the freed page table
4574 				 * pages.  Invalidate those entries.
4575 				 */
4576 				pmap_invalidate_page(pmap, va);
4577 				pmap_free_zero_pages(&free);
4578 			}
4579 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4580 			    " in pmap %p", va, pmap);
4581 			return (FALSE);
4582 		}
4583 	}
4584 	if ((prot & VM_PROT_EXECUTE) == 0)
4585 		newpde |= pg_nx;
4586 	if (va < VM_MAXUSER_ADDRESS)
4587 		newpde |= PG_U;
4588 
4589 	/*
4590 	 * Increment counters.
4591 	 */
4592 	pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
4593 
4594 	/*
4595 	 * Map the superpage.  (This is not a promoted mapping; there will not
4596 	 * be any lingering 4KB page mappings in the TLB.)
4597 	 */
4598 	pde_store(pde, newpde);
4599 
4600 	atomic_add_long(&pmap_pde_mappings, 1);
4601 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
4602 	    " in pmap %p", va, pmap);
4603 	return (TRUE);
4604 }
4605 
4606 /*
4607  * Maps a sequence of resident pages belonging to the same object.
4608  * The sequence begins with the given page m_start.  This page is
4609  * mapped at the given virtual address start.  Each subsequent page is
4610  * mapped at a virtual address that is offset from start by the same
4611  * amount as the page is offset from m_start within the object.  The
4612  * last page in the sequence is the page with the largest offset from
4613  * m_start that can be mapped at a virtual address less than the given
4614  * virtual address end.  Not every virtual page between start and end
4615  * is mapped; only those for which a resident page exists with the
4616  * corresponding offset from m_start are mapped.
4617  */
4618 void
4619 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4620     vm_page_t m_start, vm_prot_t prot)
4621 {
4622 	struct rwlock *lock;
4623 	vm_offset_t va;
4624 	vm_page_t m, mpte;
4625 	vm_pindex_t diff, psize;
4626 
4627 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4628 
4629 	psize = atop(end - start);
4630 	mpte = NULL;
4631 	m = m_start;
4632 	lock = NULL;
4633 	PMAP_LOCK(pmap);
4634 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4635 		va = start + ptoa(diff);
4636 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4637 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
4638 		    pmap_enter_pde(pmap, va, m, prot, &lock))
4639 			m = &m[NBPDR / PAGE_SIZE - 1];
4640 		else
4641 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4642 			    mpte, &lock);
4643 		m = TAILQ_NEXT(m, listq);
4644 	}
4645 	if (lock != NULL)
4646 		rw_wunlock(lock);
4647 	PMAP_UNLOCK(pmap);
4648 }
4649 
4650 /*
4651  * this code makes some *MAJOR* assumptions:
4652  * 1. Current pmap & pmap exists.
4653  * 2. Not wired.
4654  * 3. Read access.
4655  * 4. No page table pages.
4656  * but is *MUCH* faster than pmap_enter...
4657  */
4658 
4659 void
4660 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4661 {
4662 	struct rwlock *lock;
4663 
4664 	lock = NULL;
4665 	PMAP_LOCK(pmap);
4666 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
4667 	if (lock != NULL)
4668 		rw_wunlock(lock);
4669 	PMAP_UNLOCK(pmap);
4670 }
4671 
4672 static vm_page_t
4673 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4674     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
4675 {
4676 	struct spglist free;
4677 	pt_entry_t *pte, PG_V;
4678 	vm_paddr_t pa;
4679 
4680 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4681 	    (m->oflags & VPO_UNMANAGED) != 0,
4682 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4683 	PG_V = pmap_valid_bit(pmap);
4684 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4685 
4686 	/*
4687 	 * In the case that a page table page is not
4688 	 * resident, we are creating it here.
4689 	 */
4690 	if (va < VM_MAXUSER_ADDRESS) {
4691 		vm_pindex_t ptepindex;
4692 		pd_entry_t *ptepa;
4693 
4694 		/*
4695 		 * Calculate pagetable page index
4696 		 */
4697 		ptepindex = pmap_pde_pindex(va);
4698 		if (mpte && (mpte->pindex == ptepindex)) {
4699 			mpte->wire_count++;
4700 		} else {
4701 			/*
4702 			 * Get the page directory entry
4703 			 */
4704 			ptepa = pmap_pde(pmap, va);
4705 
4706 			/*
4707 			 * If the page table page is mapped, we just increment
4708 			 * the hold count, and activate it.  Otherwise, we
4709 			 * attempt to allocate a page table page.  If this
4710 			 * attempt fails, we don't retry.  Instead, we give up.
4711 			 */
4712 			if (ptepa && (*ptepa & PG_V) != 0) {
4713 				if (*ptepa & PG_PS)
4714 					return (NULL);
4715 				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
4716 				mpte->wire_count++;
4717 			} else {
4718 				/*
4719 				 * Pass NULL instead of the PV list lock
4720 				 * pointer, because we don't intend to sleep.
4721 				 */
4722 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
4723 				if (mpte == NULL)
4724 					return (mpte);
4725 			}
4726 		}
4727 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
4728 		pte = &pte[pmap_pte_index(va)];
4729 	} else {
4730 		mpte = NULL;
4731 		pte = vtopte(va);
4732 	}
4733 	if (*pte) {
4734 		if (mpte != NULL) {
4735 			mpte->wire_count--;
4736 			mpte = NULL;
4737 		}
4738 		return (mpte);
4739 	}
4740 
4741 	/*
4742 	 * Enter on the PV list if part of our managed memory.
4743 	 */
4744 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4745 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
4746 		if (mpte != NULL) {
4747 			SLIST_INIT(&free);
4748 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4749 				/*
4750 				 * Although "va" is not mapped, paging-
4751 				 * structure caches could nonetheless have
4752 				 * entries that refer to the freed page table
4753 				 * pages.  Invalidate those entries.
4754 				 */
4755 				pmap_invalidate_page(pmap, va);
4756 				pmap_free_zero_pages(&free);
4757 			}
4758 			mpte = NULL;
4759 		}
4760 		return (mpte);
4761 	}
4762 
4763 	/*
4764 	 * Increment counters
4765 	 */
4766 	pmap_resident_count_inc(pmap, 1);
4767 
4768 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 0);
4769 	if ((prot & VM_PROT_EXECUTE) == 0)
4770 		pa |= pg_nx;
4771 
4772 	/*
4773 	 * Now validate mapping with RO protection
4774 	 */
4775 	if ((m->oflags & VPO_UNMANAGED) != 0)
4776 		pte_store(pte, pa | PG_V | PG_U);
4777 	else
4778 		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
4779 	return (mpte);
4780 }
4781 
4782 /*
4783  * Make a temporary mapping for a physical address.  This is only intended
4784  * to be used for panic dumps.
4785  */
4786 void *
4787 pmap_kenter_temporary(vm_paddr_t pa, int i)
4788 {
4789 	vm_offset_t va;
4790 
4791 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4792 	pmap_kenter(va, pa);
4793 	invlpg(va);
4794 	return ((void *)crashdumpmap);
4795 }
4796 
4797 /*
4798  * This code maps large physical mmap regions into the
4799  * processor address space.  Note that some shortcuts
4800  * are taken, but the code works.
4801  */
4802 void
4803 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4804     vm_pindex_t pindex, vm_size_t size)
4805 {
4806 	pd_entry_t *pde;
4807 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4808 	vm_paddr_t pa, ptepa;
4809 	vm_page_t p, pdpg;
4810 	int pat_mode;
4811 
4812 	PG_A = pmap_accessed_bit(pmap);
4813 	PG_M = pmap_modified_bit(pmap);
4814 	PG_V = pmap_valid_bit(pmap);
4815 	PG_RW = pmap_rw_bit(pmap);
4816 
4817 	VM_OBJECT_ASSERT_WLOCKED(object);
4818 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4819 	    ("pmap_object_init_pt: non-device object"));
4820 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4821 		if (!pmap_ps_enabled(pmap))
4822 			return;
4823 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4824 			return;
4825 		p = vm_page_lookup(object, pindex);
4826 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4827 		    ("pmap_object_init_pt: invalid page %p", p));
4828 		pat_mode = p->md.pat_mode;
4829 
4830 		/*
4831 		 * Abort the mapping if the first page is not physically
4832 		 * aligned to a 2MB page boundary.
4833 		 */
4834 		ptepa = VM_PAGE_TO_PHYS(p);
4835 		if (ptepa & (NBPDR - 1))
4836 			return;
4837 
4838 		/*
4839 		 * Skip the first page.  Abort the mapping if the rest of
4840 		 * the pages are not physically contiguous or have differing
4841 		 * memory attributes.
4842 		 */
4843 		p = TAILQ_NEXT(p, listq);
4844 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4845 		    pa += PAGE_SIZE) {
4846 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4847 			    ("pmap_object_init_pt: invalid page %p", p));
4848 			if (pa != VM_PAGE_TO_PHYS(p) ||
4849 			    pat_mode != p->md.pat_mode)
4850 				return;
4851 			p = TAILQ_NEXT(p, listq);
4852 		}
4853 
4854 		/*
4855 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
4856 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
4857 		 * will not affect the termination of this loop.
4858 		 */
4859 		PMAP_LOCK(pmap);
4860 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4861 		    pa < ptepa + size; pa += NBPDR) {
4862 			pdpg = pmap_allocpde(pmap, addr, NULL);
4863 			if (pdpg == NULL) {
4864 				/*
4865 				 * The creation of mappings below is only an
4866 				 * optimization.  If a page directory page
4867 				 * cannot be allocated without blocking,
4868 				 * continue on to the next mapping rather than
4869 				 * blocking.
4870 				 */
4871 				addr += NBPDR;
4872 				continue;
4873 			}
4874 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4875 			pde = &pde[pmap_pde_index(addr)];
4876 			if ((*pde & PG_V) == 0) {
4877 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4878 				    PG_U | PG_RW | PG_V);
4879 				pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
4880 				atomic_add_long(&pmap_pde_mappings, 1);
4881 			} else {
4882 				/* Continue on if the PDE is already valid. */
4883 				pdpg->wire_count--;
4884 				KASSERT(pdpg->wire_count > 0,
4885 				    ("pmap_object_init_pt: missing reference "
4886 				    "to page directory page, va: 0x%lx", addr));
4887 			}
4888 			addr += NBPDR;
4889 		}
4890 		PMAP_UNLOCK(pmap);
4891 	}
4892 }
4893 
4894 /*
4895  *	Clear the wired attribute from the mappings for the specified range of
4896  *	addresses in the given pmap.  Every valid mapping within that range
4897  *	must have the wired attribute set.  In contrast, invalid mappings
4898  *	cannot have the wired attribute set, so they are ignored.
4899  *
4900  *	The wired attribute of the page table entry is not a hardware
4901  *	feature, so there is no need to invalidate any TLB entries.
4902  *	Since pmap_demote_pde() for the wired entry must never fail,
4903  *	pmap_delayed_invl_started()/finished() calls around the
4904  *	function are not needed.
4905  */
4906 void
4907 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4908 {
4909 	vm_offset_t va_next;
4910 	pml4_entry_t *pml4e;
4911 	pdp_entry_t *pdpe;
4912 	pd_entry_t *pde;
4913 	pt_entry_t *pte, PG_V;
4914 
4915 	PG_V = pmap_valid_bit(pmap);
4916 	PMAP_LOCK(pmap);
4917 	for (; sva < eva; sva = va_next) {
4918 		pml4e = pmap_pml4e(pmap, sva);
4919 		if ((*pml4e & PG_V) == 0) {
4920 			va_next = (sva + NBPML4) & ~PML4MASK;
4921 			if (va_next < sva)
4922 				va_next = eva;
4923 			continue;
4924 		}
4925 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
4926 		if ((*pdpe & PG_V) == 0) {
4927 			va_next = (sva + NBPDP) & ~PDPMASK;
4928 			if (va_next < sva)
4929 				va_next = eva;
4930 			continue;
4931 		}
4932 		va_next = (sva + NBPDR) & ~PDRMASK;
4933 		if (va_next < sva)
4934 			va_next = eva;
4935 		pde = pmap_pdpe_to_pde(pdpe, sva);
4936 		if ((*pde & PG_V) == 0)
4937 			continue;
4938 		if ((*pde & PG_PS) != 0) {
4939 			if ((*pde & PG_W) == 0)
4940 				panic("pmap_unwire: pde %#jx is missing PG_W",
4941 				    (uintmax_t)*pde);
4942 
4943 			/*
4944 			 * Are we unwiring the entire large page?  If not,
4945 			 * demote the mapping and fall through.
4946 			 */
4947 			if (sva + NBPDR == va_next && eva >= va_next) {
4948 				atomic_clear_long(pde, PG_W);
4949 				pmap->pm_stats.wired_count -= NBPDR /
4950 				    PAGE_SIZE;
4951 				continue;
4952 			} else if (!pmap_demote_pde(pmap, pde, sva))
4953 				panic("pmap_unwire: demotion failed");
4954 		}
4955 		if (va_next > eva)
4956 			va_next = eva;
4957 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
4958 		    sva += PAGE_SIZE) {
4959 			if ((*pte & PG_V) == 0)
4960 				continue;
4961 			if ((*pte & PG_W) == 0)
4962 				panic("pmap_unwire: pte %#jx is missing PG_W",
4963 				    (uintmax_t)*pte);
4964 
4965 			/*
4966 			 * PG_W must be cleared atomically.  Although the pmap
4967 			 * lock synchronizes access to PG_W, another processor
4968 			 * could be setting PG_M and/or PG_A concurrently.
4969 			 */
4970 			atomic_clear_long(pte, PG_W);
4971 			pmap->pm_stats.wired_count--;
4972 		}
4973 	}
4974 	PMAP_UNLOCK(pmap);
4975 }
4976 
4977 /*
4978  *	Copy the range specified by src_addr/len
4979  *	from the source map to the range dst_addr/len
4980  *	in the destination map.
4981  *
4982  *	This routine is only advisory and need not do anything.
4983  */
4984 
4985 void
4986 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4987     vm_offset_t src_addr)
4988 {
4989 	struct rwlock *lock;
4990 	struct spglist free;
4991 	vm_offset_t addr;
4992 	vm_offset_t end_addr = src_addr + len;
4993 	vm_offset_t va_next;
4994 	pt_entry_t PG_A, PG_M, PG_V;
4995 
4996 	if (dst_addr != src_addr)
4997 		return;
4998 
4999 	if (dst_pmap->pm_type != src_pmap->pm_type)
5000 		return;
5001 
5002 	/*
5003 	 * EPT page table entries that require emulation of A/D bits are
5004 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
5005 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
5006 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
5007 	 * implementations flag an EPT misconfiguration for exec-only
5008 	 * mappings we skip this function entirely for emulated pmaps.
5009 	 */
5010 	if (pmap_emulate_ad_bits(dst_pmap))
5011 		return;
5012 
5013 	lock = NULL;
5014 	if (dst_pmap < src_pmap) {
5015 		PMAP_LOCK(dst_pmap);
5016 		PMAP_LOCK(src_pmap);
5017 	} else {
5018 		PMAP_LOCK(src_pmap);
5019 		PMAP_LOCK(dst_pmap);
5020 	}
5021 
5022 	PG_A = pmap_accessed_bit(dst_pmap);
5023 	PG_M = pmap_modified_bit(dst_pmap);
5024 	PG_V = pmap_valid_bit(dst_pmap);
5025 
5026 	for (addr = src_addr; addr < end_addr; addr = va_next) {
5027 		pt_entry_t *src_pte, *dst_pte;
5028 		vm_page_t dstmpde, dstmpte, srcmpte;
5029 		pml4_entry_t *pml4e;
5030 		pdp_entry_t *pdpe;
5031 		pd_entry_t srcptepaddr, *pde;
5032 
5033 		KASSERT(addr < UPT_MIN_ADDRESS,
5034 		    ("pmap_copy: invalid to pmap_copy page tables"));
5035 
5036 		pml4e = pmap_pml4e(src_pmap, addr);
5037 		if ((*pml4e & PG_V) == 0) {
5038 			va_next = (addr + NBPML4) & ~PML4MASK;
5039 			if (va_next < addr)
5040 				va_next = end_addr;
5041 			continue;
5042 		}
5043 
5044 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
5045 		if ((*pdpe & PG_V) == 0) {
5046 			va_next = (addr + NBPDP) & ~PDPMASK;
5047 			if (va_next < addr)
5048 				va_next = end_addr;
5049 			continue;
5050 		}
5051 
5052 		va_next = (addr + NBPDR) & ~PDRMASK;
5053 		if (va_next < addr)
5054 			va_next = end_addr;
5055 
5056 		pde = pmap_pdpe_to_pde(pdpe, addr);
5057 		srcptepaddr = *pde;
5058 		if (srcptepaddr == 0)
5059 			continue;
5060 
5061 		if (srcptepaddr & PG_PS) {
5062 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
5063 				continue;
5064 			dstmpde = pmap_allocpde(dst_pmap, addr, NULL);
5065 			if (dstmpde == NULL)
5066 				break;
5067 			pde = (pd_entry_t *)
5068 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpde));
5069 			pde = &pde[pmap_pde_index(addr)];
5070 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
5071 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
5072 			    PG_PS_FRAME, &lock))) {
5073 				*pde = srcptepaddr & ~PG_W;
5074 				pmap_resident_count_inc(dst_pmap, NBPDR / PAGE_SIZE);
5075 				atomic_add_long(&pmap_pde_mappings, 1);
5076 			} else
5077 				dstmpde->wire_count--;
5078 			continue;
5079 		}
5080 
5081 		srcptepaddr &= PG_FRAME;
5082 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
5083 		KASSERT(srcmpte->wire_count > 0,
5084 		    ("pmap_copy: source page table page is unused"));
5085 
5086 		if (va_next > end_addr)
5087 			va_next = end_addr;
5088 
5089 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
5090 		src_pte = &src_pte[pmap_pte_index(addr)];
5091 		dstmpte = NULL;
5092 		while (addr < va_next) {
5093 			pt_entry_t ptetemp;
5094 			ptetemp = *src_pte;
5095 			/*
5096 			 * we only virtual copy managed pages
5097 			 */
5098 			if ((ptetemp & PG_MANAGED) != 0) {
5099 				if (dstmpte != NULL &&
5100 				    dstmpte->pindex == pmap_pde_pindex(addr))
5101 					dstmpte->wire_count++;
5102 				else if ((dstmpte = pmap_allocpte(dst_pmap,
5103 				    addr, NULL)) == NULL)
5104 					goto out;
5105 				dst_pte = (pt_entry_t *)
5106 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
5107 				dst_pte = &dst_pte[pmap_pte_index(addr)];
5108 				if (*dst_pte == 0 &&
5109 				    pmap_try_insert_pv_entry(dst_pmap, addr,
5110 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
5111 				    &lock)) {
5112 					/*
5113 					 * Clear the wired, modified, and
5114 					 * accessed (referenced) bits
5115 					 * during the copy.
5116 					 */
5117 					*dst_pte = ptetemp & ~(PG_W | PG_M |
5118 					    PG_A);
5119 					pmap_resident_count_inc(dst_pmap, 1);
5120 				} else {
5121 					SLIST_INIT(&free);
5122 					if (pmap_unwire_ptp(dst_pmap, addr,
5123 					    dstmpte, &free)) {
5124 						/*
5125 						 * Although "addr" is not
5126 						 * mapped, paging-structure
5127 						 * caches could nonetheless
5128 						 * have entries that refer to
5129 						 * the freed page table pages.
5130 						 * Invalidate those entries.
5131 						 */
5132 						pmap_invalidate_page(dst_pmap,
5133 						    addr);
5134 						pmap_free_zero_pages(&free);
5135 					}
5136 					goto out;
5137 				}
5138 				if (dstmpte->wire_count >= srcmpte->wire_count)
5139 					break;
5140 			}
5141 			addr += PAGE_SIZE;
5142 			src_pte++;
5143 		}
5144 	}
5145 out:
5146 	if (lock != NULL)
5147 		rw_wunlock(lock);
5148 	PMAP_UNLOCK(src_pmap);
5149 	PMAP_UNLOCK(dst_pmap);
5150 }
5151 
5152 /*
5153  * Zero the specified hardware page.
5154  */
5155 void
5156 pmap_zero_page(vm_page_t m)
5157 {
5158 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5159 
5160 	pagezero((void *)va);
5161 }
5162 
5163 /*
5164  * Zero an an area within a single hardware page.  off and size must not
5165  * cover an area beyond a single hardware page.
5166  */
5167 void
5168 pmap_zero_page_area(vm_page_t m, int off, int size)
5169 {
5170 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5171 
5172 	if (off == 0 && size == PAGE_SIZE)
5173 		pagezero((void *)va);
5174 	else
5175 		bzero((char *)va + off, size);
5176 }
5177 
5178 /*
5179  * Copy 1 specified hardware page to another.
5180  */
5181 void
5182 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
5183 {
5184 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
5185 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
5186 
5187 	pagecopy((void *)src, (void *)dst);
5188 }
5189 
5190 int unmapped_buf_allowed = 1;
5191 
5192 void
5193 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5194     vm_offset_t b_offset, int xfersize)
5195 {
5196 	void *a_cp, *b_cp;
5197 	vm_page_t pages[2];
5198 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
5199 	int cnt;
5200 	boolean_t mapped;
5201 
5202 	while (xfersize > 0) {
5203 		a_pg_offset = a_offset & PAGE_MASK;
5204 		pages[0] = ma[a_offset >> PAGE_SHIFT];
5205 		b_pg_offset = b_offset & PAGE_MASK;
5206 		pages[1] = mb[b_offset >> PAGE_SHIFT];
5207 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5208 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5209 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
5210 		a_cp = (char *)vaddr[0] + a_pg_offset;
5211 		b_cp = (char *)vaddr[1] + b_pg_offset;
5212 		bcopy(a_cp, b_cp, cnt);
5213 		if (__predict_false(mapped))
5214 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
5215 		a_offset += cnt;
5216 		b_offset += cnt;
5217 		xfersize -= cnt;
5218 	}
5219 }
5220 
5221 /*
5222  * Returns true if the pmap's pv is one of the first
5223  * 16 pvs linked to from this page.  This count may
5224  * be changed upwards or downwards in the future; it
5225  * is only necessary that true be returned for a small
5226  * subset of pmaps for proper page aging.
5227  */
5228 boolean_t
5229 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5230 {
5231 	struct md_page *pvh;
5232 	struct rwlock *lock;
5233 	pv_entry_t pv;
5234 	int loops = 0;
5235 	boolean_t rv;
5236 
5237 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5238 	    ("pmap_page_exists_quick: page %p is not managed", m));
5239 	rv = FALSE;
5240 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5241 	rw_rlock(lock);
5242 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5243 		if (PV_PMAP(pv) == pmap) {
5244 			rv = TRUE;
5245 			break;
5246 		}
5247 		loops++;
5248 		if (loops >= 16)
5249 			break;
5250 	}
5251 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5252 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5253 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5254 			if (PV_PMAP(pv) == pmap) {
5255 				rv = TRUE;
5256 				break;
5257 			}
5258 			loops++;
5259 			if (loops >= 16)
5260 				break;
5261 		}
5262 	}
5263 	rw_runlock(lock);
5264 	return (rv);
5265 }
5266 
5267 /*
5268  *	pmap_page_wired_mappings:
5269  *
5270  *	Return the number of managed mappings to the given physical page
5271  *	that are wired.
5272  */
5273 int
5274 pmap_page_wired_mappings(vm_page_t m)
5275 {
5276 	struct rwlock *lock;
5277 	struct md_page *pvh;
5278 	pmap_t pmap;
5279 	pt_entry_t *pte;
5280 	pv_entry_t pv;
5281 	int count, md_gen, pvh_gen;
5282 
5283 	if ((m->oflags & VPO_UNMANAGED) != 0)
5284 		return (0);
5285 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5286 	rw_rlock(lock);
5287 restart:
5288 	count = 0;
5289 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5290 		pmap = PV_PMAP(pv);
5291 		if (!PMAP_TRYLOCK(pmap)) {
5292 			md_gen = m->md.pv_gen;
5293 			rw_runlock(lock);
5294 			PMAP_LOCK(pmap);
5295 			rw_rlock(lock);
5296 			if (md_gen != m->md.pv_gen) {
5297 				PMAP_UNLOCK(pmap);
5298 				goto restart;
5299 			}
5300 		}
5301 		pte = pmap_pte(pmap, pv->pv_va);
5302 		if ((*pte & PG_W) != 0)
5303 			count++;
5304 		PMAP_UNLOCK(pmap);
5305 	}
5306 	if ((m->flags & PG_FICTITIOUS) == 0) {
5307 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5308 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5309 			pmap = PV_PMAP(pv);
5310 			if (!PMAP_TRYLOCK(pmap)) {
5311 				md_gen = m->md.pv_gen;
5312 				pvh_gen = pvh->pv_gen;
5313 				rw_runlock(lock);
5314 				PMAP_LOCK(pmap);
5315 				rw_rlock(lock);
5316 				if (md_gen != m->md.pv_gen ||
5317 				    pvh_gen != pvh->pv_gen) {
5318 					PMAP_UNLOCK(pmap);
5319 					goto restart;
5320 				}
5321 			}
5322 			pte = pmap_pde(pmap, pv->pv_va);
5323 			if ((*pte & PG_W) != 0)
5324 				count++;
5325 			PMAP_UNLOCK(pmap);
5326 		}
5327 	}
5328 	rw_runlock(lock);
5329 	return (count);
5330 }
5331 
5332 /*
5333  * Returns TRUE if the given page is mapped individually or as part of
5334  * a 2mpage.  Otherwise, returns FALSE.
5335  */
5336 boolean_t
5337 pmap_page_is_mapped(vm_page_t m)
5338 {
5339 	struct rwlock *lock;
5340 	boolean_t rv;
5341 
5342 	if ((m->oflags & VPO_UNMANAGED) != 0)
5343 		return (FALSE);
5344 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5345 	rw_rlock(lock);
5346 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5347 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5348 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5349 	rw_runlock(lock);
5350 	return (rv);
5351 }
5352 
5353 /*
5354  * Destroy all managed, non-wired mappings in the given user-space
5355  * pmap.  This pmap cannot be active on any processor besides the
5356  * caller.
5357  *
5358  * This function cannot be applied to the kernel pmap.  Moreover, it
5359  * is not intended for general use.  It is only to be used during
5360  * process termination.  Consequently, it can be implemented in ways
5361  * that make it faster than pmap_remove().  First, it can more quickly
5362  * destroy mappings by iterating over the pmap's collection of PV
5363  * entries, rather than searching the page table.  Second, it doesn't
5364  * have to test and clear the page table entries atomically, because
5365  * no processor is currently accessing the user address space.  In
5366  * particular, a page table entry's dirty bit won't change state once
5367  * this function starts.
5368  */
5369 void
5370 pmap_remove_pages(pmap_t pmap)
5371 {
5372 	pd_entry_t ptepde;
5373 	pt_entry_t *pte, tpte;
5374 	pt_entry_t PG_M, PG_RW, PG_V;
5375 	struct spglist free;
5376 	vm_page_t m, mpte, mt;
5377 	pv_entry_t pv;
5378 	struct md_page *pvh;
5379 	struct pv_chunk *pc, *npc;
5380 	struct rwlock *lock;
5381 	int64_t bit;
5382 	uint64_t inuse, bitmask;
5383 	int allfree, field, freed, idx;
5384 	boolean_t superpage;
5385 	vm_paddr_t pa;
5386 
5387 	/*
5388 	 * Assert that the given pmap is only active on the current
5389 	 * CPU.  Unfortunately, we cannot block another CPU from
5390 	 * activating the pmap while this function is executing.
5391 	 */
5392 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
5393 #ifdef INVARIANTS
5394 	{
5395 		cpuset_t other_cpus;
5396 
5397 		other_cpus = all_cpus;
5398 		critical_enter();
5399 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
5400 		CPU_AND(&other_cpus, &pmap->pm_active);
5401 		critical_exit();
5402 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
5403 	}
5404 #endif
5405 
5406 	lock = NULL;
5407 	PG_M = pmap_modified_bit(pmap);
5408 	PG_V = pmap_valid_bit(pmap);
5409 	PG_RW = pmap_rw_bit(pmap);
5410 
5411 	SLIST_INIT(&free);
5412 	PMAP_LOCK(pmap);
5413 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5414 		allfree = 1;
5415 		freed = 0;
5416 		for (field = 0; field < _NPCM; field++) {
5417 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5418 			while (inuse != 0) {
5419 				bit = bsfq(inuse);
5420 				bitmask = 1UL << bit;
5421 				idx = field * 64 + bit;
5422 				pv = &pc->pc_pventry[idx];
5423 				inuse &= ~bitmask;
5424 
5425 				pte = pmap_pdpe(pmap, pv->pv_va);
5426 				ptepde = *pte;
5427 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
5428 				tpte = *pte;
5429 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
5430 					superpage = FALSE;
5431 					ptepde = tpte;
5432 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5433 					    PG_FRAME);
5434 					pte = &pte[pmap_pte_index(pv->pv_va)];
5435 					tpte = *pte;
5436 				} else {
5437 					/*
5438 					 * Keep track whether 'tpte' is a
5439 					 * superpage explicitly instead of
5440 					 * relying on PG_PS being set.
5441 					 *
5442 					 * This is because PG_PS is numerically
5443 					 * identical to PG_PTE_PAT and thus a
5444 					 * regular page could be mistaken for
5445 					 * a superpage.
5446 					 */
5447 					superpage = TRUE;
5448 				}
5449 
5450 				if ((tpte & PG_V) == 0) {
5451 					panic("bad pte va %lx pte %lx",
5452 					    pv->pv_va, tpte);
5453 				}
5454 
5455 /*
5456  * We cannot remove wired pages from a process' mapping at this time
5457  */
5458 				if (tpte & PG_W) {
5459 					allfree = 0;
5460 					continue;
5461 				}
5462 
5463 				if (superpage)
5464 					pa = tpte & PG_PS_FRAME;
5465 				else
5466 					pa = tpte & PG_FRAME;
5467 
5468 				m = PHYS_TO_VM_PAGE(pa);
5469 				KASSERT(m->phys_addr == pa,
5470 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5471 				    m, (uintmax_t)m->phys_addr,
5472 				    (uintmax_t)tpte));
5473 
5474 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5475 				    m < &vm_page_array[vm_page_array_size],
5476 				    ("pmap_remove_pages: bad tpte %#jx",
5477 				    (uintmax_t)tpte));
5478 
5479 				pte_clear(pte);
5480 
5481 				/*
5482 				 * Update the vm_page_t clean/reference bits.
5483 				 */
5484 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5485 					if (superpage) {
5486 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
5487 							vm_page_dirty(mt);
5488 					} else
5489 						vm_page_dirty(m);
5490 				}
5491 
5492 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5493 
5494 				/* Mark free */
5495 				pc->pc_map[field] |= bitmask;
5496 				if (superpage) {
5497 					pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
5498 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5499 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5500 					pvh->pv_gen++;
5501 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5502 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
5503 							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
5504 							    TAILQ_EMPTY(&mt->md.pv_list))
5505 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5506 					}
5507 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5508 					if (mpte != NULL) {
5509 						pmap_resident_count_dec(pmap, 1);
5510 						KASSERT(mpte->wire_count == NPTEPG,
5511 						    ("pmap_remove_pages: pte page wire count error"));
5512 						mpte->wire_count = 0;
5513 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5514 						atomic_subtract_int(&vm_cnt.v_wire_count, 1);
5515 					}
5516 				} else {
5517 					pmap_resident_count_dec(pmap, 1);
5518 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5519 					m->md.pv_gen++;
5520 					if ((m->aflags & PGA_WRITEABLE) != 0 &&
5521 					    TAILQ_EMPTY(&m->md.pv_list) &&
5522 					    (m->flags & PG_FICTITIOUS) == 0) {
5523 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5524 						if (TAILQ_EMPTY(&pvh->pv_list))
5525 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5526 					}
5527 				}
5528 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
5529 				freed++;
5530 			}
5531 		}
5532 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5533 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5534 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5535 		if (allfree) {
5536 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5537 			free_pv_chunk(pc);
5538 		}
5539 	}
5540 	if (lock != NULL)
5541 		rw_wunlock(lock);
5542 	pmap_invalidate_all(pmap);
5543 	PMAP_UNLOCK(pmap);
5544 	pmap_free_zero_pages(&free);
5545 }
5546 
5547 static boolean_t
5548 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
5549 {
5550 	struct rwlock *lock;
5551 	pv_entry_t pv;
5552 	struct md_page *pvh;
5553 	pt_entry_t *pte, mask;
5554 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
5555 	pmap_t pmap;
5556 	int md_gen, pvh_gen;
5557 	boolean_t rv;
5558 
5559 	rv = FALSE;
5560 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5561 	rw_rlock(lock);
5562 restart:
5563 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5564 		pmap = PV_PMAP(pv);
5565 		if (!PMAP_TRYLOCK(pmap)) {
5566 			md_gen = m->md.pv_gen;
5567 			rw_runlock(lock);
5568 			PMAP_LOCK(pmap);
5569 			rw_rlock(lock);
5570 			if (md_gen != m->md.pv_gen) {
5571 				PMAP_UNLOCK(pmap);
5572 				goto restart;
5573 			}
5574 		}
5575 		pte = pmap_pte(pmap, pv->pv_va);
5576 		mask = 0;
5577 		if (modified) {
5578 			PG_M = pmap_modified_bit(pmap);
5579 			PG_RW = pmap_rw_bit(pmap);
5580 			mask |= PG_RW | PG_M;
5581 		}
5582 		if (accessed) {
5583 			PG_A = pmap_accessed_bit(pmap);
5584 			PG_V = pmap_valid_bit(pmap);
5585 			mask |= PG_V | PG_A;
5586 		}
5587 		rv = (*pte & mask) == mask;
5588 		PMAP_UNLOCK(pmap);
5589 		if (rv)
5590 			goto out;
5591 	}
5592 	if ((m->flags & PG_FICTITIOUS) == 0) {
5593 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5594 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5595 			pmap = PV_PMAP(pv);
5596 			if (!PMAP_TRYLOCK(pmap)) {
5597 				md_gen = m->md.pv_gen;
5598 				pvh_gen = pvh->pv_gen;
5599 				rw_runlock(lock);
5600 				PMAP_LOCK(pmap);
5601 				rw_rlock(lock);
5602 				if (md_gen != m->md.pv_gen ||
5603 				    pvh_gen != pvh->pv_gen) {
5604 					PMAP_UNLOCK(pmap);
5605 					goto restart;
5606 				}
5607 			}
5608 			pte = pmap_pde(pmap, pv->pv_va);
5609 			mask = 0;
5610 			if (modified) {
5611 				PG_M = pmap_modified_bit(pmap);
5612 				PG_RW = pmap_rw_bit(pmap);
5613 				mask |= PG_RW | PG_M;
5614 			}
5615 			if (accessed) {
5616 				PG_A = pmap_accessed_bit(pmap);
5617 				PG_V = pmap_valid_bit(pmap);
5618 				mask |= PG_V | PG_A;
5619 			}
5620 			rv = (*pte & mask) == mask;
5621 			PMAP_UNLOCK(pmap);
5622 			if (rv)
5623 				goto out;
5624 		}
5625 	}
5626 out:
5627 	rw_runlock(lock);
5628 	return (rv);
5629 }
5630 
5631 /*
5632  *	pmap_is_modified:
5633  *
5634  *	Return whether or not the specified physical page was modified
5635  *	in any physical maps.
5636  */
5637 boolean_t
5638 pmap_is_modified(vm_page_t m)
5639 {
5640 
5641 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5642 	    ("pmap_is_modified: page %p is not managed", m));
5643 
5644 	/*
5645 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5646 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5647 	 * is clear, no PTEs can have PG_M set.
5648 	 */
5649 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5650 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5651 		return (FALSE);
5652 	return (pmap_page_test_mappings(m, FALSE, TRUE));
5653 }
5654 
5655 /*
5656  *	pmap_is_prefaultable:
5657  *
5658  *	Return whether or not the specified virtual address is eligible
5659  *	for prefault.
5660  */
5661 boolean_t
5662 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5663 {
5664 	pd_entry_t *pde;
5665 	pt_entry_t *pte, PG_V;
5666 	boolean_t rv;
5667 
5668 	PG_V = pmap_valid_bit(pmap);
5669 	rv = FALSE;
5670 	PMAP_LOCK(pmap);
5671 	pde = pmap_pde(pmap, addr);
5672 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
5673 		pte = pmap_pde_to_pte(pde, addr);
5674 		rv = (*pte & PG_V) == 0;
5675 	}
5676 	PMAP_UNLOCK(pmap);
5677 	return (rv);
5678 }
5679 
5680 /*
5681  *	pmap_is_referenced:
5682  *
5683  *	Return whether or not the specified physical page was referenced
5684  *	in any physical maps.
5685  */
5686 boolean_t
5687 pmap_is_referenced(vm_page_t m)
5688 {
5689 
5690 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5691 	    ("pmap_is_referenced: page %p is not managed", m));
5692 	return (pmap_page_test_mappings(m, TRUE, FALSE));
5693 }
5694 
5695 /*
5696  * Clear the write and modified bits in each of the given page's mappings.
5697  */
5698 void
5699 pmap_remove_write(vm_page_t m)
5700 {
5701 	struct md_page *pvh;
5702 	pmap_t pmap;
5703 	struct rwlock *lock;
5704 	pv_entry_t next_pv, pv;
5705 	pd_entry_t *pde;
5706 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
5707 	vm_offset_t va;
5708 	int pvh_gen, md_gen;
5709 
5710 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5711 	    ("pmap_remove_write: page %p is not managed", m));
5712 
5713 	/*
5714 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5715 	 * set by another thread while the object is locked.  Thus,
5716 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5717 	 */
5718 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5719 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5720 		return;
5721 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5722 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5723 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5724 retry_pv_loop:
5725 	rw_wlock(lock);
5726 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5727 		pmap = PV_PMAP(pv);
5728 		if (!PMAP_TRYLOCK(pmap)) {
5729 			pvh_gen = pvh->pv_gen;
5730 			rw_wunlock(lock);
5731 			PMAP_LOCK(pmap);
5732 			rw_wlock(lock);
5733 			if (pvh_gen != pvh->pv_gen) {
5734 				PMAP_UNLOCK(pmap);
5735 				rw_wunlock(lock);
5736 				goto retry_pv_loop;
5737 			}
5738 		}
5739 		PG_RW = pmap_rw_bit(pmap);
5740 		va = pv->pv_va;
5741 		pde = pmap_pde(pmap, va);
5742 		if ((*pde & PG_RW) != 0)
5743 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
5744 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5745 		    ("inconsistent pv lock %p %p for page %p",
5746 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5747 		PMAP_UNLOCK(pmap);
5748 	}
5749 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5750 		pmap = PV_PMAP(pv);
5751 		if (!PMAP_TRYLOCK(pmap)) {
5752 			pvh_gen = pvh->pv_gen;
5753 			md_gen = m->md.pv_gen;
5754 			rw_wunlock(lock);
5755 			PMAP_LOCK(pmap);
5756 			rw_wlock(lock);
5757 			if (pvh_gen != pvh->pv_gen ||
5758 			    md_gen != m->md.pv_gen) {
5759 				PMAP_UNLOCK(pmap);
5760 				rw_wunlock(lock);
5761 				goto retry_pv_loop;
5762 			}
5763 		}
5764 		PG_M = pmap_modified_bit(pmap);
5765 		PG_RW = pmap_rw_bit(pmap);
5766 		pde = pmap_pde(pmap, pv->pv_va);
5767 		KASSERT((*pde & PG_PS) == 0,
5768 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5769 		    m));
5770 		pte = pmap_pde_to_pte(pde, pv->pv_va);
5771 retry:
5772 		oldpte = *pte;
5773 		if (oldpte & PG_RW) {
5774 			if (!atomic_cmpset_long(pte, oldpte, oldpte &
5775 			    ~(PG_RW | PG_M)))
5776 				goto retry;
5777 			if ((oldpte & PG_M) != 0)
5778 				vm_page_dirty(m);
5779 			pmap_invalidate_page(pmap, pv->pv_va);
5780 		}
5781 		PMAP_UNLOCK(pmap);
5782 	}
5783 	rw_wunlock(lock);
5784 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5785 	pmap_delayed_invl_wait(m);
5786 }
5787 
5788 static __inline boolean_t
5789 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
5790 {
5791 
5792 	if (!pmap_emulate_ad_bits(pmap))
5793 		return (TRUE);
5794 
5795 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
5796 
5797 	/*
5798 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
5799 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
5800 	 * if the EPT_PG_WRITE bit is set.
5801 	 */
5802 	if ((pte & EPT_PG_WRITE) != 0)
5803 		return (FALSE);
5804 
5805 	/*
5806 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
5807 	 */
5808 	if ((pte & EPT_PG_EXECUTE) == 0 ||
5809 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
5810 		return (TRUE);
5811 	else
5812 		return (FALSE);
5813 }
5814 
5815 /*
5816  *	pmap_ts_referenced:
5817  *
5818  *	Return a count of reference bits for a page, clearing those bits.
5819  *	It is not necessary for every reference bit to be cleared, but it
5820  *	is necessary that 0 only be returned when there are truly no
5821  *	reference bits set.
5822  *
5823  *	As an optimization, update the page's dirty field if a modified bit is
5824  *	found while counting reference bits.  This opportunistic update can be
5825  *	performed at low cost and can eliminate the need for some future calls
5826  *	to pmap_is_modified().  However, since this function stops after
5827  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5828  *	dirty pages.  Those dirty pages will only be detected by a future call
5829  *	to pmap_is_modified().
5830  *
5831  *	A DI block is not needed within this function, because
5832  *	invalidations are performed before the PV list lock is
5833  *	released.
5834  */
5835 int
5836 pmap_ts_referenced(vm_page_t m)
5837 {
5838 	struct md_page *pvh;
5839 	pv_entry_t pv, pvf;
5840 	pmap_t pmap;
5841 	struct rwlock *lock;
5842 	pd_entry_t oldpde, *pde;
5843 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
5844 	vm_offset_t va;
5845 	vm_paddr_t pa;
5846 	int cleared, md_gen, not_cleared, pvh_gen;
5847 	struct spglist free;
5848 	boolean_t demoted;
5849 
5850 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5851 	    ("pmap_ts_referenced: page %p is not managed", m));
5852 	SLIST_INIT(&free);
5853 	cleared = 0;
5854 	pa = VM_PAGE_TO_PHYS(m);
5855 	lock = PHYS_TO_PV_LIST_LOCK(pa);
5856 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
5857 	rw_wlock(lock);
5858 retry:
5859 	not_cleared = 0;
5860 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5861 		goto small_mappings;
5862 	pv = pvf;
5863 	do {
5864 		if (pvf == NULL)
5865 			pvf = pv;
5866 		pmap = PV_PMAP(pv);
5867 		if (!PMAP_TRYLOCK(pmap)) {
5868 			pvh_gen = pvh->pv_gen;
5869 			rw_wunlock(lock);
5870 			PMAP_LOCK(pmap);
5871 			rw_wlock(lock);
5872 			if (pvh_gen != pvh->pv_gen) {
5873 				PMAP_UNLOCK(pmap);
5874 				goto retry;
5875 			}
5876 		}
5877 		PG_A = pmap_accessed_bit(pmap);
5878 		PG_M = pmap_modified_bit(pmap);
5879 		PG_RW = pmap_rw_bit(pmap);
5880 		va = pv->pv_va;
5881 		pde = pmap_pde(pmap, pv->pv_va);
5882 		oldpde = *pde;
5883 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5884 			/*
5885 			 * Although "oldpde" is mapping a 2MB page, because
5886 			 * this function is called at a 4KB page granularity,
5887 			 * we only update the 4KB page under test.
5888 			 */
5889 			vm_page_dirty(m);
5890 		}
5891 		if ((oldpde & PG_A) != 0) {
5892 			/*
5893 			 * Since this reference bit is shared by 512 4KB
5894 			 * pages, it should not be cleared every time it is
5895 			 * tested.  Apply a simple "hash" function on the
5896 			 * physical page number, the virtual superpage number,
5897 			 * and the pmap address to select one 4KB page out of
5898 			 * the 512 on which testing the reference bit will
5899 			 * result in clearing that reference bit.  This
5900 			 * function is designed to avoid the selection of the
5901 			 * same 4KB page for every 2MB page mapping.
5902 			 *
5903 			 * On demotion, a mapping that hasn't been referenced
5904 			 * is simply destroyed.  To avoid the possibility of a
5905 			 * subsequent page fault on a demoted wired mapping,
5906 			 * always leave its reference bit set.  Moreover,
5907 			 * since the superpage is wired, the current state of
5908 			 * its reference bit won't affect page replacement.
5909 			 */
5910 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5911 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5912 			    (oldpde & PG_W) == 0) {
5913 				if (safe_to_clear_referenced(pmap, oldpde)) {
5914 					atomic_clear_long(pde, PG_A);
5915 					pmap_invalidate_page(pmap, pv->pv_va);
5916 					demoted = FALSE;
5917 				} else if (pmap_demote_pde_locked(pmap, pde,
5918 				    pv->pv_va, &lock)) {
5919 					/*
5920 					 * Remove the mapping to a single page
5921 					 * so that a subsequent access may
5922 					 * repromote.  Since the underlying
5923 					 * page table page is fully populated,
5924 					 * this removal never frees a page
5925 					 * table page.
5926 					 */
5927 					demoted = TRUE;
5928 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5929 					    PG_PS_FRAME);
5930 					pte = pmap_pde_to_pte(pde, va);
5931 					pmap_remove_pte(pmap, pte, va, *pde,
5932 					    NULL, &lock);
5933 					pmap_invalidate_page(pmap, va);
5934 				} else
5935 					demoted = TRUE;
5936 
5937 				if (demoted) {
5938 					/*
5939 					 * The superpage mapping was removed
5940 					 * entirely and therefore 'pv' is no
5941 					 * longer valid.
5942 					 */
5943 					if (pvf == pv)
5944 						pvf = NULL;
5945 					pv = NULL;
5946 				}
5947 				cleared++;
5948 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5949 				    ("inconsistent pv lock %p %p for page %p",
5950 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5951 			} else
5952 				not_cleared++;
5953 		}
5954 		PMAP_UNLOCK(pmap);
5955 		/* Rotate the PV list if it has more than one entry. */
5956 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5957 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5958 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5959 			pvh->pv_gen++;
5960 		}
5961 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
5962 			goto out;
5963 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5964 small_mappings:
5965 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5966 		goto out;
5967 	pv = pvf;
5968 	do {
5969 		if (pvf == NULL)
5970 			pvf = pv;
5971 		pmap = PV_PMAP(pv);
5972 		if (!PMAP_TRYLOCK(pmap)) {
5973 			pvh_gen = pvh->pv_gen;
5974 			md_gen = m->md.pv_gen;
5975 			rw_wunlock(lock);
5976 			PMAP_LOCK(pmap);
5977 			rw_wlock(lock);
5978 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5979 				PMAP_UNLOCK(pmap);
5980 				goto retry;
5981 			}
5982 		}
5983 		PG_A = pmap_accessed_bit(pmap);
5984 		PG_M = pmap_modified_bit(pmap);
5985 		PG_RW = pmap_rw_bit(pmap);
5986 		pde = pmap_pde(pmap, pv->pv_va);
5987 		KASSERT((*pde & PG_PS) == 0,
5988 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
5989 		    m));
5990 		pte = pmap_pde_to_pte(pde, pv->pv_va);
5991 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5992 			vm_page_dirty(m);
5993 		if ((*pte & PG_A) != 0) {
5994 			if (safe_to_clear_referenced(pmap, *pte)) {
5995 				atomic_clear_long(pte, PG_A);
5996 				pmap_invalidate_page(pmap, pv->pv_va);
5997 				cleared++;
5998 			} else if ((*pte & PG_W) == 0) {
5999 				/*
6000 				 * Wired pages cannot be paged out so
6001 				 * doing accessed bit emulation for
6002 				 * them is wasted effort. We do the
6003 				 * hard work for unwired pages only.
6004 				 */
6005 				pmap_remove_pte(pmap, pte, pv->pv_va,
6006 				    *pde, &free, &lock);
6007 				pmap_invalidate_page(pmap, pv->pv_va);
6008 				cleared++;
6009 				if (pvf == pv)
6010 					pvf = NULL;
6011 				pv = NULL;
6012 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
6013 				    ("inconsistent pv lock %p %p for page %p",
6014 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
6015 			} else
6016 				not_cleared++;
6017 		}
6018 		PMAP_UNLOCK(pmap);
6019 		/* Rotate the PV list if it has more than one entry. */
6020 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
6021 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6022 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
6023 			m->md.pv_gen++;
6024 		}
6025 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
6026 	    not_cleared < PMAP_TS_REFERENCED_MAX);
6027 out:
6028 	rw_wunlock(lock);
6029 	pmap_free_zero_pages(&free);
6030 	return (cleared + not_cleared);
6031 }
6032 
6033 /*
6034  *	Apply the given advice to the specified range of addresses within the
6035  *	given pmap.  Depending on the advice, clear the referenced and/or
6036  *	modified flags in each mapping and set the mapped page's dirty field.
6037  */
6038 void
6039 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
6040 {
6041 	struct rwlock *lock;
6042 	pml4_entry_t *pml4e;
6043 	pdp_entry_t *pdpe;
6044 	pd_entry_t oldpde, *pde;
6045 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
6046 	vm_offset_t va, va_next;
6047 	vm_page_t m;
6048 	boolean_t anychanged;
6049 
6050 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
6051 		return;
6052 
6053 	/*
6054 	 * A/D bit emulation requires an alternate code path when clearing
6055 	 * the modified and accessed bits below. Since this function is
6056 	 * advisory in nature we skip it entirely for pmaps that require
6057 	 * A/D bit emulation.
6058 	 */
6059 	if (pmap_emulate_ad_bits(pmap))
6060 		return;
6061 
6062 	PG_A = pmap_accessed_bit(pmap);
6063 	PG_G = pmap_global_bit(pmap);
6064 	PG_M = pmap_modified_bit(pmap);
6065 	PG_V = pmap_valid_bit(pmap);
6066 	PG_RW = pmap_rw_bit(pmap);
6067 	anychanged = FALSE;
6068 	pmap_delayed_invl_started();
6069 	PMAP_LOCK(pmap);
6070 	for (; sva < eva; sva = va_next) {
6071 		pml4e = pmap_pml4e(pmap, sva);
6072 		if ((*pml4e & PG_V) == 0) {
6073 			va_next = (sva + NBPML4) & ~PML4MASK;
6074 			if (va_next < sva)
6075 				va_next = eva;
6076 			continue;
6077 		}
6078 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6079 		if ((*pdpe & PG_V) == 0) {
6080 			va_next = (sva + NBPDP) & ~PDPMASK;
6081 			if (va_next < sva)
6082 				va_next = eva;
6083 			continue;
6084 		}
6085 		va_next = (sva + NBPDR) & ~PDRMASK;
6086 		if (va_next < sva)
6087 			va_next = eva;
6088 		pde = pmap_pdpe_to_pde(pdpe, sva);
6089 		oldpde = *pde;
6090 		if ((oldpde & PG_V) == 0)
6091 			continue;
6092 		else if ((oldpde & PG_PS) != 0) {
6093 			if ((oldpde & PG_MANAGED) == 0)
6094 				continue;
6095 			lock = NULL;
6096 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
6097 				if (lock != NULL)
6098 					rw_wunlock(lock);
6099 
6100 				/*
6101 				 * The large page mapping was destroyed.
6102 				 */
6103 				continue;
6104 			}
6105 
6106 			/*
6107 			 * Unless the page mappings are wired, remove the
6108 			 * mapping to a single page so that a subsequent
6109 			 * access may repromote.  Since the underlying page
6110 			 * table page is fully populated, this removal never
6111 			 * frees a page table page.
6112 			 */
6113 			if ((oldpde & PG_W) == 0) {
6114 				pte = pmap_pde_to_pte(pde, sva);
6115 				KASSERT((*pte & PG_V) != 0,
6116 				    ("pmap_advise: invalid PTE"));
6117 				pmap_remove_pte(pmap, pte, sva, *pde, NULL,
6118 				    &lock);
6119 				anychanged = TRUE;
6120 			}
6121 			if (lock != NULL)
6122 				rw_wunlock(lock);
6123 		}
6124 		if (va_next > eva)
6125 			va_next = eva;
6126 		va = va_next;
6127 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6128 		    sva += PAGE_SIZE) {
6129 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
6130 				goto maybe_invlrng;
6131 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
6132 				if (advice == MADV_DONTNEED) {
6133 					/*
6134 					 * Future calls to pmap_is_modified()
6135 					 * can be avoided by making the page
6136 					 * dirty now.
6137 					 */
6138 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
6139 					vm_page_dirty(m);
6140 				}
6141 				atomic_clear_long(pte, PG_M | PG_A);
6142 			} else if ((*pte & PG_A) != 0)
6143 				atomic_clear_long(pte, PG_A);
6144 			else
6145 				goto maybe_invlrng;
6146 
6147 			if ((*pte & PG_G) != 0) {
6148 				if (va == va_next)
6149 					va = sva;
6150 			} else
6151 				anychanged = TRUE;
6152 			continue;
6153 maybe_invlrng:
6154 			if (va != va_next) {
6155 				pmap_invalidate_range(pmap, va, sva);
6156 				va = va_next;
6157 			}
6158 		}
6159 		if (va != va_next)
6160 			pmap_invalidate_range(pmap, va, sva);
6161 	}
6162 	if (anychanged)
6163 		pmap_invalidate_all(pmap);
6164 	PMAP_UNLOCK(pmap);
6165 	pmap_delayed_invl_finished();
6166 }
6167 
6168 /*
6169  *	Clear the modify bits on the specified physical page.
6170  */
6171 void
6172 pmap_clear_modify(vm_page_t m)
6173 {
6174 	struct md_page *pvh;
6175 	pmap_t pmap;
6176 	pv_entry_t next_pv, pv;
6177 	pd_entry_t oldpde, *pde;
6178 	pt_entry_t oldpte, *pte, PG_M, PG_RW, PG_V;
6179 	struct rwlock *lock;
6180 	vm_offset_t va;
6181 	int md_gen, pvh_gen;
6182 
6183 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6184 	    ("pmap_clear_modify: page %p is not managed", m));
6185 	VM_OBJECT_ASSERT_WLOCKED(m->object);
6186 	KASSERT(!vm_page_xbusied(m),
6187 	    ("pmap_clear_modify: page %p is exclusive busied", m));
6188 
6189 	/*
6190 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
6191 	 * If the object containing the page is locked and the page is not
6192 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
6193 	 */
6194 	if ((m->aflags & PGA_WRITEABLE) == 0)
6195 		return;
6196 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6197 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6198 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6199 	rw_wlock(lock);
6200 restart:
6201 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
6202 		pmap = PV_PMAP(pv);
6203 		if (!PMAP_TRYLOCK(pmap)) {
6204 			pvh_gen = pvh->pv_gen;
6205 			rw_wunlock(lock);
6206 			PMAP_LOCK(pmap);
6207 			rw_wlock(lock);
6208 			if (pvh_gen != pvh->pv_gen) {
6209 				PMAP_UNLOCK(pmap);
6210 				goto restart;
6211 			}
6212 		}
6213 		PG_M = pmap_modified_bit(pmap);
6214 		PG_V = pmap_valid_bit(pmap);
6215 		PG_RW = pmap_rw_bit(pmap);
6216 		va = pv->pv_va;
6217 		pde = pmap_pde(pmap, va);
6218 		oldpde = *pde;
6219 		if ((oldpde & PG_RW) != 0) {
6220 			if (pmap_demote_pde_locked(pmap, pde, va, &lock)) {
6221 				if ((oldpde & PG_W) == 0) {
6222 					/*
6223 					 * Write protect the mapping to a
6224 					 * single page so that a subsequent
6225 					 * write access may repromote.
6226 					 */
6227 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
6228 					    PG_PS_FRAME);
6229 					pte = pmap_pde_to_pte(pde, va);
6230 					oldpte = *pte;
6231 					if ((oldpte & PG_V) != 0) {
6232 						while (!atomic_cmpset_long(pte,
6233 						    oldpte,
6234 						    oldpte & ~(PG_M | PG_RW)))
6235 							oldpte = *pte;
6236 						vm_page_dirty(m);
6237 						pmap_invalidate_page(pmap, va);
6238 					}
6239 				}
6240 			}
6241 		}
6242 		PMAP_UNLOCK(pmap);
6243 	}
6244 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6245 		pmap = PV_PMAP(pv);
6246 		if (!PMAP_TRYLOCK(pmap)) {
6247 			md_gen = m->md.pv_gen;
6248 			pvh_gen = pvh->pv_gen;
6249 			rw_wunlock(lock);
6250 			PMAP_LOCK(pmap);
6251 			rw_wlock(lock);
6252 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6253 				PMAP_UNLOCK(pmap);
6254 				goto restart;
6255 			}
6256 		}
6257 		PG_M = pmap_modified_bit(pmap);
6258 		PG_RW = pmap_rw_bit(pmap);
6259 		pde = pmap_pde(pmap, pv->pv_va);
6260 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
6261 		    " a 2mpage in page %p's pv list", m));
6262 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6263 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
6264 			atomic_clear_long(pte, PG_M);
6265 			pmap_invalidate_page(pmap, pv->pv_va);
6266 		}
6267 		PMAP_UNLOCK(pmap);
6268 	}
6269 	rw_wunlock(lock);
6270 }
6271 
6272 /*
6273  * Miscellaneous support routines follow
6274  */
6275 
6276 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
6277 static __inline void
6278 pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask)
6279 {
6280 	u_int opte, npte;
6281 
6282 	/*
6283 	 * The cache mode bits are all in the low 32-bits of the
6284 	 * PTE, so we can just spin on updating the low 32-bits.
6285 	 */
6286 	do {
6287 		opte = *(u_int *)pte;
6288 		npte = opte & ~mask;
6289 		npte |= cache_bits;
6290 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
6291 }
6292 
6293 /* Adjust the cache mode for a 2MB page mapped via a PDE. */
6294 static __inline void
6295 pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask)
6296 {
6297 	u_int opde, npde;
6298 
6299 	/*
6300 	 * The cache mode bits are all in the low 32-bits of the
6301 	 * PDE, so we can just spin on updating the low 32-bits.
6302 	 */
6303 	do {
6304 		opde = *(u_int *)pde;
6305 		npde = opde & ~mask;
6306 		npde |= cache_bits;
6307 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
6308 }
6309 
6310 /*
6311  * Map a set of physical memory pages into the kernel virtual
6312  * address space. Return a pointer to where it is mapped. This
6313  * routine is intended to be used for mapping device memory,
6314  * NOT real memory.
6315  */
6316 void *
6317 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
6318 {
6319 	struct pmap_preinit_mapping *ppim;
6320 	vm_offset_t va, offset;
6321 	vm_size_t tmpsize;
6322 	int i;
6323 
6324 	offset = pa & PAGE_MASK;
6325 	size = round_page(offset + size);
6326 	pa = trunc_page(pa);
6327 
6328 	if (!pmap_initialized) {
6329 		va = 0;
6330 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6331 			ppim = pmap_preinit_mapping + i;
6332 			if (ppim->va == 0) {
6333 				ppim->pa = pa;
6334 				ppim->sz = size;
6335 				ppim->mode = mode;
6336 				ppim->va = virtual_avail;
6337 				virtual_avail += size;
6338 				va = ppim->va;
6339 				break;
6340 			}
6341 		}
6342 		if (va == 0)
6343 			panic("%s: too many preinit mappings", __func__);
6344 	} else {
6345 		/*
6346 		 * If we have a preinit mapping, re-use it.
6347 		 */
6348 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6349 			ppim = pmap_preinit_mapping + i;
6350 			if (ppim->pa == pa && ppim->sz == size &&
6351 			    ppim->mode == mode)
6352 				return ((void *)(ppim->va + offset));
6353 		}
6354 		/*
6355 		 * If the specified range of physical addresses fits within
6356 		 * the direct map window, use the direct map.
6357 		 */
6358 		if (pa < dmaplimit && pa + size < dmaplimit) {
6359 			va = PHYS_TO_DMAP(pa);
6360 			if (!pmap_change_attr(va, size, mode))
6361 				return ((void *)(va + offset));
6362 		}
6363 		va = kva_alloc(size);
6364 		if (va == 0)
6365 			panic("%s: Couldn't allocate KVA", __func__);
6366 	}
6367 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
6368 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
6369 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
6370 	pmap_invalidate_cache_range(va, va + tmpsize, FALSE);
6371 	return ((void *)(va + offset));
6372 }
6373 
6374 void *
6375 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6376 {
6377 
6378 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6379 }
6380 
6381 void *
6382 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6383 {
6384 
6385 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6386 }
6387 
6388 void
6389 pmap_unmapdev(vm_offset_t va, vm_size_t size)
6390 {
6391 	struct pmap_preinit_mapping *ppim;
6392 	vm_offset_t offset;
6393 	int i;
6394 
6395 	/* If we gave a direct map region in pmap_mapdev, do nothing */
6396 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
6397 		return;
6398 	offset = va & PAGE_MASK;
6399 	size = round_page(offset + size);
6400 	va = trunc_page(va);
6401 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
6402 		ppim = pmap_preinit_mapping + i;
6403 		if (ppim->va == va && ppim->sz == size) {
6404 			if (pmap_initialized)
6405 				return;
6406 			ppim->pa = 0;
6407 			ppim->va = 0;
6408 			ppim->sz = 0;
6409 			ppim->mode = 0;
6410 			if (va + size == virtual_avail)
6411 				virtual_avail = va;
6412 			return;
6413 		}
6414 	}
6415 	if (pmap_initialized)
6416 		kva_free(va, size);
6417 }
6418 
6419 /*
6420  * Tries to demote a 1GB page mapping.
6421  */
6422 static boolean_t
6423 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
6424 {
6425 	pdp_entry_t newpdpe, oldpdpe;
6426 	pd_entry_t *firstpde, newpde, *pde;
6427 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
6428 	vm_paddr_t mpdepa;
6429 	vm_page_t mpde;
6430 
6431 	PG_A = pmap_accessed_bit(pmap);
6432 	PG_M = pmap_modified_bit(pmap);
6433 	PG_V = pmap_valid_bit(pmap);
6434 	PG_RW = pmap_rw_bit(pmap);
6435 
6436 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6437 	oldpdpe = *pdpe;
6438 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
6439 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
6440 	if ((mpde = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
6441 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
6442 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
6443 		    " in pmap %p", va, pmap);
6444 		return (FALSE);
6445 	}
6446 	mpdepa = VM_PAGE_TO_PHYS(mpde);
6447 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(mpdepa);
6448 	newpdpe = mpdepa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
6449 	KASSERT((oldpdpe & PG_A) != 0,
6450 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
6451 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
6452 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
6453 	newpde = oldpdpe;
6454 
6455 	/*
6456 	 * Initialize the page directory page.
6457 	 */
6458 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
6459 		*pde = newpde;
6460 		newpde += NBPDR;
6461 	}
6462 
6463 	/*
6464 	 * Demote the mapping.
6465 	 */
6466 	*pdpe = newpdpe;
6467 
6468 	/*
6469 	 * Invalidate a stale recursive mapping of the page directory page.
6470 	 */
6471 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
6472 
6473 	pmap_pdpe_demotions++;
6474 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6475 	    " in pmap %p", va, pmap);
6476 	return (TRUE);
6477 }
6478 
6479 /*
6480  * Sets the memory attribute for the specified page.
6481  */
6482 void
6483 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6484 {
6485 
6486 	m->md.pat_mode = ma;
6487 
6488 	/*
6489 	 * If "m" is a normal page, update its direct mapping.  This update
6490 	 * can be relied upon to perform any cache operations that are
6491 	 * required for data coherence.
6492 	 */
6493 	if ((m->flags & PG_FICTITIOUS) == 0 &&
6494 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
6495 	    m->md.pat_mode))
6496 		panic("memory attribute change on the direct map failed");
6497 }
6498 
6499 /*
6500  * Changes the specified virtual address range's memory type to that given by
6501  * the parameter "mode".  The specified virtual address range must be
6502  * completely contained within either the direct map or the kernel map.  If
6503  * the virtual address range is contained within the kernel map, then the
6504  * memory type for each of the corresponding ranges of the direct map is also
6505  * changed.  (The corresponding ranges of the direct map are those ranges that
6506  * map the same physical pages as the specified virtual address range.)  These
6507  * changes to the direct map are necessary because Intel describes the
6508  * behavior of their processors as "undefined" if two or more mappings to the
6509  * same physical page have different memory types.
6510  *
6511  * Returns zero if the change completed successfully, and either EINVAL or
6512  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
6513  * of the virtual address range was not mapped, and ENOMEM is returned if
6514  * there was insufficient memory available to complete the change.  In the
6515  * latter case, the memory type may have been changed on some part of the
6516  * virtual address range or the direct map.
6517  */
6518 int
6519 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
6520 {
6521 	int error;
6522 
6523 	PMAP_LOCK(kernel_pmap);
6524 	error = pmap_change_attr_locked(va, size, mode);
6525 	PMAP_UNLOCK(kernel_pmap);
6526 	return (error);
6527 }
6528 
6529 static int
6530 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
6531 {
6532 	vm_offset_t base, offset, tmpva;
6533 	vm_paddr_t pa_start, pa_end, pa_end1;
6534 	pdp_entry_t *pdpe;
6535 	pd_entry_t *pde;
6536 	pt_entry_t *pte;
6537 	int cache_bits_pte, cache_bits_pde, error;
6538 	boolean_t changed;
6539 
6540 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6541 	base = trunc_page(va);
6542 	offset = va & PAGE_MASK;
6543 	size = round_page(offset + size);
6544 
6545 	/*
6546 	 * Only supported on kernel virtual addresses, including the direct
6547 	 * map but excluding the recursive map.
6548 	 */
6549 	if (base < DMAP_MIN_ADDRESS)
6550 		return (EINVAL);
6551 
6552 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
6553 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
6554 	changed = FALSE;
6555 
6556 	/*
6557 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6558 	 * into 4KB pages if required.
6559 	 */
6560 	for (tmpva = base; tmpva < base + size; ) {
6561 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
6562 		if (pdpe == NULL || *pdpe == 0)
6563 			return (EINVAL);
6564 		if (*pdpe & PG_PS) {
6565 			/*
6566 			 * If the current 1GB page already has the required
6567 			 * memory type, then we need not demote this page. Just
6568 			 * increment tmpva to the next 1GB page frame.
6569 			 */
6570 			if ((*pdpe & X86_PG_PDE_CACHE) == cache_bits_pde) {
6571 				tmpva = trunc_1gpage(tmpva) + NBPDP;
6572 				continue;
6573 			}
6574 
6575 			/*
6576 			 * If the current offset aligns with a 1GB page frame
6577 			 * and there is at least 1GB left within the range, then
6578 			 * we need not break down this page into 2MB pages.
6579 			 */
6580 			if ((tmpva & PDPMASK) == 0 &&
6581 			    tmpva + PDPMASK < base + size) {
6582 				tmpva += NBPDP;
6583 				continue;
6584 			}
6585 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
6586 				return (ENOMEM);
6587 		}
6588 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
6589 		if (*pde == 0)
6590 			return (EINVAL);
6591 		if (*pde & PG_PS) {
6592 			/*
6593 			 * If the current 2MB page already has the required
6594 			 * memory type, then we need not demote this page. Just
6595 			 * increment tmpva to the next 2MB page frame.
6596 			 */
6597 			if ((*pde & X86_PG_PDE_CACHE) == cache_bits_pde) {
6598 				tmpva = trunc_2mpage(tmpva) + NBPDR;
6599 				continue;
6600 			}
6601 
6602 			/*
6603 			 * If the current offset aligns with a 2MB page frame
6604 			 * and there is at least 2MB left within the range, then
6605 			 * we need not break down this page into 4KB pages.
6606 			 */
6607 			if ((tmpva & PDRMASK) == 0 &&
6608 			    tmpva + PDRMASK < base + size) {
6609 				tmpva += NBPDR;
6610 				continue;
6611 			}
6612 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
6613 				return (ENOMEM);
6614 		}
6615 		pte = pmap_pde_to_pte(pde, tmpva);
6616 		if (*pte == 0)
6617 			return (EINVAL);
6618 		tmpva += PAGE_SIZE;
6619 	}
6620 	error = 0;
6621 
6622 	/*
6623 	 * Ok, all the pages exist, so run through them updating their
6624 	 * cache mode if required.
6625 	 */
6626 	pa_start = pa_end = 0;
6627 	for (tmpva = base; tmpva < base + size; ) {
6628 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
6629 		if (*pdpe & PG_PS) {
6630 			if ((*pdpe & X86_PG_PDE_CACHE) != cache_bits_pde) {
6631 				pmap_pde_attr(pdpe, cache_bits_pde,
6632 				    X86_PG_PDE_CACHE);
6633 				changed = TRUE;
6634 			}
6635 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6636 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
6637 				if (pa_start == pa_end) {
6638 					/* Start physical address run. */
6639 					pa_start = *pdpe & PG_PS_FRAME;
6640 					pa_end = pa_start + NBPDP;
6641 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
6642 					pa_end += NBPDP;
6643 				else {
6644 					/* Run ended, update direct map. */
6645 					error = pmap_change_attr_locked(
6646 					    PHYS_TO_DMAP(pa_start),
6647 					    pa_end - pa_start, mode);
6648 					if (error != 0)
6649 						break;
6650 					/* Start physical address run. */
6651 					pa_start = *pdpe & PG_PS_FRAME;
6652 					pa_end = pa_start + NBPDP;
6653 				}
6654 			}
6655 			tmpva = trunc_1gpage(tmpva) + NBPDP;
6656 			continue;
6657 		}
6658 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
6659 		if (*pde & PG_PS) {
6660 			if ((*pde & X86_PG_PDE_CACHE) != cache_bits_pde) {
6661 				pmap_pde_attr(pde, cache_bits_pde,
6662 				    X86_PG_PDE_CACHE);
6663 				changed = TRUE;
6664 			}
6665 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6666 			    (*pde & PG_PS_FRAME) < dmaplimit) {
6667 				if (pa_start == pa_end) {
6668 					/* Start physical address run. */
6669 					pa_start = *pde & PG_PS_FRAME;
6670 					pa_end = pa_start + NBPDR;
6671 				} else if (pa_end == (*pde & PG_PS_FRAME))
6672 					pa_end += NBPDR;
6673 				else {
6674 					/* Run ended, update direct map. */
6675 					error = pmap_change_attr_locked(
6676 					    PHYS_TO_DMAP(pa_start),
6677 					    pa_end - pa_start, mode);
6678 					if (error != 0)
6679 						break;
6680 					/* Start physical address run. */
6681 					pa_start = *pde & PG_PS_FRAME;
6682 					pa_end = pa_start + NBPDR;
6683 				}
6684 			}
6685 			tmpva = trunc_2mpage(tmpva) + NBPDR;
6686 		} else {
6687 			pte = pmap_pde_to_pte(pde, tmpva);
6688 			if ((*pte & X86_PG_PTE_CACHE) != cache_bits_pte) {
6689 				pmap_pte_attr(pte, cache_bits_pte,
6690 				    X86_PG_PTE_CACHE);
6691 				changed = TRUE;
6692 			}
6693 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6694 			    (*pte & PG_PS_FRAME) < dmaplimit) {
6695 				if (pa_start == pa_end) {
6696 					/* Start physical address run. */
6697 					pa_start = *pte & PG_FRAME;
6698 					pa_end = pa_start + PAGE_SIZE;
6699 				} else if (pa_end == (*pte & PG_FRAME))
6700 					pa_end += PAGE_SIZE;
6701 				else {
6702 					/* Run ended, update direct map. */
6703 					error = pmap_change_attr_locked(
6704 					    PHYS_TO_DMAP(pa_start),
6705 					    pa_end - pa_start, mode);
6706 					if (error != 0)
6707 						break;
6708 					/* Start physical address run. */
6709 					pa_start = *pte & PG_FRAME;
6710 					pa_end = pa_start + PAGE_SIZE;
6711 				}
6712 			}
6713 			tmpva += PAGE_SIZE;
6714 		}
6715 	}
6716 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6717 		pa_end1 = MIN(pa_end, dmaplimit);
6718 		if (pa_start != pa_end1)
6719 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6720 			    pa_end1 - pa_start, mode);
6721 	}
6722 
6723 	/*
6724 	 * Flush CPU caches if required to make sure any data isn't cached that
6725 	 * shouldn't be, etc.
6726 	 */
6727 	if (changed) {
6728 		pmap_invalidate_range(kernel_pmap, base, tmpva);
6729 		pmap_invalidate_cache_range(base, tmpva, FALSE);
6730 	}
6731 	return (error);
6732 }
6733 
6734 /*
6735  * Demotes any mapping within the direct map region that covers more than the
6736  * specified range of physical addresses.  This range's size must be a power
6737  * of two and its starting address must be a multiple of its size.  Since the
6738  * demotion does not change any attributes of the mapping, a TLB invalidation
6739  * is not mandatory.  The caller may, however, request a TLB invalidation.
6740  */
6741 void
6742 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
6743 {
6744 	pdp_entry_t *pdpe;
6745 	pd_entry_t *pde;
6746 	vm_offset_t va;
6747 	boolean_t changed;
6748 
6749 	if (len == 0)
6750 		return;
6751 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
6752 	KASSERT((base & (len - 1)) == 0,
6753 	    ("pmap_demote_DMAP: base is not a multiple of len"));
6754 	if (len < NBPDP && base < dmaplimit) {
6755 		va = PHYS_TO_DMAP(base);
6756 		changed = FALSE;
6757 		PMAP_LOCK(kernel_pmap);
6758 		pdpe = pmap_pdpe(kernel_pmap, va);
6759 		if ((*pdpe & X86_PG_V) == 0)
6760 			panic("pmap_demote_DMAP: invalid PDPE");
6761 		if ((*pdpe & PG_PS) != 0) {
6762 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
6763 				panic("pmap_demote_DMAP: PDPE failed");
6764 			changed = TRUE;
6765 		}
6766 		if (len < NBPDR) {
6767 			pde = pmap_pdpe_to_pde(pdpe, va);
6768 			if ((*pde & X86_PG_V) == 0)
6769 				panic("pmap_demote_DMAP: invalid PDE");
6770 			if ((*pde & PG_PS) != 0) {
6771 				if (!pmap_demote_pde(kernel_pmap, pde, va))
6772 					panic("pmap_demote_DMAP: PDE failed");
6773 				changed = TRUE;
6774 			}
6775 		}
6776 		if (changed && invalidate)
6777 			pmap_invalidate_page(kernel_pmap, va);
6778 		PMAP_UNLOCK(kernel_pmap);
6779 	}
6780 }
6781 
6782 /*
6783  * perform the pmap work for mincore
6784  */
6785 int
6786 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6787 {
6788 	pd_entry_t *pdep;
6789 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
6790 	vm_paddr_t pa;
6791 	int val;
6792 
6793 	PG_A = pmap_accessed_bit(pmap);
6794 	PG_M = pmap_modified_bit(pmap);
6795 	PG_V = pmap_valid_bit(pmap);
6796 	PG_RW = pmap_rw_bit(pmap);
6797 
6798 	PMAP_LOCK(pmap);
6799 retry:
6800 	pdep = pmap_pde(pmap, addr);
6801 	if (pdep != NULL && (*pdep & PG_V)) {
6802 		if (*pdep & PG_PS) {
6803 			pte = *pdep;
6804 			/* Compute the physical address of the 4KB page. */
6805 			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
6806 			    PG_FRAME;
6807 			val = MINCORE_SUPER;
6808 		} else {
6809 			pte = *pmap_pde_to_pte(pdep, addr);
6810 			pa = pte & PG_FRAME;
6811 			val = 0;
6812 		}
6813 	} else {
6814 		pte = 0;
6815 		pa = 0;
6816 		val = 0;
6817 	}
6818 	if ((pte & PG_V) != 0) {
6819 		val |= MINCORE_INCORE;
6820 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6821 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6822 		if ((pte & PG_A) != 0)
6823 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6824 	}
6825 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6826 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
6827 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
6828 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6829 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6830 			goto retry;
6831 	} else
6832 		PA_UNLOCK_COND(*locked_pa);
6833 	PMAP_UNLOCK(pmap);
6834 	return (val);
6835 }
6836 
6837 static uint64_t
6838 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
6839 {
6840 	uint32_t gen, new_gen, pcid_next;
6841 
6842 	CRITICAL_ASSERT(curthread);
6843 	gen = PCPU_GET(pcid_gen);
6844 	if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN ||
6845 	    pmap->pm_pcids[cpuid].pm_gen == gen)
6846 		return (CR3_PCID_SAVE);
6847 	pcid_next = PCPU_GET(pcid_next);
6848 	KASSERT(pcid_next <= PMAP_PCID_OVERMAX, ("cpu %d pcid_next %#x",
6849 	    cpuid, pcid_next));
6850 	if (pcid_next == PMAP_PCID_OVERMAX) {
6851 		new_gen = gen + 1;
6852 		if (new_gen == 0)
6853 			new_gen = 1;
6854 		PCPU_SET(pcid_gen, new_gen);
6855 		pcid_next = PMAP_PCID_KERN + 1;
6856 	} else {
6857 		new_gen = gen;
6858 	}
6859 	pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
6860 	pmap->pm_pcids[cpuid].pm_gen = new_gen;
6861 	PCPU_SET(pcid_next, pcid_next + 1);
6862 	return (0);
6863 }
6864 
6865 void
6866 pmap_activate_sw(struct thread *td)
6867 {
6868 	pmap_t oldpmap, pmap;
6869 	uint64_t cached, cr3;
6870 	register_t rflags;
6871 	u_int cpuid;
6872 
6873 	oldpmap = PCPU_GET(curpmap);
6874 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6875 	if (oldpmap == pmap)
6876 		return;
6877 	cpuid = PCPU_GET(cpuid);
6878 #ifdef SMP
6879 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6880 #else
6881 	CPU_SET(cpuid, &pmap->pm_active);
6882 #endif
6883 	cr3 = rcr3();
6884 	if (pmap_pcid_enabled) {
6885 		cached = pmap_pcid_alloc(pmap, cpuid);
6886 		KASSERT(pmap->pm_pcids[cpuid].pm_pcid >= 0 &&
6887 		    pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
6888 		    ("pmap %p cpu %d pcid %#x", pmap, cpuid,
6889 		    pmap->pm_pcids[cpuid].pm_pcid));
6890 		KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
6891 		    pmap == kernel_pmap,
6892 		    ("non-kernel pmap thread %p pmap %p cpu %d pcid %#x",
6893 		    td, pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
6894 
6895 		/*
6896 		 * If the INVPCID instruction is not available,
6897 		 * invltlb_pcid_handler() is used for handle
6898 		 * invalidate_all IPI, which checks for curpmap ==
6899 		 * smp_tlb_pmap.  Below operations sequence has a
6900 		 * window where %CR3 is loaded with the new pmap's
6901 		 * PML4 address, but curpmap value is not yet updated.
6902 		 * This causes invltlb IPI handler, called between the
6903 		 * updates, to execute as NOP, which leaves stale TLB
6904 		 * entries.
6905 		 *
6906 		 * Note that the most typical use of
6907 		 * pmap_activate_sw(), from the context switch, is
6908 		 * immune to this race, because interrupts are
6909 		 * disabled (while the thread lock is owned), and IPI
6910 		 * happends after curpmap is updated.  Protect other
6911 		 * callers in a similar way, by disabling interrupts
6912 		 * around the %cr3 register reload and curpmap
6913 		 * assignment.
6914 		 */
6915 		if (!invpcid_works)
6916 			rflags = intr_disable();
6917 
6918 		if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3) {
6919 			load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
6920 			    cached);
6921 			if (cached)
6922 				PCPU_INC(pm_save_cnt);
6923 		}
6924 		PCPU_SET(curpmap, pmap);
6925 		if (!invpcid_works)
6926 			intr_restore(rflags);
6927 	} else if (cr3 != pmap->pm_cr3) {
6928 		load_cr3(pmap->pm_cr3);
6929 		PCPU_SET(curpmap, pmap);
6930 	}
6931 #ifdef SMP
6932 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6933 #else
6934 	CPU_CLR(cpuid, &oldpmap->pm_active);
6935 #endif
6936 }
6937 
6938 void
6939 pmap_activate(struct thread *td)
6940 {
6941 
6942 	critical_enter();
6943 	pmap_activate_sw(td);
6944 	critical_exit();
6945 }
6946 
6947 void
6948 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
6949 {
6950 }
6951 
6952 /*
6953  *	Increase the starting virtual address of the given mapping if a
6954  *	different alignment might result in more superpage mappings.
6955  */
6956 void
6957 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6958     vm_offset_t *addr, vm_size_t size)
6959 {
6960 	vm_offset_t superpage_offset;
6961 
6962 	if (size < NBPDR)
6963 		return;
6964 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6965 		offset += ptoa(object->pg_color);
6966 	superpage_offset = offset & PDRMASK;
6967 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
6968 	    (*addr & PDRMASK) == superpage_offset)
6969 		return;
6970 	if ((*addr & PDRMASK) < superpage_offset)
6971 		*addr = (*addr & ~PDRMASK) + superpage_offset;
6972 	else
6973 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
6974 }
6975 
6976 #ifdef INVARIANTS
6977 static unsigned long num_dirty_emulations;
6978 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
6979 	     &num_dirty_emulations, 0, NULL);
6980 
6981 static unsigned long num_accessed_emulations;
6982 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
6983 	     &num_accessed_emulations, 0, NULL);
6984 
6985 static unsigned long num_superpage_accessed_emulations;
6986 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
6987 	     &num_superpage_accessed_emulations, 0, NULL);
6988 
6989 static unsigned long ad_emulation_superpage_promotions;
6990 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
6991 	     &ad_emulation_superpage_promotions, 0, NULL);
6992 #endif	/* INVARIANTS */
6993 
6994 int
6995 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
6996 {
6997 	int rv;
6998 	struct rwlock *lock;
6999 	vm_page_t m, mpte;
7000 	pd_entry_t *pde;
7001 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
7002 
7003 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
7004 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
7005 
7006 	if (!pmap_emulate_ad_bits(pmap))
7007 		return (-1);
7008 
7009 	PG_A = pmap_accessed_bit(pmap);
7010 	PG_M = pmap_modified_bit(pmap);
7011 	PG_V = pmap_valid_bit(pmap);
7012 	PG_RW = pmap_rw_bit(pmap);
7013 
7014 	rv = -1;
7015 	lock = NULL;
7016 	PMAP_LOCK(pmap);
7017 
7018 	pde = pmap_pde(pmap, va);
7019 	if (pde == NULL || (*pde & PG_V) == 0)
7020 		goto done;
7021 
7022 	if ((*pde & PG_PS) != 0) {
7023 		if (ftype == VM_PROT_READ) {
7024 #ifdef INVARIANTS
7025 			atomic_add_long(&num_superpage_accessed_emulations, 1);
7026 #endif
7027 			*pde |= PG_A;
7028 			rv = 0;
7029 		}
7030 		goto done;
7031 	}
7032 
7033 	pte = pmap_pde_to_pte(pde, va);
7034 	if ((*pte & PG_V) == 0)
7035 		goto done;
7036 
7037 	if (ftype == VM_PROT_WRITE) {
7038 		if ((*pte & PG_RW) == 0)
7039 			goto done;
7040 		/*
7041 		 * Set the modified and accessed bits simultaneously.
7042 		 *
7043 		 * Intel EPT PTEs that do software emulation of A/D bits map
7044 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
7045 		 * An EPT misconfiguration is triggered if the PTE is writable
7046 		 * but not readable (WR=10). This is avoided by setting PG_A
7047 		 * and PG_M simultaneously.
7048 		 */
7049 		*pte |= PG_M | PG_A;
7050 	} else {
7051 		*pte |= PG_A;
7052 	}
7053 
7054 	/* try to promote the mapping */
7055 	if (va < VM_MAXUSER_ADDRESS)
7056 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7057 	else
7058 		mpte = NULL;
7059 
7060 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
7061 
7062 	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
7063 	    pmap_ps_enabled(pmap) &&
7064 	    (m->flags & PG_FICTITIOUS) == 0 &&
7065 	    vm_reserv_level_iffullpop(m) == 0) {
7066 		pmap_promote_pde(pmap, pde, va, &lock);
7067 #ifdef INVARIANTS
7068 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
7069 #endif
7070 	}
7071 #ifdef INVARIANTS
7072 	if (ftype == VM_PROT_WRITE)
7073 		atomic_add_long(&num_dirty_emulations, 1);
7074 	else
7075 		atomic_add_long(&num_accessed_emulations, 1);
7076 #endif
7077 	rv = 0;		/* success */
7078 done:
7079 	if (lock != NULL)
7080 		rw_wunlock(lock);
7081 	PMAP_UNLOCK(pmap);
7082 	return (rv);
7083 }
7084 
7085 void
7086 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
7087 {
7088 	pml4_entry_t *pml4;
7089 	pdp_entry_t *pdp;
7090 	pd_entry_t *pde;
7091 	pt_entry_t *pte, PG_V;
7092 	int idx;
7093 
7094 	idx = 0;
7095 	PG_V = pmap_valid_bit(pmap);
7096 	PMAP_LOCK(pmap);
7097 
7098 	pml4 = pmap_pml4e(pmap, va);
7099 	ptr[idx++] = *pml4;
7100 	if ((*pml4 & PG_V) == 0)
7101 		goto done;
7102 
7103 	pdp = pmap_pml4e_to_pdpe(pml4, va);
7104 	ptr[idx++] = *pdp;
7105 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
7106 		goto done;
7107 
7108 	pde = pmap_pdpe_to_pde(pdp, va);
7109 	ptr[idx++] = *pde;
7110 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
7111 		goto done;
7112 
7113 	pte = pmap_pde_to_pte(pde, va);
7114 	ptr[idx++] = *pte;
7115 
7116 done:
7117 	PMAP_UNLOCK(pmap);
7118 	*num = idx;
7119 }
7120 
7121 /**
7122  * Get the kernel virtual address of a set of physical pages. If there are
7123  * physical addresses not covered by the DMAP perform a transient mapping
7124  * that will be removed when calling pmap_unmap_io_transient.
7125  *
7126  * \param page        The pages the caller wishes to obtain the virtual
7127  *                    address on the kernel memory map.
7128  * \param vaddr       On return contains the kernel virtual memory address
7129  *                    of the pages passed in the page parameter.
7130  * \param count       Number of pages passed in.
7131  * \param can_fault   TRUE if the thread using the mapped pages can take
7132  *                    page faults, FALSE otherwise.
7133  *
7134  * \returns TRUE if the caller must call pmap_unmap_io_transient when
7135  *          finished or FALSE otherwise.
7136  *
7137  */
7138 boolean_t
7139 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
7140     boolean_t can_fault)
7141 {
7142 	vm_paddr_t paddr;
7143 	boolean_t needs_mapping;
7144 	pt_entry_t *pte;
7145 	int cache_bits, error, i;
7146 
7147 	/*
7148 	 * Allocate any KVA space that we need, this is done in a separate
7149 	 * loop to prevent calling vmem_alloc while pinned.
7150 	 */
7151 	needs_mapping = FALSE;
7152 	for (i = 0; i < count; i++) {
7153 		paddr = VM_PAGE_TO_PHYS(page[i]);
7154 		if (__predict_false(paddr >= dmaplimit)) {
7155 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
7156 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
7157 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
7158 			needs_mapping = TRUE;
7159 		} else {
7160 			vaddr[i] = PHYS_TO_DMAP(paddr);
7161 		}
7162 	}
7163 
7164 	/* Exit early if everything is covered by the DMAP */
7165 	if (!needs_mapping)
7166 		return (FALSE);
7167 
7168 	/*
7169 	 * NB:  The sequence of updating a page table followed by accesses
7170 	 * to the corresponding pages used in the !DMAP case is subject to
7171 	 * the situation described in the "AMD64 Architecture Programmer's
7172 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
7173 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
7174 	 * after modifying the PTE bits is crucial.
7175 	 */
7176 	if (!can_fault)
7177 		sched_pin();
7178 	for (i = 0; i < count; i++) {
7179 		paddr = VM_PAGE_TO_PHYS(page[i]);
7180 		if (paddr >= dmaplimit) {
7181 			if (can_fault) {
7182 				/*
7183 				 * Slow path, since we can get page faults
7184 				 * while mappings are active don't pin the
7185 				 * thread to the CPU and instead add a global
7186 				 * mapping visible to all CPUs.
7187 				 */
7188 				pmap_qenter(vaddr[i], &page[i], 1);
7189 			} else {
7190 				pte = vtopte(vaddr[i]);
7191 				cache_bits = pmap_cache_bits(kernel_pmap,
7192 				    page[i]->md.pat_mode, 0);
7193 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
7194 				    cache_bits);
7195 				invlpg(vaddr[i]);
7196 			}
7197 		}
7198 	}
7199 
7200 	return (needs_mapping);
7201 }
7202 
7203 void
7204 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
7205     boolean_t can_fault)
7206 {
7207 	vm_paddr_t paddr;
7208 	int i;
7209 
7210 	if (!can_fault)
7211 		sched_unpin();
7212 	for (i = 0; i < count; i++) {
7213 		paddr = VM_PAGE_TO_PHYS(page[i]);
7214 		if (paddr >= dmaplimit) {
7215 			if (can_fault)
7216 				pmap_qremove(vaddr[i], 1);
7217 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
7218 		}
7219 	}
7220 }
7221 
7222 vm_offset_t
7223 pmap_quick_enter_page(vm_page_t m)
7224 {
7225 	vm_paddr_t paddr;
7226 
7227 	paddr = VM_PAGE_TO_PHYS(m);
7228 	if (paddr < dmaplimit)
7229 		return (PHYS_TO_DMAP(paddr));
7230 	mtx_lock_spin(&qframe_mtx);
7231 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
7232 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
7233 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
7234 	return (qframe);
7235 }
7236 
7237 void
7238 pmap_quick_remove_page(vm_offset_t addr)
7239 {
7240 
7241 	if (addr != qframe)
7242 		return;
7243 	pte_store(vtopte(qframe), 0);
7244 	invlpg(qframe);
7245 	mtx_unlock_spin(&qframe_mtx);
7246 }
7247 
7248 #include "opt_ddb.h"
7249 #ifdef DDB
7250 #include <sys/kdb.h>
7251 #include <ddb/ddb.h>
7252 
7253 DB_SHOW_COMMAND(pte, pmap_print_pte)
7254 {
7255 	pmap_t pmap;
7256 	pml4_entry_t *pml4;
7257 	pdp_entry_t *pdp;
7258 	pd_entry_t *pde;
7259 	pt_entry_t *pte, PG_V;
7260 	vm_offset_t va;
7261 
7262 	if (!have_addr) {
7263 		db_printf("show pte addr\n");
7264 		return;
7265 	}
7266 	va = (vm_offset_t)addr;
7267 
7268 	if (kdb_thread != NULL)
7269 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
7270 	else
7271 		pmap = PCPU_GET(curpmap);
7272 
7273 	PG_V = pmap_valid_bit(pmap);
7274 	pml4 = pmap_pml4e(pmap, va);
7275 	db_printf("VA %#016lx pml4e %#016lx", va, *pml4);
7276 	if ((*pml4 & PG_V) == 0) {
7277 		db_printf("\n");
7278 		return;
7279 	}
7280 	pdp = pmap_pml4e_to_pdpe(pml4, va);
7281 	db_printf(" pdpe %#016lx", *pdp);
7282 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
7283 		db_printf("\n");
7284 		return;
7285 	}
7286 	pde = pmap_pdpe_to_pde(pdp, va);
7287 	db_printf(" pde %#016lx", *pde);
7288 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
7289 		db_printf("\n");
7290 		return;
7291 	}
7292 	pte = pmap_pde_to_pte(pde, va);
7293 	db_printf(" pte %#016lx\n", *pte);
7294 }
7295 
7296 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
7297 {
7298 	vm_paddr_t a;
7299 
7300 	if (have_addr) {
7301 		a = (vm_paddr_t)addr;
7302 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
7303 	} else {
7304 		db_printf("show phys2dmap addr\n");
7305 	}
7306 }
7307 #endif
7308