xref: /freebsd/sys/amd64/amd64/pmap.c (revision f374ba41)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
48  */
49 /*-
50  * Copyright (c) 2003 Networks Associates Technology, Inc.
51  * Copyright (c) 2014-2020 The FreeBSD Foundation
52  * All rights reserved.
53  *
54  * This software was developed for the FreeBSD Project by Jake Burkholder,
55  * Safeport Network Services, and Network Associates Laboratories, the
56  * Security Research Division of Network Associates, Inc. under
57  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
58  * CHATS research program.
59  *
60  * Portions of this software were developed by
61  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
62  * the FreeBSD Foundation.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #define	AMD64_NPT_AWARE
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  *	Manages physical address maps.
93  *
94  *	Since the information managed by this module is
95  *	also stored by the logical address mapping module,
96  *	this module may throw away valid virtual-to-physical
97  *	mappings at almost any time.  However, invalidations
98  *	of virtual-to-physical mappings must be done as
99  *	requested.
100  *
101  *	In order to cope with hardware architectures which
102  *	make virtual-to-physical map invalidates expensive,
103  *	this module may delay invalidate or reduced protection
104  *	operations until such time as they are actually
105  *	necessary.  This module is given full information as
106  *	to which processors are currently using which maps,
107  *	and to when physical maps must be made correct.
108  */
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap.h"
112 #include "opt_vm.h"
113 
114 #include <sys/param.h>
115 #include <sys/asan.h>
116 #include <sys/bitstring.h>
117 #include <sys/bus.h>
118 #include <sys/systm.h>
119 #include <sys/counter.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/malloc.h>
124 #include <sys/mman.h>
125 #include <sys/msan.h>
126 #include <sys/mutex.h>
127 #include <sys/proc.h>
128 #include <sys/rangeset.h>
129 #include <sys/rwlock.h>
130 #include <sys/sbuf.h>
131 #include <sys/smr.h>
132 #include <sys/sx.h>
133 #include <sys/turnstile.h>
134 #include <sys/vmem.h>
135 #include <sys/vmmeter.h>
136 #include <sys/sched.h>
137 #include <sys/sysctl.h>
138 #include <sys/smp.h>
139 #ifdef DDB
140 #include <sys/kdb.h>
141 #include <ddb/ddb.h>
142 #endif
143 
144 #include <vm/vm.h>
145 #include <vm/vm_param.h>
146 #include <vm/vm_kern.h>
147 #include <vm/vm_page.h>
148 #include <vm/vm_map.h>
149 #include <vm/vm_object.h>
150 #include <vm/vm_extern.h>
151 #include <vm/vm_pageout.h>
152 #include <vm/vm_pager.h>
153 #include <vm/vm_phys.h>
154 #include <vm/vm_radix.h>
155 #include <vm/vm_reserv.h>
156 #include <vm/vm_dumpset.h>
157 #include <vm/uma.h>
158 
159 #include <machine/asan.h>
160 #include <machine/intr_machdep.h>
161 #include <x86/apicvar.h>
162 #include <x86/ifunc.h>
163 #include <machine/cpu.h>
164 #include <machine/cputypes.h>
165 #include <machine/md_var.h>
166 #include <machine/msan.h>
167 #include <machine/pcb.h>
168 #include <machine/specialreg.h>
169 #ifdef SMP
170 #include <machine/smp.h>
171 #endif
172 #include <machine/sysarch.h>
173 #include <machine/tss.h>
174 
175 #ifdef NUMA
176 #define	PMAP_MEMDOM	MAXMEMDOM
177 #else
178 #define	PMAP_MEMDOM	1
179 #endif
180 
181 static __inline boolean_t
182 pmap_type_guest(pmap_t pmap)
183 {
184 
185 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
186 }
187 
188 static __inline boolean_t
189 pmap_emulate_ad_bits(pmap_t pmap)
190 {
191 
192 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
193 }
194 
195 static __inline pt_entry_t
196 pmap_valid_bit(pmap_t pmap)
197 {
198 	pt_entry_t mask;
199 
200 	switch (pmap->pm_type) {
201 	case PT_X86:
202 	case PT_RVI:
203 		mask = X86_PG_V;
204 		break;
205 	case PT_EPT:
206 		if (pmap_emulate_ad_bits(pmap))
207 			mask = EPT_PG_EMUL_V;
208 		else
209 			mask = EPT_PG_READ;
210 		break;
211 	default:
212 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
213 	}
214 
215 	return (mask);
216 }
217 
218 static __inline pt_entry_t
219 pmap_rw_bit(pmap_t pmap)
220 {
221 	pt_entry_t mask;
222 
223 	switch (pmap->pm_type) {
224 	case PT_X86:
225 	case PT_RVI:
226 		mask = X86_PG_RW;
227 		break;
228 	case PT_EPT:
229 		if (pmap_emulate_ad_bits(pmap))
230 			mask = EPT_PG_EMUL_RW;
231 		else
232 			mask = EPT_PG_WRITE;
233 		break;
234 	default:
235 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
236 	}
237 
238 	return (mask);
239 }
240 
241 static pt_entry_t pg_g;
242 
243 static __inline pt_entry_t
244 pmap_global_bit(pmap_t pmap)
245 {
246 	pt_entry_t mask;
247 
248 	switch (pmap->pm_type) {
249 	case PT_X86:
250 		mask = pg_g;
251 		break;
252 	case PT_RVI:
253 	case PT_EPT:
254 		mask = 0;
255 		break;
256 	default:
257 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
258 	}
259 
260 	return (mask);
261 }
262 
263 static __inline pt_entry_t
264 pmap_accessed_bit(pmap_t pmap)
265 {
266 	pt_entry_t mask;
267 
268 	switch (pmap->pm_type) {
269 	case PT_X86:
270 	case PT_RVI:
271 		mask = X86_PG_A;
272 		break;
273 	case PT_EPT:
274 		if (pmap_emulate_ad_bits(pmap))
275 			mask = EPT_PG_READ;
276 		else
277 			mask = EPT_PG_A;
278 		break;
279 	default:
280 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
281 	}
282 
283 	return (mask);
284 }
285 
286 static __inline pt_entry_t
287 pmap_modified_bit(pmap_t pmap)
288 {
289 	pt_entry_t mask;
290 
291 	switch (pmap->pm_type) {
292 	case PT_X86:
293 	case PT_RVI:
294 		mask = X86_PG_M;
295 		break;
296 	case PT_EPT:
297 		if (pmap_emulate_ad_bits(pmap))
298 			mask = EPT_PG_WRITE;
299 		else
300 			mask = EPT_PG_M;
301 		break;
302 	default:
303 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
304 	}
305 
306 	return (mask);
307 }
308 
309 static __inline pt_entry_t
310 pmap_pku_mask_bit(pmap_t pmap)
311 {
312 
313 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
314 }
315 
316 #if !defined(DIAGNOSTIC)
317 #ifdef __GNUC_GNU_INLINE__
318 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
319 #else
320 #define PMAP_INLINE	extern inline
321 #endif
322 #else
323 #define PMAP_INLINE
324 #endif
325 
326 #ifdef PV_STATS
327 #define PV_STAT(x)	do { x ; } while (0)
328 #else
329 #define PV_STAT(x)	do { } while (0)
330 #endif
331 
332 #undef pa_index
333 #ifdef NUMA
334 #define	pa_index(pa)	({					\
335 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
336 	    ("address %lx beyond the last segment", (pa)));	\
337 	(pa) >> PDRSHIFT;					\
338 })
339 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
340 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
341 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
342 	struct rwlock *_lock;					\
343 	if (__predict_false((pa) > pmap_last_pa))		\
344 		_lock = &pv_dummy_large.pv_lock;		\
345 	else							\
346 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
347 	_lock;							\
348 })
349 #else
350 #define	pa_index(pa)	((pa) >> PDRSHIFT)
351 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
352 
353 #define	NPV_LIST_LOCKS	MAXCPU
354 
355 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
356 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
357 #endif
358 
359 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
360 	struct rwlock **_lockp = (lockp);		\
361 	struct rwlock *_new_lock;			\
362 							\
363 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
364 	if (_new_lock != *_lockp) {			\
365 		if (*_lockp != NULL)			\
366 			rw_wunlock(*_lockp);		\
367 		*_lockp = _new_lock;			\
368 		rw_wlock(*_lockp);			\
369 	}						\
370 } while (0)
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
373 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
374 
375 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
376 	struct rwlock **_lockp = (lockp);		\
377 							\
378 	if (*_lockp != NULL) {				\
379 		rw_wunlock(*_lockp);			\
380 		*_lockp = NULL;				\
381 	}						\
382 } while (0)
383 
384 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
385 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
386 
387 struct pmap kernel_pmap_store;
388 
389 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
390 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
391 
392 int nkpt;
393 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
394     "Number of kernel page table pages allocated on bootup");
395 
396 static int ndmpdp;
397 vm_paddr_t dmaplimit;
398 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
399 pt_entry_t pg_nx;
400 
401 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
402     "VM/pmap parameters");
403 
404 static int pg_ps_enabled = 1;
405 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
406     &pg_ps_enabled, 0, "Are large page mappings enabled?");
407 
408 int __read_frequently la57 = 0;
409 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
410     &la57, 0,
411     "5-level paging for host is enabled");
412 
413 static bool
414 pmap_is_la57(pmap_t pmap)
415 {
416 	if (pmap->pm_type == PT_X86)
417 		return (la57);
418 	return (false);		/* XXXKIB handle EPT */
419 }
420 
421 #define	PAT_INDEX_SIZE	8
422 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
423 
424 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
425 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
426 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
427 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
428 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
429 					   if supported */
430 
431 #ifdef KASAN
432 static uint64_t		KASANPDPphys;
433 #endif
434 #ifdef KMSAN
435 static uint64_t		KMSANSHADPDPphys;
436 static uint64_t		KMSANORIGPDPphys;
437 
438 /*
439  * To support systems with large amounts of memory, it is necessary to extend
440  * the maximum size of the direct map.  This could eat into the space reserved
441  * for the shadow map.
442  */
443 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
444 #endif
445 
446 static pml4_entry_t	*kernel_pml4;
447 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
448 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
449 static int		ndmpdpphys;	/* number of DMPDPphys pages */
450 
451 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
452 vm_paddr_t		KERNend;	/* and the end */
453 
454 /*
455  * pmap_mapdev support pre initialization (i.e. console)
456  */
457 #define	PMAP_PREINIT_MAPPING_COUNT	8
458 static struct pmap_preinit_mapping {
459 	vm_paddr_t	pa;
460 	vm_offset_t	va;
461 	vm_size_t	sz;
462 	int		mode;
463 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
464 static int pmap_initialized;
465 
466 /*
467  * Data for the pv entry allocation mechanism.
468  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
469  */
470 #ifdef NUMA
471 static __inline int
472 pc_to_domain(struct pv_chunk *pc)
473 {
474 
475 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
476 }
477 #else
478 static __inline int
479 pc_to_domain(struct pv_chunk *pc __unused)
480 {
481 
482 	return (0);
483 }
484 #endif
485 
486 struct pv_chunks_list {
487 	struct mtx pvc_lock;
488 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
489 	int active_reclaims;
490 } __aligned(CACHE_LINE_SIZE);
491 
492 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
493 
494 #ifdef	NUMA
495 struct pmap_large_md_page {
496 	struct rwlock   pv_lock;
497 	struct md_page  pv_page;
498 	u_long pv_invl_gen;
499 };
500 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
501 #define pv_dummy pv_dummy_large.pv_page
502 __read_mostly static struct pmap_large_md_page *pv_table;
503 __read_mostly vm_paddr_t pmap_last_pa;
504 #else
505 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
506 static u_long pv_invl_gen[NPV_LIST_LOCKS];
507 static struct md_page *pv_table;
508 static struct md_page pv_dummy;
509 #endif
510 
511 /*
512  * All those kernel PT submaps that BSD is so fond of
513  */
514 pt_entry_t *CMAP1 = NULL;
515 caddr_t CADDR1 = 0;
516 static vm_offset_t qframe = 0;
517 static struct mtx qframe_mtx;
518 
519 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
520 
521 static vmem_t *large_vmem;
522 static u_int lm_ents;
523 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
524 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
525 
526 int pmap_pcid_enabled = 1;
527 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
528     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
529 int invpcid_works = 0;
530 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
531     "Is the invpcid instruction available ?");
532 int pmap_pcid_invlpg_workaround = 0;
533 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
534     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
535     &pmap_pcid_invlpg_workaround, 0,
536     "Enable small core PCID/INVLPG workaround");
537 int pmap_pcid_invlpg_workaround_uena = 1;
538 
539 int __read_frequently pti = 0;
540 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
541     &pti, 0,
542     "Page Table Isolation enabled");
543 static vm_object_t pti_obj;
544 static pml4_entry_t *pti_pml4;
545 static vm_pindex_t pti_pg_idx;
546 static bool pti_finalized;
547 
548 struct pmap_pkru_range {
549 	struct rs_el	pkru_rs_el;
550 	u_int		pkru_keyidx;
551 	int		pkru_flags;
552 };
553 
554 static uma_zone_t pmap_pkru_ranges_zone;
555 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
556 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
557 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
558 static void *pkru_dup_range(void *ctx, void *data);
559 static void pkru_free_range(void *ctx, void *node);
560 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
561 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
562 static void pmap_pkru_deassign_all(pmap_t pmap);
563 
564 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
565 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
566     &pcid_save_cnt, "Count of saved TLB context on switch");
567 
568 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
569     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
570 static struct mtx invl_gen_mtx;
571 /* Fake lock object to satisfy turnstiles interface. */
572 static struct lock_object invl_gen_ts = {
573 	.lo_name = "invlts",
574 };
575 static struct pmap_invl_gen pmap_invl_gen_head = {
576 	.gen = 1,
577 	.next = NULL,
578 };
579 static u_long pmap_invl_gen = 1;
580 static int pmap_invl_waiters;
581 static struct callout pmap_invl_callout;
582 static bool pmap_invl_callout_inited;
583 
584 #define	PMAP_ASSERT_NOT_IN_DI() \
585     KASSERT(pmap_not_in_di(), ("DI already started"))
586 
587 static bool
588 pmap_di_locked(void)
589 {
590 	int tun;
591 
592 	if ((cpu_feature2 & CPUID2_CX16) == 0)
593 		return (true);
594 	tun = 0;
595 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
596 	return (tun != 0);
597 }
598 
599 static int
600 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
601 {
602 	int locked;
603 
604 	locked = pmap_di_locked();
605 	return (sysctl_handle_int(oidp, &locked, 0, req));
606 }
607 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
608     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
609     "Locked delayed invalidation");
610 
611 static bool pmap_not_in_di_l(void);
612 static bool pmap_not_in_di_u(void);
613 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
614 {
615 
616 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
617 }
618 
619 static bool
620 pmap_not_in_di_l(void)
621 {
622 	struct pmap_invl_gen *invl_gen;
623 
624 	invl_gen = &curthread->td_md.md_invl_gen;
625 	return (invl_gen->gen == 0);
626 }
627 
628 static void
629 pmap_thread_init_invl_gen_l(struct thread *td)
630 {
631 	struct pmap_invl_gen *invl_gen;
632 
633 	invl_gen = &td->td_md.md_invl_gen;
634 	invl_gen->gen = 0;
635 }
636 
637 static void
638 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
639 {
640 	struct turnstile *ts;
641 
642 	ts = turnstile_trywait(&invl_gen_ts);
643 	if (*m_gen > atomic_load_long(invl_gen))
644 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
645 	else
646 		turnstile_cancel(ts);
647 }
648 
649 static void
650 pmap_delayed_invl_finish_unblock(u_long new_gen)
651 {
652 	struct turnstile *ts;
653 
654 	turnstile_chain_lock(&invl_gen_ts);
655 	ts = turnstile_lookup(&invl_gen_ts);
656 	if (new_gen != 0)
657 		pmap_invl_gen = new_gen;
658 	if (ts != NULL) {
659 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
660 		turnstile_unpend(ts);
661 	}
662 	turnstile_chain_unlock(&invl_gen_ts);
663 }
664 
665 /*
666  * Start a new Delayed Invalidation (DI) block of code, executed by
667  * the current thread.  Within a DI block, the current thread may
668  * destroy both the page table and PV list entries for a mapping and
669  * then release the corresponding PV list lock before ensuring that
670  * the mapping is flushed from the TLBs of any processors with the
671  * pmap active.
672  */
673 static void
674 pmap_delayed_invl_start_l(void)
675 {
676 	struct pmap_invl_gen *invl_gen;
677 	u_long currgen;
678 
679 	invl_gen = &curthread->td_md.md_invl_gen;
680 	PMAP_ASSERT_NOT_IN_DI();
681 	mtx_lock(&invl_gen_mtx);
682 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
683 		currgen = pmap_invl_gen;
684 	else
685 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
686 	invl_gen->gen = currgen + 1;
687 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
688 	mtx_unlock(&invl_gen_mtx);
689 }
690 
691 /*
692  * Finish the DI block, previously started by the current thread.  All
693  * required TLB flushes for the pages marked by
694  * pmap_delayed_invl_page() must be finished before this function is
695  * called.
696  *
697  * This function works by bumping the global DI generation number to
698  * the generation number of the current thread's DI, unless there is a
699  * pending DI that started earlier.  In the latter case, bumping the
700  * global DI generation number would incorrectly signal that the
701  * earlier DI had finished.  Instead, this function bumps the earlier
702  * DI's generation number to match the generation number of the
703  * current thread's DI.
704  */
705 static void
706 pmap_delayed_invl_finish_l(void)
707 {
708 	struct pmap_invl_gen *invl_gen, *next;
709 
710 	invl_gen = &curthread->td_md.md_invl_gen;
711 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
712 	mtx_lock(&invl_gen_mtx);
713 	next = LIST_NEXT(invl_gen, link);
714 	if (next == NULL)
715 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
716 	else
717 		next->gen = invl_gen->gen;
718 	LIST_REMOVE(invl_gen, link);
719 	mtx_unlock(&invl_gen_mtx);
720 	invl_gen->gen = 0;
721 }
722 
723 static bool
724 pmap_not_in_di_u(void)
725 {
726 	struct pmap_invl_gen *invl_gen;
727 
728 	invl_gen = &curthread->td_md.md_invl_gen;
729 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
730 }
731 
732 static void
733 pmap_thread_init_invl_gen_u(struct thread *td)
734 {
735 	struct pmap_invl_gen *invl_gen;
736 
737 	invl_gen = &td->td_md.md_invl_gen;
738 	invl_gen->gen = 0;
739 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
740 }
741 
742 static bool
743 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
744 {
745 	uint64_t new_high, new_low, old_high, old_low;
746 	char res;
747 
748 	old_low = new_low = 0;
749 	old_high = new_high = (uintptr_t)0;
750 
751 	__asm volatile("lock;cmpxchg16b\t%1"
752 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
753 	    : "b"(new_low), "c" (new_high)
754 	    : "memory", "cc");
755 	if (res == 0) {
756 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
757 			return (false);
758 		out->gen = old_low;
759 		out->next = (void *)old_high;
760 	} else {
761 		out->gen = new_low;
762 		out->next = (void *)new_high;
763 	}
764 	return (true);
765 }
766 
767 static bool
768 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
769     struct pmap_invl_gen *new_val)
770 {
771 	uint64_t new_high, new_low, old_high, old_low;
772 	char res;
773 
774 	new_low = new_val->gen;
775 	new_high = (uintptr_t)new_val->next;
776 	old_low = old_val->gen;
777 	old_high = (uintptr_t)old_val->next;
778 
779 	__asm volatile("lock;cmpxchg16b\t%1"
780 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
781 	    : "b"(new_low), "c" (new_high)
782 	    : "memory", "cc");
783 	return (res);
784 }
785 
786 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
787 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
788     &pv_page_count, "Current number of allocated pv pages");
789 
790 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
791 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
792     &user_pt_page_count,
793     "Current number of allocated page table pages for userspace");
794 
795 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
796 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
797     &kernel_pt_page_count,
798     "Current number of allocated page table pages for the kernel");
799 
800 #ifdef PV_STATS
801 
802 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
803 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
804     CTLFLAG_RD, &invl_start_restart,
805     "Number of delayed TLB invalidation request restarts");
806 
807 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
808 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
809     &invl_finish_restart,
810     "Number of delayed TLB invalidation completion restarts");
811 
812 static int invl_max_qlen;
813 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
814     &invl_max_qlen, 0,
815     "Maximum delayed TLB invalidation request queue length");
816 #endif
817 
818 #define di_delay	locks_delay
819 
820 static void
821 pmap_delayed_invl_start_u(void)
822 {
823 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
824 	struct thread *td;
825 	struct lock_delay_arg lda;
826 	uintptr_t prevl;
827 	u_char pri;
828 #ifdef PV_STATS
829 	int i, ii;
830 #endif
831 
832 	td = curthread;
833 	invl_gen = &td->td_md.md_invl_gen;
834 	PMAP_ASSERT_NOT_IN_DI();
835 	lock_delay_arg_init(&lda, &di_delay);
836 	invl_gen->saved_pri = 0;
837 	pri = td->td_base_pri;
838 	if (pri > PVM) {
839 		thread_lock(td);
840 		pri = td->td_base_pri;
841 		if (pri > PVM) {
842 			invl_gen->saved_pri = pri;
843 			sched_prio(td, PVM);
844 		}
845 		thread_unlock(td);
846 	}
847 again:
848 	PV_STAT(i = 0);
849 	for (p = &pmap_invl_gen_head;; p = prev.next) {
850 		PV_STAT(i++);
851 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
852 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
853 			PV_STAT(counter_u64_add(invl_start_restart, 1));
854 			lock_delay(&lda);
855 			goto again;
856 		}
857 		if (prevl == 0)
858 			break;
859 		prev.next = (void *)prevl;
860 	}
861 #ifdef PV_STATS
862 	if ((ii = invl_max_qlen) < i)
863 		atomic_cmpset_int(&invl_max_qlen, ii, i);
864 #endif
865 
866 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
867 		PV_STAT(counter_u64_add(invl_start_restart, 1));
868 		lock_delay(&lda);
869 		goto again;
870 	}
871 
872 	new_prev.gen = prev.gen;
873 	new_prev.next = invl_gen;
874 	invl_gen->gen = prev.gen + 1;
875 
876 	/* Formal fence between store to invl->gen and updating *p. */
877 	atomic_thread_fence_rel();
878 
879 	/*
880 	 * After inserting an invl_gen element with invalid bit set,
881 	 * this thread blocks any other thread trying to enter the
882 	 * delayed invalidation block.  Do not allow to remove us from
883 	 * the CPU, because it causes starvation for other threads.
884 	 */
885 	critical_enter();
886 
887 	/*
888 	 * ABA for *p is not possible there, since p->gen can only
889 	 * increase.  So if the *p thread finished its di, then
890 	 * started a new one and got inserted into the list at the
891 	 * same place, its gen will appear greater than the previously
892 	 * read gen.
893 	 */
894 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
895 		critical_exit();
896 		PV_STAT(counter_u64_add(invl_start_restart, 1));
897 		lock_delay(&lda);
898 		goto again;
899 	}
900 
901 	/*
902 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
903 	 * invl_gen->next, allowing other threads to iterate past us.
904 	 * pmap_di_store_invl() provides fence between the generation
905 	 * write and the update of next.
906 	 */
907 	invl_gen->next = NULL;
908 	critical_exit();
909 }
910 
911 static bool
912 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
913     struct pmap_invl_gen *p)
914 {
915 	struct pmap_invl_gen prev, new_prev;
916 	u_long mygen;
917 
918 	/*
919 	 * Load invl_gen->gen after setting invl_gen->next
920 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
921 	 * generations to propagate to our invl_gen->gen.  Lock prefix
922 	 * in atomic_set_ptr() worked as seq_cst fence.
923 	 */
924 	mygen = atomic_load_long(&invl_gen->gen);
925 
926 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
927 		return (false);
928 
929 	KASSERT(prev.gen < mygen,
930 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
931 	new_prev.gen = mygen;
932 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
933 	    ~PMAP_INVL_GEN_NEXT_INVALID);
934 
935 	/* Formal fence between load of prev and storing update to it. */
936 	atomic_thread_fence_rel();
937 
938 	return (pmap_di_store_invl(p, &prev, &new_prev));
939 }
940 
941 static void
942 pmap_delayed_invl_finish_u(void)
943 {
944 	struct pmap_invl_gen *invl_gen, *p;
945 	struct thread *td;
946 	struct lock_delay_arg lda;
947 	uintptr_t prevl;
948 
949 	td = curthread;
950 	invl_gen = &td->td_md.md_invl_gen;
951 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
952 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
953 	    ("missed invl_start: INVALID"));
954 	lock_delay_arg_init(&lda, &di_delay);
955 
956 again:
957 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
958 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
959 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
960 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
961 			lock_delay(&lda);
962 			goto again;
963 		}
964 		if ((void *)prevl == invl_gen)
965 			break;
966 	}
967 
968 	/*
969 	 * It is legitimate to not find ourself on the list if a
970 	 * thread before us finished its DI and started it again.
971 	 */
972 	if (__predict_false(p == NULL)) {
973 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
974 		lock_delay(&lda);
975 		goto again;
976 	}
977 
978 	critical_enter();
979 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
980 	    PMAP_INVL_GEN_NEXT_INVALID);
981 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
982 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
983 		    PMAP_INVL_GEN_NEXT_INVALID);
984 		critical_exit();
985 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
986 		lock_delay(&lda);
987 		goto again;
988 	}
989 	critical_exit();
990 	if (atomic_load_int(&pmap_invl_waiters) > 0)
991 		pmap_delayed_invl_finish_unblock(0);
992 	if (invl_gen->saved_pri != 0) {
993 		thread_lock(td);
994 		sched_prio(td, invl_gen->saved_pri);
995 		thread_unlock(td);
996 	}
997 }
998 
999 #ifdef DDB
1000 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1001 {
1002 	struct pmap_invl_gen *p, *pn;
1003 	struct thread *td;
1004 	uintptr_t nextl;
1005 	bool first;
1006 
1007 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1008 	    first = false) {
1009 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1010 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1011 		td = first ? NULL : __containerof(p, struct thread,
1012 		    td_md.md_invl_gen);
1013 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1014 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1015 		    td != NULL ? td->td_tid : -1);
1016 	}
1017 }
1018 #endif
1019 
1020 #ifdef PV_STATS
1021 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1022 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1023     CTLFLAG_RD, &invl_wait,
1024     "Number of times DI invalidation blocked pmap_remove_all/write");
1025 
1026 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1027 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1028      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1029 
1030 #endif
1031 
1032 #ifdef NUMA
1033 static u_long *
1034 pmap_delayed_invl_genp(vm_page_t m)
1035 {
1036 	vm_paddr_t pa;
1037 	u_long *gen;
1038 
1039 	pa = VM_PAGE_TO_PHYS(m);
1040 	if (__predict_false((pa) > pmap_last_pa))
1041 		gen = &pv_dummy_large.pv_invl_gen;
1042 	else
1043 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1044 
1045 	return (gen);
1046 }
1047 #else
1048 static u_long *
1049 pmap_delayed_invl_genp(vm_page_t m)
1050 {
1051 
1052 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1053 }
1054 #endif
1055 
1056 static void
1057 pmap_delayed_invl_callout_func(void *arg __unused)
1058 {
1059 
1060 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1061 		return;
1062 	pmap_delayed_invl_finish_unblock(0);
1063 }
1064 
1065 static void
1066 pmap_delayed_invl_callout_init(void *arg __unused)
1067 {
1068 
1069 	if (pmap_di_locked())
1070 		return;
1071 	callout_init(&pmap_invl_callout, 1);
1072 	pmap_invl_callout_inited = true;
1073 }
1074 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1075     pmap_delayed_invl_callout_init, NULL);
1076 
1077 /*
1078  * Ensure that all currently executing DI blocks, that need to flush
1079  * TLB for the given page m, actually flushed the TLB at the time the
1080  * function returned.  If the page m has an empty PV list and we call
1081  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1082  * valid mapping for the page m in either its page table or TLB.
1083  *
1084  * This function works by blocking until the global DI generation
1085  * number catches up with the generation number associated with the
1086  * given page m and its PV list.  Since this function's callers
1087  * typically own an object lock and sometimes own a page lock, it
1088  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1089  * processor.
1090  */
1091 static void
1092 pmap_delayed_invl_wait_l(vm_page_t m)
1093 {
1094 	u_long *m_gen;
1095 #ifdef PV_STATS
1096 	bool accounted = false;
1097 #endif
1098 
1099 	m_gen = pmap_delayed_invl_genp(m);
1100 	while (*m_gen > pmap_invl_gen) {
1101 #ifdef PV_STATS
1102 		if (!accounted) {
1103 			counter_u64_add(invl_wait, 1);
1104 			accounted = true;
1105 		}
1106 #endif
1107 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1108 	}
1109 }
1110 
1111 static void
1112 pmap_delayed_invl_wait_u(vm_page_t m)
1113 {
1114 	u_long *m_gen;
1115 	struct lock_delay_arg lda;
1116 	bool fast;
1117 
1118 	fast = true;
1119 	m_gen = pmap_delayed_invl_genp(m);
1120 	lock_delay_arg_init(&lda, &di_delay);
1121 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1122 		if (fast || !pmap_invl_callout_inited) {
1123 			PV_STAT(counter_u64_add(invl_wait, 1));
1124 			lock_delay(&lda);
1125 			fast = false;
1126 		} else {
1127 			/*
1128 			 * The page's invalidation generation number
1129 			 * is still below the current thread's number.
1130 			 * Prepare to block so that we do not waste
1131 			 * CPU cycles or worse, suffer livelock.
1132 			 *
1133 			 * Since it is impossible to block without
1134 			 * racing with pmap_delayed_invl_finish_u(),
1135 			 * prepare for the race by incrementing
1136 			 * pmap_invl_waiters and arming a 1-tick
1137 			 * callout which will unblock us if we lose
1138 			 * the race.
1139 			 */
1140 			atomic_add_int(&pmap_invl_waiters, 1);
1141 
1142 			/*
1143 			 * Re-check the current thread's invalidation
1144 			 * generation after incrementing
1145 			 * pmap_invl_waiters, so that there is no race
1146 			 * with pmap_delayed_invl_finish_u() setting
1147 			 * the page generation and checking
1148 			 * pmap_invl_waiters.  The only race allowed
1149 			 * is for a missed unblock, which is handled
1150 			 * by the callout.
1151 			 */
1152 			if (*m_gen >
1153 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1154 				callout_reset(&pmap_invl_callout, 1,
1155 				    pmap_delayed_invl_callout_func, NULL);
1156 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1157 				pmap_delayed_invl_wait_block(m_gen,
1158 				    &pmap_invl_gen_head.gen);
1159 			}
1160 			atomic_add_int(&pmap_invl_waiters, -1);
1161 		}
1162 	}
1163 }
1164 
1165 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1166 {
1167 
1168 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1169 	    pmap_thread_init_invl_gen_u);
1170 }
1171 
1172 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1173 {
1174 
1175 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1176 	    pmap_delayed_invl_start_u);
1177 }
1178 
1179 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1180 {
1181 
1182 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1183 	    pmap_delayed_invl_finish_u);
1184 }
1185 
1186 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1187 {
1188 
1189 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1190 	    pmap_delayed_invl_wait_u);
1191 }
1192 
1193 /*
1194  * Mark the page m's PV list as participating in the current thread's
1195  * DI block.  Any threads concurrently using m's PV list to remove or
1196  * restrict all mappings to m will wait for the current thread's DI
1197  * block to complete before proceeding.
1198  *
1199  * The function works by setting the DI generation number for m's PV
1200  * list to at least the DI generation number of the current thread.
1201  * This forces a caller of pmap_delayed_invl_wait() to block until
1202  * current thread calls pmap_delayed_invl_finish().
1203  */
1204 static void
1205 pmap_delayed_invl_page(vm_page_t m)
1206 {
1207 	u_long gen, *m_gen;
1208 
1209 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1210 	gen = curthread->td_md.md_invl_gen.gen;
1211 	if (gen == 0)
1212 		return;
1213 	m_gen = pmap_delayed_invl_genp(m);
1214 	if (*m_gen < gen)
1215 		*m_gen = gen;
1216 }
1217 
1218 /*
1219  * Crashdump maps.
1220  */
1221 static caddr_t crashdumpmap;
1222 
1223 /*
1224  * Internal flags for pmap_enter()'s helper functions.
1225  */
1226 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1227 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1228 
1229 /*
1230  * Internal flags for pmap_mapdev_internal() and
1231  * pmap_change_props_locked().
1232  */
1233 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1234 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1235 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1236 
1237 TAILQ_HEAD(pv_chunklist, pv_chunk);
1238 
1239 static void	free_pv_chunk(struct pv_chunk *pc);
1240 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1241 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1242 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1243 static int	popcnt_pc_map_pq(uint64_t *map);
1244 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1245 static void	reserve_pv_entries(pmap_t pmap, int needed,
1246 		    struct rwlock **lockp);
1247 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1248 		    struct rwlock **lockp);
1249 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1250 		    u_int flags, struct rwlock **lockp);
1251 #if VM_NRESERVLEVEL > 0
1252 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1253 		    struct rwlock **lockp);
1254 #endif
1255 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1256 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1257 		    vm_offset_t va);
1258 
1259 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1260 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1261     vm_prot_t prot, int mode, int flags);
1262 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1263 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1264     vm_offset_t va, struct rwlock **lockp);
1265 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1266     vm_offset_t va);
1267 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1268 		    vm_prot_t prot, struct rwlock **lockp);
1269 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1270 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1271 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1272     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1273 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1274 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
1275 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1276     vm_offset_t eva);
1277 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1278     vm_offset_t eva);
1279 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1280 		    pd_entry_t pde);
1281 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1282 static vm_page_t pmap_large_map_getptp_unlocked(void);
1283 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1284 #if VM_NRESERVLEVEL > 0
1285 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1286     vm_page_t mpte, struct rwlock **lockp);
1287 #endif
1288 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1289     vm_prot_t prot);
1290 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1291 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1292     bool exec);
1293 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1294 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1295 static void pmap_pti_wire_pte(void *pte);
1296 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1297     struct spglist *free, struct rwlock **lockp);
1298 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1299     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1300 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1301 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1302     struct spglist *free);
1303 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1304 		    pd_entry_t *pde, struct spglist *free,
1305 		    struct rwlock **lockp);
1306 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1307     vm_page_t m, struct rwlock **lockp);
1308 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1309     pd_entry_t newpde);
1310 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1311 
1312 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1313 		struct rwlock **lockp);
1314 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1315 		struct rwlock **lockp, vm_offset_t va);
1316 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1317 		struct rwlock **lockp, vm_offset_t va);
1318 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1319 		struct rwlock **lockp);
1320 
1321 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1322     struct spglist *free);
1323 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1324 
1325 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1326 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1327 
1328 /********************/
1329 /* Inline functions */
1330 /********************/
1331 
1332 /*
1333  * Return a non-clipped indexes for a given VA, which are page table
1334  * pages indexes at the corresponding level.
1335  */
1336 static __inline vm_pindex_t
1337 pmap_pde_pindex(vm_offset_t va)
1338 {
1339 	return (va >> PDRSHIFT);
1340 }
1341 
1342 static __inline vm_pindex_t
1343 pmap_pdpe_pindex(vm_offset_t va)
1344 {
1345 	return (NUPDE + (va >> PDPSHIFT));
1346 }
1347 
1348 static __inline vm_pindex_t
1349 pmap_pml4e_pindex(vm_offset_t va)
1350 {
1351 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1352 }
1353 
1354 static __inline vm_pindex_t
1355 pmap_pml5e_pindex(vm_offset_t va)
1356 {
1357 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1358 }
1359 
1360 static __inline pml4_entry_t *
1361 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1362 {
1363 
1364 	MPASS(pmap_is_la57(pmap));
1365 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1366 }
1367 
1368 static __inline pml4_entry_t *
1369 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1370 {
1371 
1372 	MPASS(pmap_is_la57(pmap));
1373 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1374 }
1375 
1376 static __inline pml4_entry_t *
1377 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1378 {
1379 	pml4_entry_t *pml4e;
1380 
1381 	/* XXX MPASS(pmap_is_la57(pmap); */
1382 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1383 	return (&pml4e[pmap_pml4e_index(va)]);
1384 }
1385 
1386 /* Return a pointer to the PML4 slot that corresponds to a VA */
1387 static __inline pml4_entry_t *
1388 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1389 {
1390 	pml5_entry_t *pml5e;
1391 	pml4_entry_t *pml4e;
1392 	pt_entry_t PG_V;
1393 
1394 	if (pmap_is_la57(pmap)) {
1395 		pml5e = pmap_pml5e(pmap, va);
1396 		PG_V = pmap_valid_bit(pmap);
1397 		if ((*pml5e & PG_V) == 0)
1398 			return (NULL);
1399 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1400 	} else {
1401 		pml4e = pmap->pm_pmltop;
1402 	}
1403 	return (&pml4e[pmap_pml4e_index(va)]);
1404 }
1405 
1406 static __inline pml4_entry_t *
1407 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1408 {
1409 	MPASS(!pmap_is_la57(pmap));
1410 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1411 }
1412 
1413 /* Return a pointer to the PDP slot that corresponds to a VA */
1414 static __inline pdp_entry_t *
1415 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1416 {
1417 	pdp_entry_t *pdpe;
1418 
1419 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1420 	return (&pdpe[pmap_pdpe_index(va)]);
1421 }
1422 
1423 /* Return a pointer to the PDP slot that corresponds to a VA */
1424 static __inline pdp_entry_t *
1425 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1426 {
1427 	pml4_entry_t *pml4e;
1428 	pt_entry_t PG_V;
1429 
1430 	PG_V = pmap_valid_bit(pmap);
1431 	pml4e = pmap_pml4e(pmap, va);
1432 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1433 		return (NULL);
1434 	return (pmap_pml4e_to_pdpe(pml4e, va));
1435 }
1436 
1437 /* Return a pointer to the PD slot that corresponds to a VA */
1438 static __inline pd_entry_t *
1439 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1440 {
1441 	pd_entry_t *pde;
1442 
1443 	KASSERT((*pdpe & PG_PS) == 0,
1444 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1445 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1446 	return (&pde[pmap_pde_index(va)]);
1447 }
1448 
1449 /* Return a pointer to the PD slot that corresponds to a VA */
1450 static __inline pd_entry_t *
1451 pmap_pde(pmap_t pmap, vm_offset_t va)
1452 {
1453 	pdp_entry_t *pdpe;
1454 	pt_entry_t PG_V;
1455 
1456 	PG_V = pmap_valid_bit(pmap);
1457 	pdpe = pmap_pdpe(pmap, va);
1458 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1459 		return (NULL);
1460 	KASSERT((*pdpe & PG_PS) == 0,
1461 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1462 	return (pmap_pdpe_to_pde(pdpe, va));
1463 }
1464 
1465 /* Return a pointer to the PT slot that corresponds to a VA */
1466 static __inline pt_entry_t *
1467 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1468 {
1469 	pt_entry_t *pte;
1470 
1471 	KASSERT((*pde & PG_PS) == 0,
1472 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1473 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1474 	return (&pte[pmap_pte_index(va)]);
1475 }
1476 
1477 /* Return a pointer to the PT slot that corresponds to a VA */
1478 static __inline pt_entry_t *
1479 pmap_pte(pmap_t pmap, vm_offset_t va)
1480 {
1481 	pd_entry_t *pde;
1482 	pt_entry_t PG_V;
1483 
1484 	PG_V = pmap_valid_bit(pmap);
1485 	pde = pmap_pde(pmap, va);
1486 	if (pde == NULL || (*pde & PG_V) == 0)
1487 		return (NULL);
1488 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1489 		return ((pt_entry_t *)pde);
1490 	return (pmap_pde_to_pte(pde, va));
1491 }
1492 
1493 static __inline void
1494 pmap_resident_count_adj(pmap_t pmap, int count)
1495 {
1496 
1497 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1498 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1499 	    ("pmap %p resident count underflow %ld %d", pmap,
1500 	    pmap->pm_stats.resident_count, count));
1501 	pmap->pm_stats.resident_count += count;
1502 }
1503 
1504 static __inline void
1505 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1506 {
1507 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1508 	    ("pmap %p resident count underflow %ld %d", pmap,
1509 	    pmap->pm_stats.resident_count, count));
1510 	pmap->pm_stats.resident_count += count;
1511 }
1512 
1513 static __inline void
1514 pmap_pt_page_count_adj(pmap_t pmap, int count)
1515 {
1516 	if (pmap == kernel_pmap)
1517 		counter_u64_add(kernel_pt_page_count, count);
1518 	else {
1519 		if (pmap != NULL)
1520 			pmap_resident_count_adj(pmap, count);
1521 		counter_u64_add(user_pt_page_count, count);
1522 	}
1523 }
1524 
1525 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1526     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1527 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1528 
1529 PMAP_INLINE pt_entry_t *
1530 vtopte(vm_offset_t va)
1531 {
1532 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1533 
1534 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1535 }
1536 
1537 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1538     NPML4EPGSHIFT)) - 1) << 3;
1539 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1540 
1541 static __inline pd_entry_t *
1542 vtopde(vm_offset_t va)
1543 {
1544 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1545 
1546 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1547 }
1548 
1549 static u_int64_t
1550 allocpages(vm_paddr_t *firstaddr, int n)
1551 {
1552 	u_int64_t ret;
1553 
1554 	ret = *firstaddr;
1555 	bzero((void *)ret, n * PAGE_SIZE);
1556 	*firstaddr += n * PAGE_SIZE;
1557 	return (ret);
1558 }
1559 
1560 CTASSERT(powerof2(NDMPML4E));
1561 
1562 /* number of kernel PDP slots */
1563 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1564 
1565 static void
1566 nkpt_init(vm_paddr_t addr)
1567 {
1568 	int pt_pages;
1569 
1570 #ifdef NKPT
1571 	pt_pages = NKPT;
1572 #else
1573 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1574 	pt_pages += NKPDPE(pt_pages);
1575 
1576 	/*
1577 	 * Add some slop beyond the bare minimum required for bootstrapping
1578 	 * the kernel.
1579 	 *
1580 	 * This is quite important when allocating KVA for kernel modules.
1581 	 * The modules are required to be linked in the negative 2GB of
1582 	 * the address space.  If we run out of KVA in this region then
1583 	 * pmap_growkernel() will need to allocate page table pages to map
1584 	 * the entire 512GB of KVA space which is an unnecessary tax on
1585 	 * physical memory.
1586 	 *
1587 	 * Secondly, device memory mapped as part of setting up the low-
1588 	 * level console(s) is taken from KVA, starting at virtual_avail.
1589 	 * This is because cninit() is called after pmap_bootstrap() but
1590 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1591 	 * not uncommon.
1592 	 */
1593 	pt_pages += 32;		/* 64MB additional slop. */
1594 #endif
1595 	nkpt = pt_pages;
1596 }
1597 
1598 /*
1599  * Returns the proper write/execute permission for a physical page that is
1600  * part of the initial boot allocations.
1601  *
1602  * If the page has kernel text, it is marked as read-only. If the page has
1603  * kernel read-only data, it is marked as read-only/not-executable. If the
1604  * page has only read-write data, it is marked as read-write/not-executable.
1605  * If the page is below/above the kernel range, it is marked as read-write.
1606  *
1607  * This function operates on 2M pages, since we map the kernel space that
1608  * way.
1609  */
1610 static inline pt_entry_t
1611 bootaddr_rwx(vm_paddr_t pa)
1612 {
1613 	/*
1614 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1615 	 * need not be executable.  The .bss section is padded to a 2MB
1616 	 * boundary, so memory following the kernel need not be executable
1617 	 * either.  Preloaded kernel modules have their mapping permissions
1618 	 * fixed up by the linker.
1619 	 */
1620 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1621 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1622 		return (X86_PG_RW | pg_nx);
1623 
1624 	/*
1625 	 * The linker should ensure that the read-only and read-write
1626 	 * portions don't share the same 2M page, so this shouldn't
1627 	 * impact read-only data. However, in any case, any page with
1628 	 * read-write data needs to be read-write.
1629 	 */
1630 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1631 		return (X86_PG_RW | pg_nx);
1632 
1633 	/*
1634 	 * Mark any 2M page containing kernel text as read-only. Mark
1635 	 * other pages with read-only data as read-only and not executable.
1636 	 * (It is likely a small portion of the read-only data section will
1637 	 * be marked as read-only, but executable. This should be acceptable
1638 	 * since the read-only protection will keep the data from changing.)
1639 	 * Note that fixups to the .text section will still work until we
1640 	 * set CR0.WP.
1641 	 */
1642 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1643 		return (0);
1644 	return (pg_nx);
1645 }
1646 
1647 static void
1648 create_pagetables(vm_paddr_t *firstaddr)
1649 {
1650 	pd_entry_t *pd_p;
1651 	pdp_entry_t *pdp_p;
1652 	pml4_entry_t *p4_p;
1653 	uint64_t DMPDkernphys;
1654 	vm_paddr_t pax;
1655 #ifdef KASAN
1656 	pt_entry_t *pt_p;
1657 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1658 	vm_offset_t kasankernbase;
1659 	int kasankpdpi, kasankpdi, nkasanpte;
1660 #endif
1661 	int i, j, ndm1g, nkpdpe, nkdmpde;
1662 
1663 	/* Allocate page table pages for the direct map */
1664 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1665 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1666 		ndmpdp = 4;
1667 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1668 	if (ndmpdpphys > NDMPML4E) {
1669 		/*
1670 		 * Each NDMPML4E allows 512 GB, so limit to that,
1671 		 * and then readjust ndmpdp and ndmpdpphys.
1672 		 */
1673 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1674 		Maxmem = atop(NDMPML4E * NBPML4);
1675 		ndmpdpphys = NDMPML4E;
1676 		ndmpdp = NDMPML4E * NPDEPG;
1677 	}
1678 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1679 	ndm1g = 0;
1680 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1681 		/*
1682 		 * Calculate the number of 1G pages that will fully fit in
1683 		 * Maxmem.
1684 		 */
1685 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1686 
1687 		/*
1688 		 * Allocate 2M pages for the kernel. These will be used in
1689 		 * place of the one or more 1G pages from ndm1g that maps
1690 		 * kernel memory into DMAP.
1691 		 */
1692 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1693 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1694 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1695 	}
1696 	if (ndm1g < ndmpdp)
1697 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1698 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1699 
1700 	/* Allocate pages. */
1701 	KPML4phys = allocpages(firstaddr, 1);
1702 	KPDPphys = allocpages(firstaddr, NKPML4E);
1703 #ifdef KASAN
1704 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1705 	KASANPDphys = allocpages(firstaddr, 1);
1706 #endif
1707 #ifdef KMSAN
1708 	/*
1709 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1710 	 * no need to shadow memory above KERNBASE.
1711 	 */
1712 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1713 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1714 #endif
1715 
1716 	/*
1717 	 * Allocate the initial number of kernel page table pages required to
1718 	 * bootstrap.  We defer this until after all memory-size dependent
1719 	 * allocations are done (e.g. direct map), so that we don't have to
1720 	 * build in too much slop in our estimate.
1721 	 *
1722 	 * Note that when NKPML4E > 1, we have an empty page underneath
1723 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1724 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1725 	 */
1726 	nkpt_init(*firstaddr);
1727 	nkpdpe = NKPDPE(nkpt);
1728 
1729 	KPTphys = allocpages(firstaddr, nkpt);
1730 	KPDphys = allocpages(firstaddr, nkpdpe);
1731 
1732 #ifdef KASAN
1733 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1734 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1735 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1736 #endif
1737 
1738 	/*
1739 	 * Connect the zero-filled PT pages to their PD entries.  This
1740 	 * implicitly maps the PT pages at their correct locations within
1741 	 * the PTmap.
1742 	 */
1743 	pd_p = (pd_entry_t *)KPDphys;
1744 	for (i = 0; i < nkpt; i++)
1745 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1746 
1747 	/*
1748 	 * Map from start of the kernel in physical memory (staging
1749 	 * area) to the end of loader preallocated memory using 2MB
1750 	 * pages.  This replaces some of the PD entries created above.
1751 	 * For compatibility, identity map 2M at the start.
1752 	 */
1753 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1754 	    X86_PG_RW | pg_nx;
1755 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1756 		/* Preset PG_M and PG_A because demotion expects it. */
1757 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1758 		    X86_PG_A | bootaddr_rwx(pax);
1759 	}
1760 
1761 	/*
1762 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1763 	 * to record the physical blocks we've actually mapped into kernel
1764 	 * virtual address space.
1765 	 */
1766 	if (*firstaddr < round_2mpage(KERNend))
1767 		*firstaddr = round_2mpage(KERNend);
1768 
1769 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1770 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1771 	for (i = 0; i < nkpdpe; i++)
1772 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1773 
1774 #ifdef KASAN
1775 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1776 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1777 	kasankpdi = pmap_pde_index(kasankernbase);
1778 
1779 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1780 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1781 
1782 	pd_p = (pd_entry_t *)KASANPDphys;
1783 	for (i = 0; i < nkasanpte; i++)
1784 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1785 		    X86_PG_V | pg_nx;
1786 
1787 	pt_p = (pt_entry_t *)KASANPTphys;
1788 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1789 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1790 		    X86_PG_M | X86_PG_A | pg_nx;
1791 #endif
1792 
1793 	/*
1794 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1795 	 * the end of physical memory is not aligned to a 1GB page boundary,
1796 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1797 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1798 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1799 	 * that are partially used.
1800 	 */
1801 	pd_p = (pd_entry_t *)DMPDphys;
1802 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1803 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1804 		/* Preset PG_M and PG_A because demotion expects it. */
1805 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1806 		    X86_PG_M | X86_PG_A | pg_nx;
1807 	}
1808 	pdp_p = (pdp_entry_t *)DMPDPphys;
1809 	for (i = 0; i < ndm1g; i++) {
1810 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1811 		/* Preset PG_M and PG_A because demotion expects it. */
1812 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1813 		    X86_PG_M | X86_PG_A | pg_nx;
1814 	}
1815 	for (j = 0; i < ndmpdp; i++, j++) {
1816 		pdp_p[i] = DMPDphys + ptoa(j);
1817 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1818 	}
1819 
1820 	/*
1821 	 * Instead of using a 1G page for the memory containing the kernel,
1822 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1823 	 * pages, this will partially overwrite the PDPEs above.)
1824 	 */
1825 	if (ndm1g > 0) {
1826 		pd_p = (pd_entry_t *)DMPDkernphys;
1827 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1828 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1829 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1830 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1831 		}
1832 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1833 		for (i = 0; i < nkdmpde; i++) {
1834 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1835 			    X86_PG_RW | X86_PG_V | pg_nx;
1836 		}
1837 	}
1838 
1839 	/* And recursively map PML4 to itself in order to get PTmap */
1840 	p4_p = (pml4_entry_t *)KPML4phys;
1841 	p4_p[PML4PML4I] = KPML4phys;
1842 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1843 
1844 #ifdef KASAN
1845 	/* Connect the KASAN shadow map slots up to the PML4. */
1846 	for (i = 0; i < NKASANPML4E; i++) {
1847 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1848 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1849 	}
1850 #endif
1851 
1852 #ifdef KMSAN
1853 	/* Connect the KMSAN shadow map slots up to the PML4. */
1854 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1855 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1856 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1857 	}
1858 
1859 	/* Connect the KMSAN origin map slots up to the PML4. */
1860 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1861 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1862 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1863 	}
1864 #endif
1865 
1866 	/* Connect the Direct Map slots up to the PML4. */
1867 	for (i = 0; i < ndmpdpphys; i++) {
1868 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1869 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1870 	}
1871 
1872 	/* Connect the KVA slots up to the PML4 */
1873 	for (i = 0; i < NKPML4E; i++) {
1874 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1875 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1876 	}
1877 
1878 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1879 }
1880 
1881 /*
1882  *	Bootstrap the system enough to run with virtual memory.
1883  *
1884  *	On amd64 this is called after mapping has already been enabled
1885  *	and just syncs the pmap module with what has already been done.
1886  *	[We can't call it easily with mapping off since the kernel is not
1887  *	mapped with PA == VA, hence we would have to relocate every address
1888  *	from the linked base (virtual) address "KERNBASE" to the actual
1889  *	(physical) address starting relative to 0]
1890  */
1891 void
1892 pmap_bootstrap(vm_paddr_t *firstaddr)
1893 {
1894 	vm_offset_t va;
1895 	pt_entry_t *pte, *pcpu_pte;
1896 	struct region_descriptor r_gdt;
1897 	uint64_t cr4, pcpu_phys;
1898 	u_long res;
1899 	int i;
1900 
1901 	KERNend = *firstaddr;
1902 	res = atop(KERNend - (vm_paddr_t)kernphys);
1903 
1904 	if (!pti)
1905 		pg_g = X86_PG_G;
1906 
1907 	/*
1908 	 * Create an initial set of page tables to run the kernel in.
1909 	 */
1910 	create_pagetables(firstaddr);
1911 
1912 	pcpu_phys = allocpages(firstaddr, MAXCPU);
1913 
1914 	/*
1915 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1916 	 * preallocated kernel page table pages so that vm_page structures
1917 	 * representing these pages will be created.  The vm_page structures
1918 	 * are required for promotion of the corresponding kernel virtual
1919 	 * addresses to superpage mappings.
1920 	 */
1921 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1922 
1923 	/*
1924 	 * Account for the virtual addresses mapped by create_pagetables().
1925 	 */
1926 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1927 	    (vm_paddr_t)kernphys);
1928 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1929 
1930 	/*
1931 	 * Enable PG_G global pages, then switch to the kernel page
1932 	 * table from the bootstrap page table.  After the switch, it
1933 	 * is possible to enable SMEP and SMAP since PG_U bits are
1934 	 * correct now.
1935 	 */
1936 	cr4 = rcr4();
1937 	cr4 |= CR4_PGE;
1938 	load_cr4(cr4);
1939 	load_cr3(KPML4phys);
1940 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1941 		cr4 |= CR4_SMEP;
1942 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1943 		cr4 |= CR4_SMAP;
1944 	load_cr4(cr4);
1945 
1946 	/*
1947 	 * Initialize the kernel pmap (which is statically allocated).
1948 	 * Count bootstrap data as being resident in case any of this data is
1949 	 * later unmapped (using pmap_remove()) and freed.
1950 	 */
1951 	PMAP_LOCK_INIT(kernel_pmap);
1952 	kernel_pmap->pm_pmltop = kernel_pml4;
1953 	kernel_pmap->pm_cr3 = KPML4phys;
1954 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1955 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1956 	kernel_pmap->pm_stats.resident_count = res;
1957 	kernel_pmap->pm_flags = pmap_flags;
1958 
1959 	/*
1960 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1961 	 * enumerated, the mask will be set equal to all_cpus.
1962 	 */
1963 	CPU_FILL(&kernel_pmap->pm_active);
1964 
1965  	/*
1966 	 * Initialize the TLB invalidations generation number lock.
1967 	 */
1968 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1969 
1970 	/*
1971 	 * Reserve some special page table entries/VA space for temporary
1972 	 * mapping of pages.
1973 	 */
1974 #define	SYSMAP(c, p, v, n)	\
1975 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1976 
1977 	va = virtual_avail;
1978 	pte = vtopte(va);
1979 
1980 	/*
1981 	 * Crashdump maps.  The first page is reused as CMAP1 for the
1982 	 * memory test.
1983 	 */
1984 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
1985 	CADDR1 = crashdumpmap;
1986 
1987 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
1988 	virtual_avail = va;
1989 
1990 	for (i = 0; i < MAXCPU; i++) {
1991 		pcpu_pte[i] = (pcpu_phys + ptoa(i)) | X86_PG_V | X86_PG_RW |
1992 		    pg_g | pg_nx | X86_PG_M | X86_PG_A;
1993 	}
1994 
1995 	/*
1996 	 * Re-initialize PCPU area for BSP after switching.
1997 	 * Make hardware use gdt and common_tss from the new PCPU.
1998 	 */
1999 	STAILQ_INIT(&cpuhead);
2000 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2001 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2002 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2003 	amd64_bsp_ist_init(&__pcpu[0]);
2004 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2005 	    IOPERM_BITMAP_SIZE;
2006 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2007 	    sizeof(struct user_segment_descriptor));
2008 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2009 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2010 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2011 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2012 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2013 	lgdt(&r_gdt);
2014 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2015 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2016 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2017 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2018 
2019 	/*
2020 	 * Initialize the PAT MSR.
2021 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2022 	 * side-effect, invalidates stale PG_G TLB entries that might
2023 	 * have been created in our pre-boot environment.
2024 	 */
2025 	pmap_init_pat();
2026 
2027 	/* Initialize TLB Context Id. */
2028 	if (pmap_pcid_enabled) {
2029 		for (i = 0; i < MAXCPU; i++) {
2030 			kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
2031 			kernel_pmap->pm_pcids[i].pm_gen = 1;
2032 		}
2033 
2034 		/*
2035 		 * PMAP_PCID_KERN + 1 is used for initialization of
2036 		 * proc0 pmap.  The pmap' pcid state might be used by
2037 		 * EFIRT entry before first context switch, so it
2038 		 * needs to be valid.
2039 		 */
2040 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2041 		PCPU_SET(pcid_gen, 1);
2042 
2043 		/*
2044 		 * pcpu area for APs is zeroed during AP startup.
2045 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2046 		 * during pcpu setup.
2047 		 */
2048 		load_cr4(rcr4() | CR4_PCIDE);
2049 	}
2050 }
2051 
2052 /*
2053  * Setup the PAT MSR.
2054  */
2055 void
2056 pmap_init_pat(void)
2057 {
2058 	uint64_t pat_msr;
2059 	u_long cr0, cr4;
2060 	int i;
2061 
2062 	/* Bail if this CPU doesn't implement PAT. */
2063 	if ((cpu_feature & CPUID_PAT) == 0)
2064 		panic("no PAT??");
2065 
2066 	/* Set default PAT index table. */
2067 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2068 		pat_index[i] = -1;
2069 	pat_index[PAT_WRITE_BACK] = 0;
2070 	pat_index[PAT_WRITE_THROUGH] = 1;
2071 	pat_index[PAT_UNCACHEABLE] = 3;
2072 	pat_index[PAT_WRITE_COMBINING] = 6;
2073 	pat_index[PAT_WRITE_PROTECTED] = 5;
2074 	pat_index[PAT_UNCACHED] = 2;
2075 
2076 	/*
2077 	 * Initialize default PAT entries.
2078 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2079 	 * Program 5 and 6 as WP and WC.
2080 	 *
2081 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2082 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2083 	 * to its overload with PG_PS.
2084 	 */
2085 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2086 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2087 	    PAT_VALUE(2, PAT_UNCACHED) |
2088 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2089 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2090 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2091 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2092 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2093 
2094 	/* Disable PGE. */
2095 	cr4 = rcr4();
2096 	load_cr4(cr4 & ~CR4_PGE);
2097 
2098 	/* Disable caches (CD = 1, NW = 0). */
2099 	cr0 = rcr0();
2100 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2101 
2102 	/* Flushes caches and TLBs. */
2103 	wbinvd();
2104 	invltlb();
2105 
2106 	/* Update PAT and index table. */
2107 	wrmsr(MSR_PAT, pat_msr);
2108 
2109 	/* Flush caches and TLBs again. */
2110 	wbinvd();
2111 	invltlb();
2112 
2113 	/* Restore caches and PGE. */
2114 	load_cr0(cr0);
2115 	load_cr4(cr4);
2116 }
2117 
2118 vm_page_t
2119 pmap_page_alloc_below_4g(bool zeroed)
2120 {
2121 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2122 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2123 }
2124 
2125 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2126     la57_trampoline_gdt[], la57_trampoline_end[];
2127 
2128 static void
2129 pmap_bootstrap_la57(void *arg __unused)
2130 {
2131 	char *v_code;
2132 	pml5_entry_t *v_pml5;
2133 	pml4_entry_t *v_pml4;
2134 	pdp_entry_t *v_pdp;
2135 	pd_entry_t *v_pd;
2136 	pt_entry_t *v_pt;
2137 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2138 	void (*la57_tramp)(uint64_t pml5);
2139 	struct region_descriptor r_gdt;
2140 
2141 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2142 		return;
2143 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2144 	if (!la57)
2145 		return;
2146 
2147 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2148 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2149 
2150 	m_code = pmap_page_alloc_below_4g(true);
2151 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2152 	m_pml5 = pmap_page_alloc_below_4g(true);
2153 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2154 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2155 	m_pml4 = pmap_page_alloc_below_4g(true);
2156 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2157 	m_pdp = pmap_page_alloc_below_4g(true);
2158 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2159 	m_pd = pmap_page_alloc_below_4g(true);
2160 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2161 	m_pt = pmap_page_alloc_below_4g(true);
2162 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2163 
2164 	/*
2165 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2166 	 * address being below 4G.  Since kernel KVA is in upper half,
2167 	 * the pml4e should be zero and free for temporary use.
2168 	 */
2169 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2170 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2171 	    X86_PG_M;
2172 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2173 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2174 	    X86_PG_M;
2175 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2176 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2177 	    X86_PG_M;
2178 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2179 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2180 	    X86_PG_M;
2181 
2182 	/*
2183 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2184 	 * entering all existing kernel mappings into level 5 table.
2185 	 */
2186 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2187 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2188 
2189 	/*
2190 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2191 	 */
2192 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2193 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2194 	    X86_PG_M;
2195 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2196 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2197 	    X86_PG_M;
2198 
2199 	/*
2200 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2201 	 */
2202 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2203 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2204 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2205 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2206 	invlpg((vm_offset_t)la57_tramp);
2207 	la57_tramp(KPML5phys);
2208 
2209 	/*
2210 	 * gdt was necessary reset, switch back to our gdt.
2211 	 */
2212 	lgdt(&r_gdt);
2213 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2214 	load_ds(_udatasel);
2215 	load_es(_udatasel);
2216 	load_fs(_ufssel);
2217 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2218 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2219 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2220 
2221 	/*
2222 	 * Now unmap the trampoline, and free the pages.
2223 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2224 	 */
2225 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2226 	invlpg((vm_offset_t)v_code);
2227 	vm_page_free(m_code);
2228 	vm_page_free(m_pdp);
2229 	vm_page_free(m_pd);
2230 	vm_page_free(m_pt);
2231 
2232 	/*
2233 	 * Recursively map PML5 to itself in order to get PTmap and
2234 	 * PDmap.
2235 	 */
2236 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2237 
2238 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2239 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2240 	PTmap = (vm_offset_t)P5Tmap;
2241 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2242 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2243 	PDmap = (vm_offset_t)P5Dmap;
2244 
2245 	kernel_pmap->pm_cr3 = KPML5phys;
2246 	kernel_pmap->pm_pmltop = v_pml5;
2247 	pmap_pt_page_count_adj(kernel_pmap, 1);
2248 }
2249 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2250 
2251 /*
2252  *	Initialize a vm_page's machine-dependent fields.
2253  */
2254 void
2255 pmap_page_init(vm_page_t m)
2256 {
2257 
2258 	TAILQ_INIT(&m->md.pv_list);
2259 	m->md.pat_mode = PAT_WRITE_BACK;
2260 }
2261 
2262 static int pmap_allow_2m_x_ept;
2263 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2264     &pmap_allow_2m_x_ept, 0,
2265     "Allow executable superpage mappings in EPT");
2266 
2267 void
2268 pmap_allow_2m_x_ept_recalculate(void)
2269 {
2270 	/*
2271 	 * SKL002, SKL012S.  Since the EPT format is only used by
2272 	 * Intel CPUs, the vendor check is merely a formality.
2273 	 */
2274 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2275 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2276 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2277 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2278 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2279 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2280 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2281 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2282 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2283 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2284 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2285 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2286 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2287 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2288 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2289 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2290 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2291 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2292 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2293 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2294 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2295 		pmap_allow_2m_x_ept = 1;
2296 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2297 }
2298 
2299 static bool
2300 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2301 {
2302 
2303 	return (pmap->pm_type != PT_EPT || !executable ||
2304 	    !pmap_allow_2m_x_ept);
2305 }
2306 
2307 #ifdef NUMA
2308 static void
2309 pmap_init_pv_table(void)
2310 {
2311 	struct pmap_large_md_page *pvd;
2312 	vm_size_t s;
2313 	long start, end, highest, pv_npg;
2314 	int domain, i, j, pages;
2315 
2316 	/*
2317 	 * We strongly depend on the size being a power of two, so the assert
2318 	 * is overzealous. However, should the struct be resized to a
2319 	 * different power of two, the code below needs to be revisited.
2320 	 */
2321 	CTASSERT((sizeof(*pvd) == 64));
2322 
2323 	/*
2324 	 * Calculate the size of the array.
2325 	 */
2326 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2327 	pv_npg = howmany(pmap_last_pa, NBPDR);
2328 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2329 	s = round_page(s);
2330 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2331 	if (pv_table == NULL)
2332 		panic("%s: kva_alloc failed\n", __func__);
2333 
2334 	/*
2335 	 * Iterate physical segments to allocate space for respective pages.
2336 	 */
2337 	highest = -1;
2338 	s = 0;
2339 	for (i = 0; i < vm_phys_nsegs; i++) {
2340 		end = vm_phys_segs[i].end / NBPDR;
2341 		domain = vm_phys_segs[i].domain;
2342 
2343 		if (highest >= end)
2344 			continue;
2345 
2346 		start = highest + 1;
2347 		pvd = &pv_table[start];
2348 
2349 		pages = end - start + 1;
2350 		s = round_page(pages * sizeof(*pvd));
2351 		highest = start + (s / sizeof(*pvd)) - 1;
2352 
2353 		for (j = 0; j < s; j += PAGE_SIZE) {
2354 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2355 			if (m == NULL)
2356 				panic("failed to allocate PV table page");
2357 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2358 		}
2359 
2360 		for (j = 0; j < s / sizeof(*pvd); j++) {
2361 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2362 			TAILQ_INIT(&pvd->pv_page.pv_list);
2363 			pvd->pv_page.pv_gen = 0;
2364 			pvd->pv_page.pat_mode = 0;
2365 			pvd->pv_invl_gen = 0;
2366 			pvd++;
2367 		}
2368 	}
2369 	pvd = &pv_dummy_large;
2370 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2371 	TAILQ_INIT(&pvd->pv_page.pv_list);
2372 	pvd->pv_page.pv_gen = 0;
2373 	pvd->pv_page.pat_mode = 0;
2374 	pvd->pv_invl_gen = 0;
2375 }
2376 #else
2377 static void
2378 pmap_init_pv_table(void)
2379 {
2380 	vm_size_t s;
2381 	long i, pv_npg;
2382 
2383 	/*
2384 	 * Initialize the pool of pv list locks.
2385 	 */
2386 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2387 		rw_init(&pv_list_locks[i], "pmap pv list");
2388 
2389 	/*
2390 	 * Calculate the size of the pv head table for superpages.
2391 	 */
2392 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2393 
2394 	/*
2395 	 * Allocate memory for the pv head table for superpages.
2396 	 */
2397 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2398 	s = round_page(s);
2399 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2400 	for (i = 0; i < pv_npg; i++)
2401 		TAILQ_INIT(&pv_table[i].pv_list);
2402 	TAILQ_INIT(&pv_dummy.pv_list);
2403 }
2404 #endif
2405 
2406 /*
2407  *	Initialize the pmap module.
2408  *	Called by vm_init, to initialize any structures that the pmap
2409  *	system needs to map virtual memory.
2410  */
2411 void
2412 pmap_init(void)
2413 {
2414 	struct pmap_preinit_mapping *ppim;
2415 	vm_page_t m, mpte;
2416 	int error, i, ret, skz63;
2417 
2418 	/* L1TF, reserve page @0 unconditionally */
2419 	vm_page_blacklist_add(0, bootverbose);
2420 
2421 	/* Detect bare-metal Skylake Server and Skylake-X. */
2422 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2423 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2424 		/*
2425 		 * Skylake-X errata SKZ63. Processor May Hang When
2426 		 * Executing Code In an HLE Transaction Region between
2427 		 * 40000000H and 403FFFFFH.
2428 		 *
2429 		 * Mark the pages in the range as preallocated.  It
2430 		 * seems to be impossible to distinguish between
2431 		 * Skylake Server and Skylake X.
2432 		 */
2433 		skz63 = 1;
2434 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2435 		if (skz63 != 0) {
2436 			if (bootverbose)
2437 				printf("SKZ63: skipping 4M RAM starting "
2438 				    "at physical 1G\n");
2439 			for (i = 0; i < atop(0x400000); i++) {
2440 				ret = vm_page_blacklist_add(0x40000000 +
2441 				    ptoa(i), FALSE);
2442 				if (!ret && bootverbose)
2443 					printf("page at %#lx already used\n",
2444 					    0x40000000 + ptoa(i));
2445 			}
2446 		}
2447 	}
2448 
2449 	/* IFU */
2450 	pmap_allow_2m_x_ept_recalculate();
2451 
2452 	/*
2453 	 * Initialize the vm page array entries for the kernel pmap's
2454 	 * page table pages.
2455 	 */
2456 	PMAP_LOCK(kernel_pmap);
2457 	for (i = 0; i < nkpt; i++) {
2458 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2459 		KASSERT(mpte >= vm_page_array &&
2460 		    mpte < &vm_page_array[vm_page_array_size],
2461 		    ("pmap_init: page table page is out of range"));
2462 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2463 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2464 		mpte->ref_count = 1;
2465 
2466 		/*
2467 		 * Collect the page table pages that were replaced by a 2MB
2468 		 * page in create_pagetables().  They are zero filled.
2469 		 */
2470 		if ((i == 0 ||
2471 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2472 		    pmap_insert_pt_page(kernel_pmap, mpte, false))
2473 			panic("pmap_init: pmap_insert_pt_page failed");
2474 	}
2475 	PMAP_UNLOCK(kernel_pmap);
2476 	vm_wire_add(nkpt);
2477 
2478 	/*
2479 	 * If the kernel is running on a virtual machine, then it must assume
2480 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2481 	 * be prepared for the hypervisor changing the vendor and family that
2482 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2483 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2484 	 * include at least one feature that is only supported by older Intel
2485 	 * or newer AMD processors.
2486 	 */
2487 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2488 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2489 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2490 	    AMDID2_FMA4)) == 0)
2491 		workaround_erratum383 = 1;
2492 
2493 	/*
2494 	 * Are large page mappings enabled?
2495 	 */
2496 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2497 	if (pg_ps_enabled) {
2498 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2499 		    ("pmap_init: can't assign to pagesizes[1]"));
2500 		pagesizes[1] = NBPDR;
2501 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2502 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2503 			    ("pmap_init: can't assign to pagesizes[2]"));
2504 			pagesizes[2] = NBPDP;
2505 		}
2506 	}
2507 
2508 	/*
2509 	 * Initialize pv chunk lists.
2510 	 */
2511 	for (i = 0; i < PMAP_MEMDOM; i++) {
2512 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2513 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2514 	}
2515 	pmap_init_pv_table();
2516 
2517 	pmap_initialized = 1;
2518 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2519 		ppim = pmap_preinit_mapping + i;
2520 		if (ppim->va == 0)
2521 			continue;
2522 		/* Make the direct map consistent */
2523 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2524 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2525 			    ppim->sz, ppim->mode);
2526 		}
2527 		if (!bootverbose)
2528 			continue;
2529 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2530 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2531 	}
2532 
2533 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2534 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2535 	    (vmem_addr_t *)&qframe);
2536 	if (error != 0)
2537 		panic("qframe allocation failed");
2538 
2539 	lm_ents = 8;
2540 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2541 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2542 		lm_ents = LMEPML4I - LMSPML4I + 1;
2543 #ifdef KMSAN
2544 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2545 		printf(
2546 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2547 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2548 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2549 	}
2550 #endif
2551 	if (bootverbose)
2552 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2553 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2554 	if (lm_ents != 0) {
2555 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2556 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2557 		if (large_vmem == NULL) {
2558 			printf("pmap: cannot create large map\n");
2559 			lm_ents = 0;
2560 		}
2561 		for (i = 0; i < lm_ents; i++) {
2562 			m = pmap_large_map_getptp_unlocked();
2563 			/* XXXKIB la57 */
2564 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2565 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2566 			    VM_PAGE_TO_PHYS(m);
2567 		}
2568 	}
2569 }
2570 
2571 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2572     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2573     "Maximum number of PML4 entries for use by large map (tunable).  "
2574     "Each entry corresponds to 512GB of address space.");
2575 
2576 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2577     "2MB page mapping counters");
2578 
2579 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2580 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2581     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2582 
2583 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2584 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2585     &pmap_pde_mappings, "2MB page mappings");
2586 
2587 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2588 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2589     &pmap_pde_p_failures, "2MB page promotion failures");
2590 
2591 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2592 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2593     &pmap_pde_promotions, "2MB page promotions");
2594 
2595 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2596     "1GB page mapping counters");
2597 
2598 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2599 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2600     &pmap_pdpe_demotions, "1GB page demotions");
2601 
2602 /***************************************************
2603  * Low level helper routines.....
2604  ***************************************************/
2605 
2606 static pt_entry_t
2607 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2608 {
2609 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2610 
2611 	switch (pmap->pm_type) {
2612 	case PT_X86:
2613 	case PT_RVI:
2614 		/* Verify that both PAT bits are not set at the same time */
2615 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2616 		    ("Invalid PAT bits in entry %#lx", entry));
2617 
2618 		/* Swap the PAT bits if one of them is set */
2619 		if ((entry & x86_pat_bits) != 0)
2620 			entry ^= x86_pat_bits;
2621 		break;
2622 	case PT_EPT:
2623 		/*
2624 		 * Nothing to do - the memory attributes are represented
2625 		 * the same way for regular pages and superpages.
2626 		 */
2627 		break;
2628 	default:
2629 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2630 	}
2631 
2632 	return (entry);
2633 }
2634 
2635 boolean_t
2636 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2637 {
2638 
2639 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2640 	    pat_index[(int)mode] >= 0);
2641 }
2642 
2643 /*
2644  * Determine the appropriate bits to set in a PTE or PDE for a specified
2645  * caching mode.
2646  */
2647 int
2648 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
2649 {
2650 	int cache_bits, pat_flag, pat_idx;
2651 
2652 	if (!pmap_is_valid_memattr(pmap, mode))
2653 		panic("Unknown caching mode %d\n", mode);
2654 
2655 	switch (pmap->pm_type) {
2656 	case PT_X86:
2657 	case PT_RVI:
2658 		/* The PAT bit is different for PTE's and PDE's. */
2659 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2660 
2661 		/* Map the caching mode to a PAT index. */
2662 		pat_idx = pat_index[mode];
2663 
2664 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2665 		cache_bits = 0;
2666 		if (pat_idx & 0x4)
2667 			cache_bits |= pat_flag;
2668 		if (pat_idx & 0x2)
2669 			cache_bits |= PG_NC_PCD;
2670 		if (pat_idx & 0x1)
2671 			cache_bits |= PG_NC_PWT;
2672 		break;
2673 
2674 	case PT_EPT:
2675 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2676 		break;
2677 
2678 	default:
2679 		panic("unsupported pmap type %d", pmap->pm_type);
2680 	}
2681 
2682 	return (cache_bits);
2683 }
2684 
2685 static int
2686 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
2687 {
2688 	int mask;
2689 
2690 	switch (pmap->pm_type) {
2691 	case PT_X86:
2692 	case PT_RVI:
2693 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2694 		break;
2695 	case PT_EPT:
2696 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2697 		break;
2698 	default:
2699 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2700 	}
2701 
2702 	return (mask);
2703 }
2704 
2705 static int
2706 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2707 {
2708 	int pat_flag, pat_idx;
2709 
2710 	pat_idx = 0;
2711 	switch (pmap->pm_type) {
2712 	case PT_X86:
2713 	case PT_RVI:
2714 		/* The PAT bit is different for PTE's and PDE's. */
2715 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2716 
2717 		if ((pte & pat_flag) != 0)
2718 			pat_idx |= 0x4;
2719 		if ((pte & PG_NC_PCD) != 0)
2720 			pat_idx |= 0x2;
2721 		if ((pte & PG_NC_PWT) != 0)
2722 			pat_idx |= 0x1;
2723 		break;
2724 	case PT_EPT:
2725 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2726 			panic("EPT PTE %#lx has no PAT memory type", pte);
2727 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2728 		break;
2729 	}
2730 
2731 	/* See pmap_init_pat(). */
2732 	if (pat_idx == 4)
2733 		pat_idx = 0;
2734 	if (pat_idx == 7)
2735 		pat_idx = 3;
2736 
2737 	return (pat_idx);
2738 }
2739 
2740 bool
2741 pmap_ps_enabled(pmap_t pmap)
2742 {
2743 
2744 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2745 }
2746 
2747 static void
2748 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2749 {
2750 
2751 	switch (pmap->pm_type) {
2752 	case PT_X86:
2753 		break;
2754 	case PT_RVI:
2755 	case PT_EPT:
2756 		/*
2757 		 * XXX
2758 		 * This is a little bogus since the generation number is
2759 		 * supposed to be bumped up when a region of the address
2760 		 * space is invalidated in the page tables.
2761 		 *
2762 		 * In this case the old PDE entry is valid but yet we want
2763 		 * to make sure that any mappings using the old entry are
2764 		 * invalidated in the TLB.
2765 		 *
2766 		 * The reason this works as expected is because we rendezvous
2767 		 * "all" host cpus and force any vcpu context to exit as a
2768 		 * side-effect.
2769 		 */
2770 		atomic_add_long(&pmap->pm_eptgen, 1);
2771 		break;
2772 	default:
2773 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2774 	}
2775 	pde_store(pde, newpde);
2776 }
2777 
2778 /*
2779  * After changing the page size for the specified virtual address in the page
2780  * table, flush the corresponding entries from the processor's TLB.  Only the
2781  * calling processor's TLB is affected.
2782  *
2783  * The calling thread must be pinned to a processor.
2784  */
2785 static void
2786 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2787 {
2788 	pt_entry_t PG_G;
2789 
2790 	if (pmap_type_guest(pmap))
2791 		return;
2792 
2793 	KASSERT(pmap->pm_type == PT_X86,
2794 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2795 
2796 	PG_G = pmap_global_bit(pmap);
2797 
2798 	if ((newpde & PG_PS) == 0)
2799 		/* Demotion: flush a specific 2MB page mapping. */
2800 		pmap_invlpg(pmap, va);
2801 	else if ((newpde & PG_G) == 0)
2802 		/*
2803 		 * Promotion: flush every 4KB page mapping from the TLB
2804 		 * because there are too many to flush individually.
2805 		 */
2806 		invltlb();
2807 	else {
2808 		/*
2809 		 * Promotion: flush every 4KB page mapping from the TLB,
2810 		 * including any global (PG_G) mappings.
2811 		 */
2812 		invltlb_glob();
2813 	}
2814 }
2815 
2816 /*
2817  * The amd64 pmap uses different approaches to TLB invalidation
2818  * depending on the kernel configuration, available hardware features,
2819  * and known hardware errata.  The kernel configuration option that
2820  * has the greatest operational impact on TLB invalidation is PTI,
2821  * which is enabled automatically on affected Intel CPUs.  The most
2822  * impactful hardware features are first PCID, and then INVPCID
2823  * instruction presence.  PCID usage is quite different for PTI
2824  * vs. non-PTI.
2825  *
2826  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2827  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2828  *   space is served by two page tables, user and kernel.  The user
2829  *   page table only maps user space and a kernel trampoline.  The
2830  *   kernel trampoline includes the entirety of the kernel text but
2831  *   only the kernel data that is needed to switch from user to kernel
2832  *   mode.  The kernel page table maps the user and kernel address
2833  *   spaces in their entirety.  It is identical to the per-process
2834  *   page table used in non-PTI mode.
2835  *
2836  *   User page tables are only used when the CPU is in user mode.
2837  *   Consequently, some TLB invalidations can be postponed until the
2838  *   switch from kernel to user mode.  In contrast, the user
2839  *   space part of the kernel page table is used for copyout(9), so
2840  *   TLB invalidations on this page table cannot be similarly postponed.
2841  *
2842  *   The existence of a user mode page table for the given pmap is
2843  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2844  *   which case pm_ucr3 contains the %cr3 register value for the user
2845  *   mode page table's root.
2846  *
2847  * * The pm_active bitmask indicates which CPUs currently have the
2848  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2849  *   cleared on switching off this CPU.  For the kernel page table,
2850  *   the pm_active field is immutable and contains all CPUs.  The
2851  *   kernel page table is always logically active on every processor,
2852  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2853  *
2854  *   When requesting invalidation of virtual addresses with
2855  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2856  *   all CPUs recorded as active in pm_active.  Updates to and reads
2857  *   from pm_active are not synchronized, and so they may race with
2858  *   each other.  Shootdown handlers are prepared to handle the race.
2859  *
2860  * * PCID is an optional feature of the long mode x86 MMU where TLB
2861  *   entries are tagged with the 'Process ID' of the address space
2862  *   they belong to.  This feature provides a limited namespace for
2863  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2864  *   total.
2865  *
2866  *   Allocation of a PCID to a pmap is done by an algorithm described
2867  *   in section 15.12, "Other TLB Consistency Algorithms", of
2868  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2869  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2870  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2871  *   the CPU is about to start caching TLB entries from a pmap,
2872  *   i.e., on the context switch that activates the pmap on the CPU.
2873  *
2874  *   The PCID allocator maintains a per-CPU, per-pmap generation
2875  *   count, pm_gen, which is incremented each time a new PCID is
2876  *   allocated.  On TLB invalidation, the generation counters for the
2877  *   pmap are zeroed, which signals the context switch code that the
2878  *   previously allocated PCID is no longer valid.  Effectively,
2879  *   zeroing any of these counters triggers a TLB shootdown for the
2880  *   given CPU/address space, due to the allocation of a new PCID.
2881  *
2882  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2883  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2884  *   be initiated by an ordinary memory access to reset the target
2885  *   CPU's generation count within the pmap.  The CPU initiating the
2886  *   TLB shootdown does not need to send an IPI to the target CPU.
2887  *
2888  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2889  *   for complete (kernel) page tables, and PCIDs for user mode page
2890  *   tables.  A user PCID value is obtained from the kernel PCID value
2891  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2892  *
2893  *   User space page tables are activated on return to user mode, by
2894  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2895  *   clearing bit 63 of the loaded ucr3, this effectively causes
2896  *   complete invalidation of the user mode TLB entries for the
2897  *   current pmap.  In which case, local invalidations of individual
2898  *   pages in the user page table are skipped.
2899  *
2900  * * Local invalidation, all modes.  If the requested invalidation is
2901  *   for a specific address or the total invalidation of a currently
2902  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2903  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2904  *   user space page table(s).
2905  *
2906  *   If the INVPCID instruction is available, it is used to flush user
2907  *   entries from the kernel page table.
2908  *
2909  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2910  *   entries for the given page that either match the current PCID or
2911  *   are global. Since TLB entries for the same page under different
2912  *   PCIDs are unaffected, kernel pages which reside in all address
2913  *   spaces could be problematic.  We avoid the problem by creating
2914  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2915  *   disabled.
2916  *
2917  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2918  *   address space, all other 4095 PCIDs are used for user mode spaces
2919  *   as described above.  A context switch allocates a new PCID if
2920  *   the recorded PCID is zero or the recorded generation does not match
2921  *   the CPU's generation, effectively flushing the TLB for this address space.
2922  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2923  *	local user page: INVLPG
2924  *	local kernel page: INVLPG
2925  *	local user total: INVPCID(CTX)
2926  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2927  *	remote user page, inactive pmap: zero pm_gen
2928  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2929  *	(Both actions are required to handle the aforementioned pm_active races.)
2930  *	remote kernel page: IPI:INVLPG
2931  *	remote user total, inactive pmap: zero pm_gen
2932  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2933  *          reload %cr3)
2934  *	(See note above about pm_active races.)
2935  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2936  *
2937  * PTI enabled, PCID present.
2938  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2939  *          for upt
2940  *	local kernel page: INVLPG
2941  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2942  *          on loading UCR3 into %cr3 for upt
2943  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2944  *	remote user page, inactive pmap: zero pm_gen
2945  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2946  *          INVPCID(ADDR) for upt)
2947  *	remote kernel page: IPI:INVLPG
2948  *	remote user total, inactive pmap: zero pm_gen
2949  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2950  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2951  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2952  *
2953  *  No PCID.
2954  *	local user page: INVLPG
2955  *	local kernel page: INVLPG
2956  *	local user total: reload %cr3
2957  *	local kernel total: invltlb_glob()
2958  *	remote user page, inactive pmap: -
2959  *	remote user page, active pmap: IPI:INVLPG
2960  *	remote kernel page: IPI:INVLPG
2961  *	remote user total, inactive pmap: -
2962  *	remote user total, active pmap: IPI:(reload %cr3)
2963  *	remote kernel total: IPI:invltlb_glob()
2964  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
2965  *  TLB invalidation, no specific action is required for user page table.
2966  *
2967  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
2968  * XXX TODO
2969  */
2970 
2971 #ifdef SMP
2972 /*
2973  * Interrupt the cpus that are executing in the guest context.
2974  * This will force the vcpu to exit and the cached EPT mappings
2975  * will be invalidated by the host before the next vmresume.
2976  */
2977 static __inline void
2978 pmap_invalidate_ept(pmap_t pmap)
2979 {
2980 	smr_seq_t goal;
2981 	int ipinum;
2982 
2983 	sched_pin();
2984 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2985 	    ("pmap_invalidate_ept: absurd pm_active"));
2986 
2987 	/*
2988 	 * The TLB mappings associated with a vcpu context are not
2989 	 * flushed each time a different vcpu is chosen to execute.
2990 	 *
2991 	 * This is in contrast with a process's vtop mappings that
2992 	 * are flushed from the TLB on each context switch.
2993 	 *
2994 	 * Therefore we need to do more than just a TLB shootdown on
2995 	 * the active cpus in 'pmap->pm_active'. To do this we keep
2996 	 * track of the number of invalidations performed on this pmap.
2997 	 *
2998 	 * Each vcpu keeps a cache of this counter and compares it
2999 	 * just before a vmresume. If the counter is out-of-date an
3000 	 * invept will be done to flush stale mappings from the TLB.
3001 	 *
3002 	 * To ensure that all vCPU threads have observed the new counter
3003 	 * value before returning, we use SMR.  Ordering is important here:
3004 	 * the VMM enters an SMR read section before loading the counter
3005 	 * and after updating the pm_active bit set.  Thus, pm_active is
3006 	 * a superset of active readers, and any reader that has observed
3007 	 * the goal has observed the new counter value.
3008 	 */
3009 	atomic_add_long(&pmap->pm_eptgen, 1);
3010 
3011 	goal = smr_advance(pmap->pm_eptsmr);
3012 
3013 	/*
3014 	 * Force the vcpu to exit and trap back into the hypervisor.
3015 	 */
3016 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3017 	ipi_selected(pmap->pm_active, ipinum);
3018 	sched_unpin();
3019 
3020 	/*
3021 	 * Ensure that all active vCPUs will observe the new generation counter
3022 	 * value before executing any more guest instructions.
3023 	 */
3024 	smr_wait(pmap->pm_eptsmr, goal);
3025 }
3026 
3027 static inline void
3028 pmap_invalidate_preipi_pcid(pmap_t pmap)
3029 {
3030 	u_int cpuid, i;
3031 
3032 	sched_pin();
3033 
3034 	cpuid = PCPU_GET(cpuid);
3035 	if (pmap != PCPU_GET(curpmap))
3036 		cpuid = 0xffffffff;	/* An impossible value */
3037 
3038 	CPU_FOREACH(i) {
3039 		if (cpuid != i)
3040 			pmap->pm_pcids[i].pm_gen = 0;
3041 	}
3042 
3043 	/*
3044 	 * The fence is between stores to pm_gen and the read of the
3045 	 * pm_active mask.  We need to ensure that it is impossible
3046 	 * for us to miss the bit update in pm_active and
3047 	 * simultaneously observe a non-zero pm_gen in
3048 	 * pmap_activate_sw(), otherwise TLB update is missed.
3049 	 * Without the fence, IA32 allows such an outcome.  Note that
3050 	 * pm_active is updated by a locked operation, which provides
3051 	 * the reciprocal fence.
3052 	 */
3053 	atomic_thread_fence_seq_cst();
3054 }
3055 
3056 static void
3057 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3058 {
3059 	sched_pin();
3060 }
3061 
3062 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3063 {
3064 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3065 	    pmap_invalidate_preipi_nopcid);
3066 }
3067 
3068 static inline void
3069 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3070     const bool invpcid_works1)
3071 {
3072 	struct invpcid_descr d;
3073 	uint64_t kcr3, ucr3;
3074 	uint32_t pcid;
3075 	u_int cpuid;
3076 
3077 	/*
3078 	 * Because pm_pcid is recalculated on a context switch, we
3079 	 * must ensure there is no preemption, not just pinning.
3080 	 * Otherwise, we might use a stale value below.
3081 	 */
3082 	CRITICAL_ASSERT(curthread);
3083 
3084 	/*
3085 	 * No need to do anything with user page tables invalidation
3086 	 * if there is no user page table, or invalidation is deferred
3087 	 * until the return to userspace.  ucr3_load_mask is stable
3088 	 * because we have preemption disabled.
3089 	 */
3090 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3091 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3092 		return;
3093 
3094 	cpuid = PCPU_GET(cpuid);
3095 
3096 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3097 	if (invpcid_works1) {
3098 		d.pcid = pcid | PMAP_PCID_USER_PT;
3099 		d.pad = 0;
3100 		d.addr = va;
3101 		invpcid(&d, INVPCID_ADDR);
3102 	} else {
3103 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3104 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3105 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3106 	}
3107 }
3108 
3109 static void
3110 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3111 {
3112 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3113 }
3114 
3115 static void
3116 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3117 {
3118 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3119 }
3120 
3121 static void
3122 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3123 {
3124 }
3125 
3126 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3127 {
3128 	if (pmap_pcid_enabled)
3129 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3130 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3131 	return (pmap_invalidate_page_nopcid_cb);
3132 }
3133 
3134 static void
3135 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3136     vm_offset_t addr2 __unused)
3137 {
3138 	if (pmap == kernel_pmap) {
3139 		pmap_invlpg(kernel_pmap, va);
3140 	} else if (pmap == PCPU_GET(curpmap)) {
3141 		invlpg(va);
3142 		pmap_invalidate_page_cb(pmap, va);
3143 	}
3144 }
3145 
3146 void
3147 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3148 {
3149 	if (pmap_type_guest(pmap)) {
3150 		pmap_invalidate_ept(pmap);
3151 		return;
3152 	}
3153 
3154 	KASSERT(pmap->pm_type == PT_X86,
3155 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3156 
3157 	pmap_invalidate_preipi(pmap);
3158 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3159 }
3160 
3161 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3162 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3163 
3164 static void
3165 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3166     const bool invpcid_works1)
3167 {
3168 	struct invpcid_descr d;
3169 	uint64_t kcr3, ucr3;
3170 	uint32_t pcid;
3171 	u_int cpuid;
3172 
3173 	CRITICAL_ASSERT(curthread);
3174 
3175 	if (pmap != PCPU_GET(curpmap) ||
3176 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3177 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3178 		return;
3179 
3180 	cpuid = PCPU_GET(cpuid);
3181 
3182 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3183 	if (invpcid_works1) {
3184 		d.pcid = pcid | PMAP_PCID_USER_PT;
3185 		d.pad = 0;
3186 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3187 			invpcid(&d, INVPCID_ADDR);
3188 	} else {
3189 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3190 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3191 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3192 	}
3193 }
3194 
3195 static void
3196 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3197     vm_offset_t eva)
3198 {
3199 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3200 }
3201 
3202 static void
3203 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3204     vm_offset_t eva)
3205 {
3206 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3207 }
3208 
3209 static void
3210 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3211     vm_offset_t eva __unused)
3212 {
3213 }
3214 
3215 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3216     vm_offset_t))
3217 {
3218 	if (pmap_pcid_enabled)
3219 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3220 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3221 	return (pmap_invalidate_range_nopcid_cb);
3222 }
3223 
3224 static void
3225 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3226 {
3227 	vm_offset_t addr;
3228 
3229 	if (pmap == kernel_pmap) {
3230 		if (PCPU_GET(pcid_invlpg_workaround)) {
3231 			struct invpcid_descr d = { 0 };
3232 
3233 			invpcid(&d, INVPCID_CTXGLOB);
3234 		} else {
3235 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3236 				invlpg(addr);
3237 		}
3238 	} else if (pmap == PCPU_GET(curpmap)) {
3239 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3240 			invlpg(addr);
3241 		pmap_invalidate_range_cb(pmap, sva, eva);
3242 	}
3243 }
3244 
3245 void
3246 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3247 {
3248 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3249 		pmap_invalidate_all(pmap);
3250 		return;
3251 	}
3252 
3253 	if (pmap_type_guest(pmap)) {
3254 		pmap_invalidate_ept(pmap);
3255 		return;
3256 	}
3257 
3258 	KASSERT(pmap->pm_type == PT_X86,
3259 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3260 
3261 	pmap_invalidate_preipi(pmap);
3262 	smp_masked_invlpg_range(sva, eva, pmap,
3263 	    pmap_invalidate_range_curcpu_cb);
3264 }
3265 
3266 static inline void
3267 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3268 {
3269 	struct invpcid_descr d;
3270 	uint64_t kcr3;
3271 	uint32_t pcid;
3272 	u_int cpuid;
3273 
3274 	if (pmap == kernel_pmap) {
3275 		if (invpcid_works1) {
3276 			bzero(&d, sizeof(d));
3277 			invpcid(&d, INVPCID_CTXGLOB);
3278 		} else {
3279 			invltlb_glob();
3280 		}
3281 	} else if (pmap == PCPU_GET(curpmap)) {
3282 		CRITICAL_ASSERT(curthread);
3283 		cpuid = PCPU_GET(cpuid);
3284 
3285 		pcid = pmap->pm_pcids[cpuid].pm_pcid;
3286 		if (invpcid_works1) {
3287 			d.pcid = pcid;
3288 			d.pad = 0;
3289 			d.addr = 0;
3290 			invpcid(&d, INVPCID_CTX);
3291 		} else {
3292 			kcr3 = pmap->pm_cr3 | pcid;
3293 			load_cr3(kcr3);
3294 		}
3295 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3296 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3297 	}
3298 }
3299 
3300 static void
3301 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3302 {
3303 	pmap_invalidate_all_pcid_cb(pmap, true);
3304 }
3305 
3306 static void
3307 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3308 {
3309 	pmap_invalidate_all_pcid_cb(pmap, false);
3310 }
3311 
3312 static void
3313 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3314 {
3315 	if (pmap == kernel_pmap)
3316 		invltlb_glob();
3317 	else if (pmap == PCPU_GET(curpmap))
3318 		invltlb();
3319 }
3320 
3321 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3322 {
3323 	if (pmap_pcid_enabled)
3324 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3325 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3326 	return (pmap_invalidate_all_nopcid_cb);
3327 }
3328 
3329 static void
3330 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3331     vm_offset_t addr2 __unused)
3332 {
3333 	pmap_invalidate_all_cb(pmap);
3334 }
3335 
3336 void
3337 pmap_invalidate_all(pmap_t pmap)
3338 {
3339 	if (pmap_type_guest(pmap)) {
3340 		pmap_invalidate_ept(pmap);
3341 		return;
3342 	}
3343 
3344 	KASSERT(pmap->pm_type == PT_X86,
3345 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3346 
3347 	pmap_invalidate_preipi(pmap);
3348 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3349 }
3350 
3351 static void
3352 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3353     vm_offset_t addr2 __unused)
3354 {
3355 	wbinvd();
3356 }
3357 
3358 void
3359 pmap_invalidate_cache(void)
3360 {
3361 	sched_pin();
3362 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3363 }
3364 
3365 struct pde_action {
3366 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3367 	pmap_t pmap;
3368 	vm_offset_t va;
3369 	pd_entry_t *pde;
3370 	pd_entry_t newpde;
3371 	u_int store;		/* processor that updates the PDE */
3372 };
3373 
3374 static void
3375 pmap_update_pde_action(void *arg)
3376 {
3377 	struct pde_action *act = arg;
3378 
3379 	if (act->store == PCPU_GET(cpuid))
3380 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3381 }
3382 
3383 static void
3384 pmap_update_pde_teardown(void *arg)
3385 {
3386 	struct pde_action *act = arg;
3387 
3388 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3389 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3390 }
3391 
3392 /*
3393  * Change the page size for the specified virtual address in a way that
3394  * prevents any possibility of the TLB ever having two entries that map the
3395  * same virtual address using different page sizes.  This is the recommended
3396  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3397  * machine check exception for a TLB state that is improperly diagnosed as a
3398  * hardware error.
3399  */
3400 static void
3401 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3402 {
3403 	struct pde_action act;
3404 	cpuset_t active, other_cpus;
3405 	u_int cpuid;
3406 
3407 	sched_pin();
3408 	cpuid = PCPU_GET(cpuid);
3409 	other_cpus = all_cpus;
3410 	CPU_CLR(cpuid, &other_cpus);
3411 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3412 		active = all_cpus;
3413 	else {
3414 		active = pmap->pm_active;
3415 	}
3416 	if (CPU_OVERLAP(&active, &other_cpus)) {
3417 		act.store = cpuid;
3418 		act.invalidate = active;
3419 		act.va = va;
3420 		act.pmap = pmap;
3421 		act.pde = pde;
3422 		act.newpde = newpde;
3423 		CPU_SET(cpuid, &active);
3424 		smp_rendezvous_cpus(active,
3425 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3426 		    pmap_update_pde_teardown, &act);
3427 	} else {
3428 		pmap_update_pde_store(pmap, pde, newpde);
3429 		if (CPU_ISSET(cpuid, &active))
3430 			pmap_update_pde_invalidate(pmap, va, newpde);
3431 	}
3432 	sched_unpin();
3433 }
3434 #else /* !SMP */
3435 /*
3436  * Normal, non-SMP, invalidation functions.
3437  */
3438 void
3439 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3440 {
3441 	struct invpcid_descr d;
3442 	uint64_t kcr3, ucr3;
3443 	uint32_t pcid;
3444 
3445 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3446 		pmap->pm_eptgen++;
3447 		return;
3448 	}
3449 	KASSERT(pmap->pm_type == PT_X86,
3450 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3451 
3452 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3453 		invlpg(va);
3454 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3455 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3456 			critical_enter();
3457 			pcid = pmap->pm_pcids[0].pm_pcid;
3458 			if (invpcid_works) {
3459 				d.pcid = pcid | PMAP_PCID_USER_PT;
3460 				d.pad = 0;
3461 				d.addr = va;
3462 				invpcid(&d, INVPCID_ADDR);
3463 			} else {
3464 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3465 				ucr3 = pmap->pm_ucr3 | pcid |
3466 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3467 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3468 			}
3469 			critical_exit();
3470 		}
3471 	} else if (pmap_pcid_enabled)
3472 		pmap->pm_pcids[0].pm_gen = 0;
3473 }
3474 
3475 void
3476 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3477 {
3478 	struct invpcid_descr d;
3479 	vm_offset_t addr;
3480 	uint64_t kcr3, ucr3;
3481 
3482 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3483 		pmap->pm_eptgen++;
3484 		return;
3485 	}
3486 	KASSERT(pmap->pm_type == PT_X86,
3487 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3488 
3489 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3490 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3491 			invlpg(addr);
3492 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3493 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3494 			critical_enter();
3495 			if (invpcid_works) {
3496 				d.pcid = pmap->pm_pcids[0].pm_pcid |
3497 				    PMAP_PCID_USER_PT;
3498 				d.pad = 0;
3499 				d.addr = sva;
3500 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3501 					invpcid(&d, INVPCID_ADDR);
3502 			} else {
3503 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].
3504 				    pm_pcid | CR3_PCID_SAVE;
3505 				ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[0].
3506 				    pm_pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3507 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3508 			}
3509 			critical_exit();
3510 		}
3511 	} else if (pmap_pcid_enabled) {
3512 		pmap->pm_pcids[0].pm_gen = 0;
3513 	}
3514 }
3515 
3516 void
3517 pmap_invalidate_all(pmap_t pmap)
3518 {
3519 	struct invpcid_descr d;
3520 	uint64_t kcr3, ucr3;
3521 
3522 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3523 		pmap->pm_eptgen++;
3524 		return;
3525 	}
3526 	KASSERT(pmap->pm_type == PT_X86,
3527 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3528 
3529 	if (pmap == kernel_pmap) {
3530 		if (pmap_pcid_enabled && invpcid_works) {
3531 			bzero(&d, sizeof(d));
3532 			invpcid(&d, INVPCID_CTXGLOB);
3533 		} else {
3534 			invltlb_glob();
3535 		}
3536 	} else if (pmap == PCPU_GET(curpmap)) {
3537 		if (pmap_pcid_enabled) {
3538 			critical_enter();
3539 			if (invpcid_works) {
3540 				d.pcid = pmap->pm_pcids[0].pm_pcid;
3541 				d.pad = 0;
3542 				d.addr = 0;
3543 				invpcid(&d, INVPCID_CTX);
3544 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3545 					d.pcid |= PMAP_PCID_USER_PT;
3546 					invpcid(&d, INVPCID_CTX);
3547 				}
3548 			} else {
3549 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].pm_pcid;
3550 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3551 					ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[
3552 					    0].pm_pcid | PMAP_PCID_USER_PT;
3553 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3554 				} else
3555 					load_cr3(kcr3);
3556 			}
3557 			critical_exit();
3558 		} else {
3559 			invltlb();
3560 		}
3561 	} else if (pmap_pcid_enabled) {
3562 		pmap->pm_pcids[0].pm_gen = 0;
3563 	}
3564 }
3565 
3566 PMAP_INLINE void
3567 pmap_invalidate_cache(void)
3568 {
3569 
3570 	wbinvd();
3571 }
3572 
3573 static void
3574 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3575 {
3576 
3577 	pmap_update_pde_store(pmap, pde, newpde);
3578 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3579 		pmap_update_pde_invalidate(pmap, va, newpde);
3580 	else
3581 		pmap->pm_pcids[0].pm_gen = 0;
3582 }
3583 #endif /* !SMP */
3584 
3585 static void
3586 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3587 {
3588 
3589 	/*
3590 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3591 	 * by a promotion that did not invalidate the 512 4KB page mappings
3592 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3593 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3594 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3595 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3596 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3597 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3598 	 * TLB.
3599 	 */
3600 	if ((pde & PG_PROMOTED) != 0)
3601 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3602 	else
3603 		pmap_invalidate_page(pmap, va);
3604 }
3605 
3606 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3607     (vm_offset_t sva, vm_offset_t eva))
3608 {
3609 
3610 	if ((cpu_feature & CPUID_SS) != 0)
3611 		return (pmap_invalidate_cache_range_selfsnoop);
3612 	if ((cpu_feature & CPUID_CLFSH) != 0)
3613 		return (pmap_force_invalidate_cache_range);
3614 	return (pmap_invalidate_cache_range_all);
3615 }
3616 
3617 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3618 
3619 static void
3620 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3621 {
3622 
3623 	KASSERT((sva & PAGE_MASK) == 0,
3624 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3625 	KASSERT((eva & PAGE_MASK) == 0,
3626 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3627 }
3628 
3629 static void
3630 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3631 {
3632 
3633 	pmap_invalidate_cache_range_check_align(sva, eva);
3634 }
3635 
3636 void
3637 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3638 {
3639 
3640 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3641 
3642 	/*
3643 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3644 	 * registers if we use CLFLUSH on the local APIC range.  The
3645 	 * local APIC is always uncached, so we don't need to flush
3646 	 * for that range anyway.
3647 	 */
3648 	if (pmap_kextract(sva) == lapic_paddr)
3649 		return;
3650 
3651 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3652 		/*
3653 		 * Do per-cache line flush.  Use a locked
3654 		 * instruction to insure that previous stores are
3655 		 * included in the write-back.  The processor
3656 		 * propagates flush to other processors in the cache
3657 		 * coherence domain.
3658 		 */
3659 		atomic_thread_fence_seq_cst();
3660 		for (; sva < eva; sva += cpu_clflush_line_size)
3661 			clflushopt(sva);
3662 		atomic_thread_fence_seq_cst();
3663 	} else {
3664 		/*
3665 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3666 		 */
3667 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3668 			mfence();
3669 		for (; sva < eva; sva += cpu_clflush_line_size)
3670 			clflush(sva);
3671 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3672 			mfence();
3673 	}
3674 }
3675 
3676 static void
3677 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3678 {
3679 
3680 	pmap_invalidate_cache_range_check_align(sva, eva);
3681 	pmap_invalidate_cache();
3682 }
3683 
3684 /*
3685  * Remove the specified set of pages from the data and instruction caches.
3686  *
3687  * In contrast to pmap_invalidate_cache_range(), this function does not
3688  * rely on the CPU's self-snoop feature, because it is intended for use
3689  * when moving pages into a different cache domain.
3690  */
3691 void
3692 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3693 {
3694 	vm_offset_t daddr, eva;
3695 	int i;
3696 	bool useclflushopt;
3697 
3698 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3699 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3700 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3701 		pmap_invalidate_cache();
3702 	else {
3703 		if (useclflushopt)
3704 			atomic_thread_fence_seq_cst();
3705 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3706 			mfence();
3707 		for (i = 0; i < count; i++) {
3708 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3709 			eva = daddr + PAGE_SIZE;
3710 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3711 				if (useclflushopt)
3712 					clflushopt(daddr);
3713 				else
3714 					clflush(daddr);
3715 			}
3716 		}
3717 		if (useclflushopt)
3718 			atomic_thread_fence_seq_cst();
3719 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3720 			mfence();
3721 	}
3722 }
3723 
3724 void
3725 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3726 {
3727 
3728 	pmap_invalidate_cache_range_check_align(sva, eva);
3729 
3730 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3731 		pmap_force_invalidate_cache_range(sva, eva);
3732 		return;
3733 	}
3734 
3735 	/* See comment in pmap_force_invalidate_cache_range(). */
3736 	if (pmap_kextract(sva) == lapic_paddr)
3737 		return;
3738 
3739 	atomic_thread_fence_seq_cst();
3740 	for (; sva < eva; sva += cpu_clflush_line_size)
3741 		clwb(sva);
3742 	atomic_thread_fence_seq_cst();
3743 }
3744 
3745 void
3746 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3747 {
3748 	pt_entry_t *pte;
3749 	vm_offset_t vaddr;
3750 	int error __diagused;
3751 	int pte_bits;
3752 
3753 	KASSERT((spa & PAGE_MASK) == 0,
3754 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3755 	KASSERT((epa & PAGE_MASK) == 0,
3756 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3757 
3758 	if (spa < dmaplimit) {
3759 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3760 		    dmaplimit, epa)));
3761 		if (dmaplimit >= epa)
3762 			return;
3763 		spa = dmaplimit;
3764 	}
3765 
3766 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, 0) | X86_PG_RW |
3767 	    X86_PG_V;
3768 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3769 	    &vaddr);
3770 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3771 	pte = vtopte(vaddr);
3772 	for (; spa < epa; spa += PAGE_SIZE) {
3773 		sched_pin();
3774 		pte_store(pte, spa | pte_bits);
3775 		pmap_invlpg(kernel_pmap, vaddr);
3776 		/* XXXKIB atomic inside flush_cache_range are excessive */
3777 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3778 		sched_unpin();
3779 	}
3780 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3781 }
3782 
3783 /*
3784  *	Routine:	pmap_extract
3785  *	Function:
3786  *		Extract the physical page address associated
3787  *		with the given map/virtual_address pair.
3788  */
3789 vm_paddr_t
3790 pmap_extract(pmap_t pmap, vm_offset_t va)
3791 {
3792 	pdp_entry_t *pdpe;
3793 	pd_entry_t *pde;
3794 	pt_entry_t *pte, PG_V;
3795 	vm_paddr_t pa;
3796 
3797 	pa = 0;
3798 	PG_V = pmap_valid_bit(pmap);
3799 	PMAP_LOCK(pmap);
3800 	pdpe = pmap_pdpe(pmap, va);
3801 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3802 		if ((*pdpe & PG_PS) != 0)
3803 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3804 		else {
3805 			pde = pmap_pdpe_to_pde(pdpe, va);
3806 			if ((*pde & PG_V) != 0) {
3807 				if ((*pde & PG_PS) != 0) {
3808 					pa = (*pde & PG_PS_FRAME) |
3809 					    (va & PDRMASK);
3810 				} else {
3811 					pte = pmap_pde_to_pte(pde, va);
3812 					pa = (*pte & PG_FRAME) |
3813 					    (va & PAGE_MASK);
3814 				}
3815 			}
3816 		}
3817 	}
3818 	PMAP_UNLOCK(pmap);
3819 	return (pa);
3820 }
3821 
3822 /*
3823  *	Routine:	pmap_extract_and_hold
3824  *	Function:
3825  *		Atomically extract and hold the physical page
3826  *		with the given pmap and virtual address pair
3827  *		if that mapping permits the given protection.
3828  */
3829 vm_page_t
3830 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3831 {
3832 	pdp_entry_t pdpe, *pdpep;
3833 	pd_entry_t pde, *pdep;
3834 	pt_entry_t pte, PG_RW, PG_V;
3835 	vm_page_t m;
3836 
3837 	m = NULL;
3838 	PG_RW = pmap_rw_bit(pmap);
3839 	PG_V = pmap_valid_bit(pmap);
3840 	PMAP_LOCK(pmap);
3841 
3842 	pdpep = pmap_pdpe(pmap, va);
3843 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3844 		goto out;
3845 	if ((pdpe & PG_PS) != 0) {
3846 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3847 			goto out;
3848 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3849 		goto check_page;
3850 	}
3851 
3852 	pdep = pmap_pdpe_to_pde(pdpep, va);
3853 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3854 		goto out;
3855 	if ((pde & PG_PS) != 0) {
3856 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3857 			goto out;
3858 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3859 		goto check_page;
3860 	}
3861 
3862 	pte = *pmap_pde_to_pte(pdep, va);
3863 	if ((pte & PG_V) == 0 ||
3864 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3865 		goto out;
3866 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3867 
3868 check_page:
3869 	if (m != NULL && !vm_page_wire_mapped(m))
3870 		m = NULL;
3871 out:
3872 	PMAP_UNLOCK(pmap);
3873 	return (m);
3874 }
3875 
3876 vm_paddr_t
3877 pmap_kextract(vm_offset_t va)
3878 {
3879 	pd_entry_t pde;
3880 	vm_paddr_t pa;
3881 
3882 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3883 		pa = DMAP_TO_PHYS(va);
3884 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3885 		pa = pmap_large_map_kextract(va);
3886 	} else {
3887 		pde = *vtopde(va);
3888 		if (pde & PG_PS) {
3889 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3890 		} else {
3891 			/*
3892 			 * Beware of a concurrent promotion that changes the
3893 			 * PDE at this point!  For example, vtopte() must not
3894 			 * be used to access the PTE because it would use the
3895 			 * new PDE.  It is, however, safe to use the old PDE
3896 			 * because the page table page is preserved by the
3897 			 * promotion.
3898 			 */
3899 			pa = *pmap_pde_to_pte(&pde, va);
3900 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3901 		}
3902 	}
3903 	return (pa);
3904 }
3905 
3906 /***************************************************
3907  * Low level mapping routines.....
3908  ***************************************************/
3909 
3910 /*
3911  * Add a wired page to the kva.
3912  * Note: not SMP coherent.
3913  */
3914 PMAP_INLINE void
3915 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3916 {
3917 	pt_entry_t *pte;
3918 
3919 	pte = vtopte(va);
3920 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3921 	    X86_PG_RW | X86_PG_V);
3922 }
3923 
3924 static __inline void
3925 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3926 {
3927 	pt_entry_t *pte;
3928 	int cache_bits;
3929 
3930 	pte = vtopte(va);
3931 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
3932 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3933 	    X86_PG_RW | X86_PG_V | cache_bits);
3934 }
3935 
3936 /*
3937  * Remove a page from the kernel pagetables.
3938  * Note: not SMP coherent.
3939  */
3940 PMAP_INLINE void
3941 pmap_kremove(vm_offset_t va)
3942 {
3943 	pt_entry_t *pte;
3944 
3945 	pte = vtopte(va);
3946 	pte_clear(pte);
3947 }
3948 
3949 /*
3950  *	Used to map a range of physical addresses into kernel
3951  *	virtual address space.
3952  *
3953  *	The value passed in '*virt' is a suggested virtual address for
3954  *	the mapping. Architectures which can support a direct-mapped
3955  *	physical to virtual region can return the appropriate address
3956  *	within that region, leaving '*virt' unchanged. Other
3957  *	architectures should map the pages starting at '*virt' and
3958  *	update '*virt' with the first usable address after the mapped
3959  *	region.
3960  */
3961 vm_offset_t
3962 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3963 {
3964 	return PHYS_TO_DMAP(start);
3965 }
3966 
3967 /*
3968  * Add a list of wired pages to the kva
3969  * this routine is only used for temporary
3970  * kernel mappings that do not need to have
3971  * page modification or references recorded.
3972  * Note that old mappings are simply written
3973  * over.  The page *must* be wired.
3974  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3975  */
3976 void
3977 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3978 {
3979 	pt_entry_t *endpte, oldpte, pa, *pte;
3980 	vm_page_t m;
3981 	int cache_bits;
3982 
3983 	oldpte = 0;
3984 	pte = vtopte(sva);
3985 	endpte = pte + count;
3986 	while (pte < endpte) {
3987 		m = *ma++;
3988 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
3989 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3990 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3991 			oldpte |= *pte;
3992 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
3993 			    X86_PG_M | X86_PG_RW | X86_PG_V);
3994 		}
3995 		pte++;
3996 	}
3997 	if (__predict_false((oldpte & X86_PG_V) != 0))
3998 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
3999 		    PAGE_SIZE);
4000 }
4001 
4002 /*
4003  * This routine tears out page mappings from the
4004  * kernel -- it is meant only for temporary mappings.
4005  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4006  */
4007 void
4008 pmap_qremove(vm_offset_t sva, int count)
4009 {
4010 	vm_offset_t va;
4011 
4012 	va = sva;
4013 	while (count-- > 0) {
4014 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4015 		pmap_kremove(va);
4016 		va += PAGE_SIZE;
4017 	}
4018 	pmap_invalidate_range(kernel_pmap, sva, va);
4019 }
4020 
4021 /***************************************************
4022  * Page table page management routines.....
4023  ***************************************************/
4024 /*
4025  * Schedule the specified unused page table page to be freed.  Specifically,
4026  * add the page to the specified list of pages that will be released to the
4027  * physical memory manager after the TLB has been updated.
4028  */
4029 static __inline void
4030 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4031     boolean_t set_PG_ZERO)
4032 {
4033 
4034 	if (set_PG_ZERO)
4035 		m->flags |= PG_ZERO;
4036 	else
4037 		m->flags &= ~PG_ZERO;
4038 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4039 }
4040 
4041 /*
4042  * Inserts the specified page table page into the specified pmap's collection
4043  * of idle page table pages.  Each of a pmap's page table pages is responsible
4044  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4045  * ordered by this virtual address range.
4046  *
4047  * If "promoted" is false, then the page table page "mpte" must be zero filled.
4048  */
4049 static __inline int
4050 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
4051 {
4052 
4053 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4054 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
4055 	return (vm_radix_insert(&pmap->pm_root, mpte));
4056 }
4057 
4058 /*
4059  * Removes the page table page mapping the specified virtual address from the
4060  * specified pmap's collection of idle page table pages, and returns it.
4061  * Otherwise, returns NULL if there is no page table page corresponding to the
4062  * specified virtual address.
4063  */
4064 static __inline vm_page_t
4065 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4066 {
4067 
4068 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4069 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4070 }
4071 
4072 /*
4073  * Decrements a page table page's reference count, which is used to record the
4074  * number of valid page table entries within the page.  If the reference count
4075  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4076  * page table page was unmapped and FALSE otherwise.
4077  */
4078 static inline boolean_t
4079 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4080 {
4081 
4082 	--m->ref_count;
4083 	if (m->ref_count == 0) {
4084 		_pmap_unwire_ptp(pmap, va, m, free);
4085 		return (TRUE);
4086 	} else
4087 		return (FALSE);
4088 }
4089 
4090 static void
4091 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4092 {
4093 	pml5_entry_t *pml5;
4094 	pml4_entry_t *pml4;
4095 	pdp_entry_t *pdp;
4096 	pd_entry_t *pd;
4097 	vm_page_t pdpg, pdppg, pml4pg;
4098 
4099 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4100 
4101 	/*
4102 	 * unmap the page table page
4103 	 */
4104 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4105 		/* PML4 page */
4106 		MPASS(pmap_is_la57(pmap));
4107 		pml5 = pmap_pml5e(pmap, va);
4108 		*pml5 = 0;
4109 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4110 			pml5 = pmap_pml5e_u(pmap, va);
4111 			*pml5 = 0;
4112 		}
4113 	} else if (m->pindex >= NUPDE + NUPDPE) {
4114 		/* PDP page */
4115 		pml4 = pmap_pml4e(pmap, va);
4116 		*pml4 = 0;
4117 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4118 		    va <= VM_MAXUSER_ADDRESS) {
4119 			pml4 = pmap_pml4e_u(pmap, va);
4120 			*pml4 = 0;
4121 		}
4122 	} else if (m->pindex >= NUPDE) {
4123 		/* PD page */
4124 		pdp = pmap_pdpe(pmap, va);
4125 		*pdp = 0;
4126 	} else {
4127 		/* PTE page */
4128 		pd = pmap_pde(pmap, va);
4129 		*pd = 0;
4130 	}
4131 	if (m->pindex < NUPDE) {
4132 		/* We just released a PT, unhold the matching PD */
4133 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4134 		pmap_unwire_ptp(pmap, va, pdpg, free);
4135 	} else if (m->pindex < NUPDE + NUPDPE) {
4136 		/* We just released a PD, unhold the matching PDP */
4137 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4138 		pmap_unwire_ptp(pmap, va, pdppg, free);
4139 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4140 		/* We just released a PDP, unhold the matching PML4 */
4141 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4142 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4143 	}
4144 
4145 	pmap_pt_page_count_adj(pmap, -1);
4146 
4147 	/*
4148 	 * Put page on a list so that it is released after
4149 	 * *ALL* TLB shootdown is done
4150 	 */
4151 	pmap_add_delayed_free_list(m, free, TRUE);
4152 }
4153 
4154 /*
4155  * After removing a page table entry, this routine is used to
4156  * conditionally free the page, and manage the reference count.
4157  */
4158 static int
4159 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4160     struct spglist *free)
4161 {
4162 	vm_page_t mpte;
4163 
4164 	if (va >= VM_MAXUSER_ADDRESS)
4165 		return (0);
4166 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4167 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4168 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4169 }
4170 
4171 /*
4172  * Release a page table page reference after a failed attempt to create a
4173  * mapping.
4174  */
4175 static void
4176 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4177 {
4178 	struct spglist free;
4179 
4180 	SLIST_INIT(&free);
4181 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4182 		/*
4183 		 * Although "va" was never mapped, paging-structure caches
4184 		 * could nonetheless have entries that refer to the freed
4185 		 * page table pages.  Invalidate those entries.
4186 		 */
4187 		pmap_invalidate_page(pmap, va);
4188 		vm_page_free_pages_toq(&free, true);
4189 	}
4190 }
4191 
4192 void
4193 pmap_pinit0(pmap_t pmap)
4194 {
4195 	struct proc *p;
4196 	struct thread *td;
4197 	int i;
4198 
4199 	PMAP_LOCK_INIT(pmap);
4200 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4201 	pmap->pm_pmltopu = NULL;
4202 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4203 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4204 	pmap->pm_ucr3 = PMAP_NO_CR3;
4205 	vm_radix_init(&pmap->pm_root);
4206 	CPU_ZERO(&pmap->pm_active);
4207 	TAILQ_INIT(&pmap->pm_pvchunk);
4208 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4209 	pmap->pm_flags = pmap_flags;
4210 	CPU_FOREACH(i) {
4211 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN + 1;
4212 		pmap->pm_pcids[i].pm_gen = 1;
4213 	}
4214 	pmap_activate_boot(pmap);
4215 	td = curthread;
4216 	if (pti) {
4217 		p = td->td_proc;
4218 		PROC_LOCK(p);
4219 		p->p_md.md_flags |= P_MD_KPTI;
4220 		PROC_UNLOCK(p);
4221 	}
4222 	pmap_thread_init_invl_gen(td);
4223 
4224 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4225 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4226 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4227 		    UMA_ALIGN_PTR, 0);
4228 	}
4229 }
4230 
4231 void
4232 pmap_pinit_pml4(vm_page_t pml4pg)
4233 {
4234 	pml4_entry_t *pm_pml4;
4235 	int i;
4236 
4237 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4238 
4239 	/* Wire in kernel global address entries. */
4240 	for (i = 0; i < NKPML4E; i++) {
4241 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4242 		    X86_PG_V;
4243 	}
4244 #ifdef KASAN
4245 	for (i = 0; i < NKASANPML4E; i++) {
4246 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4247 		    X86_PG_V | pg_nx;
4248 	}
4249 #endif
4250 #ifdef KMSAN
4251 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4252 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4253 		    X86_PG_RW | X86_PG_V | pg_nx;
4254 	}
4255 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4256 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4257 		    X86_PG_RW | X86_PG_V | pg_nx;
4258 	}
4259 #endif
4260 	for (i = 0; i < ndmpdpphys; i++) {
4261 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4262 		    X86_PG_V;
4263 	}
4264 
4265 	/* install self-referential address mapping entry(s) */
4266 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4267 	    X86_PG_A | X86_PG_M;
4268 
4269 	/* install large map entries if configured */
4270 	for (i = 0; i < lm_ents; i++)
4271 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4272 }
4273 
4274 void
4275 pmap_pinit_pml5(vm_page_t pml5pg)
4276 {
4277 	pml5_entry_t *pm_pml5;
4278 
4279 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4280 
4281 	/*
4282 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4283 	 * entering all existing kernel mappings into level 5 table.
4284 	 */
4285 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4286 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4287 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4288 
4289 	/*
4290 	 * Install self-referential address mapping entry.
4291 	 */
4292 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4293 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4294 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4295 }
4296 
4297 static void
4298 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4299 {
4300 	pml4_entry_t *pm_pml4u;
4301 	int i;
4302 
4303 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4304 	for (i = 0; i < NPML4EPG; i++)
4305 		pm_pml4u[i] = pti_pml4[i];
4306 }
4307 
4308 static void
4309 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4310 {
4311 	pml5_entry_t *pm_pml5u;
4312 
4313 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4314 	pagezero(pm_pml5u);
4315 
4316 	/*
4317 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4318 	 * table, entering all kernel mappings needed for usermode
4319 	 * into level 5 table.
4320 	 */
4321 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4322 	    pmap_kextract((vm_offset_t)pti_pml4) |
4323 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4324 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4325 }
4326 
4327 /* Allocate a page table page and do related bookkeeping */
4328 static vm_page_t
4329 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4330 {
4331 	vm_page_t m;
4332 
4333 	m = vm_page_alloc_noobj(flags);
4334 	if (__predict_false(m == NULL))
4335 		return (NULL);
4336 	m->pindex = pindex;
4337 	pmap_pt_page_count_adj(pmap, 1);
4338 	return (m);
4339 }
4340 
4341 static void
4342 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4343 {
4344 	/*
4345 	 * This function assumes the page will need to be unwired,
4346 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4347 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4348 	 * of pmap_free_pt_page() require unwiring.  The case in which
4349 	 * a PT page doesn't require unwiring because its ref_count has
4350 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4351 	 */
4352 	vm_page_unwire_noq(m);
4353 	if (zerofilled)
4354 		vm_page_free_zero(m);
4355 	else
4356 		vm_page_free(m);
4357 
4358 	pmap_pt_page_count_adj(pmap, -1);
4359 }
4360 
4361 /*
4362  * Initialize a preallocated and zeroed pmap structure,
4363  * such as one in a vmspace structure.
4364  */
4365 int
4366 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4367 {
4368 	vm_page_t pmltop_pg, pmltop_pgu;
4369 	vm_paddr_t pmltop_phys;
4370 	int i;
4371 
4372 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4373 
4374 	/*
4375 	 * Allocate the page directory page.  Pass NULL instead of a
4376 	 * pointer to the pmap here to avoid calling
4377 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4378 	 * since that requires pmap lock.  Instead do the accounting
4379 	 * manually.
4380 	 *
4381 	 * Note that final call to pmap_remove() optimization that
4382 	 * checks for zero resident_count is basically disabled by
4383 	 * accounting for top-level page.  But the optimization was
4384 	 * not effective since we started using non-managed mapping of
4385 	 * the shared page.
4386 	 */
4387 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4388 	    VM_ALLOC_WAITOK);
4389 	pmap_pt_page_count_pinit(pmap, 1);
4390 
4391 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4392 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4393 
4394 	CPU_FOREACH(i) {
4395 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
4396 		pmap->pm_pcids[i].pm_gen = 0;
4397 	}
4398 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4399 	pmap->pm_ucr3 = PMAP_NO_CR3;
4400 	pmap->pm_pmltopu = NULL;
4401 
4402 	pmap->pm_type = pm_type;
4403 
4404 	/*
4405 	 * Do not install the host kernel mappings in the nested page
4406 	 * tables. These mappings are meaningless in the guest physical
4407 	 * address space.
4408 	 * Install minimal kernel mappings in PTI case.
4409 	 */
4410 	switch (pm_type) {
4411 	case PT_X86:
4412 		pmap->pm_cr3 = pmltop_phys;
4413 		if (pmap_is_la57(pmap))
4414 			pmap_pinit_pml5(pmltop_pg);
4415 		else
4416 			pmap_pinit_pml4(pmltop_pg);
4417 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4418 			/*
4419 			 * As with pmltop_pg, pass NULL instead of a
4420 			 * pointer to the pmap to ensure that the PTI
4421 			 * page counted explicitly.
4422 			 */
4423 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4424 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4425 			pmap_pt_page_count_pinit(pmap, 1);
4426 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4427 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4428 			if (pmap_is_la57(pmap))
4429 				pmap_pinit_pml5_pti(pmltop_pgu);
4430 			else
4431 				pmap_pinit_pml4_pti(pmltop_pgu);
4432 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4433 		}
4434 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4435 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4436 			    pkru_free_range, pmap, M_NOWAIT);
4437 		}
4438 		break;
4439 	case PT_EPT:
4440 	case PT_RVI:
4441 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4442 		break;
4443 	}
4444 
4445 	vm_radix_init(&pmap->pm_root);
4446 	CPU_ZERO(&pmap->pm_active);
4447 	TAILQ_INIT(&pmap->pm_pvchunk);
4448 	pmap->pm_flags = flags;
4449 	pmap->pm_eptgen = 0;
4450 
4451 	return (1);
4452 }
4453 
4454 int
4455 pmap_pinit(pmap_t pmap)
4456 {
4457 
4458 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4459 }
4460 
4461 static void
4462 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4463 {
4464 	vm_page_t mpg;
4465 	struct spglist free;
4466 
4467 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4468 	if (mpg->ref_count != 0)
4469 		return;
4470 	SLIST_INIT(&free);
4471 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4472 	pmap_invalidate_page(pmap, va);
4473 	vm_page_free_pages_toq(&free, true);
4474 }
4475 
4476 static pml4_entry_t *
4477 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4478     bool addref)
4479 {
4480 	vm_pindex_t pml5index;
4481 	pml5_entry_t *pml5;
4482 	pml4_entry_t *pml4;
4483 	vm_page_t pml4pg;
4484 	pt_entry_t PG_V;
4485 	bool allocated;
4486 
4487 	if (!pmap_is_la57(pmap))
4488 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4489 
4490 	PG_V = pmap_valid_bit(pmap);
4491 	pml5index = pmap_pml5e_index(va);
4492 	pml5 = &pmap->pm_pmltop[pml5index];
4493 	if ((*pml5 & PG_V) == 0) {
4494 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4495 		    va) == NULL)
4496 			return (NULL);
4497 		allocated = true;
4498 	} else {
4499 		allocated = false;
4500 	}
4501 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4502 	pml4 = &pml4[pmap_pml4e_index(va)];
4503 	if ((*pml4 & PG_V) == 0) {
4504 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4505 		if (allocated && !addref)
4506 			pml4pg->ref_count--;
4507 		else if (!allocated && addref)
4508 			pml4pg->ref_count++;
4509 	}
4510 	return (pml4);
4511 }
4512 
4513 static pdp_entry_t *
4514 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4515     bool addref)
4516 {
4517 	vm_page_t pdppg;
4518 	pml4_entry_t *pml4;
4519 	pdp_entry_t *pdp;
4520 	pt_entry_t PG_V;
4521 	bool allocated;
4522 
4523 	PG_V = pmap_valid_bit(pmap);
4524 
4525 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4526 	if (pml4 == NULL)
4527 		return (NULL);
4528 
4529 	if ((*pml4 & PG_V) == 0) {
4530 		/* Have to allocate a new pdp, recurse */
4531 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4532 		    va) == NULL) {
4533 			if (pmap_is_la57(pmap))
4534 				pmap_allocpte_free_unref(pmap, va,
4535 				    pmap_pml5e(pmap, va));
4536 			return (NULL);
4537 		}
4538 		allocated = true;
4539 	} else {
4540 		allocated = false;
4541 	}
4542 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4543 	pdp = &pdp[pmap_pdpe_index(va)];
4544 	if ((*pdp & PG_V) == 0) {
4545 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4546 		if (allocated && !addref)
4547 			pdppg->ref_count--;
4548 		else if (!allocated && addref)
4549 			pdppg->ref_count++;
4550 	}
4551 	return (pdp);
4552 }
4553 
4554 /*
4555  * The ptepindexes, i.e. page indices, of the page table pages encountered
4556  * while translating virtual address va are defined as follows:
4557  * - for the page table page (last level),
4558  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4559  *   in other words, it is just the index of the PDE that maps the page
4560  *   table page.
4561  * - for the page directory page,
4562  *      ptepindex = NUPDE (number of userland PD entries) +
4563  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4564  *   i.e. index of PDPE is put after the last index of PDE,
4565  * - for the page directory pointer page,
4566  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4567  *          NPML4EPGSHIFT),
4568  *   i.e. index of pml4e is put after the last index of PDPE,
4569  * - for the PML4 page (if LA57 mode is enabled),
4570  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4571  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4572  *   i.e. index of pml5e is put after the last index of PML4E.
4573  *
4574  * Define an order on the paging entries, where all entries of the
4575  * same height are put together, then heights are put from deepest to
4576  * root.  Then ptexpindex is the sequential number of the
4577  * corresponding paging entry in this order.
4578  *
4579  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4580  * LA57 paging structures even in LA48 paging mode. Moreover, the
4581  * ptepindexes are calculated as if the paging structures were 5-level
4582  * regardless of the actual mode of operation.
4583  *
4584  * The root page at PML4/PML5 does not participate in this indexing scheme,
4585  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4586  */
4587 static vm_page_t
4588 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4589     vm_offset_t va)
4590 {
4591 	vm_pindex_t pml5index, pml4index;
4592 	pml5_entry_t *pml5, *pml5u;
4593 	pml4_entry_t *pml4, *pml4u;
4594 	pdp_entry_t *pdp;
4595 	pd_entry_t *pd;
4596 	vm_page_t m, pdpg;
4597 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4598 
4599 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4600 
4601 	PG_A = pmap_accessed_bit(pmap);
4602 	PG_M = pmap_modified_bit(pmap);
4603 	PG_V = pmap_valid_bit(pmap);
4604 	PG_RW = pmap_rw_bit(pmap);
4605 
4606 	/*
4607 	 * Allocate a page table page.
4608 	 */
4609 	m = pmap_alloc_pt_page(pmap, ptepindex,
4610 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4611 	if (m == NULL)
4612 		return (NULL);
4613 
4614 	/*
4615 	 * Map the pagetable page into the process address space, if
4616 	 * it isn't already there.
4617 	 */
4618 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4619 		MPASS(pmap_is_la57(pmap));
4620 
4621 		pml5index = pmap_pml5e_index(va);
4622 		pml5 = &pmap->pm_pmltop[pml5index];
4623 		KASSERT((*pml5 & PG_V) == 0,
4624 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4625 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4626 
4627 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4628 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4629 				*pml5 |= pg_nx;
4630 
4631 			pml5u = &pmap->pm_pmltopu[pml5index];
4632 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4633 			    PG_A | PG_M;
4634 		}
4635 	} else if (ptepindex >= NUPDE + NUPDPE) {
4636 		pml4index = pmap_pml4e_index(va);
4637 		/* Wire up a new PDPE page */
4638 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4639 		if (pml4 == NULL) {
4640 			pmap_free_pt_page(pmap, m, true);
4641 			return (NULL);
4642 		}
4643 		KASSERT((*pml4 & PG_V) == 0,
4644 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4645 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4646 
4647 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4648 		    pml4index < NUPML4E) {
4649 			/*
4650 			 * PTI: Make all user-space mappings in the
4651 			 * kernel-mode page table no-execute so that
4652 			 * we detect any programming errors that leave
4653 			 * the kernel-mode page table active on return
4654 			 * to user space.
4655 			 */
4656 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4657 				*pml4 |= pg_nx;
4658 
4659 			pml4u = &pmap->pm_pmltopu[pml4index];
4660 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4661 			    PG_A | PG_M;
4662 		}
4663 	} else if (ptepindex >= NUPDE) {
4664 		/* Wire up a new PDE page */
4665 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4666 		if (pdp == NULL) {
4667 			pmap_free_pt_page(pmap, m, true);
4668 			return (NULL);
4669 		}
4670 		KASSERT((*pdp & PG_V) == 0,
4671 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4672 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4673 	} else {
4674 		/* Wire up a new PTE page */
4675 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4676 		if (pdp == NULL) {
4677 			pmap_free_pt_page(pmap, m, true);
4678 			return (NULL);
4679 		}
4680 		if ((*pdp & PG_V) == 0) {
4681 			/* Have to allocate a new pd, recurse */
4682 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4683 		      lockp, va) == NULL) {
4684 				pmap_allocpte_free_unref(pmap, va,
4685 				    pmap_pml4e(pmap, va));
4686 				pmap_free_pt_page(pmap, m, true);
4687 				return (NULL);
4688 			}
4689 		} else {
4690 			/* Add reference to the pd page */
4691 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4692 			pdpg->ref_count++;
4693 		}
4694 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4695 
4696 		/* Now we know where the page directory page is */
4697 		pd = &pd[pmap_pde_index(va)];
4698 		KASSERT((*pd & PG_V) == 0,
4699 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4700 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4701 	}
4702 
4703 	return (m);
4704 }
4705 
4706 /*
4707  * This routine is called if the desired page table page does not exist.
4708  *
4709  * If page table page allocation fails, this routine may sleep before
4710  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4711  * occurs right before returning to the caller. This way, we never
4712  * drop pmap lock to sleep while a page table page has ref_count == 0,
4713  * which prevents the page from being freed under us.
4714  */
4715 static vm_page_t
4716 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4717     vm_offset_t va)
4718 {
4719 	vm_page_t m;
4720 
4721 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4722 	if (m == NULL && lockp != NULL) {
4723 		RELEASE_PV_LIST_LOCK(lockp);
4724 		PMAP_UNLOCK(pmap);
4725 		PMAP_ASSERT_NOT_IN_DI();
4726 		vm_wait(NULL);
4727 		PMAP_LOCK(pmap);
4728 	}
4729 	return (m);
4730 }
4731 
4732 static pd_entry_t *
4733 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4734     struct rwlock **lockp)
4735 {
4736 	pdp_entry_t *pdpe, PG_V;
4737 	pd_entry_t *pde;
4738 	vm_page_t pdpg;
4739 	vm_pindex_t pdpindex;
4740 
4741 	PG_V = pmap_valid_bit(pmap);
4742 
4743 retry:
4744 	pdpe = pmap_pdpe(pmap, va);
4745 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4746 		pde = pmap_pdpe_to_pde(pdpe, va);
4747 		if (va < VM_MAXUSER_ADDRESS) {
4748 			/* Add a reference to the pd page. */
4749 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4750 			pdpg->ref_count++;
4751 		} else
4752 			pdpg = NULL;
4753 	} else if (va < VM_MAXUSER_ADDRESS) {
4754 		/* Allocate a pd page. */
4755 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4756 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4757 		if (pdpg == NULL) {
4758 			if (lockp != NULL)
4759 				goto retry;
4760 			else
4761 				return (NULL);
4762 		}
4763 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4764 		pde = &pde[pmap_pde_index(va)];
4765 	} else
4766 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4767 		    va);
4768 	*pdpgp = pdpg;
4769 	return (pde);
4770 }
4771 
4772 static vm_page_t
4773 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4774 {
4775 	vm_pindex_t ptepindex;
4776 	pd_entry_t *pd, PG_V;
4777 	vm_page_t m;
4778 
4779 	PG_V = pmap_valid_bit(pmap);
4780 
4781 	/*
4782 	 * Calculate pagetable page index
4783 	 */
4784 	ptepindex = pmap_pde_pindex(va);
4785 retry:
4786 	/*
4787 	 * Get the page directory entry
4788 	 */
4789 	pd = pmap_pde(pmap, va);
4790 
4791 	/*
4792 	 * This supports switching from a 2MB page to a
4793 	 * normal 4K page.
4794 	 */
4795 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4796 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4797 			/*
4798 			 * Invalidation of the 2MB page mapping may have caused
4799 			 * the deallocation of the underlying PD page.
4800 			 */
4801 			pd = NULL;
4802 		}
4803 	}
4804 
4805 	/*
4806 	 * If the page table page is mapped, we just increment the
4807 	 * hold count, and activate it.
4808 	 */
4809 	if (pd != NULL && (*pd & PG_V) != 0) {
4810 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4811 		m->ref_count++;
4812 	} else {
4813 		/*
4814 		 * Here if the pte page isn't mapped, or if it has been
4815 		 * deallocated.
4816 		 */
4817 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4818 		if (m == NULL && lockp != NULL)
4819 			goto retry;
4820 	}
4821 	return (m);
4822 }
4823 
4824 /***************************************************
4825  * Pmap allocation/deallocation routines.
4826  ***************************************************/
4827 
4828 /*
4829  * Release any resources held by the given physical map.
4830  * Called when a pmap initialized by pmap_pinit is being released.
4831  * Should only be called if the map contains no valid mappings.
4832  */
4833 void
4834 pmap_release(pmap_t pmap)
4835 {
4836 	vm_page_t m;
4837 	int i;
4838 
4839 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4840 	    ("pmap_release: pmap %p has reserved page table page(s)",
4841 	    pmap));
4842 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4843 	    ("releasing active pmap %p", pmap));
4844 
4845 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4846 
4847 	if (pmap_is_la57(pmap)) {
4848 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4849 		pmap->pm_pmltop[PML5PML5I] = 0;
4850 	} else {
4851 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4852 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4853 #ifdef KASAN
4854 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4855 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4856 #endif
4857 #ifdef KMSAN
4858 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4859 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4860 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4861 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4862 #endif
4863 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4864 			pmap->pm_pmltop[DMPML4I + i] = 0;
4865 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4866 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4867 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4868 	}
4869 
4870 	pmap_free_pt_page(NULL, m, true);
4871 	pmap_pt_page_count_pinit(pmap, -1);
4872 
4873 	if (pmap->pm_pmltopu != NULL) {
4874 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4875 		    pm_pmltopu));
4876 		pmap_free_pt_page(NULL, m, false);
4877 		pmap_pt_page_count_pinit(pmap, -1);
4878 	}
4879 	if (pmap->pm_type == PT_X86 &&
4880 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4881 		rangeset_fini(&pmap->pm_pkru);
4882 
4883 	KASSERT(pmap->pm_stats.resident_count == 0,
4884 	    ("pmap_release: pmap %p resident count %ld != 0",
4885 	    pmap, pmap->pm_stats.resident_count));
4886 }
4887 
4888 static int
4889 kvm_size(SYSCTL_HANDLER_ARGS)
4890 {
4891 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4892 
4893 	return sysctl_handle_long(oidp, &ksize, 0, req);
4894 }
4895 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4896     0, 0, kvm_size, "LU",
4897     "Size of KVM");
4898 
4899 static int
4900 kvm_free(SYSCTL_HANDLER_ARGS)
4901 {
4902 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4903 
4904 	return sysctl_handle_long(oidp, &kfree, 0, req);
4905 }
4906 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4907     0, 0, kvm_free, "LU",
4908     "Amount of KVM free");
4909 
4910 #ifdef KMSAN
4911 static void
4912 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4913 {
4914 	pdp_entry_t *pdpe;
4915 	pd_entry_t *pde;
4916 	pt_entry_t *pte;
4917 	vm_paddr_t dummypa, dummypd, dummypt;
4918 	int i, npde, npdpg;
4919 
4920 	npdpg = howmany(size, NBPDP);
4921 	npde = size / NBPDR;
4922 
4923 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4924 	pagezero((void *)PHYS_TO_DMAP(dummypa));
4925 
4926 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4927 	pagezero((void *)PHYS_TO_DMAP(dummypt));
4928 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4929 	for (i = 0; i < npdpg; i++)
4930 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4931 
4932 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4933 	for (i = 0; i < NPTEPG; i++)
4934 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4935 		    X86_PG_A | X86_PG_M | pg_nx);
4936 
4937 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4938 	for (i = 0; i < npde; i++)
4939 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4940 
4941 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4942 	for (i = 0; i < npdpg; i++)
4943 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4944 		    X86_PG_RW | pg_nx);
4945 }
4946 
4947 static void
4948 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
4949 {
4950 	vm_size_t size;
4951 
4952 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
4953 
4954 	/*
4955 	 * The end of the page array's KVA region is 2MB aligned, see
4956 	 * kmem_init().
4957 	 */
4958 	size = round_2mpage(end) - start;
4959 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
4960 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
4961 }
4962 #endif
4963 
4964 /*
4965  * Allocate physical memory for the vm_page array and map it into KVA,
4966  * attempting to back the vm_pages with domain-local memory.
4967  */
4968 void
4969 pmap_page_array_startup(long pages)
4970 {
4971 	pdp_entry_t *pdpe;
4972 	pd_entry_t *pde, newpdir;
4973 	vm_offset_t va, start, end;
4974 	vm_paddr_t pa;
4975 	long pfn;
4976 	int domain, i;
4977 
4978 	vm_page_array_size = pages;
4979 
4980 	start = VM_MIN_KERNEL_ADDRESS;
4981 	end = start + pages * sizeof(struct vm_page);
4982 	for (va = start; va < end; va += NBPDR) {
4983 		pfn = first_page + (va - start) / sizeof(struct vm_page);
4984 		domain = vm_phys_domain(ptoa(pfn));
4985 		pdpe = pmap_pdpe(kernel_pmap, va);
4986 		if ((*pdpe & X86_PG_V) == 0) {
4987 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4988 			dump_add_page(pa);
4989 			pagezero((void *)PHYS_TO_DMAP(pa));
4990 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4991 			    X86_PG_A | X86_PG_M);
4992 		}
4993 		pde = pmap_pdpe_to_pde(pdpe, va);
4994 		if ((*pde & X86_PG_V) != 0)
4995 			panic("Unexpected pde");
4996 		pa = vm_phys_early_alloc(domain, NBPDR);
4997 		for (i = 0; i < NPDEPG; i++)
4998 			dump_add_page(pa + i * PAGE_SIZE);
4999 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5000 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5001 		pde_store(pde, newpdir);
5002 	}
5003 	vm_page_array = (vm_page_t)start;
5004 
5005 #ifdef KMSAN
5006 	pmap_kmsan_page_array_startup(start, end);
5007 #endif
5008 }
5009 
5010 /*
5011  * grow the number of kernel page table entries, if needed
5012  */
5013 void
5014 pmap_growkernel(vm_offset_t addr)
5015 {
5016 	vm_paddr_t paddr;
5017 	vm_page_t nkpg;
5018 	pd_entry_t *pde, newpdir;
5019 	pdp_entry_t *pdpe;
5020 	vm_offset_t end;
5021 
5022 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5023 
5024 	/*
5025 	 * The kernel map covers two distinct regions of KVA: that used
5026 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5027 	 * of the virtual address space.  The latter is used to map the
5028 	 * kernel and loadable kernel modules.  This scheme enables the
5029 	 * use of a special code generation model for kernel code which
5030 	 * takes advantage of compact addressing modes in machine code.
5031 	 *
5032 	 * Both regions grow upwards; to avoid wasting memory, the gap
5033 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5034 	 * kernel's region is grown, otherwise the kmem region is grown.
5035 	 *
5036 	 * The correctness of this action is based on the following
5037 	 * argument: vm_map_insert() allocates contiguous ranges of the
5038 	 * kernel virtual address space.  It calls this function if a range
5039 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5040 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5041 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5042 	 * than the kernel.  Thus, there is no immediate need to allocate
5043 	 * any new kernel page table pages between "kernel_vm_end" and
5044 	 * "KERNBASE".
5045 	 */
5046 	if (KERNBASE < addr) {
5047 		end = KERNBASE + nkpt * NBPDR;
5048 		if (end == 0)
5049 			return;
5050 	} else {
5051 		end = kernel_vm_end;
5052 	}
5053 
5054 	addr = roundup2(addr, NBPDR);
5055 	if (addr - 1 >= vm_map_max(kernel_map))
5056 		addr = vm_map_max(kernel_map);
5057 	if (addr <= end) {
5058 		/*
5059 		 * The grown region is already mapped, so there is
5060 		 * nothing to do.
5061 		 */
5062 		return;
5063 	}
5064 
5065 	kasan_shadow_map(end, addr - end);
5066 	kmsan_shadow_map(end, addr - end);
5067 	while (end < addr) {
5068 		pdpe = pmap_pdpe(kernel_pmap, end);
5069 		if ((*pdpe & X86_PG_V) == 0) {
5070 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5071 			    pmap_pdpe_pindex(end), VM_ALLOC_WIRED |
5072 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5073 			if (nkpg == NULL)
5074 				panic("pmap_growkernel: no memory to grow kernel");
5075 			paddr = VM_PAGE_TO_PHYS(nkpg);
5076 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5077 			    X86_PG_A | X86_PG_M);
5078 			continue; /* try again */
5079 		}
5080 		pde = pmap_pdpe_to_pde(pdpe, end);
5081 		if ((*pde & X86_PG_V) != 0) {
5082 			end = (end + NBPDR) & ~PDRMASK;
5083 			if (end - 1 >= vm_map_max(kernel_map)) {
5084 				end = vm_map_max(kernel_map);
5085 				break;
5086 			}
5087 			continue;
5088 		}
5089 
5090 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5091 		    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5092 		if (nkpg == NULL)
5093 			panic("pmap_growkernel: no memory to grow kernel");
5094 		paddr = VM_PAGE_TO_PHYS(nkpg);
5095 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5096 		pde_store(pde, newpdir);
5097 
5098 		end = (end + NBPDR) & ~PDRMASK;
5099 		if (end - 1 >= vm_map_max(kernel_map)) {
5100 			end = vm_map_max(kernel_map);
5101 			break;
5102 		}
5103 	}
5104 
5105 	if (end <= KERNBASE)
5106 		kernel_vm_end = end;
5107 	else
5108 		nkpt = howmany(end - KERNBASE, NBPDR);
5109 }
5110 
5111 /***************************************************
5112  * page management routines.
5113  ***************************************************/
5114 
5115 static const uint64_t pc_freemask[_NPCM] = {
5116 	[0 ... _NPCM - 2] = PC_FREEN,
5117 	[_NPCM - 1] = PC_FREEL
5118 };
5119 
5120 #ifdef PV_STATS
5121 
5122 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5123 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5124     &pc_chunk_count, "Current number of pv entry cnunks");
5125 
5126 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5127 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5128     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5129 
5130 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5131 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5132     &pc_chunk_frees, "Total number of pv entry chunks freed");
5133 
5134 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5135 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5136     &pc_chunk_tryfail,
5137     "Number of failed attempts to get a pv entry chunk page");
5138 
5139 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5140 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5141     &pv_entry_frees, "Total number of pv entries freed");
5142 
5143 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5144 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5145     &pv_entry_allocs, "Total number of pv entries allocated");
5146 
5147 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5148 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5149     &pv_entry_count, "Current number of pv entries");
5150 
5151 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5152 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5153     &pv_entry_spare, "Current number of spare pv entries");
5154 #endif
5155 
5156 static void
5157 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5158 {
5159 
5160 	if (pmap == NULL)
5161 		return;
5162 	pmap_invalidate_all(pmap);
5163 	if (pmap != locked_pmap)
5164 		PMAP_UNLOCK(pmap);
5165 	if (start_di)
5166 		pmap_delayed_invl_finish();
5167 }
5168 
5169 /*
5170  * We are in a serious low memory condition.  Resort to
5171  * drastic measures to free some pages so we can allocate
5172  * another pv entry chunk.
5173  *
5174  * Returns NULL if PV entries were reclaimed from the specified pmap.
5175  *
5176  * We do not, however, unmap 2mpages because subsequent accesses will
5177  * allocate per-page pv entries until repromotion occurs, thereby
5178  * exacerbating the shortage of free pv entries.
5179  */
5180 static vm_page_t
5181 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5182 {
5183 	struct pv_chunks_list *pvc;
5184 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5185 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5186 	struct md_page *pvh;
5187 	pd_entry_t *pde;
5188 	pmap_t next_pmap, pmap;
5189 	pt_entry_t *pte, tpte;
5190 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5191 	pv_entry_t pv;
5192 	vm_offset_t va;
5193 	vm_page_t m, m_pc;
5194 	struct spglist free;
5195 	uint64_t inuse;
5196 	int bit, field, freed;
5197 	bool start_di, restart;
5198 
5199 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5200 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5201 	pmap = NULL;
5202 	m_pc = NULL;
5203 	PG_G = PG_A = PG_M = PG_RW = 0;
5204 	SLIST_INIT(&free);
5205 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5206 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5207 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5208 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5209 
5210 	/*
5211 	 * A delayed invalidation block should already be active if
5212 	 * pmap_advise() or pmap_remove() called this function by way
5213 	 * of pmap_demote_pde_locked().
5214 	 */
5215 	start_di = pmap_not_in_di();
5216 
5217 	pvc = &pv_chunks[domain];
5218 	mtx_lock(&pvc->pvc_lock);
5219 	pvc->active_reclaims++;
5220 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5221 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5222 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5223 	    SLIST_EMPTY(&free)) {
5224 		next_pmap = pc->pc_pmap;
5225 		if (next_pmap == NULL) {
5226 			/*
5227 			 * The next chunk is a marker.  However, it is
5228 			 * not our marker, so active_reclaims must be
5229 			 * > 1.  Consequently, the next_chunk code
5230 			 * will not rotate the pv_chunks list.
5231 			 */
5232 			goto next_chunk;
5233 		}
5234 		mtx_unlock(&pvc->pvc_lock);
5235 
5236 		/*
5237 		 * A pv_chunk can only be removed from the pc_lru list
5238 		 * when both pc_chunks_mutex is owned and the
5239 		 * corresponding pmap is locked.
5240 		 */
5241 		if (pmap != next_pmap) {
5242 			restart = false;
5243 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5244 			    start_di);
5245 			pmap = next_pmap;
5246 			/* Avoid deadlock and lock recursion. */
5247 			if (pmap > locked_pmap) {
5248 				RELEASE_PV_LIST_LOCK(lockp);
5249 				PMAP_LOCK(pmap);
5250 				if (start_di)
5251 					pmap_delayed_invl_start();
5252 				mtx_lock(&pvc->pvc_lock);
5253 				restart = true;
5254 			} else if (pmap != locked_pmap) {
5255 				if (PMAP_TRYLOCK(pmap)) {
5256 					if (start_di)
5257 						pmap_delayed_invl_start();
5258 					mtx_lock(&pvc->pvc_lock);
5259 					restart = true;
5260 				} else {
5261 					pmap = NULL; /* pmap is not locked */
5262 					mtx_lock(&pvc->pvc_lock);
5263 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5264 					if (pc == NULL ||
5265 					    pc->pc_pmap != next_pmap)
5266 						continue;
5267 					goto next_chunk;
5268 				}
5269 			} else if (start_di)
5270 				pmap_delayed_invl_start();
5271 			PG_G = pmap_global_bit(pmap);
5272 			PG_A = pmap_accessed_bit(pmap);
5273 			PG_M = pmap_modified_bit(pmap);
5274 			PG_RW = pmap_rw_bit(pmap);
5275 			if (restart)
5276 				continue;
5277 		}
5278 
5279 		/*
5280 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5281 		 */
5282 		freed = 0;
5283 		for (field = 0; field < _NPCM; field++) {
5284 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5285 			    inuse != 0; inuse &= ~(1UL << bit)) {
5286 				bit = bsfq(inuse);
5287 				pv = &pc->pc_pventry[field * 64 + bit];
5288 				va = pv->pv_va;
5289 				pde = pmap_pde(pmap, va);
5290 				if ((*pde & PG_PS) != 0)
5291 					continue;
5292 				pte = pmap_pde_to_pte(pde, va);
5293 				if ((*pte & PG_W) != 0)
5294 					continue;
5295 				tpte = pte_load_clear(pte);
5296 				if ((tpte & PG_G) != 0)
5297 					pmap_invalidate_page(pmap, va);
5298 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5299 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5300 					vm_page_dirty(m);
5301 				if ((tpte & PG_A) != 0)
5302 					vm_page_aflag_set(m, PGA_REFERENCED);
5303 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5304 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5305 				m->md.pv_gen++;
5306 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5307 				    (m->flags & PG_FICTITIOUS) == 0) {
5308 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5309 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5310 						vm_page_aflag_clear(m,
5311 						    PGA_WRITEABLE);
5312 					}
5313 				}
5314 				pmap_delayed_invl_page(m);
5315 				pc->pc_map[field] |= 1UL << bit;
5316 				pmap_unuse_pt(pmap, va, *pde, &free);
5317 				freed++;
5318 			}
5319 		}
5320 		if (freed == 0) {
5321 			mtx_lock(&pvc->pvc_lock);
5322 			goto next_chunk;
5323 		}
5324 		/* Every freed mapping is for a 4 KB page. */
5325 		pmap_resident_count_adj(pmap, -freed);
5326 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5327 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5328 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5329 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5330 		if (pc_is_free(pc)) {
5331 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5332 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5333 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5334 			/* Entire chunk is free; return it. */
5335 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5336 			dump_drop_page(m_pc->phys_addr);
5337 			mtx_lock(&pvc->pvc_lock);
5338 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5339 			break;
5340 		}
5341 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5342 		mtx_lock(&pvc->pvc_lock);
5343 		/* One freed pv entry in locked_pmap is sufficient. */
5344 		if (pmap == locked_pmap)
5345 			break;
5346 next_chunk:
5347 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5348 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5349 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5350 			/*
5351 			 * Rotate the pv chunks list so that we do not
5352 			 * scan the same pv chunks that could not be
5353 			 * freed (because they contained a wired
5354 			 * and/or superpage mapping) on every
5355 			 * invocation of reclaim_pv_chunk().
5356 			 */
5357 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5358 				MPASS(pc->pc_pmap != NULL);
5359 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5360 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5361 			}
5362 		}
5363 	}
5364 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5365 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5366 	pvc->active_reclaims--;
5367 	mtx_unlock(&pvc->pvc_lock);
5368 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5369 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5370 		m_pc = SLIST_FIRST(&free);
5371 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5372 		/* Recycle a freed page table page. */
5373 		m_pc->ref_count = 1;
5374 	}
5375 	vm_page_free_pages_toq(&free, true);
5376 	return (m_pc);
5377 }
5378 
5379 static vm_page_t
5380 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5381 {
5382 	vm_page_t m;
5383 	int i, domain;
5384 
5385 	domain = PCPU_GET(domain);
5386 	for (i = 0; i < vm_ndomains; i++) {
5387 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5388 		if (m != NULL)
5389 			break;
5390 		domain = (domain + 1) % vm_ndomains;
5391 	}
5392 
5393 	return (m);
5394 }
5395 
5396 /*
5397  * free the pv_entry back to the free list
5398  */
5399 static void
5400 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5401 {
5402 	struct pv_chunk *pc;
5403 	int idx, field, bit;
5404 
5405 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5406 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5407 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5408 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5409 	pc = pv_to_chunk(pv);
5410 	idx = pv - &pc->pc_pventry[0];
5411 	field = idx / 64;
5412 	bit = idx % 64;
5413 	pc->pc_map[field] |= 1ul << bit;
5414 	if (!pc_is_free(pc)) {
5415 		/* 98% of the time, pc is already at the head of the list. */
5416 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5417 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5418 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5419 		}
5420 		return;
5421 	}
5422 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5423 	free_pv_chunk(pc);
5424 }
5425 
5426 static void
5427 free_pv_chunk_dequeued(struct pv_chunk *pc)
5428 {
5429 	vm_page_t m;
5430 
5431 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5432 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5433 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5434 	counter_u64_add(pv_page_count, -1);
5435 	/* entire chunk is free, return it */
5436 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5437 	dump_drop_page(m->phys_addr);
5438 	vm_page_unwire_noq(m);
5439 	vm_page_free(m);
5440 }
5441 
5442 static void
5443 free_pv_chunk(struct pv_chunk *pc)
5444 {
5445 	struct pv_chunks_list *pvc;
5446 
5447 	pvc = &pv_chunks[pc_to_domain(pc)];
5448 	mtx_lock(&pvc->pvc_lock);
5449 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5450 	mtx_unlock(&pvc->pvc_lock);
5451 	free_pv_chunk_dequeued(pc);
5452 }
5453 
5454 static void
5455 free_pv_chunk_batch(struct pv_chunklist *batch)
5456 {
5457 	struct pv_chunks_list *pvc;
5458 	struct pv_chunk *pc, *npc;
5459 	int i;
5460 
5461 	for (i = 0; i < vm_ndomains; i++) {
5462 		if (TAILQ_EMPTY(&batch[i]))
5463 			continue;
5464 		pvc = &pv_chunks[i];
5465 		mtx_lock(&pvc->pvc_lock);
5466 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5467 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5468 		}
5469 		mtx_unlock(&pvc->pvc_lock);
5470 	}
5471 
5472 	for (i = 0; i < vm_ndomains; i++) {
5473 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5474 			free_pv_chunk_dequeued(pc);
5475 		}
5476 	}
5477 }
5478 
5479 /*
5480  * Returns a new PV entry, allocating a new PV chunk from the system when
5481  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5482  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5483  * returned.
5484  *
5485  * The given PV list lock may be released.
5486  */
5487 static pv_entry_t
5488 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5489 {
5490 	struct pv_chunks_list *pvc;
5491 	int bit, field;
5492 	pv_entry_t pv;
5493 	struct pv_chunk *pc;
5494 	vm_page_t m;
5495 
5496 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5497 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5498 retry:
5499 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5500 	if (pc != NULL) {
5501 		for (field = 0; field < _NPCM; field++) {
5502 			if (pc->pc_map[field]) {
5503 				bit = bsfq(pc->pc_map[field]);
5504 				break;
5505 			}
5506 		}
5507 		if (field < _NPCM) {
5508 			pv = &pc->pc_pventry[field * 64 + bit];
5509 			pc->pc_map[field] &= ~(1ul << bit);
5510 			/* If this was the last item, move it to tail */
5511 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5512 			    pc->pc_map[2] == 0) {
5513 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5514 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5515 				    pc_list);
5516 			}
5517 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5518 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5519 			return (pv);
5520 		}
5521 	}
5522 	/* No free items, allocate another chunk */
5523 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5524 	if (m == NULL) {
5525 		if (lockp == NULL) {
5526 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5527 			return (NULL);
5528 		}
5529 		m = reclaim_pv_chunk(pmap, lockp);
5530 		if (m == NULL)
5531 			goto retry;
5532 	} else
5533 		counter_u64_add(pv_page_count, 1);
5534 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5535 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5536 	dump_add_page(m->phys_addr);
5537 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5538 	pc->pc_pmap = pmap;
5539 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5540 	pc->pc_map[1] = PC_FREEN;
5541 	pc->pc_map[2] = PC_FREEL;
5542 	pvc = &pv_chunks[vm_page_domain(m)];
5543 	mtx_lock(&pvc->pvc_lock);
5544 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5545 	mtx_unlock(&pvc->pvc_lock);
5546 	pv = &pc->pc_pventry[0];
5547 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5548 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5549 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5550 	return (pv);
5551 }
5552 
5553 /*
5554  * Returns the number of one bits within the given PV chunk map.
5555  *
5556  * The erratas for Intel processors state that "POPCNT Instruction May
5557  * Take Longer to Execute Than Expected".  It is believed that the
5558  * issue is the spurious dependency on the destination register.
5559  * Provide a hint to the register rename logic that the destination
5560  * value is overwritten, by clearing it, as suggested in the
5561  * optimization manual.  It should be cheap for unaffected processors
5562  * as well.
5563  *
5564  * Reference numbers for erratas are
5565  * 4th Gen Core: HSD146
5566  * 5th Gen Core: BDM85
5567  * 6th Gen Core: SKL029
5568  */
5569 static int
5570 popcnt_pc_map_pq(uint64_t *map)
5571 {
5572 	u_long result, tmp;
5573 
5574 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5575 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5576 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5577 	    : "=&r" (result), "=&r" (tmp)
5578 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5579 	return (result);
5580 }
5581 
5582 /*
5583  * Ensure that the number of spare PV entries in the specified pmap meets or
5584  * exceeds the given count, "needed".
5585  *
5586  * The given PV list lock may be released.
5587  */
5588 static void
5589 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5590 {
5591 	struct pv_chunks_list *pvc;
5592 	struct pch new_tail[PMAP_MEMDOM];
5593 	struct pv_chunk *pc;
5594 	vm_page_t m;
5595 	int avail, free, i;
5596 	bool reclaimed;
5597 
5598 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5599 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5600 
5601 	/*
5602 	 * Newly allocated PV chunks must be stored in a private list until
5603 	 * the required number of PV chunks have been allocated.  Otherwise,
5604 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5605 	 * contrast, these chunks must be added to the pmap upon allocation.
5606 	 */
5607 	for (i = 0; i < PMAP_MEMDOM; i++)
5608 		TAILQ_INIT(&new_tail[i]);
5609 retry:
5610 	avail = 0;
5611 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5612 #ifndef __POPCNT__
5613 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5614 			bit_count((bitstr_t *)pc->pc_map, 0,
5615 			    sizeof(pc->pc_map) * NBBY, &free);
5616 		else
5617 #endif
5618 		free = popcnt_pc_map_pq(pc->pc_map);
5619 		if (free == 0)
5620 			break;
5621 		avail += free;
5622 		if (avail >= needed)
5623 			break;
5624 	}
5625 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5626 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5627 		if (m == NULL) {
5628 			m = reclaim_pv_chunk(pmap, lockp);
5629 			if (m == NULL)
5630 				goto retry;
5631 			reclaimed = true;
5632 		} else
5633 			counter_u64_add(pv_page_count, 1);
5634 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5635 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5636 		dump_add_page(m->phys_addr);
5637 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5638 		pc->pc_pmap = pmap;
5639 		pc->pc_map[0] = PC_FREEN;
5640 		pc->pc_map[1] = PC_FREEN;
5641 		pc->pc_map[2] = PC_FREEL;
5642 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5643 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5644 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5645 
5646 		/*
5647 		 * The reclaim might have freed a chunk from the current pmap.
5648 		 * If that chunk contained available entries, we need to
5649 		 * re-count the number of available entries.
5650 		 */
5651 		if (reclaimed)
5652 			goto retry;
5653 	}
5654 	for (i = 0; i < vm_ndomains; i++) {
5655 		if (TAILQ_EMPTY(&new_tail[i]))
5656 			continue;
5657 		pvc = &pv_chunks[i];
5658 		mtx_lock(&pvc->pvc_lock);
5659 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5660 		mtx_unlock(&pvc->pvc_lock);
5661 	}
5662 }
5663 
5664 /*
5665  * First find and then remove the pv entry for the specified pmap and virtual
5666  * address from the specified pv list.  Returns the pv entry if found and NULL
5667  * otherwise.  This operation can be performed on pv lists for either 4KB or
5668  * 2MB page mappings.
5669  */
5670 static __inline pv_entry_t
5671 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5672 {
5673 	pv_entry_t pv;
5674 
5675 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5676 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5677 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5678 			pvh->pv_gen++;
5679 			break;
5680 		}
5681 	}
5682 	return (pv);
5683 }
5684 
5685 /*
5686  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5687  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5688  * entries for each of the 4KB page mappings.
5689  */
5690 static void
5691 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5692     struct rwlock **lockp)
5693 {
5694 	struct md_page *pvh;
5695 	struct pv_chunk *pc;
5696 	pv_entry_t pv;
5697 	vm_offset_t va_last;
5698 	vm_page_t m;
5699 	int bit, field;
5700 
5701 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5702 	KASSERT((pa & PDRMASK) == 0,
5703 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5704 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5705 
5706 	/*
5707 	 * Transfer the 2mpage's pv entry for this mapping to the first
5708 	 * page's pv list.  Once this transfer begins, the pv list lock
5709 	 * must not be released until the last pv entry is reinstantiated.
5710 	 */
5711 	pvh = pa_to_pvh(pa);
5712 	va = trunc_2mpage(va);
5713 	pv = pmap_pvh_remove(pvh, pmap, va);
5714 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5715 	m = PHYS_TO_VM_PAGE(pa);
5716 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5717 	m->md.pv_gen++;
5718 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5719 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5720 	va_last = va + NBPDR - PAGE_SIZE;
5721 	for (;;) {
5722 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5723 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5724 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5725 		for (field = 0; field < _NPCM; field++) {
5726 			while (pc->pc_map[field]) {
5727 				bit = bsfq(pc->pc_map[field]);
5728 				pc->pc_map[field] &= ~(1ul << bit);
5729 				pv = &pc->pc_pventry[field * 64 + bit];
5730 				va += PAGE_SIZE;
5731 				pv->pv_va = va;
5732 				m++;
5733 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5734 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5735 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5736 				m->md.pv_gen++;
5737 				if (va == va_last)
5738 					goto out;
5739 			}
5740 		}
5741 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5742 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5743 	}
5744 out:
5745 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5746 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5747 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5748 	}
5749 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5750 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5751 }
5752 
5753 #if VM_NRESERVLEVEL > 0
5754 /*
5755  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5756  * replace the many pv entries for the 4KB page mappings by a single pv entry
5757  * for the 2MB page mapping.
5758  */
5759 static void
5760 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5761     struct rwlock **lockp)
5762 {
5763 	struct md_page *pvh;
5764 	pv_entry_t pv;
5765 	vm_offset_t va_last;
5766 	vm_page_t m;
5767 
5768 	KASSERT((pa & PDRMASK) == 0,
5769 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5770 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5771 
5772 	/*
5773 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5774 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5775 	 * a transfer avoids the possibility that get_pv_entry() calls
5776 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5777 	 * mappings that is being promoted.
5778 	 */
5779 	m = PHYS_TO_VM_PAGE(pa);
5780 	va = trunc_2mpage(va);
5781 	pv = pmap_pvh_remove(&m->md, pmap, va);
5782 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5783 	pvh = pa_to_pvh(pa);
5784 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5785 	pvh->pv_gen++;
5786 	/* Free the remaining NPTEPG - 1 pv entries. */
5787 	va_last = va + NBPDR - PAGE_SIZE;
5788 	do {
5789 		m++;
5790 		va += PAGE_SIZE;
5791 		pmap_pvh_free(&m->md, pmap, va);
5792 	} while (va < va_last);
5793 }
5794 #endif /* VM_NRESERVLEVEL > 0 */
5795 
5796 /*
5797  * First find and then destroy the pv entry for the specified pmap and virtual
5798  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5799  * page mappings.
5800  */
5801 static void
5802 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5803 {
5804 	pv_entry_t pv;
5805 
5806 	pv = pmap_pvh_remove(pvh, pmap, va);
5807 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5808 	free_pv_entry(pmap, pv);
5809 }
5810 
5811 /*
5812  * Conditionally create the PV entry for a 4KB page mapping if the required
5813  * memory can be allocated without resorting to reclamation.
5814  */
5815 static boolean_t
5816 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5817     struct rwlock **lockp)
5818 {
5819 	pv_entry_t pv;
5820 
5821 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5822 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5823 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5824 		pv->pv_va = va;
5825 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5826 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5827 		m->md.pv_gen++;
5828 		return (TRUE);
5829 	} else
5830 		return (FALSE);
5831 }
5832 
5833 /*
5834  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5835  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5836  * false if the PV entry cannot be allocated without resorting to reclamation.
5837  */
5838 static bool
5839 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5840     struct rwlock **lockp)
5841 {
5842 	struct md_page *pvh;
5843 	pv_entry_t pv;
5844 	vm_paddr_t pa;
5845 
5846 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5847 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5848 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5849 	    NULL : lockp)) == NULL)
5850 		return (false);
5851 	pv->pv_va = va;
5852 	pa = pde & PG_PS_FRAME;
5853 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5854 	pvh = pa_to_pvh(pa);
5855 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5856 	pvh->pv_gen++;
5857 	return (true);
5858 }
5859 
5860 /*
5861  * Fills a page table page with mappings to consecutive physical pages.
5862  */
5863 static void
5864 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5865 {
5866 	pt_entry_t *pte;
5867 
5868 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5869 		*pte = newpte;
5870 		newpte += PAGE_SIZE;
5871 	}
5872 }
5873 
5874 /*
5875  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5876  * mapping is invalidated.
5877  */
5878 static boolean_t
5879 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5880 {
5881 	struct rwlock *lock;
5882 	boolean_t rv;
5883 
5884 	lock = NULL;
5885 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5886 	if (lock != NULL)
5887 		rw_wunlock(lock);
5888 	return (rv);
5889 }
5890 
5891 static void
5892 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5893 {
5894 #ifdef INVARIANTS
5895 #ifdef DIAGNOSTIC
5896 	pt_entry_t *xpte, *ypte;
5897 
5898 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5899 	    xpte++, newpte += PAGE_SIZE) {
5900 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5901 			printf("pmap_demote_pde: xpte %zd and newpte map "
5902 			    "different pages: found %#lx, expected %#lx\n",
5903 			    xpte - firstpte, *xpte, newpte);
5904 			printf("page table dump\n");
5905 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5906 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5907 			panic("firstpte");
5908 		}
5909 	}
5910 #else
5911 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5912 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5913 	    " addresses"));
5914 #endif
5915 #endif
5916 }
5917 
5918 static void
5919 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5920     pd_entry_t oldpde, struct rwlock **lockp)
5921 {
5922 	struct spglist free;
5923 	vm_offset_t sva;
5924 
5925 	SLIST_INIT(&free);
5926 	sva = trunc_2mpage(va);
5927 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
5928 	if ((oldpde & pmap_global_bit(pmap)) == 0)
5929 		pmap_invalidate_pde_page(pmap, sva, oldpde);
5930 	vm_page_free_pages_toq(&free, true);
5931 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5932 	    va, pmap);
5933 }
5934 
5935 static boolean_t
5936 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5937     struct rwlock **lockp)
5938 {
5939 	pd_entry_t newpde, oldpde;
5940 	pt_entry_t *firstpte, newpte;
5941 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5942 	vm_paddr_t mptepa;
5943 	vm_page_t mpte;
5944 	int PG_PTE_CACHE;
5945 	bool in_kernel;
5946 
5947 	PG_A = pmap_accessed_bit(pmap);
5948 	PG_G = pmap_global_bit(pmap);
5949 	PG_M = pmap_modified_bit(pmap);
5950 	PG_RW = pmap_rw_bit(pmap);
5951 	PG_V = pmap_valid_bit(pmap);
5952 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
5953 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5954 
5955 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5956 	in_kernel = va >= VM_MAXUSER_ADDRESS;
5957 	oldpde = *pde;
5958 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5959 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5960 
5961 	/*
5962 	 * Invalidate the 2MB page mapping and return "failure" if the
5963 	 * mapping was never accessed.
5964 	 */
5965 	if ((oldpde & PG_A) == 0) {
5966 		KASSERT((oldpde & PG_W) == 0,
5967 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
5968 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5969 		return (FALSE);
5970 	}
5971 
5972 	mpte = pmap_remove_pt_page(pmap, va);
5973 	if (mpte == NULL) {
5974 		KASSERT((oldpde & PG_W) == 0,
5975 		    ("pmap_demote_pde: page table page for a wired mapping"
5976 		    " is missing"));
5977 
5978 		/*
5979 		 * If the page table page is missing and the mapping
5980 		 * is for a kernel address, the mapping must belong to
5981 		 * the direct map.  Page table pages are preallocated
5982 		 * for every other part of the kernel address space,
5983 		 * so the direct map region is the only part of the
5984 		 * kernel address space that must be handled here.
5985 		 */
5986 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
5987 		    va < DMAP_MAX_ADDRESS),
5988 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
5989 
5990 		/*
5991 		 * If the 2MB page mapping belongs to the direct map
5992 		 * region of the kernel's address space, then the page
5993 		 * allocation request specifies the highest possible
5994 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
5995 		 * priority is normal.
5996 		 */
5997 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
5998 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
5999 
6000 		/*
6001 		 * If the allocation of the new page table page fails,
6002 		 * invalidate the 2MB page mapping and return "failure".
6003 		 */
6004 		if (mpte == NULL) {
6005 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6006 			return (FALSE);
6007 		}
6008 
6009 		if (!in_kernel)
6010 			mpte->ref_count = NPTEPG;
6011 	}
6012 	mptepa = VM_PAGE_TO_PHYS(mpte);
6013 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6014 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6015 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6016 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6017 	newpte = oldpde & ~PG_PS;
6018 	newpte = pmap_swap_pat(pmap, newpte);
6019 
6020 	/*
6021 	 * If the page table page is not leftover from an earlier promotion,
6022 	 * initialize it.
6023 	 */
6024 	if (vm_page_none_valid(mpte))
6025 		pmap_fill_ptp(firstpte, newpte);
6026 
6027 	pmap_demote_pde_check(firstpte, newpte);
6028 
6029 	/*
6030 	 * If the mapping has changed attributes, update the page table
6031 	 * entries.
6032 	 */
6033 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6034 		pmap_fill_ptp(firstpte, newpte);
6035 
6036 	/*
6037 	 * The spare PV entries must be reserved prior to demoting the
6038 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6039 	 * of the PDE and the PV lists will be inconsistent, which can result
6040 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6041 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6042 	 * PV entry for the 2MB page mapping that is being demoted.
6043 	 */
6044 	if ((oldpde & PG_MANAGED) != 0)
6045 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6046 
6047 	/*
6048 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6049 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6050 	 * set.  Thus, there is no danger of a race with another
6051 	 * processor changing the setting of PG_A and/or PG_M between
6052 	 * the read above and the store below.
6053 	 */
6054 	if (workaround_erratum383)
6055 		pmap_update_pde(pmap, va, pde, newpde);
6056 	else
6057 		pde_store(pde, newpde);
6058 
6059 	/*
6060 	 * Invalidate a stale recursive mapping of the page table page.
6061 	 */
6062 	if (in_kernel)
6063 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6064 
6065 	/*
6066 	 * Demote the PV entry.
6067 	 */
6068 	if ((oldpde & PG_MANAGED) != 0)
6069 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6070 
6071 	counter_u64_add(pmap_pde_demotions, 1);
6072 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6073 	    va, pmap);
6074 	return (TRUE);
6075 }
6076 
6077 /*
6078  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6079  */
6080 static void
6081 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6082 {
6083 	pd_entry_t newpde;
6084 	vm_paddr_t mptepa;
6085 	vm_page_t mpte;
6086 
6087 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6088 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6089 	mpte = pmap_remove_pt_page(pmap, va);
6090 	if (mpte == NULL)
6091 		panic("pmap_remove_kernel_pde: Missing pt page.");
6092 
6093 	mptepa = VM_PAGE_TO_PHYS(mpte);
6094 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6095 
6096 	/*
6097 	 * If this page table page was unmapped by a promotion, then it
6098 	 * contains valid mappings.  Zero it to invalidate those mappings.
6099 	 */
6100 	if (vm_page_any_valid(mpte))
6101 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6102 
6103 	/*
6104 	 * Demote the mapping.
6105 	 */
6106 	if (workaround_erratum383)
6107 		pmap_update_pde(pmap, va, pde, newpde);
6108 	else
6109 		pde_store(pde, newpde);
6110 
6111 	/*
6112 	 * Invalidate a stale recursive mapping of the page table page.
6113 	 */
6114 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6115 }
6116 
6117 /*
6118  * pmap_remove_pde: do the things to unmap a superpage in a process
6119  */
6120 static int
6121 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6122     struct spglist *free, struct rwlock **lockp)
6123 {
6124 	struct md_page *pvh;
6125 	pd_entry_t oldpde;
6126 	vm_offset_t eva, va;
6127 	vm_page_t m, mpte;
6128 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6129 
6130 	PG_G = pmap_global_bit(pmap);
6131 	PG_A = pmap_accessed_bit(pmap);
6132 	PG_M = pmap_modified_bit(pmap);
6133 	PG_RW = pmap_rw_bit(pmap);
6134 
6135 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6136 	KASSERT((sva & PDRMASK) == 0,
6137 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6138 	oldpde = pte_load_clear(pdq);
6139 	if (oldpde & PG_W)
6140 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6141 	if ((oldpde & PG_G) != 0)
6142 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6143 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6144 	if (oldpde & PG_MANAGED) {
6145 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6146 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6147 		pmap_pvh_free(pvh, pmap, sva);
6148 		eva = sva + NBPDR;
6149 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6150 		    va < eva; va += PAGE_SIZE, m++) {
6151 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6152 				vm_page_dirty(m);
6153 			if (oldpde & PG_A)
6154 				vm_page_aflag_set(m, PGA_REFERENCED);
6155 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6156 			    TAILQ_EMPTY(&pvh->pv_list))
6157 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6158 			pmap_delayed_invl_page(m);
6159 		}
6160 	}
6161 	if (pmap == kernel_pmap) {
6162 		pmap_remove_kernel_pde(pmap, pdq, sva);
6163 	} else {
6164 		mpte = pmap_remove_pt_page(pmap, sva);
6165 		if (mpte != NULL) {
6166 			KASSERT(vm_page_all_valid(mpte),
6167 			    ("pmap_remove_pde: pte page not promoted"));
6168 			pmap_pt_page_count_adj(pmap, -1);
6169 			KASSERT(mpte->ref_count == NPTEPG,
6170 			    ("pmap_remove_pde: pte page ref count error"));
6171 			mpte->ref_count = 0;
6172 			pmap_add_delayed_free_list(mpte, free, FALSE);
6173 		}
6174 	}
6175 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6176 }
6177 
6178 /*
6179  * pmap_remove_pte: do the things to unmap a page in a process
6180  */
6181 static int
6182 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6183     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6184 {
6185 	struct md_page *pvh;
6186 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6187 	vm_page_t m;
6188 
6189 	PG_A = pmap_accessed_bit(pmap);
6190 	PG_M = pmap_modified_bit(pmap);
6191 	PG_RW = pmap_rw_bit(pmap);
6192 
6193 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6194 	oldpte = pte_load_clear(ptq);
6195 	if (oldpte & PG_W)
6196 		pmap->pm_stats.wired_count -= 1;
6197 	pmap_resident_count_adj(pmap, -1);
6198 	if (oldpte & PG_MANAGED) {
6199 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6200 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6201 			vm_page_dirty(m);
6202 		if (oldpte & PG_A)
6203 			vm_page_aflag_set(m, PGA_REFERENCED);
6204 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6205 		pmap_pvh_free(&m->md, pmap, va);
6206 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6207 		    (m->flags & PG_FICTITIOUS) == 0) {
6208 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6209 			if (TAILQ_EMPTY(&pvh->pv_list))
6210 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6211 		}
6212 		pmap_delayed_invl_page(m);
6213 	}
6214 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6215 }
6216 
6217 /*
6218  * Remove a single page from a process address space
6219  */
6220 static void
6221 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6222     struct spglist *free)
6223 {
6224 	struct rwlock *lock;
6225 	pt_entry_t *pte, PG_V;
6226 
6227 	PG_V = pmap_valid_bit(pmap);
6228 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6229 	if ((*pde & PG_V) == 0)
6230 		return;
6231 	pte = pmap_pde_to_pte(pde, va);
6232 	if ((*pte & PG_V) == 0)
6233 		return;
6234 	lock = NULL;
6235 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6236 	if (lock != NULL)
6237 		rw_wunlock(lock);
6238 	pmap_invalidate_page(pmap, va);
6239 }
6240 
6241 /*
6242  * Removes the specified range of addresses from the page table page.
6243  */
6244 static bool
6245 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6246     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6247 {
6248 	pt_entry_t PG_G, *pte;
6249 	vm_offset_t va;
6250 	bool anyvalid;
6251 
6252 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6253 	PG_G = pmap_global_bit(pmap);
6254 	anyvalid = false;
6255 	va = eva;
6256 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6257 	    sva += PAGE_SIZE) {
6258 		if (*pte == 0) {
6259 			if (va != eva) {
6260 				pmap_invalidate_range(pmap, va, sva);
6261 				va = eva;
6262 			}
6263 			continue;
6264 		}
6265 		if ((*pte & PG_G) == 0)
6266 			anyvalid = true;
6267 		else if (va == eva)
6268 			va = sva;
6269 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6270 			sva += PAGE_SIZE;
6271 			break;
6272 		}
6273 	}
6274 	if (va != eva)
6275 		pmap_invalidate_range(pmap, va, sva);
6276 	return (anyvalid);
6277 }
6278 
6279 /*
6280  *	Remove the given range of addresses from the specified map.
6281  *
6282  *	It is assumed that the start and end are properly
6283  *	rounded to the page size.
6284  */
6285 void
6286 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6287 {
6288 	struct rwlock *lock;
6289 	vm_page_t mt;
6290 	vm_offset_t va_next;
6291 	pml5_entry_t *pml5e;
6292 	pml4_entry_t *pml4e;
6293 	pdp_entry_t *pdpe;
6294 	pd_entry_t ptpaddr, *pde;
6295 	pt_entry_t PG_G, PG_V;
6296 	struct spglist free;
6297 	int anyvalid;
6298 
6299 	PG_G = pmap_global_bit(pmap);
6300 	PG_V = pmap_valid_bit(pmap);
6301 
6302 	/*
6303 	 * If there are no resident pages besides the top level page
6304 	 * table page(s), there is nothing to do.  Kernel pmap always
6305 	 * accounts whole preloaded area as resident, which makes its
6306 	 * resident count > 2.
6307 	 * Perform an unsynchronized read.  This is, however, safe.
6308 	 */
6309 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6310 	    1 : 0))
6311 		return;
6312 
6313 	anyvalid = 0;
6314 	SLIST_INIT(&free);
6315 
6316 	pmap_delayed_invl_start();
6317 	PMAP_LOCK(pmap);
6318 	pmap_pkru_on_remove(pmap, sva, eva);
6319 
6320 	/*
6321 	 * special handling of removing one page.  a very
6322 	 * common operation and easy to short circuit some
6323 	 * code.
6324 	 */
6325 	if (sva + PAGE_SIZE == eva) {
6326 		pde = pmap_pde(pmap, sva);
6327 		if (pde && (*pde & PG_PS) == 0) {
6328 			pmap_remove_page(pmap, sva, pde, &free);
6329 			goto out;
6330 		}
6331 	}
6332 
6333 	lock = NULL;
6334 	for (; sva < eva; sva = va_next) {
6335 		if (pmap->pm_stats.resident_count == 0)
6336 			break;
6337 
6338 		if (pmap_is_la57(pmap)) {
6339 			pml5e = pmap_pml5e(pmap, sva);
6340 			if ((*pml5e & PG_V) == 0) {
6341 				va_next = (sva + NBPML5) & ~PML5MASK;
6342 				if (va_next < sva)
6343 					va_next = eva;
6344 				continue;
6345 			}
6346 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6347 		} else {
6348 			pml4e = pmap_pml4e(pmap, sva);
6349 		}
6350 		if ((*pml4e & PG_V) == 0) {
6351 			va_next = (sva + NBPML4) & ~PML4MASK;
6352 			if (va_next < sva)
6353 				va_next = eva;
6354 			continue;
6355 		}
6356 
6357 		va_next = (sva + NBPDP) & ~PDPMASK;
6358 		if (va_next < sva)
6359 			va_next = eva;
6360 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6361 		if ((*pdpe & PG_V) == 0)
6362 			continue;
6363 		if ((*pdpe & PG_PS) != 0) {
6364 			KASSERT(va_next <= eva,
6365 			    ("partial update of non-transparent 1G mapping "
6366 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6367 			    *pdpe, sva, eva, va_next));
6368 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6369 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6370 			anyvalid = 1;
6371 			*pdpe = 0;
6372 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6373 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6374 			pmap_unwire_ptp(pmap, sva, mt, &free);
6375 			continue;
6376 		}
6377 
6378 		/*
6379 		 * Calculate index for next page table.
6380 		 */
6381 		va_next = (sva + NBPDR) & ~PDRMASK;
6382 		if (va_next < sva)
6383 			va_next = eva;
6384 
6385 		pde = pmap_pdpe_to_pde(pdpe, sva);
6386 		ptpaddr = *pde;
6387 
6388 		/*
6389 		 * Weed out invalid mappings.
6390 		 */
6391 		if (ptpaddr == 0)
6392 			continue;
6393 
6394 		/*
6395 		 * Check for large page.
6396 		 */
6397 		if ((ptpaddr & PG_PS) != 0) {
6398 			/*
6399 			 * Are we removing the entire large page?  If not,
6400 			 * demote the mapping and fall through.
6401 			 */
6402 			if (sva + NBPDR == va_next && eva >= va_next) {
6403 				/*
6404 				 * The TLB entry for a PG_G mapping is
6405 				 * invalidated by pmap_remove_pde().
6406 				 */
6407 				if ((ptpaddr & PG_G) == 0)
6408 					anyvalid = 1;
6409 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6410 				continue;
6411 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6412 			    &lock)) {
6413 				/* The large page mapping was destroyed. */
6414 				continue;
6415 			} else
6416 				ptpaddr = *pde;
6417 		}
6418 
6419 		/*
6420 		 * Limit our scan to either the end of the va represented
6421 		 * by the current page table page, or to the end of the
6422 		 * range being removed.
6423 		 */
6424 		if (va_next > eva)
6425 			va_next = eva;
6426 
6427 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6428 			anyvalid = 1;
6429 	}
6430 	if (lock != NULL)
6431 		rw_wunlock(lock);
6432 out:
6433 	if (anyvalid)
6434 		pmap_invalidate_all(pmap);
6435 	PMAP_UNLOCK(pmap);
6436 	pmap_delayed_invl_finish();
6437 	vm_page_free_pages_toq(&free, true);
6438 }
6439 
6440 /*
6441  *	Routine:	pmap_remove_all
6442  *	Function:
6443  *		Removes this physical page from
6444  *		all physical maps in which it resides.
6445  *		Reflects back modify bits to the pager.
6446  *
6447  *	Notes:
6448  *		Original versions of this routine were very
6449  *		inefficient because they iteratively called
6450  *		pmap_remove (slow...)
6451  */
6452 
6453 void
6454 pmap_remove_all(vm_page_t m)
6455 {
6456 	struct md_page *pvh;
6457 	pv_entry_t pv;
6458 	pmap_t pmap;
6459 	struct rwlock *lock;
6460 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6461 	pd_entry_t *pde;
6462 	vm_offset_t va;
6463 	struct spglist free;
6464 	int pvh_gen, md_gen;
6465 
6466 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6467 	    ("pmap_remove_all: page %p is not managed", m));
6468 	SLIST_INIT(&free);
6469 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6470 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6471 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6472 	rw_wlock(lock);
6473 retry:
6474 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6475 		pmap = PV_PMAP(pv);
6476 		if (!PMAP_TRYLOCK(pmap)) {
6477 			pvh_gen = pvh->pv_gen;
6478 			rw_wunlock(lock);
6479 			PMAP_LOCK(pmap);
6480 			rw_wlock(lock);
6481 			if (pvh_gen != pvh->pv_gen) {
6482 				PMAP_UNLOCK(pmap);
6483 				goto retry;
6484 			}
6485 		}
6486 		va = pv->pv_va;
6487 		pde = pmap_pde(pmap, va);
6488 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6489 		PMAP_UNLOCK(pmap);
6490 	}
6491 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6492 		pmap = PV_PMAP(pv);
6493 		if (!PMAP_TRYLOCK(pmap)) {
6494 			pvh_gen = pvh->pv_gen;
6495 			md_gen = m->md.pv_gen;
6496 			rw_wunlock(lock);
6497 			PMAP_LOCK(pmap);
6498 			rw_wlock(lock);
6499 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6500 				PMAP_UNLOCK(pmap);
6501 				goto retry;
6502 			}
6503 		}
6504 		PG_A = pmap_accessed_bit(pmap);
6505 		PG_M = pmap_modified_bit(pmap);
6506 		PG_RW = pmap_rw_bit(pmap);
6507 		pmap_resident_count_adj(pmap, -1);
6508 		pde = pmap_pde(pmap, pv->pv_va);
6509 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6510 		    " a 2mpage in page %p's pv list", m));
6511 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6512 		tpte = pte_load_clear(pte);
6513 		if (tpte & PG_W)
6514 			pmap->pm_stats.wired_count--;
6515 		if (tpte & PG_A)
6516 			vm_page_aflag_set(m, PGA_REFERENCED);
6517 
6518 		/*
6519 		 * Update the vm_page_t clean and reference bits.
6520 		 */
6521 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6522 			vm_page_dirty(m);
6523 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6524 		pmap_invalidate_page(pmap, pv->pv_va);
6525 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6526 		m->md.pv_gen++;
6527 		free_pv_entry(pmap, pv);
6528 		PMAP_UNLOCK(pmap);
6529 	}
6530 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6531 	rw_wunlock(lock);
6532 	pmap_delayed_invl_wait(m);
6533 	vm_page_free_pages_toq(&free, true);
6534 }
6535 
6536 /*
6537  * pmap_protect_pde: do the things to protect a 2mpage in a process
6538  */
6539 static boolean_t
6540 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6541 {
6542 	pd_entry_t newpde, oldpde;
6543 	vm_page_t m, mt;
6544 	boolean_t anychanged;
6545 	pt_entry_t PG_G, PG_M, PG_RW;
6546 
6547 	PG_G = pmap_global_bit(pmap);
6548 	PG_M = pmap_modified_bit(pmap);
6549 	PG_RW = pmap_rw_bit(pmap);
6550 
6551 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6552 	KASSERT((sva & PDRMASK) == 0,
6553 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6554 	anychanged = FALSE;
6555 retry:
6556 	oldpde = newpde = *pde;
6557 	if ((prot & VM_PROT_WRITE) == 0) {
6558 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6559 		    (PG_MANAGED | PG_M | PG_RW)) {
6560 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6561 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6562 				vm_page_dirty(mt);
6563 		}
6564 		newpde &= ~(PG_RW | PG_M);
6565 	}
6566 	if ((prot & VM_PROT_EXECUTE) == 0)
6567 		newpde |= pg_nx;
6568 	if (newpde != oldpde) {
6569 		/*
6570 		 * As an optimization to future operations on this PDE, clear
6571 		 * PG_PROMOTED.  The impending invalidation will remove any
6572 		 * lingering 4KB page mappings from the TLB.
6573 		 */
6574 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6575 			goto retry;
6576 		if ((oldpde & PG_G) != 0)
6577 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6578 		else
6579 			anychanged = TRUE;
6580 	}
6581 	return (anychanged);
6582 }
6583 
6584 /*
6585  *	Set the physical protection on the
6586  *	specified range of this map as requested.
6587  */
6588 void
6589 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6590 {
6591 	vm_page_t m;
6592 	vm_offset_t va_next;
6593 	pml4_entry_t *pml4e;
6594 	pdp_entry_t *pdpe;
6595 	pd_entry_t ptpaddr, *pde;
6596 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6597 	pt_entry_t obits, pbits;
6598 	boolean_t anychanged;
6599 
6600 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6601 	if (prot == VM_PROT_NONE) {
6602 		pmap_remove(pmap, sva, eva);
6603 		return;
6604 	}
6605 
6606 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6607 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6608 		return;
6609 
6610 	PG_G = pmap_global_bit(pmap);
6611 	PG_M = pmap_modified_bit(pmap);
6612 	PG_V = pmap_valid_bit(pmap);
6613 	PG_RW = pmap_rw_bit(pmap);
6614 	anychanged = FALSE;
6615 
6616 	/*
6617 	 * Although this function delays and batches the invalidation
6618 	 * of stale TLB entries, it does not need to call
6619 	 * pmap_delayed_invl_start() and
6620 	 * pmap_delayed_invl_finish(), because it does not
6621 	 * ordinarily destroy mappings.  Stale TLB entries from
6622 	 * protection-only changes need only be invalidated before the
6623 	 * pmap lock is released, because protection-only changes do
6624 	 * not destroy PV entries.  Even operations that iterate over
6625 	 * a physical page's PV list of mappings, like
6626 	 * pmap_remove_write(), acquire the pmap lock for each
6627 	 * mapping.  Consequently, for protection-only changes, the
6628 	 * pmap lock suffices to synchronize both page table and TLB
6629 	 * updates.
6630 	 *
6631 	 * This function only destroys a mapping if pmap_demote_pde()
6632 	 * fails.  In that case, stale TLB entries are immediately
6633 	 * invalidated.
6634 	 */
6635 
6636 	PMAP_LOCK(pmap);
6637 	for (; sva < eva; sva = va_next) {
6638 		pml4e = pmap_pml4e(pmap, sva);
6639 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6640 			va_next = (sva + NBPML4) & ~PML4MASK;
6641 			if (va_next < sva)
6642 				va_next = eva;
6643 			continue;
6644 		}
6645 
6646 		va_next = (sva + NBPDP) & ~PDPMASK;
6647 		if (va_next < sva)
6648 			va_next = eva;
6649 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6650 		if ((*pdpe & PG_V) == 0)
6651 			continue;
6652 		if ((*pdpe & PG_PS) != 0) {
6653 			KASSERT(va_next <= eva,
6654 			    ("partial update of non-transparent 1G mapping "
6655 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6656 			    *pdpe, sva, eva, va_next));
6657 retry_pdpe:
6658 			obits = pbits = *pdpe;
6659 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6660 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6661 			if ((prot & VM_PROT_WRITE) == 0)
6662 				pbits &= ~(PG_RW | PG_M);
6663 			if ((prot & VM_PROT_EXECUTE) == 0)
6664 				pbits |= pg_nx;
6665 
6666 			if (pbits != obits) {
6667 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6668 					/* PG_PS cannot be cleared under us, */
6669 					goto retry_pdpe;
6670 				anychanged = TRUE;
6671 			}
6672 			continue;
6673 		}
6674 
6675 		va_next = (sva + NBPDR) & ~PDRMASK;
6676 		if (va_next < sva)
6677 			va_next = eva;
6678 
6679 		pde = pmap_pdpe_to_pde(pdpe, sva);
6680 		ptpaddr = *pde;
6681 
6682 		/*
6683 		 * Weed out invalid mappings.
6684 		 */
6685 		if (ptpaddr == 0)
6686 			continue;
6687 
6688 		/*
6689 		 * Check for large page.
6690 		 */
6691 		if ((ptpaddr & PG_PS) != 0) {
6692 			/*
6693 			 * Are we protecting the entire large page?  If not,
6694 			 * demote the mapping and fall through.
6695 			 */
6696 			if (sva + NBPDR == va_next && eva >= va_next) {
6697 				/*
6698 				 * The TLB entry for a PG_G mapping is
6699 				 * invalidated by pmap_protect_pde().
6700 				 */
6701 				if (pmap_protect_pde(pmap, pde, sva, prot))
6702 					anychanged = TRUE;
6703 				continue;
6704 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6705 				/*
6706 				 * The large page mapping was destroyed.
6707 				 */
6708 				continue;
6709 			}
6710 		}
6711 
6712 		if (va_next > eva)
6713 			va_next = eva;
6714 
6715 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6716 		    sva += PAGE_SIZE) {
6717 retry:
6718 			obits = pbits = *pte;
6719 			if ((pbits & PG_V) == 0)
6720 				continue;
6721 
6722 			if ((prot & VM_PROT_WRITE) == 0) {
6723 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6724 				    (PG_MANAGED | PG_M | PG_RW)) {
6725 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6726 					vm_page_dirty(m);
6727 				}
6728 				pbits &= ~(PG_RW | PG_M);
6729 			}
6730 			if ((prot & VM_PROT_EXECUTE) == 0)
6731 				pbits |= pg_nx;
6732 
6733 			if (pbits != obits) {
6734 				if (!atomic_cmpset_long(pte, obits, pbits))
6735 					goto retry;
6736 				if (obits & PG_G)
6737 					pmap_invalidate_page(pmap, sva);
6738 				else
6739 					anychanged = TRUE;
6740 			}
6741 		}
6742 	}
6743 	if (anychanged)
6744 		pmap_invalidate_all(pmap);
6745 	PMAP_UNLOCK(pmap);
6746 }
6747 
6748 #if VM_NRESERVLEVEL > 0
6749 static bool
6750 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6751 {
6752 
6753 	if (pmap->pm_type != PT_EPT)
6754 		return (false);
6755 	return ((pde & EPT_PG_EXECUTE) != 0);
6756 }
6757 
6758 /*
6759  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6760  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6761  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6762  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6763  * identical characteristics.
6764  */
6765 static void
6766 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6767     struct rwlock **lockp)
6768 {
6769 	pd_entry_t newpde;
6770 	pt_entry_t *firstpte, oldpte, pa, *pte;
6771 	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V, PG_PKU_MASK;
6772 	int PG_PTE_CACHE;
6773 
6774 	PG_A = pmap_accessed_bit(pmap);
6775 	PG_G = pmap_global_bit(pmap);
6776 	PG_M = pmap_modified_bit(pmap);
6777 	PG_V = pmap_valid_bit(pmap);
6778 	PG_RW = pmap_rw_bit(pmap);
6779 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6780 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6781 
6782 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6783 
6784 	/*
6785 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6786 	 * ineligible for promotion due to hardware errata, invalid, or does
6787 	 * not map the first 4KB physical page within a 2MB page.
6788 	 */
6789 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6790 	newpde = *firstpte;
6791 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6792 		return;
6793 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6794 		counter_u64_add(pmap_pde_p_failures, 1);
6795 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6796 		    " in pmap %p", va, pmap);
6797 		return;
6798 	}
6799 
6800 	/*
6801 	 * Both here and in the below "for" loop, to allow for repromotion
6802 	 * after MADV_FREE, conditionally write protect a clean PTE before
6803 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6804 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6805 	 * address range [S, E).  pmap_advise() will demote the superpage
6806 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6807 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6808 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6809 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6810 	 * In other words, there is still a 4KB page in [S, E), call it P,
6811 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6812 	 * we write protect P before aborting the promotion, if and when P is
6813 	 * finally rewritten, there won't be a page fault to trigger
6814 	 * repromotion.
6815 	 */
6816 setpde:
6817 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6818 		/*
6819 		 * When PG_M is already clear, PG_RW can be cleared without
6820 		 * a TLB invalidation.
6821 		 */
6822 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6823 			goto setpde;
6824 		newpde &= ~PG_RW;
6825 	}
6826 	if ((newpde & PG_A) == 0) {
6827 		counter_u64_add(pmap_pde_p_failures, 1);
6828 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6829 		    " in pmap %p", va, pmap);
6830 		return;
6831 	}
6832 
6833 	/*
6834 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6835 	 * PTE maps an unexpected 4KB physical page or does not have identical
6836 	 * characteristics to the first PTE.
6837 	 */
6838 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6839 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6840 		oldpte = *pte;
6841 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6842 			counter_u64_add(pmap_pde_p_failures, 1);
6843 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6844 			    " in pmap %p", va, pmap);
6845 			return;
6846 		}
6847 setpte:
6848 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6849 			/*
6850 			 * When PG_M is already clear, PG_RW can be cleared
6851 			 * without a TLB invalidation.
6852 			 */
6853 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6854 				goto setpte;
6855 			oldpte &= ~PG_RW;
6856 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6857 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6858 			    (va & ~PDRMASK), pmap);
6859 		}
6860 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6861 			counter_u64_add(pmap_pde_p_failures, 1);
6862 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6863 			    " in pmap %p", va, pmap);
6864 			return;
6865 		}
6866 		pa -= PAGE_SIZE;
6867 	}
6868 
6869 	/*
6870 	 * Save the page table page in its current state until the PDE
6871 	 * mapping the superpage is demoted by pmap_demote_pde() or
6872 	 * destroyed by pmap_remove_pde().
6873 	 */
6874 	if (mpte == NULL)
6875 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6876 	KASSERT(mpte >= vm_page_array &&
6877 	    mpte < &vm_page_array[vm_page_array_size],
6878 	    ("pmap_promote_pde: page table page is out of range"));
6879 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
6880 	    ("pmap_promote_pde: page table page's pindex is wrong "
6881 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
6882 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
6883 	if (pmap_insert_pt_page(pmap, mpte, true)) {
6884 		counter_u64_add(pmap_pde_p_failures, 1);
6885 		CTR2(KTR_PMAP,
6886 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6887 		    pmap);
6888 		return;
6889 	}
6890 
6891 	/*
6892 	 * Promote the pv entries.
6893 	 */
6894 	if ((newpde & PG_MANAGED) != 0)
6895 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6896 
6897 	/*
6898 	 * Propagate the PAT index to its proper position.
6899 	 */
6900 	newpde = pmap_swap_pat(pmap, newpde);
6901 
6902 	/*
6903 	 * Map the superpage.
6904 	 */
6905 	if (workaround_erratum383)
6906 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6907 	else
6908 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6909 
6910 	counter_u64_add(pmap_pde_promotions, 1);
6911 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6912 	    " in pmap %p", va, pmap);
6913 }
6914 #endif /* VM_NRESERVLEVEL > 0 */
6915 
6916 static int
6917 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6918     int psind)
6919 {
6920 	vm_page_t mp;
6921 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6922 
6923 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6924 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6925 	    ("psind %d unexpected", psind));
6926 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6927 	    ("unaligned phys address %#lx newpte %#lx psind %d",
6928 	    newpte & PG_FRAME, newpte, psind));
6929 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
6930 	    ("unaligned va %#lx psind %d", va, psind));
6931 	KASSERT(va < VM_MAXUSER_ADDRESS,
6932 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
6933 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
6934 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
6935 
6936 	PG_V = pmap_valid_bit(pmap);
6937 
6938 restart:
6939 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
6940 		return (KERN_PROTECTION_FAILURE);
6941 	pten = newpte;
6942 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6943 		pten |= pmap_pkru_get(pmap, va);
6944 
6945 	if (psind == 2) {	/* 1G */
6946 		pml4e = pmap_pml4e(pmap, va);
6947 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6948 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
6949 			    NULL, va);
6950 			if (mp == NULL)
6951 				goto allocf;
6952 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6953 			pdpe = &pdpe[pmap_pdpe_index(va)];
6954 			origpte = *pdpe;
6955 			MPASS(origpte == 0);
6956 		} else {
6957 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
6958 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
6959 			origpte = *pdpe;
6960 			if ((origpte & PG_V) == 0) {
6961 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
6962 				mp->ref_count++;
6963 			}
6964 		}
6965 		*pdpe = pten;
6966 	} else /* (psind == 1) */ {	/* 2M */
6967 		pde = pmap_pde(pmap, va);
6968 		if (pde == NULL) {
6969 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
6970 			    NULL, va);
6971 			if (mp == NULL)
6972 				goto allocf;
6973 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6974 			pde = &pde[pmap_pde_index(va)];
6975 			origpte = *pde;
6976 			MPASS(origpte == 0);
6977 		} else {
6978 			origpte = *pde;
6979 			if ((origpte & PG_V) == 0) {
6980 				pdpe = pmap_pdpe(pmap, va);
6981 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
6982 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
6983 				mp->ref_count++;
6984 			}
6985 		}
6986 		*pde = pten;
6987 	}
6988 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
6989 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
6990 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
6991 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
6992 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
6993 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
6994 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
6995 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
6996 	if ((origpte & PG_V) == 0)
6997 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
6998 
6999 	return (KERN_SUCCESS);
7000 
7001 allocf:
7002 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7003 		return (KERN_RESOURCE_SHORTAGE);
7004 	PMAP_UNLOCK(pmap);
7005 	vm_wait(NULL);
7006 	PMAP_LOCK(pmap);
7007 	goto restart;
7008 }
7009 
7010 /*
7011  *	Insert the given physical page (p) at
7012  *	the specified virtual address (v) in the
7013  *	target physical map with the protection requested.
7014  *
7015  *	If specified, the page will be wired down, meaning
7016  *	that the related pte can not be reclaimed.
7017  *
7018  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7019  *	or lose information.  That is, this routine must actually
7020  *	insert this page into the given map NOW.
7021  *
7022  *	When destroying both a page table and PV entry, this function
7023  *	performs the TLB invalidation before releasing the PV list
7024  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7025  */
7026 int
7027 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7028     u_int flags, int8_t psind)
7029 {
7030 	struct rwlock *lock;
7031 	pd_entry_t *pde;
7032 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7033 	pt_entry_t newpte, origpte;
7034 	pv_entry_t pv;
7035 	vm_paddr_t opa, pa;
7036 	vm_page_t mpte, om;
7037 	int rv;
7038 	boolean_t nosleep;
7039 
7040 	PG_A = pmap_accessed_bit(pmap);
7041 	PG_G = pmap_global_bit(pmap);
7042 	PG_M = pmap_modified_bit(pmap);
7043 	PG_V = pmap_valid_bit(pmap);
7044 	PG_RW = pmap_rw_bit(pmap);
7045 
7046 	va = trunc_page(va);
7047 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7048 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7049 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7050 	    va));
7051 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7052 	    ("pmap_enter: managed mapping within the clean submap"));
7053 	if ((m->oflags & VPO_UNMANAGED) == 0)
7054 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7055 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7056 	    ("pmap_enter: flags %u has reserved bits set", flags));
7057 	pa = VM_PAGE_TO_PHYS(m);
7058 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7059 	if ((flags & VM_PROT_WRITE) != 0)
7060 		newpte |= PG_M;
7061 	if ((prot & VM_PROT_WRITE) != 0)
7062 		newpte |= PG_RW;
7063 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7064 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7065 	if ((prot & VM_PROT_EXECUTE) == 0)
7066 		newpte |= pg_nx;
7067 	if ((flags & PMAP_ENTER_WIRED) != 0)
7068 		newpte |= PG_W;
7069 	if (va < VM_MAXUSER_ADDRESS)
7070 		newpte |= PG_U;
7071 	if (pmap == kernel_pmap)
7072 		newpte |= PG_G;
7073 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7074 
7075 	/*
7076 	 * Set modified bit gratuitously for writeable mappings if
7077 	 * the page is unmanaged. We do not want to take a fault
7078 	 * to do the dirty bit accounting for these mappings.
7079 	 */
7080 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7081 		if ((newpte & PG_RW) != 0)
7082 			newpte |= PG_M;
7083 	} else
7084 		newpte |= PG_MANAGED;
7085 
7086 	lock = NULL;
7087 	PMAP_LOCK(pmap);
7088 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7089 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7090 		    ("managed largepage va %#lx flags %#x", va, flags));
7091 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7092 		    psind);
7093 		goto out;
7094 	}
7095 	if (psind == 1) {
7096 		/* Assert the required virtual and physical alignment. */
7097 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7098 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7099 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7100 		goto out;
7101 	}
7102 	mpte = NULL;
7103 
7104 	/*
7105 	 * In the case that a page table page is not
7106 	 * resident, we are creating it here.
7107 	 */
7108 retry:
7109 	pde = pmap_pde(pmap, va);
7110 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7111 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7112 		pte = pmap_pde_to_pte(pde, va);
7113 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7114 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7115 			mpte->ref_count++;
7116 		}
7117 	} else if (va < VM_MAXUSER_ADDRESS) {
7118 		/*
7119 		 * Here if the pte page isn't mapped, or if it has been
7120 		 * deallocated.
7121 		 */
7122 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7123 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7124 		    nosleep ? NULL : &lock, va);
7125 		if (mpte == NULL && nosleep) {
7126 			rv = KERN_RESOURCE_SHORTAGE;
7127 			goto out;
7128 		}
7129 		goto retry;
7130 	} else
7131 		panic("pmap_enter: invalid page directory va=%#lx", va);
7132 
7133 	origpte = *pte;
7134 	pv = NULL;
7135 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7136 		newpte |= pmap_pkru_get(pmap, va);
7137 
7138 	/*
7139 	 * Is the specified virtual address already mapped?
7140 	 */
7141 	if ((origpte & PG_V) != 0) {
7142 		/*
7143 		 * Wiring change, just update stats. We don't worry about
7144 		 * wiring PT pages as they remain resident as long as there
7145 		 * are valid mappings in them. Hence, if a user page is wired,
7146 		 * the PT page will be also.
7147 		 */
7148 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7149 			pmap->pm_stats.wired_count++;
7150 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7151 			pmap->pm_stats.wired_count--;
7152 
7153 		/*
7154 		 * Remove the extra PT page reference.
7155 		 */
7156 		if (mpte != NULL) {
7157 			mpte->ref_count--;
7158 			KASSERT(mpte->ref_count > 0,
7159 			    ("pmap_enter: missing reference to page table page,"
7160 			     " va: 0x%lx", va));
7161 		}
7162 
7163 		/*
7164 		 * Has the physical page changed?
7165 		 */
7166 		opa = origpte & PG_FRAME;
7167 		if (opa == pa) {
7168 			/*
7169 			 * No, might be a protection or wiring change.
7170 			 */
7171 			if ((origpte & PG_MANAGED) != 0 &&
7172 			    (newpte & PG_RW) != 0)
7173 				vm_page_aflag_set(m, PGA_WRITEABLE);
7174 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7175 				goto unchanged;
7176 			goto validate;
7177 		}
7178 
7179 		/*
7180 		 * The physical page has changed.  Temporarily invalidate
7181 		 * the mapping.  This ensures that all threads sharing the
7182 		 * pmap keep a consistent view of the mapping, which is
7183 		 * necessary for the correct handling of COW faults.  It
7184 		 * also permits reuse of the old mapping's PV entry,
7185 		 * avoiding an allocation.
7186 		 *
7187 		 * For consistency, handle unmanaged mappings the same way.
7188 		 */
7189 		origpte = pte_load_clear(pte);
7190 		KASSERT((origpte & PG_FRAME) == opa,
7191 		    ("pmap_enter: unexpected pa update for %#lx", va));
7192 		if ((origpte & PG_MANAGED) != 0) {
7193 			om = PHYS_TO_VM_PAGE(opa);
7194 
7195 			/*
7196 			 * The pmap lock is sufficient to synchronize with
7197 			 * concurrent calls to pmap_page_test_mappings() and
7198 			 * pmap_ts_referenced().
7199 			 */
7200 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7201 				vm_page_dirty(om);
7202 			if ((origpte & PG_A) != 0) {
7203 				pmap_invalidate_page(pmap, va);
7204 				vm_page_aflag_set(om, PGA_REFERENCED);
7205 			}
7206 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7207 			pv = pmap_pvh_remove(&om->md, pmap, va);
7208 			KASSERT(pv != NULL,
7209 			    ("pmap_enter: no PV entry for %#lx", va));
7210 			if ((newpte & PG_MANAGED) == 0)
7211 				free_pv_entry(pmap, pv);
7212 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7213 			    TAILQ_EMPTY(&om->md.pv_list) &&
7214 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7215 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7216 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7217 		} else {
7218 			/*
7219 			 * Since this mapping is unmanaged, assume that PG_A
7220 			 * is set.
7221 			 */
7222 			pmap_invalidate_page(pmap, va);
7223 		}
7224 		origpte = 0;
7225 	} else {
7226 		/*
7227 		 * Increment the counters.
7228 		 */
7229 		if ((newpte & PG_W) != 0)
7230 			pmap->pm_stats.wired_count++;
7231 		pmap_resident_count_adj(pmap, 1);
7232 	}
7233 
7234 	/*
7235 	 * Enter on the PV list if part of our managed memory.
7236 	 */
7237 	if ((newpte & PG_MANAGED) != 0) {
7238 		if (pv == NULL) {
7239 			pv = get_pv_entry(pmap, &lock);
7240 			pv->pv_va = va;
7241 		}
7242 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7243 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7244 		m->md.pv_gen++;
7245 		if ((newpte & PG_RW) != 0)
7246 			vm_page_aflag_set(m, PGA_WRITEABLE);
7247 	}
7248 
7249 	/*
7250 	 * Update the PTE.
7251 	 */
7252 	if ((origpte & PG_V) != 0) {
7253 validate:
7254 		origpte = pte_load_store(pte, newpte);
7255 		KASSERT((origpte & PG_FRAME) == pa,
7256 		    ("pmap_enter: unexpected pa update for %#lx", va));
7257 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7258 		    (PG_M | PG_RW)) {
7259 			if ((origpte & PG_MANAGED) != 0)
7260 				vm_page_dirty(m);
7261 
7262 			/*
7263 			 * Although the PTE may still have PG_RW set, TLB
7264 			 * invalidation may nonetheless be required because
7265 			 * the PTE no longer has PG_M set.
7266 			 */
7267 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7268 			/*
7269 			 * This PTE change does not require TLB invalidation.
7270 			 */
7271 			goto unchanged;
7272 		}
7273 		if ((origpte & PG_A) != 0)
7274 			pmap_invalidate_page(pmap, va);
7275 	} else
7276 		pte_store(pte, newpte);
7277 
7278 unchanged:
7279 
7280 #if VM_NRESERVLEVEL > 0
7281 	/*
7282 	 * If both the page table page and the reservation are fully
7283 	 * populated, then attempt promotion.
7284 	 */
7285 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7286 	    pmap_ps_enabled(pmap) &&
7287 	    (m->flags & PG_FICTITIOUS) == 0 &&
7288 	    vm_reserv_level_iffullpop(m) == 0)
7289 		pmap_promote_pde(pmap, pde, va, mpte, &lock);
7290 #endif
7291 
7292 	rv = KERN_SUCCESS;
7293 out:
7294 	if (lock != NULL)
7295 		rw_wunlock(lock);
7296 	PMAP_UNLOCK(pmap);
7297 	return (rv);
7298 }
7299 
7300 /*
7301  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7302  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7303  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7304  * "no replace", and "no reclaim" are specified.
7305  */
7306 static int
7307 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7308     struct rwlock **lockp)
7309 {
7310 	pd_entry_t newpde;
7311 	pt_entry_t PG_V;
7312 
7313 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7314 	PG_V = pmap_valid_bit(pmap);
7315 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
7316 	    PG_PS | PG_V;
7317 	if ((m->oflags & VPO_UNMANAGED) == 0)
7318 		newpde |= PG_MANAGED;
7319 	if ((prot & VM_PROT_EXECUTE) == 0)
7320 		newpde |= pg_nx;
7321 	if (va < VM_MAXUSER_ADDRESS)
7322 		newpde |= PG_U;
7323 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7324 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7325 }
7326 
7327 /*
7328  * Returns true if every page table entry in the specified page table page is
7329  * zero.
7330  */
7331 static bool
7332 pmap_every_pte_zero(vm_paddr_t pa)
7333 {
7334 	pt_entry_t *pt_end, *pte;
7335 
7336 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7337 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7338 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7339 		if (*pte != 0)
7340 			return (false);
7341 	}
7342 	return (true);
7343 }
7344 
7345 /*
7346  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7347  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7348  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7349  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7350  * page mapping already exists within the 2MB virtual address range starting
7351  * at the specified virtual address or (2) the requested 2MB page mapping is
7352  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7353  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7354  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7355  * settings are not the same across the 2MB virtual address range starting at
7356  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7357  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7358  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7359  * failed.
7360  *
7361  * The parameter "m" is only used when creating a managed, writeable mapping.
7362  */
7363 static int
7364 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7365     vm_page_t m, struct rwlock **lockp)
7366 {
7367 	struct spglist free;
7368 	pd_entry_t oldpde, *pde;
7369 	pt_entry_t PG_G, PG_RW, PG_V;
7370 	vm_page_t mt, pdpg;
7371 
7372 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
7373 	    ("pmap_enter_pde: cannot create wired user mapping"));
7374 	PG_G = pmap_global_bit(pmap);
7375 	PG_RW = pmap_rw_bit(pmap);
7376 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7377 	    ("pmap_enter_pde: newpde is missing PG_M"));
7378 	PG_V = pmap_valid_bit(pmap);
7379 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7380 
7381 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7382 	    newpde))) {
7383 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7384 		    " in pmap %p", va, pmap);
7385 		return (KERN_FAILURE);
7386 	}
7387 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7388 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7389 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7390 		    " in pmap %p", va, pmap);
7391 		return (KERN_RESOURCE_SHORTAGE);
7392 	}
7393 
7394 	/*
7395 	 * If pkru is not same for the whole pde range, return failure
7396 	 * and let vm_fault() cope.  Check after pde allocation, since
7397 	 * it could sleep.
7398 	 */
7399 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7400 		pmap_abort_ptp(pmap, va, pdpg);
7401 		return (KERN_PROTECTION_FAILURE);
7402 	}
7403 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7404 		newpde &= ~X86_PG_PKU_MASK;
7405 		newpde |= pmap_pkru_get(pmap, va);
7406 	}
7407 
7408 	/*
7409 	 * If there are existing mappings, either abort or remove them.
7410 	 */
7411 	oldpde = *pde;
7412 	if ((oldpde & PG_V) != 0) {
7413 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7414 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7415 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7416 			if ((oldpde & PG_PS) != 0) {
7417 				if (pdpg != NULL)
7418 					pdpg->ref_count--;
7419 				CTR2(KTR_PMAP,
7420 				    "pmap_enter_pde: no space for va %#lx"
7421 				    " in pmap %p", va, pmap);
7422 				return (KERN_NO_SPACE);
7423 			} else if (va < VM_MAXUSER_ADDRESS ||
7424 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7425 				if (pdpg != NULL)
7426 					pdpg->ref_count--;
7427 				CTR2(KTR_PMAP,
7428 				    "pmap_enter_pde: failure for va %#lx"
7429 				    " in pmap %p", va, pmap);
7430 				return (KERN_FAILURE);
7431 			}
7432 		}
7433 		/* Break the existing mapping(s). */
7434 		SLIST_INIT(&free);
7435 		if ((oldpde & PG_PS) != 0) {
7436 			/*
7437 			 * The reference to the PD page that was acquired by
7438 			 * pmap_alloc_pde() ensures that it won't be freed.
7439 			 * However, if the PDE resulted from a promotion, then
7440 			 * a reserved PT page could be freed.
7441 			 */
7442 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7443 			if ((oldpde & PG_G) == 0)
7444 				pmap_invalidate_pde_page(pmap, va, oldpde);
7445 		} else {
7446 			pmap_delayed_invl_start();
7447 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7448 			    lockp))
7449 		               pmap_invalidate_all(pmap);
7450 			pmap_delayed_invl_finish();
7451 		}
7452 		if (va < VM_MAXUSER_ADDRESS) {
7453 			vm_page_free_pages_toq(&free, true);
7454 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7455 			    pde));
7456 		} else {
7457 			KASSERT(SLIST_EMPTY(&free),
7458 			    ("pmap_enter_pde: freed kernel page table page"));
7459 
7460 			/*
7461 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7462 			 * leave the kernel page table page zero filled.
7463 			 */
7464 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7465 			if (pmap_insert_pt_page(pmap, mt, false))
7466 				panic("pmap_enter_pde: trie insert failed");
7467 		}
7468 	}
7469 
7470 	if ((newpde & PG_MANAGED) != 0) {
7471 		/*
7472 		 * Abort this mapping if its PV entry could not be created.
7473 		 */
7474 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7475 			if (pdpg != NULL)
7476 				pmap_abort_ptp(pmap, va, pdpg);
7477 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7478 			    " in pmap %p", va, pmap);
7479 			return (KERN_RESOURCE_SHORTAGE);
7480 		}
7481 		if ((newpde & PG_RW) != 0) {
7482 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7483 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7484 		}
7485 	}
7486 
7487 	/*
7488 	 * Increment counters.
7489 	 */
7490 	if ((newpde & PG_W) != 0)
7491 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7492 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7493 
7494 	/*
7495 	 * Map the superpage.  (This is not a promoted mapping; there will not
7496 	 * be any lingering 4KB page mappings in the TLB.)
7497 	 */
7498 	pde_store(pde, newpde);
7499 
7500 	counter_u64_add(pmap_pde_mappings, 1);
7501 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7502 	    va, pmap);
7503 	return (KERN_SUCCESS);
7504 }
7505 
7506 /*
7507  * Maps a sequence of resident pages belonging to the same object.
7508  * The sequence begins with the given page m_start.  This page is
7509  * mapped at the given virtual address start.  Each subsequent page is
7510  * mapped at a virtual address that is offset from start by the same
7511  * amount as the page is offset from m_start within the object.  The
7512  * last page in the sequence is the page with the largest offset from
7513  * m_start that can be mapped at a virtual address less than the given
7514  * virtual address end.  Not every virtual page between start and end
7515  * is mapped; only those for which a resident page exists with the
7516  * corresponding offset from m_start are mapped.
7517  */
7518 void
7519 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7520     vm_page_t m_start, vm_prot_t prot)
7521 {
7522 	struct rwlock *lock;
7523 	vm_offset_t va;
7524 	vm_page_t m, mpte;
7525 	vm_pindex_t diff, psize;
7526 	int rv;
7527 
7528 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7529 
7530 	psize = atop(end - start);
7531 	mpte = NULL;
7532 	m = m_start;
7533 	lock = NULL;
7534 	PMAP_LOCK(pmap);
7535 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7536 		va = start + ptoa(diff);
7537 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7538 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7539 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7540 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7541 			m = &m[NBPDR / PAGE_SIZE - 1];
7542 		else
7543 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7544 			    mpte, &lock);
7545 		m = TAILQ_NEXT(m, listq);
7546 	}
7547 	if (lock != NULL)
7548 		rw_wunlock(lock);
7549 	PMAP_UNLOCK(pmap);
7550 }
7551 
7552 /*
7553  * this code makes some *MAJOR* assumptions:
7554  * 1. Current pmap & pmap exists.
7555  * 2. Not wired.
7556  * 3. Read access.
7557  * 4. No page table pages.
7558  * but is *MUCH* faster than pmap_enter...
7559  */
7560 
7561 void
7562 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7563 {
7564 	struct rwlock *lock;
7565 
7566 	lock = NULL;
7567 	PMAP_LOCK(pmap);
7568 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7569 	if (lock != NULL)
7570 		rw_wunlock(lock);
7571 	PMAP_UNLOCK(pmap);
7572 }
7573 
7574 static vm_page_t
7575 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7576     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7577 {
7578 	pt_entry_t newpte, *pte, PG_V;
7579 
7580 	KASSERT(!VA_IS_CLEANMAP(va) ||
7581 	    (m->oflags & VPO_UNMANAGED) != 0,
7582 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7583 	PG_V = pmap_valid_bit(pmap);
7584 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7585 
7586 	/*
7587 	 * In the case that a page table page is not
7588 	 * resident, we are creating it here.
7589 	 */
7590 	if (va < VM_MAXUSER_ADDRESS) {
7591 		pdp_entry_t *pdpe;
7592 		pd_entry_t *pde;
7593 		vm_pindex_t ptepindex;
7594 
7595 		/*
7596 		 * Calculate pagetable page index
7597 		 */
7598 		ptepindex = pmap_pde_pindex(va);
7599 		if (mpte && (mpte->pindex == ptepindex)) {
7600 			mpte->ref_count++;
7601 		} else {
7602 			/*
7603 			 * If the page table page is mapped, we just increment
7604 			 * the hold count, and activate it.  Otherwise, we
7605 			 * attempt to allocate a page table page, passing NULL
7606 			 * instead of the PV list lock pointer because we don't
7607 			 * intend to sleep.  If this attempt fails, we don't
7608 			 * retry.  Instead, we give up.
7609 			 */
7610 			pdpe = pmap_pdpe(pmap, va);
7611 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7612 				if ((*pdpe & PG_PS) != 0)
7613 					return (NULL);
7614 				pde = pmap_pdpe_to_pde(pdpe, va);
7615 				if ((*pde & PG_V) != 0) {
7616 					if ((*pde & PG_PS) != 0)
7617 						return (NULL);
7618 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7619 					mpte->ref_count++;
7620 				} else {
7621 					mpte = pmap_allocpte_alloc(pmap,
7622 					    ptepindex, NULL, va);
7623 					if (mpte == NULL)
7624 						return (NULL);
7625 				}
7626 			} else {
7627 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7628 				    NULL, va);
7629 				if (mpte == NULL)
7630 					return (NULL);
7631 			}
7632 		}
7633 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7634 		pte = &pte[pmap_pte_index(va)];
7635 	} else {
7636 		mpte = NULL;
7637 		pte = vtopte(va);
7638 	}
7639 	if (*pte) {
7640 		if (mpte != NULL)
7641 			mpte->ref_count--;
7642 		return (NULL);
7643 	}
7644 
7645 	/*
7646 	 * Enter on the PV list if part of our managed memory.
7647 	 */
7648 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7649 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7650 		if (mpte != NULL)
7651 			pmap_abort_ptp(pmap, va, mpte);
7652 		return (NULL);
7653 	}
7654 
7655 	/*
7656 	 * Increment counters
7657 	 */
7658 	pmap_resident_count_adj(pmap, 1);
7659 
7660 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7661 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
7662 	if ((m->oflags & VPO_UNMANAGED) == 0)
7663 		newpte |= PG_MANAGED;
7664 	if ((prot & VM_PROT_EXECUTE) == 0)
7665 		newpte |= pg_nx;
7666 	if (va < VM_MAXUSER_ADDRESS)
7667 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7668 	pte_store(pte, newpte);
7669 	return (mpte);
7670 }
7671 
7672 /*
7673  * Make a temporary mapping for a physical address.  This is only intended
7674  * to be used for panic dumps.
7675  */
7676 void *
7677 pmap_kenter_temporary(vm_paddr_t pa, int i)
7678 {
7679 	vm_offset_t va;
7680 
7681 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7682 	pmap_kenter(va, pa);
7683 	pmap_invlpg(kernel_pmap, va);
7684 	return ((void *)crashdumpmap);
7685 }
7686 
7687 /*
7688  * This code maps large physical mmap regions into the
7689  * processor address space.  Note that some shortcuts
7690  * are taken, but the code works.
7691  */
7692 void
7693 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7694     vm_pindex_t pindex, vm_size_t size)
7695 {
7696 	pd_entry_t *pde;
7697 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7698 	vm_paddr_t pa, ptepa;
7699 	vm_page_t p, pdpg;
7700 	int pat_mode;
7701 
7702 	PG_A = pmap_accessed_bit(pmap);
7703 	PG_M = pmap_modified_bit(pmap);
7704 	PG_V = pmap_valid_bit(pmap);
7705 	PG_RW = pmap_rw_bit(pmap);
7706 
7707 	VM_OBJECT_ASSERT_WLOCKED(object);
7708 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7709 	    ("pmap_object_init_pt: non-device object"));
7710 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7711 		if (!pmap_ps_enabled(pmap))
7712 			return;
7713 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7714 			return;
7715 		p = vm_page_lookup(object, pindex);
7716 		KASSERT(vm_page_all_valid(p),
7717 		    ("pmap_object_init_pt: invalid page %p", p));
7718 		pat_mode = p->md.pat_mode;
7719 
7720 		/*
7721 		 * Abort the mapping if the first page is not physically
7722 		 * aligned to a 2MB page boundary.
7723 		 */
7724 		ptepa = VM_PAGE_TO_PHYS(p);
7725 		if (ptepa & (NBPDR - 1))
7726 			return;
7727 
7728 		/*
7729 		 * Skip the first page.  Abort the mapping if the rest of
7730 		 * the pages are not physically contiguous or have differing
7731 		 * memory attributes.
7732 		 */
7733 		p = TAILQ_NEXT(p, listq);
7734 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7735 		    pa += PAGE_SIZE) {
7736 			KASSERT(vm_page_all_valid(p),
7737 			    ("pmap_object_init_pt: invalid page %p", p));
7738 			if (pa != VM_PAGE_TO_PHYS(p) ||
7739 			    pat_mode != p->md.pat_mode)
7740 				return;
7741 			p = TAILQ_NEXT(p, listq);
7742 		}
7743 
7744 		/*
7745 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7746 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7747 		 * will not affect the termination of this loop.
7748 		 */
7749 		PMAP_LOCK(pmap);
7750 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
7751 		    pa < ptepa + size; pa += NBPDR) {
7752 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7753 			if (pde == NULL) {
7754 				/*
7755 				 * The creation of mappings below is only an
7756 				 * optimization.  If a page directory page
7757 				 * cannot be allocated without blocking,
7758 				 * continue on to the next mapping rather than
7759 				 * blocking.
7760 				 */
7761 				addr += NBPDR;
7762 				continue;
7763 			}
7764 			if ((*pde & PG_V) == 0) {
7765 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7766 				    PG_U | PG_RW | PG_V);
7767 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7768 				counter_u64_add(pmap_pde_mappings, 1);
7769 			} else {
7770 				/* Continue on if the PDE is already valid. */
7771 				pdpg->ref_count--;
7772 				KASSERT(pdpg->ref_count > 0,
7773 				    ("pmap_object_init_pt: missing reference "
7774 				    "to page directory page, va: 0x%lx", addr));
7775 			}
7776 			addr += NBPDR;
7777 		}
7778 		PMAP_UNLOCK(pmap);
7779 	}
7780 }
7781 
7782 /*
7783  *	Clear the wired attribute from the mappings for the specified range of
7784  *	addresses in the given pmap.  Every valid mapping within that range
7785  *	must have the wired attribute set.  In contrast, invalid mappings
7786  *	cannot have the wired attribute set, so they are ignored.
7787  *
7788  *	The wired attribute of the page table entry is not a hardware
7789  *	feature, so there is no need to invalidate any TLB entries.
7790  *	Since pmap_demote_pde() for the wired entry must never fail,
7791  *	pmap_delayed_invl_start()/finish() calls around the
7792  *	function are not needed.
7793  */
7794 void
7795 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7796 {
7797 	vm_offset_t va_next;
7798 	pml4_entry_t *pml4e;
7799 	pdp_entry_t *pdpe;
7800 	pd_entry_t *pde;
7801 	pt_entry_t *pte, PG_V, PG_G __diagused;
7802 
7803 	PG_V = pmap_valid_bit(pmap);
7804 	PG_G = pmap_global_bit(pmap);
7805 	PMAP_LOCK(pmap);
7806 	for (; sva < eva; sva = va_next) {
7807 		pml4e = pmap_pml4e(pmap, sva);
7808 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7809 			va_next = (sva + NBPML4) & ~PML4MASK;
7810 			if (va_next < sva)
7811 				va_next = eva;
7812 			continue;
7813 		}
7814 
7815 		va_next = (sva + NBPDP) & ~PDPMASK;
7816 		if (va_next < sva)
7817 			va_next = eva;
7818 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7819 		if ((*pdpe & PG_V) == 0)
7820 			continue;
7821 		if ((*pdpe & PG_PS) != 0) {
7822 			KASSERT(va_next <= eva,
7823 			    ("partial update of non-transparent 1G mapping "
7824 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7825 			    *pdpe, sva, eva, va_next));
7826 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7827 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7828 			atomic_clear_long(pdpe, PG_W);
7829 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7830 			continue;
7831 		}
7832 
7833 		va_next = (sva + NBPDR) & ~PDRMASK;
7834 		if (va_next < sva)
7835 			va_next = eva;
7836 		pde = pmap_pdpe_to_pde(pdpe, sva);
7837 		if ((*pde & PG_V) == 0)
7838 			continue;
7839 		if ((*pde & PG_PS) != 0) {
7840 			if ((*pde & PG_W) == 0)
7841 				panic("pmap_unwire: pde %#jx is missing PG_W",
7842 				    (uintmax_t)*pde);
7843 
7844 			/*
7845 			 * Are we unwiring the entire large page?  If not,
7846 			 * demote the mapping and fall through.
7847 			 */
7848 			if (sva + NBPDR == va_next && eva >= va_next) {
7849 				atomic_clear_long(pde, PG_W);
7850 				pmap->pm_stats.wired_count -= NBPDR /
7851 				    PAGE_SIZE;
7852 				continue;
7853 			} else if (!pmap_demote_pde(pmap, pde, sva))
7854 				panic("pmap_unwire: demotion failed");
7855 		}
7856 		if (va_next > eva)
7857 			va_next = eva;
7858 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
7859 		    sva += PAGE_SIZE) {
7860 			if ((*pte & PG_V) == 0)
7861 				continue;
7862 			if ((*pte & PG_W) == 0)
7863 				panic("pmap_unwire: pte %#jx is missing PG_W",
7864 				    (uintmax_t)*pte);
7865 
7866 			/*
7867 			 * PG_W must be cleared atomically.  Although the pmap
7868 			 * lock synchronizes access to PG_W, another processor
7869 			 * could be setting PG_M and/or PG_A concurrently.
7870 			 */
7871 			atomic_clear_long(pte, PG_W);
7872 			pmap->pm_stats.wired_count--;
7873 		}
7874 	}
7875 	PMAP_UNLOCK(pmap);
7876 }
7877 
7878 /*
7879  *	Copy the range specified by src_addr/len
7880  *	from the source map to the range dst_addr/len
7881  *	in the destination map.
7882  *
7883  *	This routine is only advisory and need not do anything.
7884  */
7885 void
7886 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
7887     vm_offset_t src_addr)
7888 {
7889 	struct rwlock *lock;
7890 	pml4_entry_t *pml4e;
7891 	pdp_entry_t *pdpe;
7892 	pd_entry_t *pde, srcptepaddr;
7893 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
7894 	vm_offset_t addr, end_addr, va_next;
7895 	vm_page_t dst_pdpg, dstmpte, srcmpte;
7896 
7897 	if (dst_addr != src_addr)
7898 		return;
7899 
7900 	if (dst_pmap->pm_type != src_pmap->pm_type)
7901 		return;
7902 
7903 	/*
7904 	 * EPT page table entries that require emulation of A/D bits are
7905 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
7906 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
7907 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
7908 	 * implementations flag an EPT misconfiguration for exec-only
7909 	 * mappings we skip this function entirely for emulated pmaps.
7910 	 */
7911 	if (pmap_emulate_ad_bits(dst_pmap))
7912 		return;
7913 
7914 	end_addr = src_addr + len;
7915 	lock = NULL;
7916 	if (dst_pmap < src_pmap) {
7917 		PMAP_LOCK(dst_pmap);
7918 		PMAP_LOCK(src_pmap);
7919 	} else {
7920 		PMAP_LOCK(src_pmap);
7921 		PMAP_LOCK(dst_pmap);
7922 	}
7923 
7924 	PG_A = pmap_accessed_bit(dst_pmap);
7925 	PG_M = pmap_modified_bit(dst_pmap);
7926 	PG_V = pmap_valid_bit(dst_pmap);
7927 
7928 	for (addr = src_addr; addr < end_addr; addr = va_next) {
7929 		KASSERT(addr < UPT_MIN_ADDRESS,
7930 		    ("pmap_copy: invalid to pmap_copy page tables"));
7931 
7932 		pml4e = pmap_pml4e(src_pmap, addr);
7933 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7934 			va_next = (addr + NBPML4) & ~PML4MASK;
7935 			if (va_next < addr)
7936 				va_next = end_addr;
7937 			continue;
7938 		}
7939 
7940 		va_next = (addr + NBPDP) & ~PDPMASK;
7941 		if (va_next < addr)
7942 			va_next = end_addr;
7943 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
7944 		if ((*pdpe & PG_V) == 0)
7945 			continue;
7946 		if ((*pdpe & PG_PS) != 0) {
7947 			KASSERT(va_next <= end_addr,
7948 			    ("partial update of non-transparent 1G mapping "
7949 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7950 			    *pdpe, addr, end_addr, va_next));
7951 			MPASS((addr & PDPMASK) == 0);
7952 			MPASS((*pdpe & PG_MANAGED) == 0);
7953 			srcptepaddr = *pdpe;
7954 			pdpe = pmap_pdpe(dst_pmap, addr);
7955 			if (pdpe == NULL) {
7956 				if (pmap_allocpte_alloc(dst_pmap,
7957 				    pmap_pml4e_pindex(addr), NULL, addr) ==
7958 				    NULL)
7959 					break;
7960 				pdpe = pmap_pdpe(dst_pmap, addr);
7961 			} else {
7962 				pml4e = pmap_pml4e(dst_pmap, addr);
7963 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7964 				dst_pdpg->ref_count++;
7965 			}
7966 			KASSERT(*pdpe == 0,
7967 			    ("1G mapping present in dst pmap "
7968 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7969 			    *pdpe, addr, end_addr, va_next));
7970 			*pdpe = srcptepaddr & ~PG_W;
7971 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
7972 			continue;
7973 		}
7974 
7975 		va_next = (addr + NBPDR) & ~PDRMASK;
7976 		if (va_next < addr)
7977 			va_next = end_addr;
7978 
7979 		pde = pmap_pdpe_to_pde(pdpe, addr);
7980 		srcptepaddr = *pde;
7981 		if (srcptepaddr == 0)
7982 			continue;
7983 
7984 		if (srcptepaddr & PG_PS) {
7985 			/*
7986 			 * We can only virtual copy whole superpages.
7987 			 */
7988 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
7989 				continue;
7990 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
7991 			if (pde == NULL)
7992 				break;
7993 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
7994 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
7995 			    PMAP_ENTER_NORECLAIM, &lock))) {
7996 				/*
7997 				 * We leave the dirty bit unchanged because
7998 				 * managed read/write superpage mappings are
7999 				 * required to be dirty.  However, managed
8000 				 * superpage mappings are not required to
8001 				 * have their accessed bit set, so we clear
8002 				 * it because we don't know if this mapping
8003 				 * will be used.
8004 				 */
8005 				srcptepaddr &= ~PG_W;
8006 				if ((srcptepaddr & PG_MANAGED) != 0)
8007 					srcptepaddr &= ~PG_A;
8008 				*pde = srcptepaddr;
8009 				pmap_resident_count_adj(dst_pmap, NBPDR /
8010 				    PAGE_SIZE);
8011 				counter_u64_add(pmap_pde_mappings, 1);
8012 			} else
8013 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8014 			continue;
8015 		}
8016 
8017 		srcptepaddr &= PG_FRAME;
8018 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8019 		KASSERT(srcmpte->ref_count > 0,
8020 		    ("pmap_copy: source page table page is unused"));
8021 
8022 		if (va_next > end_addr)
8023 			va_next = end_addr;
8024 
8025 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8026 		src_pte = &src_pte[pmap_pte_index(addr)];
8027 		dstmpte = NULL;
8028 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8029 			ptetemp = *src_pte;
8030 
8031 			/*
8032 			 * We only virtual copy managed pages.
8033 			 */
8034 			if ((ptetemp & PG_MANAGED) == 0)
8035 				continue;
8036 
8037 			if (dstmpte != NULL) {
8038 				KASSERT(dstmpte->pindex ==
8039 				    pmap_pde_pindex(addr),
8040 				    ("dstmpte pindex/addr mismatch"));
8041 				dstmpte->ref_count++;
8042 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8043 			    NULL)) == NULL)
8044 				goto out;
8045 			dst_pte = (pt_entry_t *)
8046 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8047 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8048 			if (*dst_pte == 0 &&
8049 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8050 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8051 				/*
8052 				 * Clear the wired, modified, and accessed
8053 				 * (referenced) bits during the copy.
8054 				 */
8055 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8056 				pmap_resident_count_adj(dst_pmap, 1);
8057 			} else {
8058 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8059 				goto out;
8060 			}
8061 			/* Have we copied all of the valid mappings? */
8062 			if (dstmpte->ref_count >= srcmpte->ref_count)
8063 				break;
8064 		}
8065 	}
8066 out:
8067 	if (lock != NULL)
8068 		rw_wunlock(lock);
8069 	PMAP_UNLOCK(src_pmap);
8070 	PMAP_UNLOCK(dst_pmap);
8071 }
8072 
8073 int
8074 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8075 {
8076 	int error;
8077 
8078 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8079 	    dst_pmap->pm_type != PT_X86 ||
8080 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8081 		return (0);
8082 	for (;;) {
8083 		if (dst_pmap < src_pmap) {
8084 			PMAP_LOCK(dst_pmap);
8085 			PMAP_LOCK(src_pmap);
8086 		} else {
8087 			PMAP_LOCK(src_pmap);
8088 			PMAP_LOCK(dst_pmap);
8089 		}
8090 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8091 		/* Clean up partial copy on failure due to no memory. */
8092 		if (error == ENOMEM)
8093 			pmap_pkru_deassign_all(dst_pmap);
8094 		PMAP_UNLOCK(src_pmap);
8095 		PMAP_UNLOCK(dst_pmap);
8096 		if (error != ENOMEM)
8097 			break;
8098 		vm_wait(NULL);
8099 	}
8100 	return (error);
8101 }
8102 
8103 /*
8104  * Zero the specified hardware page.
8105  */
8106 void
8107 pmap_zero_page(vm_page_t m)
8108 {
8109 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8110 
8111 	pagezero((void *)va);
8112 }
8113 
8114 /*
8115  * Zero an area within a single hardware page.  off and size must not
8116  * cover an area beyond a single hardware page.
8117  */
8118 void
8119 pmap_zero_page_area(vm_page_t m, int off, int size)
8120 {
8121 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8122 
8123 	if (off == 0 && size == PAGE_SIZE)
8124 		pagezero((void *)va);
8125 	else
8126 		bzero((char *)va + off, size);
8127 }
8128 
8129 /*
8130  * Copy 1 specified hardware page to another.
8131  */
8132 void
8133 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8134 {
8135 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8136 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8137 
8138 	pagecopy((void *)src, (void *)dst);
8139 }
8140 
8141 int unmapped_buf_allowed = 1;
8142 
8143 void
8144 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8145     vm_offset_t b_offset, int xfersize)
8146 {
8147 	void *a_cp, *b_cp;
8148 	vm_page_t pages[2];
8149 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8150 	int cnt;
8151 	boolean_t mapped;
8152 
8153 	while (xfersize > 0) {
8154 		a_pg_offset = a_offset & PAGE_MASK;
8155 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8156 		b_pg_offset = b_offset & PAGE_MASK;
8157 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8158 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8159 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8160 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
8161 		a_cp = (char *)vaddr[0] + a_pg_offset;
8162 		b_cp = (char *)vaddr[1] + b_pg_offset;
8163 		bcopy(a_cp, b_cp, cnt);
8164 		if (__predict_false(mapped))
8165 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
8166 		a_offset += cnt;
8167 		b_offset += cnt;
8168 		xfersize -= cnt;
8169 	}
8170 }
8171 
8172 /*
8173  * Returns true if the pmap's pv is one of the first
8174  * 16 pvs linked to from this page.  This count may
8175  * be changed upwards or downwards in the future; it
8176  * is only necessary that true be returned for a small
8177  * subset of pmaps for proper page aging.
8178  */
8179 boolean_t
8180 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8181 {
8182 	struct md_page *pvh;
8183 	struct rwlock *lock;
8184 	pv_entry_t pv;
8185 	int loops = 0;
8186 	boolean_t rv;
8187 
8188 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8189 	    ("pmap_page_exists_quick: page %p is not managed", m));
8190 	rv = FALSE;
8191 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8192 	rw_rlock(lock);
8193 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8194 		if (PV_PMAP(pv) == pmap) {
8195 			rv = TRUE;
8196 			break;
8197 		}
8198 		loops++;
8199 		if (loops >= 16)
8200 			break;
8201 	}
8202 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8203 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8204 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8205 			if (PV_PMAP(pv) == pmap) {
8206 				rv = TRUE;
8207 				break;
8208 			}
8209 			loops++;
8210 			if (loops >= 16)
8211 				break;
8212 		}
8213 	}
8214 	rw_runlock(lock);
8215 	return (rv);
8216 }
8217 
8218 /*
8219  *	pmap_page_wired_mappings:
8220  *
8221  *	Return the number of managed mappings to the given physical page
8222  *	that are wired.
8223  */
8224 int
8225 pmap_page_wired_mappings(vm_page_t m)
8226 {
8227 	struct rwlock *lock;
8228 	struct md_page *pvh;
8229 	pmap_t pmap;
8230 	pt_entry_t *pte;
8231 	pv_entry_t pv;
8232 	int count, md_gen, pvh_gen;
8233 
8234 	if ((m->oflags & VPO_UNMANAGED) != 0)
8235 		return (0);
8236 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8237 	rw_rlock(lock);
8238 restart:
8239 	count = 0;
8240 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8241 		pmap = PV_PMAP(pv);
8242 		if (!PMAP_TRYLOCK(pmap)) {
8243 			md_gen = m->md.pv_gen;
8244 			rw_runlock(lock);
8245 			PMAP_LOCK(pmap);
8246 			rw_rlock(lock);
8247 			if (md_gen != m->md.pv_gen) {
8248 				PMAP_UNLOCK(pmap);
8249 				goto restart;
8250 			}
8251 		}
8252 		pte = pmap_pte(pmap, pv->pv_va);
8253 		if ((*pte & PG_W) != 0)
8254 			count++;
8255 		PMAP_UNLOCK(pmap);
8256 	}
8257 	if ((m->flags & PG_FICTITIOUS) == 0) {
8258 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8259 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8260 			pmap = PV_PMAP(pv);
8261 			if (!PMAP_TRYLOCK(pmap)) {
8262 				md_gen = m->md.pv_gen;
8263 				pvh_gen = pvh->pv_gen;
8264 				rw_runlock(lock);
8265 				PMAP_LOCK(pmap);
8266 				rw_rlock(lock);
8267 				if (md_gen != m->md.pv_gen ||
8268 				    pvh_gen != pvh->pv_gen) {
8269 					PMAP_UNLOCK(pmap);
8270 					goto restart;
8271 				}
8272 			}
8273 			pte = pmap_pde(pmap, pv->pv_va);
8274 			if ((*pte & PG_W) != 0)
8275 				count++;
8276 			PMAP_UNLOCK(pmap);
8277 		}
8278 	}
8279 	rw_runlock(lock);
8280 	return (count);
8281 }
8282 
8283 /*
8284  * Returns TRUE if the given page is mapped individually or as part of
8285  * a 2mpage.  Otherwise, returns FALSE.
8286  */
8287 boolean_t
8288 pmap_page_is_mapped(vm_page_t m)
8289 {
8290 	struct rwlock *lock;
8291 	boolean_t rv;
8292 
8293 	if ((m->oflags & VPO_UNMANAGED) != 0)
8294 		return (FALSE);
8295 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8296 	rw_rlock(lock);
8297 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8298 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8299 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8300 	rw_runlock(lock);
8301 	return (rv);
8302 }
8303 
8304 /*
8305  * Destroy all managed, non-wired mappings in the given user-space
8306  * pmap.  This pmap cannot be active on any processor besides the
8307  * caller.
8308  *
8309  * This function cannot be applied to the kernel pmap.  Moreover, it
8310  * is not intended for general use.  It is only to be used during
8311  * process termination.  Consequently, it can be implemented in ways
8312  * that make it faster than pmap_remove().  First, it can more quickly
8313  * destroy mappings by iterating over the pmap's collection of PV
8314  * entries, rather than searching the page table.  Second, it doesn't
8315  * have to test and clear the page table entries atomically, because
8316  * no processor is currently accessing the user address space.  In
8317  * particular, a page table entry's dirty bit won't change state once
8318  * this function starts.
8319  *
8320  * Although this function destroys all of the pmap's managed,
8321  * non-wired mappings, it can delay and batch the invalidation of TLB
8322  * entries without calling pmap_delayed_invl_start() and
8323  * pmap_delayed_invl_finish().  Because the pmap is not active on
8324  * any other processor, none of these TLB entries will ever be used
8325  * before their eventual invalidation.  Consequently, there is no need
8326  * for either pmap_remove_all() or pmap_remove_write() to wait for
8327  * that eventual TLB invalidation.
8328  */
8329 void
8330 pmap_remove_pages(pmap_t pmap)
8331 {
8332 	pd_entry_t ptepde;
8333 	pt_entry_t *pte, tpte;
8334 	pt_entry_t PG_M, PG_RW, PG_V;
8335 	struct spglist free;
8336 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8337 	vm_page_t m, mpte, mt;
8338 	pv_entry_t pv;
8339 	struct md_page *pvh;
8340 	struct pv_chunk *pc, *npc;
8341 	struct rwlock *lock;
8342 	int64_t bit;
8343 	uint64_t inuse, bitmask;
8344 	int allfree, field, i, idx;
8345 #ifdef PV_STATS
8346 	int freed;
8347 #endif
8348 	boolean_t superpage;
8349 	vm_paddr_t pa;
8350 
8351 	/*
8352 	 * Assert that the given pmap is only active on the current
8353 	 * CPU.  Unfortunately, we cannot block another CPU from
8354 	 * activating the pmap while this function is executing.
8355 	 */
8356 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8357 #ifdef INVARIANTS
8358 	{
8359 		cpuset_t other_cpus;
8360 
8361 		other_cpus = all_cpus;
8362 		critical_enter();
8363 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8364 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8365 		critical_exit();
8366 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8367 	}
8368 #endif
8369 
8370 	lock = NULL;
8371 	PG_M = pmap_modified_bit(pmap);
8372 	PG_V = pmap_valid_bit(pmap);
8373 	PG_RW = pmap_rw_bit(pmap);
8374 
8375 	for (i = 0; i < PMAP_MEMDOM; i++)
8376 		TAILQ_INIT(&free_chunks[i]);
8377 	SLIST_INIT(&free);
8378 	PMAP_LOCK(pmap);
8379 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8380 		allfree = 1;
8381 #ifdef PV_STATS
8382 		freed = 0;
8383 #endif
8384 		for (field = 0; field < _NPCM; field++) {
8385 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8386 			while (inuse != 0) {
8387 				bit = bsfq(inuse);
8388 				bitmask = 1UL << bit;
8389 				idx = field * 64 + bit;
8390 				pv = &pc->pc_pventry[idx];
8391 				inuse &= ~bitmask;
8392 
8393 				pte = pmap_pdpe(pmap, pv->pv_va);
8394 				ptepde = *pte;
8395 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8396 				tpte = *pte;
8397 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8398 					superpage = FALSE;
8399 					ptepde = tpte;
8400 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8401 					    PG_FRAME);
8402 					pte = &pte[pmap_pte_index(pv->pv_va)];
8403 					tpte = *pte;
8404 				} else {
8405 					/*
8406 					 * Keep track whether 'tpte' is a
8407 					 * superpage explicitly instead of
8408 					 * relying on PG_PS being set.
8409 					 *
8410 					 * This is because PG_PS is numerically
8411 					 * identical to PG_PTE_PAT and thus a
8412 					 * regular page could be mistaken for
8413 					 * a superpage.
8414 					 */
8415 					superpage = TRUE;
8416 				}
8417 
8418 				if ((tpte & PG_V) == 0) {
8419 					panic("bad pte va %lx pte %lx",
8420 					    pv->pv_va, tpte);
8421 				}
8422 
8423 /*
8424  * We cannot remove wired pages from a process' mapping at this time
8425  */
8426 				if (tpte & PG_W) {
8427 					allfree = 0;
8428 					continue;
8429 				}
8430 
8431 				/* Mark free */
8432 				pc->pc_map[field] |= bitmask;
8433 
8434 				/*
8435 				 * Because this pmap is not active on other
8436 				 * processors, the dirty bit cannot have
8437 				 * changed state since we last loaded pte.
8438 				 */
8439 				pte_clear(pte);
8440 
8441 				if (superpage)
8442 					pa = tpte & PG_PS_FRAME;
8443 				else
8444 					pa = tpte & PG_FRAME;
8445 
8446 				m = PHYS_TO_VM_PAGE(pa);
8447 				KASSERT(m->phys_addr == pa,
8448 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8449 				    m, (uintmax_t)m->phys_addr,
8450 				    (uintmax_t)tpte));
8451 
8452 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8453 				    m < &vm_page_array[vm_page_array_size],
8454 				    ("pmap_remove_pages: bad tpte %#jx",
8455 				    (uintmax_t)tpte));
8456 
8457 				/*
8458 				 * Update the vm_page_t clean/reference bits.
8459 				 */
8460 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8461 					if (superpage) {
8462 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8463 							vm_page_dirty(mt);
8464 					} else
8465 						vm_page_dirty(m);
8466 				}
8467 
8468 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8469 
8470 				if (superpage) {
8471 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8472 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8473 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8474 					pvh->pv_gen++;
8475 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8476 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8477 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8478 							    TAILQ_EMPTY(&mt->md.pv_list))
8479 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8480 					}
8481 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8482 					if (mpte != NULL) {
8483 						KASSERT(vm_page_all_valid(mpte),
8484 						    ("pmap_remove_pages: pte page not promoted"));
8485 						pmap_pt_page_count_adj(pmap, -1);
8486 						KASSERT(mpte->ref_count == NPTEPG,
8487 						    ("pmap_remove_pages: pte page reference count error"));
8488 						mpte->ref_count = 0;
8489 						pmap_add_delayed_free_list(mpte, &free, FALSE);
8490 					}
8491 				} else {
8492 					pmap_resident_count_adj(pmap, -1);
8493 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8494 					m->md.pv_gen++;
8495 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8496 					    TAILQ_EMPTY(&m->md.pv_list) &&
8497 					    (m->flags & PG_FICTITIOUS) == 0) {
8498 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8499 						if (TAILQ_EMPTY(&pvh->pv_list))
8500 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8501 					}
8502 				}
8503 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8504 #ifdef PV_STATS
8505 				freed++;
8506 #endif
8507 			}
8508 		}
8509 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8510 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8511 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8512 		if (allfree) {
8513 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8514 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8515 		}
8516 	}
8517 	if (lock != NULL)
8518 		rw_wunlock(lock);
8519 	pmap_invalidate_all(pmap);
8520 	pmap_pkru_deassign_all(pmap);
8521 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8522 	PMAP_UNLOCK(pmap);
8523 	vm_page_free_pages_toq(&free, true);
8524 }
8525 
8526 static boolean_t
8527 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
8528 {
8529 	struct rwlock *lock;
8530 	pv_entry_t pv;
8531 	struct md_page *pvh;
8532 	pt_entry_t *pte, mask;
8533 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8534 	pmap_t pmap;
8535 	int md_gen, pvh_gen;
8536 	boolean_t rv;
8537 
8538 	rv = FALSE;
8539 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8540 	rw_rlock(lock);
8541 restart:
8542 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8543 		pmap = PV_PMAP(pv);
8544 		if (!PMAP_TRYLOCK(pmap)) {
8545 			md_gen = m->md.pv_gen;
8546 			rw_runlock(lock);
8547 			PMAP_LOCK(pmap);
8548 			rw_rlock(lock);
8549 			if (md_gen != m->md.pv_gen) {
8550 				PMAP_UNLOCK(pmap);
8551 				goto restart;
8552 			}
8553 		}
8554 		pte = pmap_pte(pmap, pv->pv_va);
8555 		mask = 0;
8556 		if (modified) {
8557 			PG_M = pmap_modified_bit(pmap);
8558 			PG_RW = pmap_rw_bit(pmap);
8559 			mask |= PG_RW | PG_M;
8560 		}
8561 		if (accessed) {
8562 			PG_A = pmap_accessed_bit(pmap);
8563 			PG_V = pmap_valid_bit(pmap);
8564 			mask |= PG_V | PG_A;
8565 		}
8566 		rv = (*pte & mask) == mask;
8567 		PMAP_UNLOCK(pmap);
8568 		if (rv)
8569 			goto out;
8570 	}
8571 	if ((m->flags & PG_FICTITIOUS) == 0) {
8572 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8573 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8574 			pmap = PV_PMAP(pv);
8575 			if (!PMAP_TRYLOCK(pmap)) {
8576 				md_gen = m->md.pv_gen;
8577 				pvh_gen = pvh->pv_gen;
8578 				rw_runlock(lock);
8579 				PMAP_LOCK(pmap);
8580 				rw_rlock(lock);
8581 				if (md_gen != m->md.pv_gen ||
8582 				    pvh_gen != pvh->pv_gen) {
8583 					PMAP_UNLOCK(pmap);
8584 					goto restart;
8585 				}
8586 			}
8587 			pte = pmap_pde(pmap, pv->pv_va);
8588 			mask = 0;
8589 			if (modified) {
8590 				PG_M = pmap_modified_bit(pmap);
8591 				PG_RW = pmap_rw_bit(pmap);
8592 				mask |= PG_RW | PG_M;
8593 			}
8594 			if (accessed) {
8595 				PG_A = pmap_accessed_bit(pmap);
8596 				PG_V = pmap_valid_bit(pmap);
8597 				mask |= PG_V | PG_A;
8598 			}
8599 			rv = (*pte & mask) == mask;
8600 			PMAP_UNLOCK(pmap);
8601 			if (rv)
8602 				goto out;
8603 		}
8604 	}
8605 out:
8606 	rw_runlock(lock);
8607 	return (rv);
8608 }
8609 
8610 /*
8611  *	pmap_is_modified:
8612  *
8613  *	Return whether or not the specified physical page was modified
8614  *	in any physical maps.
8615  */
8616 boolean_t
8617 pmap_is_modified(vm_page_t m)
8618 {
8619 
8620 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8621 	    ("pmap_is_modified: page %p is not managed", m));
8622 
8623 	/*
8624 	 * If the page is not busied then this check is racy.
8625 	 */
8626 	if (!pmap_page_is_write_mapped(m))
8627 		return (FALSE);
8628 	return (pmap_page_test_mappings(m, FALSE, TRUE));
8629 }
8630 
8631 /*
8632  *	pmap_is_prefaultable:
8633  *
8634  *	Return whether or not the specified virtual address is eligible
8635  *	for prefault.
8636  */
8637 boolean_t
8638 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8639 {
8640 	pd_entry_t *pde;
8641 	pt_entry_t *pte, PG_V;
8642 	boolean_t rv;
8643 
8644 	PG_V = pmap_valid_bit(pmap);
8645 
8646 	/*
8647 	 * Return TRUE if and only if the PTE for the specified virtual
8648 	 * address is allocated but invalid.
8649 	 */
8650 	rv = FALSE;
8651 	PMAP_LOCK(pmap);
8652 	pde = pmap_pde(pmap, addr);
8653 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8654 		pte = pmap_pde_to_pte(pde, addr);
8655 		rv = (*pte & PG_V) == 0;
8656 	}
8657 	PMAP_UNLOCK(pmap);
8658 	return (rv);
8659 }
8660 
8661 /*
8662  *	pmap_is_referenced:
8663  *
8664  *	Return whether or not the specified physical page was referenced
8665  *	in any physical maps.
8666  */
8667 boolean_t
8668 pmap_is_referenced(vm_page_t m)
8669 {
8670 
8671 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8672 	    ("pmap_is_referenced: page %p is not managed", m));
8673 	return (pmap_page_test_mappings(m, TRUE, FALSE));
8674 }
8675 
8676 /*
8677  * Clear the write and modified bits in each of the given page's mappings.
8678  */
8679 void
8680 pmap_remove_write(vm_page_t m)
8681 {
8682 	struct md_page *pvh;
8683 	pmap_t pmap;
8684 	struct rwlock *lock;
8685 	pv_entry_t next_pv, pv;
8686 	pd_entry_t *pde;
8687 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8688 	vm_offset_t va;
8689 	int pvh_gen, md_gen;
8690 
8691 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8692 	    ("pmap_remove_write: page %p is not managed", m));
8693 
8694 	vm_page_assert_busied(m);
8695 	if (!pmap_page_is_write_mapped(m))
8696 		return;
8697 
8698 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8699 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8700 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8701 	rw_wlock(lock);
8702 retry:
8703 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8704 		pmap = PV_PMAP(pv);
8705 		if (!PMAP_TRYLOCK(pmap)) {
8706 			pvh_gen = pvh->pv_gen;
8707 			rw_wunlock(lock);
8708 			PMAP_LOCK(pmap);
8709 			rw_wlock(lock);
8710 			if (pvh_gen != pvh->pv_gen) {
8711 				PMAP_UNLOCK(pmap);
8712 				goto retry;
8713 			}
8714 		}
8715 		PG_RW = pmap_rw_bit(pmap);
8716 		va = pv->pv_va;
8717 		pde = pmap_pde(pmap, va);
8718 		if ((*pde & PG_RW) != 0)
8719 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8720 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8721 		    ("inconsistent pv lock %p %p for page %p",
8722 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8723 		PMAP_UNLOCK(pmap);
8724 	}
8725 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8726 		pmap = PV_PMAP(pv);
8727 		if (!PMAP_TRYLOCK(pmap)) {
8728 			pvh_gen = pvh->pv_gen;
8729 			md_gen = m->md.pv_gen;
8730 			rw_wunlock(lock);
8731 			PMAP_LOCK(pmap);
8732 			rw_wlock(lock);
8733 			if (pvh_gen != pvh->pv_gen ||
8734 			    md_gen != m->md.pv_gen) {
8735 				PMAP_UNLOCK(pmap);
8736 				goto retry;
8737 			}
8738 		}
8739 		PG_M = pmap_modified_bit(pmap);
8740 		PG_RW = pmap_rw_bit(pmap);
8741 		pde = pmap_pde(pmap, pv->pv_va);
8742 		KASSERT((*pde & PG_PS) == 0,
8743 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8744 		    m));
8745 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8746 		oldpte = *pte;
8747 		if (oldpte & PG_RW) {
8748 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8749 			    ~(PG_RW | PG_M)))
8750 				cpu_spinwait();
8751 			if ((oldpte & PG_M) != 0)
8752 				vm_page_dirty(m);
8753 			pmap_invalidate_page(pmap, pv->pv_va);
8754 		}
8755 		PMAP_UNLOCK(pmap);
8756 	}
8757 	rw_wunlock(lock);
8758 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8759 	pmap_delayed_invl_wait(m);
8760 }
8761 
8762 static __inline boolean_t
8763 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
8764 {
8765 
8766 	if (!pmap_emulate_ad_bits(pmap))
8767 		return (TRUE);
8768 
8769 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
8770 
8771 	/*
8772 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
8773 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
8774 	 * if the EPT_PG_WRITE bit is set.
8775 	 */
8776 	if ((pte & EPT_PG_WRITE) != 0)
8777 		return (FALSE);
8778 
8779 	/*
8780 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
8781 	 */
8782 	if ((pte & EPT_PG_EXECUTE) == 0 ||
8783 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
8784 		return (TRUE);
8785 	else
8786 		return (FALSE);
8787 }
8788 
8789 /*
8790  *	pmap_ts_referenced:
8791  *
8792  *	Return a count of reference bits for a page, clearing those bits.
8793  *	It is not necessary for every reference bit to be cleared, but it
8794  *	is necessary that 0 only be returned when there are truly no
8795  *	reference bits set.
8796  *
8797  *	As an optimization, update the page's dirty field if a modified bit is
8798  *	found while counting reference bits.  This opportunistic update can be
8799  *	performed at low cost and can eliminate the need for some future calls
8800  *	to pmap_is_modified().  However, since this function stops after
8801  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8802  *	dirty pages.  Those dirty pages will only be detected by a future call
8803  *	to pmap_is_modified().
8804  *
8805  *	A DI block is not needed within this function, because
8806  *	invalidations are performed before the PV list lock is
8807  *	released.
8808  */
8809 int
8810 pmap_ts_referenced(vm_page_t m)
8811 {
8812 	struct md_page *pvh;
8813 	pv_entry_t pv, pvf;
8814 	pmap_t pmap;
8815 	struct rwlock *lock;
8816 	pd_entry_t oldpde, *pde;
8817 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8818 	vm_offset_t va;
8819 	vm_paddr_t pa;
8820 	int cleared, md_gen, not_cleared, pvh_gen;
8821 	struct spglist free;
8822 	boolean_t demoted;
8823 
8824 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8825 	    ("pmap_ts_referenced: page %p is not managed", m));
8826 	SLIST_INIT(&free);
8827 	cleared = 0;
8828 	pa = VM_PAGE_TO_PHYS(m);
8829 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8830 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8831 	rw_wlock(lock);
8832 retry:
8833 	not_cleared = 0;
8834 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8835 		goto small_mappings;
8836 	pv = pvf;
8837 	do {
8838 		if (pvf == NULL)
8839 			pvf = pv;
8840 		pmap = PV_PMAP(pv);
8841 		if (!PMAP_TRYLOCK(pmap)) {
8842 			pvh_gen = pvh->pv_gen;
8843 			rw_wunlock(lock);
8844 			PMAP_LOCK(pmap);
8845 			rw_wlock(lock);
8846 			if (pvh_gen != pvh->pv_gen) {
8847 				PMAP_UNLOCK(pmap);
8848 				goto retry;
8849 			}
8850 		}
8851 		PG_A = pmap_accessed_bit(pmap);
8852 		PG_M = pmap_modified_bit(pmap);
8853 		PG_RW = pmap_rw_bit(pmap);
8854 		va = pv->pv_va;
8855 		pde = pmap_pde(pmap, pv->pv_va);
8856 		oldpde = *pde;
8857 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8858 			/*
8859 			 * Although "oldpde" is mapping a 2MB page, because
8860 			 * this function is called at a 4KB page granularity,
8861 			 * we only update the 4KB page under test.
8862 			 */
8863 			vm_page_dirty(m);
8864 		}
8865 		if ((oldpde & PG_A) != 0) {
8866 			/*
8867 			 * Since this reference bit is shared by 512 4KB
8868 			 * pages, it should not be cleared every time it is
8869 			 * tested.  Apply a simple "hash" function on the
8870 			 * physical page number, the virtual superpage number,
8871 			 * and the pmap address to select one 4KB page out of
8872 			 * the 512 on which testing the reference bit will
8873 			 * result in clearing that reference bit.  This
8874 			 * function is designed to avoid the selection of the
8875 			 * same 4KB page for every 2MB page mapping.
8876 			 *
8877 			 * On demotion, a mapping that hasn't been referenced
8878 			 * is simply destroyed.  To avoid the possibility of a
8879 			 * subsequent page fault on a demoted wired mapping,
8880 			 * always leave its reference bit set.  Moreover,
8881 			 * since the superpage is wired, the current state of
8882 			 * its reference bit won't affect page replacement.
8883 			 */
8884 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
8885 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
8886 			    (oldpde & PG_W) == 0) {
8887 				if (safe_to_clear_referenced(pmap, oldpde)) {
8888 					atomic_clear_long(pde, PG_A);
8889 					pmap_invalidate_page(pmap, pv->pv_va);
8890 					demoted = FALSE;
8891 				} else if (pmap_demote_pde_locked(pmap, pde,
8892 				    pv->pv_va, &lock)) {
8893 					/*
8894 					 * Remove the mapping to a single page
8895 					 * so that a subsequent access may
8896 					 * repromote.  Since the underlying
8897 					 * page table page is fully populated,
8898 					 * this removal never frees a page
8899 					 * table page.
8900 					 */
8901 					demoted = TRUE;
8902 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
8903 					    PG_PS_FRAME);
8904 					pte = pmap_pde_to_pte(pde, va);
8905 					pmap_remove_pte(pmap, pte, va, *pde,
8906 					    NULL, &lock);
8907 					pmap_invalidate_page(pmap, va);
8908 				} else
8909 					demoted = TRUE;
8910 
8911 				if (demoted) {
8912 					/*
8913 					 * The superpage mapping was removed
8914 					 * entirely and therefore 'pv' is no
8915 					 * longer valid.
8916 					 */
8917 					if (pvf == pv)
8918 						pvf = NULL;
8919 					pv = NULL;
8920 				}
8921 				cleared++;
8922 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8923 				    ("inconsistent pv lock %p %p for page %p",
8924 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8925 			} else
8926 				not_cleared++;
8927 		}
8928 		PMAP_UNLOCK(pmap);
8929 		/* Rotate the PV list if it has more than one entry. */
8930 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8931 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8932 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
8933 			pvh->pv_gen++;
8934 		}
8935 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
8936 			goto out;
8937 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
8938 small_mappings:
8939 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
8940 		goto out;
8941 	pv = pvf;
8942 	do {
8943 		if (pvf == NULL)
8944 			pvf = pv;
8945 		pmap = PV_PMAP(pv);
8946 		if (!PMAP_TRYLOCK(pmap)) {
8947 			pvh_gen = pvh->pv_gen;
8948 			md_gen = m->md.pv_gen;
8949 			rw_wunlock(lock);
8950 			PMAP_LOCK(pmap);
8951 			rw_wlock(lock);
8952 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8953 				PMAP_UNLOCK(pmap);
8954 				goto retry;
8955 			}
8956 		}
8957 		PG_A = pmap_accessed_bit(pmap);
8958 		PG_M = pmap_modified_bit(pmap);
8959 		PG_RW = pmap_rw_bit(pmap);
8960 		pde = pmap_pde(pmap, pv->pv_va);
8961 		KASSERT((*pde & PG_PS) == 0,
8962 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
8963 		    m));
8964 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8965 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
8966 			vm_page_dirty(m);
8967 		if ((*pte & PG_A) != 0) {
8968 			if (safe_to_clear_referenced(pmap, *pte)) {
8969 				atomic_clear_long(pte, PG_A);
8970 				pmap_invalidate_page(pmap, pv->pv_va);
8971 				cleared++;
8972 			} else if ((*pte & PG_W) == 0) {
8973 				/*
8974 				 * Wired pages cannot be paged out so
8975 				 * doing accessed bit emulation for
8976 				 * them is wasted effort. We do the
8977 				 * hard work for unwired pages only.
8978 				 */
8979 				pmap_remove_pte(pmap, pte, pv->pv_va,
8980 				    *pde, &free, &lock);
8981 				pmap_invalidate_page(pmap, pv->pv_va);
8982 				cleared++;
8983 				if (pvf == pv)
8984 					pvf = NULL;
8985 				pv = NULL;
8986 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8987 				    ("inconsistent pv lock %p %p for page %p",
8988 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8989 			} else
8990 				not_cleared++;
8991 		}
8992 		PMAP_UNLOCK(pmap);
8993 		/* Rotate the PV list if it has more than one entry. */
8994 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8995 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8996 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
8997 			m->md.pv_gen++;
8998 		}
8999 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9000 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9001 out:
9002 	rw_wunlock(lock);
9003 	vm_page_free_pages_toq(&free, true);
9004 	return (cleared + not_cleared);
9005 }
9006 
9007 /*
9008  *	Apply the given advice to the specified range of addresses within the
9009  *	given pmap.  Depending on the advice, clear the referenced and/or
9010  *	modified flags in each mapping and set the mapped page's dirty field.
9011  */
9012 void
9013 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9014 {
9015 	struct rwlock *lock;
9016 	pml4_entry_t *pml4e;
9017 	pdp_entry_t *pdpe;
9018 	pd_entry_t oldpde, *pde;
9019 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9020 	vm_offset_t va, va_next;
9021 	vm_page_t m;
9022 	bool anychanged;
9023 
9024 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9025 		return;
9026 
9027 	/*
9028 	 * A/D bit emulation requires an alternate code path when clearing
9029 	 * the modified and accessed bits below. Since this function is
9030 	 * advisory in nature we skip it entirely for pmaps that require
9031 	 * A/D bit emulation.
9032 	 */
9033 	if (pmap_emulate_ad_bits(pmap))
9034 		return;
9035 
9036 	PG_A = pmap_accessed_bit(pmap);
9037 	PG_G = pmap_global_bit(pmap);
9038 	PG_M = pmap_modified_bit(pmap);
9039 	PG_V = pmap_valid_bit(pmap);
9040 	PG_RW = pmap_rw_bit(pmap);
9041 	anychanged = false;
9042 	pmap_delayed_invl_start();
9043 	PMAP_LOCK(pmap);
9044 	for (; sva < eva; sva = va_next) {
9045 		pml4e = pmap_pml4e(pmap, sva);
9046 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9047 			va_next = (sva + NBPML4) & ~PML4MASK;
9048 			if (va_next < sva)
9049 				va_next = eva;
9050 			continue;
9051 		}
9052 
9053 		va_next = (sva + NBPDP) & ~PDPMASK;
9054 		if (va_next < sva)
9055 			va_next = eva;
9056 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9057 		if ((*pdpe & PG_V) == 0)
9058 			continue;
9059 		if ((*pdpe & PG_PS) != 0)
9060 			continue;
9061 
9062 		va_next = (sva + NBPDR) & ~PDRMASK;
9063 		if (va_next < sva)
9064 			va_next = eva;
9065 		pde = pmap_pdpe_to_pde(pdpe, sva);
9066 		oldpde = *pde;
9067 		if ((oldpde & PG_V) == 0)
9068 			continue;
9069 		else if ((oldpde & PG_PS) != 0) {
9070 			if ((oldpde & PG_MANAGED) == 0)
9071 				continue;
9072 			lock = NULL;
9073 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9074 				if (lock != NULL)
9075 					rw_wunlock(lock);
9076 
9077 				/*
9078 				 * The large page mapping was destroyed.
9079 				 */
9080 				continue;
9081 			}
9082 
9083 			/*
9084 			 * Unless the page mappings are wired, remove the
9085 			 * mapping to a single page so that a subsequent
9086 			 * access may repromote.  Choosing the last page
9087 			 * within the address range [sva, min(va_next, eva))
9088 			 * generally results in more repromotions.  Since the
9089 			 * underlying page table page is fully populated, this
9090 			 * removal never frees a page table page.
9091 			 */
9092 			if ((oldpde & PG_W) == 0) {
9093 				va = eva;
9094 				if (va > va_next)
9095 					va = va_next;
9096 				va -= PAGE_SIZE;
9097 				KASSERT(va >= sva,
9098 				    ("pmap_advise: no address gap"));
9099 				pte = pmap_pde_to_pte(pde, va);
9100 				KASSERT((*pte & PG_V) != 0,
9101 				    ("pmap_advise: invalid PTE"));
9102 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9103 				    &lock);
9104 				anychanged = true;
9105 			}
9106 			if (lock != NULL)
9107 				rw_wunlock(lock);
9108 		}
9109 		if (va_next > eva)
9110 			va_next = eva;
9111 		va = va_next;
9112 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9113 		    sva += PAGE_SIZE) {
9114 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9115 				goto maybe_invlrng;
9116 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9117 				if (advice == MADV_DONTNEED) {
9118 					/*
9119 					 * Future calls to pmap_is_modified()
9120 					 * can be avoided by making the page
9121 					 * dirty now.
9122 					 */
9123 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9124 					vm_page_dirty(m);
9125 				}
9126 				atomic_clear_long(pte, PG_M | PG_A);
9127 			} else if ((*pte & PG_A) != 0)
9128 				atomic_clear_long(pte, PG_A);
9129 			else
9130 				goto maybe_invlrng;
9131 
9132 			if ((*pte & PG_G) != 0) {
9133 				if (va == va_next)
9134 					va = sva;
9135 			} else
9136 				anychanged = true;
9137 			continue;
9138 maybe_invlrng:
9139 			if (va != va_next) {
9140 				pmap_invalidate_range(pmap, va, sva);
9141 				va = va_next;
9142 			}
9143 		}
9144 		if (va != va_next)
9145 			pmap_invalidate_range(pmap, va, sva);
9146 	}
9147 	if (anychanged)
9148 		pmap_invalidate_all(pmap);
9149 	PMAP_UNLOCK(pmap);
9150 	pmap_delayed_invl_finish();
9151 }
9152 
9153 /*
9154  *	Clear the modify bits on the specified physical page.
9155  */
9156 void
9157 pmap_clear_modify(vm_page_t m)
9158 {
9159 	struct md_page *pvh;
9160 	pmap_t pmap;
9161 	pv_entry_t next_pv, pv;
9162 	pd_entry_t oldpde, *pde;
9163 	pt_entry_t *pte, PG_M, PG_RW;
9164 	struct rwlock *lock;
9165 	vm_offset_t va;
9166 	int md_gen, pvh_gen;
9167 
9168 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9169 	    ("pmap_clear_modify: page %p is not managed", m));
9170 	vm_page_assert_busied(m);
9171 
9172 	if (!pmap_page_is_write_mapped(m))
9173 		return;
9174 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9175 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9176 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9177 	rw_wlock(lock);
9178 restart:
9179 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9180 		pmap = PV_PMAP(pv);
9181 		if (!PMAP_TRYLOCK(pmap)) {
9182 			pvh_gen = pvh->pv_gen;
9183 			rw_wunlock(lock);
9184 			PMAP_LOCK(pmap);
9185 			rw_wlock(lock);
9186 			if (pvh_gen != pvh->pv_gen) {
9187 				PMAP_UNLOCK(pmap);
9188 				goto restart;
9189 			}
9190 		}
9191 		PG_M = pmap_modified_bit(pmap);
9192 		PG_RW = pmap_rw_bit(pmap);
9193 		va = pv->pv_va;
9194 		pde = pmap_pde(pmap, va);
9195 		oldpde = *pde;
9196 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9197 		if ((oldpde & PG_RW) != 0 &&
9198 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9199 		    (oldpde & PG_W) == 0) {
9200 			/*
9201 			 * Write protect the mapping to a single page so that
9202 			 * a subsequent write access may repromote.
9203 			 */
9204 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9205 			pte = pmap_pde_to_pte(pde, va);
9206 			atomic_clear_long(pte, PG_M | PG_RW);
9207 			vm_page_dirty(m);
9208 			pmap_invalidate_page(pmap, va);
9209 		}
9210 		PMAP_UNLOCK(pmap);
9211 	}
9212 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9213 		pmap = PV_PMAP(pv);
9214 		if (!PMAP_TRYLOCK(pmap)) {
9215 			md_gen = m->md.pv_gen;
9216 			pvh_gen = pvh->pv_gen;
9217 			rw_wunlock(lock);
9218 			PMAP_LOCK(pmap);
9219 			rw_wlock(lock);
9220 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9221 				PMAP_UNLOCK(pmap);
9222 				goto restart;
9223 			}
9224 		}
9225 		PG_M = pmap_modified_bit(pmap);
9226 		PG_RW = pmap_rw_bit(pmap);
9227 		pde = pmap_pde(pmap, pv->pv_va);
9228 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9229 		    " a 2mpage in page %p's pv list", m));
9230 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9231 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9232 			atomic_clear_long(pte, PG_M);
9233 			pmap_invalidate_page(pmap, pv->pv_va);
9234 		}
9235 		PMAP_UNLOCK(pmap);
9236 	}
9237 	rw_wunlock(lock);
9238 }
9239 
9240 /*
9241  * Miscellaneous support routines follow
9242  */
9243 
9244 /* Adjust the properties for a leaf page table entry. */
9245 static __inline void
9246 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9247 {
9248 	u_long opte, npte;
9249 
9250 	opte = *(u_long *)pte;
9251 	do {
9252 		npte = opte & ~mask;
9253 		npte |= bits;
9254 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9255 	    npte));
9256 }
9257 
9258 /*
9259  * Map a set of physical memory pages into the kernel virtual
9260  * address space. Return a pointer to where it is mapped. This
9261  * routine is intended to be used for mapping device memory,
9262  * NOT real memory.
9263  */
9264 static void *
9265 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9266 {
9267 	struct pmap_preinit_mapping *ppim;
9268 	vm_offset_t va, offset;
9269 	vm_size_t tmpsize;
9270 	int i;
9271 
9272 	offset = pa & PAGE_MASK;
9273 	size = round_page(offset + size);
9274 	pa = trunc_page(pa);
9275 
9276 	if (!pmap_initialized) {
9277 		va = 0;
9278 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9279 			ppim = pmap_preinit_mapping + i;
9280 			if (ppim->va == 0) {
9281 				ppim->pa = pa;
9282 				ppim->sz = size;
9283 				ppim->mode = mode;
9284 				ppim->va = virtual_avail;
9285 				virtual_avail += size;
9286 				va = ppim->va;
9287 				break;
9288 			}
9289 		}
9290 		if (va == 0)
9291 			panic("%s: too many preinit mappings", __func__);
9292 	} else {
9293 		/*
9294 		 * If we have a preinit mapping, re-use it.
9295 		 */
9296 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9297 			ppim = pmap_preinit_mapping + i;
9298 			if (ppim->pa == pa && ppim->sz == size &&
9299 			    (ppim->mode == mode ||
9300 			    (flags & MAPDEV_SETATTR) == 0))
9301 				return ((void *)(ppim->va + offset));
9302 		}
9303 		/*
9304 		 * If the specified range of physical addresses fits within
9305 		 * the direct map window, use the direct map.
9306 		 */
9307 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9308 			va = PHYS_TO_DMAP(pa);
9309 			if ((flags & MAPDEV_SETATTR) != 0) {
9310 				PMAP_LOCK(kernel_pmap);
9311 				i = pmap_change_props_locked(va, size,
9312 				    PROT_NONE, mode, flags);
9313 				PMAP_UNLOCK(kernel_pmap);
9314 			} else
9315 				i = 0;
9316 			if (!i)
9317 				return ((void *)(va + offset));
9318 		}
9319 		va = kva_alloc(size);
9320 		if (va == 0)
9321 			panic("%s: Couldn't allocate KVA", __func__);
9322 	}
9323 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9324 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9325 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9326 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9327 		pmap_invalidate_cache_range(va, va + tmpsize);
9328 	return ((void *)(va + offset));
9329 }
9330 
9331 void *
9332 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9333 {
9334 
9335 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9336 	    MAPDEV_SETATTR));
9337 }
9338 
9339 void *
9340 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9341 {
9342 
9343 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9344 }
9345 
9346 void *
9347 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9348 {
9349 
9350 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9351 	    MAPDEV_SETATTR));
9352 }
9353 
9354 void *
9355 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9356 {
9357 
9358 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9359 	    MAPDEV_FLUSHCACHE));
9360 }
9361 
9362 void
9363 pmap_unmapdev(void *p, vm_size_t size)
9364 {
9365 	struct pmap_preinit_mapping *ppim;
9366 	vm_offset_t offset, va;
9367 	int i;
9368 
9369 	va = (vm_offset_t)p;
9370 
9371 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9372 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9373 		return;
9374 	offset = va & PAGE_MASK;
9375 	size = round_page(offset + size);
9376 	va = trunc_page(va);
9377 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9378 		ppim = pmap_preinit_mapping + i;
9379 		if (ppim->va == va && ppim->sz == size) {
9380 			if (pmap_initialized)
9381 				return;
9382 			ppim->pa = 0;
9383 			ppim->va = 0;
9384 			ppim->sz = 0;
9385 			ppim->mode = 0;
9386 			if (va + size == virtual_avail)
9387 				virtual_avail = va;
9388 			return;
9389 		}
9390 	}
9391 	if (pmap_initialized) {
9392 		pmap_qremove(va, atop(size));
9393 		kva_free(va, size);
9394 	}
9395 }
9396 
9397 /*
9398  * Tries to demote a 1GB page mapping.
9399  */
9400 static boolean_t
9401 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9402 {
9403 	pdp_entry_t newpdpe, oldpdpe;
9404 	pd_entry_t *firstpde, newpde, *pde;
9405 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9406 	vm_paddr_t pdpgpa;
9407 	vm_page_t pdpg;
9408 
9409 	PG_A = pmap_accessed_bit(pmap);
9410 	PG_M = pmap_modified_bit(pmap);
9411 	PG_V = pmap_valid_bit(pmap);
9412 	PG_RW = pmap_rw_bit(pmap);
9413 
9414 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9415 	oldpdpe = *pdpe;
9416 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9417 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9418 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9419 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9420 	if (pdpg  == NULL) {
9421 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9422 		    " in pmap %p", va, pmap);
9423 		return (FALSE);
9424 	}
9425 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9426 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9427 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9428 	KASSERT((oldpdpe & PG_A) != 0,
9429 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9430 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9431 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9432 	newpde = oldpdpe;
9433 
9434 	/*
9435 	 * Initialize the page directory page.
9436 	 */
9437 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9438 		*pde = newpde;
9439 		newpde += NBPDR;
9440 	}
9441 
9442 	/*
9443 	 * Demote the mapping.
9444 	 */
9445 	*pdpe = newpdpe;
9446 
9447 	/*
9448 	 * Invalidate a stale recursive mapping of the page directory page.
9449 	 */
9450 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9451 
9452 	counter_u64_add(pmap_pdpe_demotions, 1);
9453 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9454 	    " in pmap %p", va, pmap);
9455 	return (TRUE);
9456 }
9457 
9458 /*
9459  * Sets the memory attribute for the specified page.
9460  */
9461 void
9462 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9463 {
9464 
9465 	m->md.pat_mode = ma;
9466 
9467 	/*
9468 	 * If "m" is a normal page, update its direct mapping.  This update
9469 	 * can be relied upon to perform any cache operations that are
9470 	 * required for data coherence.
9471 	 */
9472 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9473 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9474 	    m->md.pat_mode))
9475 		panic("memory attribute change on the direct map failed");
9476 }
9477 
9478 void
9479 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9480 {
9481 	int error;
9482 
9483 	m->md.pat_mode = ma;
9484 
9485 	if ((m->flags & PG_FICTITIOUS) != 0)
9486 		return;
9487 	PMAP_LOCK(kernel_pmap);
9488 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9489 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9490 	PMAP_UNLOCK(kernel_pmap);
9491 	if (error != 0)
9492 		panic("memory attribute change on the direct map failed");
9493 }
9494 
9495 /*
9496  * Changes the specified virtual address range's memory type to that given by
9497  * the parameter "mode".  The specified virtual address range must be
9498  * completely contained within either the direct map or the kernel map.  If
9499  * the virtual address range is contained within the kernel map, then the
9500  * memory type for each of the corresponding ranges of the direct map is also
9501  * changed.  (The corresponding ranges of the direct map are those ranges that
9502  * map the same physical pages as the specified virtual address range.)  These
9503  * changes to the direct map are necessary because Intel describes the
9504  * behavior of their processors as "undefined" if two or more mappings to the
9505  * same physical page have different memory types.
9506  *
9507  * Returns zero if the change completed successfully, and either EINVAL or
9508  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9509  * of the virtual address range was not mapped, and ENOMEM is returned if
9510  * there was insufficient memory available to complete the change.  In the
9511  * latter case, the memory type may have been changed on some part of the
9512  * virtual address range or the direct map.
9513  */
9514 int
9515 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9516 {
9517 	int error;
9518 
9519 	PMAP_LOCK(kernel_pmap);
9520 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9521 	    MAPDEV_FLUSHCACHE);
9522 	PMAP_UNLOCK(kernel_pmap);
9523 	return (error);
9524 }
9525 
9526 /*
9527  * Changes the specified virtual address range's protections to those
9528  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9529  * in the direct map are updated as well.  Protections on aliasing mappings may
9530  * be a subset of the requested protections; for example, mappings in the direct
9531  * map are never executable.
9532  */
9533 int
9534 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9535 {
9536 	int error;
9537 
9538 	/* Only supported within the kernel map. */
9539 	if (va < VM_MIN_KERNEL_ADDRESS)
9540 		return (EINVAL);
9541 
9542 	PMAP_LOCK(kernel_pmap);
9543 	error = pmap_change_props_locked(va, size, prot, -1,
9544 	    MAPDEV_ASSERTVALID);
9545 	PMAP_UNLOCK(kernel_pmap);
9546 	return (error);
9547 }
9548 
9549 static int
9550 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9551     int mode, int flags)
9552 {
9553 	vm_offset_t base, offset, tmpva;
9554 	vm_paddr_t pa_start, pa_end, pa_end1;
9555 	pdp_entry_t *pdpe;
9556 	pd_entry_t *pde, pde_bits, pde_mask;
9557 	pt_entry_t *pte, pte_bits, pte_mask;
9558 	int error;
9559 	bool changed;
9560 
9561 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9562 	base = trunc_page(va);
9563 	offset = va & PAGE_MASK;
9564 	size = round_page(offset + size);
9565 
9566 	/*
9567 	 * Only supported on kernel virtual addresses, including the direct
9568 	 * map but excluding the recursive map.
9569 	 */
9570 	if (base < DMAP_MIN_ADDRESS)
9571 		return (EINVAL);
9572 
9573 	/*
9574 	 * Construct our flag sets and masks.  "bits" is the subset of
9575 	 * "mask" that will be set in each modified PTE.
9576 	 *
9577 	 * Mappings in the direct map are never allowed to be executable.
9578 	 */
9579 	pde_bits = pte_bits = 0;
9580 	pde_mask = pte_mask = 0;
9581 	if (mode != -1) {
9582 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9583 		pde_mask |= X86_PG_PDE_CACHE;
9584 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9585 		pte_mask |= X86_PG_PTE_CACHE;
9586 	}
9587 	if (prot != VM_PROT_NONE) {
9588 		if ((prot & VM_PROT_WRITE) != 0) {
9589 			pde_bits |= X86_PG_RW;
9590 			pte_bits |= X86_PG_RW;
9591 		}
9592 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9593 		    va < VM_MIN_KERNEL_ADDRESS) {
9594 			pde_bits |= pg_nx;
9595 			pte_bits |= pg_nx;
9596 		}
9597 		pde_mask |= X86_PG_RW | pg_nx;
9598 		pte_mask |= X86_PG_RW | pg_nx;
9599 	}
9600 
9601 	/*
9602 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9603 	 * into 4KB pages if required.
9604 	 */
9605 	for (tmpva = base; tmpva < base + size; ) {
9606 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9607 		if (pdpe == NULL || *pdpe == 0) {
9608 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9609 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9610 			return (EINVAL);
9611 		}
9612 		if (*pdpe & PG_PS) {
9613 			/*
9614 			 * If the current 1GB page already has the required
9615 			 * properties, then we need not demote this page.  Just
9616 			 * increment tmpva to the next 1GB page frame.
9617 			 */
9618 			if ((*pdpe & pde_mask) == pde_bits) {
9619 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9620 				continue;
9621 			}
9622 
9623 			/*
9624 			 * If the current offset aligns with a 1GB page frame
9625 			 * and there is at least 1GB left within the range, then
9626 			 * we need not break down this page into 2MB pages.
9627 			 */
9628 			if ((tmpva & PDPMASK) == 0 &&
9629 			    tmpva + PDPMASK < base + size) {
9630 				tmpva += NBPDP;
9631 				continue;
9632 			}
9633 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9634 				return (ENOMEM);
9635 		}
9636 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9637 		if (*pde == 0) {
9638 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9639 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9640 			return (EINVAL);
9641 		}
9642 		if (*pde & PG_PS) {
9643 			/*
9644 			 * If the current 2MB page already has the required
9645 			 * properties, then we need not demote this page.  Just
9646 			 * increment tmpva to the next 2MB page frame.
9647 			 */
9648 			if ((*pde & pde_mask) == pde_bits) {
9649 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9650 				continue;
9651 			}
9652 
9653 			/*
9654 			 * If the current offset aligns with a 2MB page frame
9655 			 * and there is at least 2MB left within the range, then
9656 			 * we need not break down this page into 4KB pages.
9657 			 */
9658 			if ((tmpva & PDRMASK) == 0 &&
9659 			    tmpva + PDRMASK < base + size) {
9660 				tmpva += NBPDR;
9661 				continue;
9662 			}
9663 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9664 				return (ENOMEM);
9665 		}
9666 		pte = pmap_pde_to_pte(pde, tmpva);
9667 		if (*pte == 0) {
9668 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9669 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9670 			return (EINVAL);
9671 		}
9672 		tmpva += PAGE_SIZE;
9673 	}
9674 	error = 0;
9675 
9676 	/*
9677 	 * Ok, all the pages exist, so run through them updating their
9678 	 * properties if required.
9679 	 */
9680 	changed = false;
9681 	pa_start = pa_end = 0;
9682 	for (tmpva = base; tmpva < base + size; ) {
9683 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9684 		if (*pdpe & PG_PS) {
9685 			if ((*pdpe & pde_mask) != pde_bits) {
9686 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9687 				changed = true;
9688 			}
9689 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9690 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9691 				if (pa_start == pa_end) {
9692 					/* Start physical address run. */
9693 					pa_start = *pdpe & PG_PS_FRAME;
9694 					pa_end = pa_start + NBPDP;
9695 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9696 					pa_end += NBPDP;
9697 				else {
9698 					/* Run ended, update direct map. */
9699 					error = pmap_change_props_locked(
9700 					    PHYS_TO_DMAP(pa_start),
9701 					    pa_end - pa_start, prot, mode,
9702 					    flags);
9703 					if (error != 0)
9704 						break;
9705 					/* Start physical address run. */
9706 					pa_start = *pdpe & PG_PS_FRAME;
9707 					pa_end = pa_start + NBPDP;
9708 				}
9709 			}
9710 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9711 			continue;
9712 		}
9713 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9714 		if (*pde & PG_PS) {
9715 			if ((*pde & pde_mask) != pde_bits) {
9716 				pmap_pte_props(pde, pde_bits, pde_mask);
9717 				changed = true;
9718 			}
9719 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9720 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9721 				if (pa_start == pa_end) {
9722 					/* Start physical address run. */
9723 					pa_start = *pde & PG_PS_FRAME;
9724 					pa_end = pa_start + NBPDR;
9725 				} else if (pa_end == (*pde & PG_PS_FRAME))
9726 					pa_end += NBPDR;
9727 				else {
9728 					/* Run ended, update direct map. */
9729 					error = pmap_change_props_locked(
9730 					    PHYS_TO_DMAP(pa_start),
9731 					    pa_end - pa_start, prot, mode,
9732 					    flags);
9733 					if (error != 0)
9734 						break;
9735 					/* Start physical address run. */
9736 					pa_start = *pde & PG_PS_FRAME;
9737 					pa_end = pa_start + NBPDR;
9738 				}
9739 			}
9740 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9741 		} else {
9742 			pte = pmap_pde_to_pte(pde, tmpva);
9743 			if ((*pte & pte_mask) != pte_bits) {
9744 				pmap_pte_props(pte, pte_bits, pte_mask);
9745 				changed = true;
9746 			}
9747 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9748 			    (*pte & PG_FRAME) < dmaplimit) {
9749 				if (pa_start == pa_end) {
9750 					/* Start physical address run. */
9751 					pa_start = *pte & PG_FRAME;
9752 					pa_end = pa_start + PAGE_SIZE;
9753 				} else if (pa_end == (*pte & PG_FRAME))
9754 					pa_end += PAGE_SIZE;
9755 				else {
9756 					/* Run ended, update direct map. */
9757 					error = pmap_change_props_locked(
9758 					    PHYS_TO_DMAP(pa_start),
9759 					    pa_end - pa_start, prot, mode,
9760 					    flags);
9761 					if (error != 0)
9762 						break;
9763 					/* Start physical address run. */
9764 					pa_start = *pte & PG_FRAME;
9765 					pa_end = pa_start + PAGE_SIZE;
9766 				}
9767 			}
9768 			tmpva += PAGE_SIZE;
9769 		}
9770 	}
9771 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9772 		pa_end1 = MIN(pa_end, dmaplimit);
9773 		if (pa_start != pa_end1)
9774 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9775 			    pa_end1 - pa_start, prot, mode, flags);
9776 	}
9777 
9778 	/*
9779 	 * Flush CPU caches if required to make sure any data isn't cached that
9780 	 * shouldn't be, etc.
9781 	 */
9782 	if (changed) {
9783 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9784 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9785 			pmap_invalidate_cache_range(base, tmpva);
9786 	}
9787 	return (error);
9788 }
9789 
9790 /*
9791  * Demotes any mapping within the direct map region that covers more than the
9792  * specified range of physical addresses.  This range's size must be a power
9793  * of two and its starting address must be a multiple of its size.  Since the
9794  * demotion does not change any attributes of the mapping, a TLB invalidation
9795  * is not mandatory.  The caller may, however, request a TLB invalidation.
9796  */
9797 void
9798 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
9799 {
9800 	pdp_entry_t *pdpe;
9801 	pd_entry_t *pde;
9802 	vm_offset_t va;
9803 	boolean_t changed;
9804 
9805 	if (len == 0)
9806 		return;
9807 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9808 	KASSERT((base & (len - 1)) == 0,
9809 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9810 	if (len < NBPDP && base < dmaplimit) {
9811 		va = PHYS_TO_DMAP(base);
9812 		changed = FALSE;
9813 		PMAP_LOCK(kernel_pmap);
9814 		pdpe = pmap_pdpe(kernel_pmap, va);
9815 		if ((*pdpe & X86_PG_V) == 0)
9816 			panic("pmap_demote_DMAP: invalid PDPE");
9817 		if ((*pdpe & PG_PS) != 0) {
9818 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9819 				panic("pmap_demote_DMAP: PDPE failed");
9820 			changed = TRUE;
9821 		}
9822 		if (len < NBPDR) {
9823 			pde = pmap_pdpe_to_pde(pdpe, va);
9824 			if ((*pde & X86_PG_V) == 0)
9825 				panic("pmap_demote_DMAP: invalid PDE");
9826 			if ((*pde & PG_PS) != 0) {
9827 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9828 					panic("pmap_demote_DMAP: PDE failed");
9829 				changed = TRUE;
9830 			}
9831 		}
9832 		if (changed && invalidate)
9833 			pmap_invalidate_page(kernel_pmap, va);
9834 		PMAP_UNLOCK(kernel_pmap);
9835 	}
9836 }
9837 
9838 /*
9839  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9840  * modified by this pmap, returns its physical address so that the caller can
9841  * find other mappings.
9842  */
9843 int
9844 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9845 {
9846 	pdp_entry_t *pdpe;
9847 	pd_entry_t *pdep;
9848 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9849 	vm_paddr_t pa;
9850 	int val;
9851 
9852 	PG_A = pmap_accessed_bit(pmap);
9853 	PG_M = pmap_modified_bit(pmap);
9854 	PG_V = pmap_valid_bit(pmap);
9855 	PG_RW = pmap_rw_bit(pmap);
9856 
9857 	PMAP_LOCK(pmap);
9858 	pte = 0;
9859 	pa = 0;
9860 	val = 0;
9861 	pdpe = pmap_pdpe(pmap, addr);
9862 	if (pdpe == NULL)
9863 		goto out;
9864 	if ((*pdpe & PG_V) != 0) {
9865 		if ((*pdpe & PG_PS) != 0) {
9866 			pte = *pdpe;
9867 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
9868 			    PG_FRAME;
9869 			val = MINCORE_PSIND(2);
9870 		} else {
9871 			pdep = pmap_pde(pmap, addr);
9872 			if (pdep != NULL && (*pdep & PG_V) != 0) {
9873 				if ((*pdep & PG_PS) != 0) {
9874 					pte = *pdep;
9875 			/* Compute the physical address of the 4KB page. */
9876 					pa = ((pte & PG_PS_FRAME) | (addr &
9877 					    PDRMASK)) & PG_FRAME;
9878 					val = MINCORE_PSIND(1);
9879 				} else {
9880 					pte = *pmap_pde_to_pte(pdep, addr);
9881 					pa = pte & PG_FRAME;
9882 					val = 0;
9883 				}
9884 			}
9885 		}
9886 	}
9887 	if ((pte & PG_V) != 0) {
9888 		val |= MINCORE_INCORE;
9889 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9890 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
9891 		if ((pte & PG_A) != 0)
9892 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
9893 	}
9894 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
9895 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
9896 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
9897 		*pap = pa;
9898 	}
9899 out:
9900 	PMAP_UNLOCK(pmap);
9901 	return (val);
9902 }
9903 
9904 static uint64_t
9905 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
9906 {
9907 	uint32_t gen, new_gen, pcid_next;
9908 
9909 	CRITICAL_ASSERT(curthread);
9910 	gen = PCPU_GET(pcid_gen);
9911 	if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN)
9912 		return (pti ? 0 : CR3_PCID_SAVE);
9913 	if (pmap->pm_pcids[cpuid].pm_gen == gen)
9914 		return (CR3_PCID_SAVE);
9915 	pcid_next = PCPU_GET(pcid_next);
9916 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
9917 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
9918 	    ("cpu %d pcid_next %#x", cpuid, pcid_next));
9919 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
9920 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
9921 		new_gen = gen + 1;
9922 		if (new_gen == 0)
9923 			new_gen = 1;
9924 		PCPU_SET(pcid_gen, new_gen);
9925 		pcid_next = PMAP_PCID_KERN + 1;
9926 	} else {
9927 		new_gen = gen;
9928 	}
9929 	pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
9930 	pmap->pm_pcids[cpuid].pm_gen = new_gen;
9931 	PCPU_SET(pcid_next, pcid_next + 1);
9932 	return (0);
9933 }
9934 
9935 static uint64_t
9936 pmap_pcid_alloc_checked(pmap_t pmap, u_int cpuid)
9937 {
9938 	uint64_t cached;
9939 
9940 	cached = pmap_pcid_alloc(pmap, cpuid);
9941 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
9942 	    ("pmap %p cpu %d pcid %#x", pmap, cpuid,
9943 	    pmap->pm_pcids[cpuid].pm_pcid));
9944 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
9945 	    pmap == kernel_pmap,
9946 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
9947 	    pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
9948 	return (cached);
9949 }
9950 
9951 static void
9952 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
9953 {
9954 
9955 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
9956 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
9957 }
9958 
9959 static void
9960 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
9961 {
9962 	pmap_t old_pmap;
9963 	uint64_t cached, cr3, kcr3, ucr3;
9964 
9965 	KASSERT((read_rflags() & PSL_I) == 0,
9966 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
9967 
9968 	/* See the comment in pmap_invalidate_page_pcid(). */
9969 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
9970 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
9971 		old_pmap = PCPU_GET(curpmap);
9972 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
9973 		old_pmap->pm_pcids[cpuid].pm_gen = 0;
9974 	}
9975 
9976 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
9977 	cr3 = rcr3();
9978 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9979 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid);
9980 	PCPU_SET(curpmap, pmap);
9981 	kcr3 = pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid;
9982 	ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[cpuid].pm_pcid |
9983 	    PMAP_PCID_USER_PT;
9984 
9985 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
9986 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
9987 
9988 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
9989 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
9990 	if (cached)
9991 		counter_u64_add(pcid_save_cnt, 1);
9992 
9993 	pmap_activate_sw_pti_post(td, pmap);
9994 }
9995 
9996 static void
9997 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
9998     u_int cpuid)
9999 {
10000 	uint64_t cached, cr3;
10001 
10002 	KASSERT((read_rflags() & PSL_I) == 0,
10003 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10004 
10005 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
10006 	cr3 = rcr3();
10007 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10008 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
10009 		    cached);
10010 	PCPU_SET(curpmap, pmap);
10011 	if (cached)
10012 		counter_u64_add(pcid_save_cnt, 1);
10013 }
10014 
10015 static void
10016 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10017     u_int cpuid __unused)
10018 {
10019 
10020 	load_cr3(pmap->pm_cr3);
10021 	PCPU_SET(curpmap, pmap);
10022 }
10023 
10024 static void
10025 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10026     u_int cpuid __unused)
10027 {
10028 
10029 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10030 	PCPU_SET(kcr3, pmap->pm_cr3);
10031 	PCPU_SET(ucr3, pmap->pm_ucr3);
10032 	pmap_activate_sw_pti_post(td, pmap);
10033 }
10034 
10035 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10036     u_int))
10037 {
10038 
10039 	if (pmap_pcid_enabled && pti)
10040 		return (pmap_activate_sw_pcid_pti);
10041 	else if (pmap_pcid_enabled && !pti)
10042 		return (pmap_activate_sw_pcid_nopti);
10043 	else if (!pmap_pcid_enabled && pti)
10044 		return (pmap_activate_sw_nopcid_pti);
10045 	else /* if (!pmap_pcid_enabled && !pti) */
10046 		return (pmap_activate_sw_nopcid_nopti);
10047 }
10048 
10049 void
10050 pmap_activate_sw(struct thread *td)
10051 {
10052 	pmap_t oldpmap, pmap;
10053 	u_int cpuid;
10054 
10055 	oldpmap = PCPU_GET(curpmap);
10056 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10057 	if (oldpmap == pmap) {
10058 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10059 			mfence();
10060 		return;
10061 	}
10062 	cpuid = PCPU_GET(cpuid);
10063 #ifdef SMP
10064 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10065 #else
10066 	CPU_SET(cpuid, &pmap->pm_active);
10067 #endif
10068 	pmap_activate_sw_mode(td, pmap, cpuid);
10069 #ifdef SMP
10070 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10071 #else
10072 	CPU_CLR(cpuid, &oldpmap->pm_active);
10073 #endif
10074 }
10075 
10076 void
10077 pmap_activate(struct thread *td)
10078 {
10079 	/*
10080 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10081 	 * invalidate_all IPI, which checks for curpmap ==
10082 	 * smp_tlb_pmap.  The below sequence of operations has a
10083 	 * window where %CR3 is loaded with the new pmap's PML4
10084 	 * address, but the curpmap value has not yet been updated.
10085 	 * This causes the invltlb IPI handler, which is called
10086 	 * between the updates, to execute as a NOP, which leaves
10087 	 * stale TLB entries.
10088 	 *
10089 	 * Note that the most common use of pmap_activate_sw(), from
10090 	 * a context switch, is immune to this race, because
10091 	 * interrupts are disabled (while the thread lock is owned),
10092 	 * so the IPI is delayed until after curpmap is updated.  Protect
10093 	 * other callers in a similar way, by disabling interrupts
10094 	 * around the %cr3 register reload and curpmap assignment.
10095 	 */
10096 	spinlock_enter();
10097 	pmap_activate_sw(td);
10098 	spinlock_exit();
10099 }
10100 
10101 void
10102 pmap_activate_boot(pmap_t pmap)
10103 {
10104 	uint64_t kcr3;
10105 	u_int cpuid;
10106 
10107 	/*
10108 	 * kernel_pmap must be never deactivated, and we ensure that
10109 	 * by never activating it at all.
10110 	 */
10111 	MPASS(pmap != kernel_pmap);
10112 
10113 	cpuid = PCPU_GET(cpuid);
10114 #ifdef SMP
10115 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10116 #else
10117 	CPU_SET(cpuid, &pmap->pm_active);
10118 #endif
10119 	PCPU_SET(curpmap, pmap);
10120 	if (pti) {
10121 		kcr3 = pmap->pm_cr3;
10122 		if (pmap_pcid_enabled)
10123 			kcr3 |= pmap->pm_pcids[cpuid].pm_pcid | CR3_PCID_SAVE;
10124 	} else {
10125 		kcr3 = PMAP_NO_CR3;
10126 	}
10127 	PCPU_SET(kcr3, kcr3);
10128 	PCPU_SET(ucr3, PMAP_NO_CR3);
10129 }
10130 
10131 void
10132 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10133 {
10134 }
10135 
10136 /*
10137  *	Increase the starting virtual address of the given mapping if a
10138  *	different alignment might result in more superpage mappings.
10139  */
10140 void
10141 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10142     vm_offset_t *addr, vm_size_t size)
10143 {
10144 	vm_offset_t superpage_offset;
10145 
10146 	if (size < NBPDR)
10147 		return;
10148 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10149 		offset += ptoa(object->pg_color);
10150 	superpage_offset = offset & PDRMASK;
10151 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10152 	    (*addr & PDRMASK) == superpage_offset)
10153 		return;
10154 	if ((*addr & PDRMASK) < superpage_offset)
10155 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10156 	else
10157 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10158 }
10159 
10160 #ifdef INVARIANTS
10161 static unsigned long num_dirty_emulations;
10162 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10163 	     &num_dirty_emulations, 0, NULL);
10164 
10165 static unsigned long num_accessed_emulations;
10166 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10167 	     &num_accessed_emulations, 0, NULL);
10168 
10169 static unsigned long num_superpage_accessed_emulations;
10170 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10171 	     &num_superpage_accessed_emulations, 0, NULL);
10172 
10173 static unsigned long ad_emulation_superpage_promotions;
10174 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10175 	     &ad_emulation_superpage_promotions, 0, NULL);
10176 #endif	/* INVARIANTS */
10177 
10178 int
10179 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10180 {
10181 	int rv;
10182 	struct rwlock *lock;
10183 #if VM_NRESERVLEVEL > 0
10184 	vm_page_t m, mpte;
10185 #endif
10186 	pd_entry_t *pde;
10187 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10188 
10189 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10190 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10191 
10192 	if (!pmap_emulate_ad_bits(pmap))
10193 		return (-1);
10194 
10195 	PG_A = pmap_accessed_bit(pmap);
10196 	PG_M = pmap_modified_bit(pmap);
10197 	PG_V = pmap_valid_bit(pmap);
10198 	PG_RW = pmap_rw_bit(pmap);
10199 
10200 	rv = -1;
10201 	lock = NULL;
10202 	PMAP_LOCK(pmap);
10203 
10204 	pde = pmap_pde(pmap, va);
10205 	if (pde == NULL || (*pde & PG_V) == 0)
10206 		goto done;
10207 
10208 	if ((*pde & PG_PS) != 0) {
10209 		if (ftype == VM_PROT_READ) {
10210 #ifdef INVARIANTS
10211 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10212 #endif
10213 			*pde |= PG_A;
10214 			rv = 0;
10215 		}
10216 		goto done;
10217 	}
10218 
10219 	pte = pmap_pde_to_pte(pde, va);
10220 	if ((*pte & PG_V) == 0)
10221 		goto done;
10222 
10223 	if (ftype == VM_PROT_WRITE) {
10224 		if ((*pte & PG_RW) == 0)
10225 			goto done;
10226 		/*
10227 		 * Set the modified and accessed bits simultaneously.
10228 		 *
10229 		 * Intel EPT PTEs that do software emulation of A/D bits map
10230 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10231 		 * An EPT misconfiguration is triggered if the PTE is writable
10232 		 * but not readable (WR=10). This is avoided by setting PG_A
10233 		 * and PG_M simultaneously.
10234 		 */
10235 		*pte |= PG_M | PG_A;
10236 	} else {
10237 		*pte |= PG_A;
10238 	}
10239 
10240 #if VM_NRESERVLEVEL > 0
10241 	/* try to promote the mapping */
10242 	if (va < VM_MAXUSER_ADDRESS)
10243 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10244 	else
10245 		mpte = NULL;
10246 
10247 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10248 
10249 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10250 	    pmap_ps_enabled(pmap) &&
10251 	    (m->flags & PG_FICTITIOUS) == 0 &&
10252 	    vm_reserv_level_iffullpop(m) == 0) {
10253 		pmap_promote_pde(pmap, pde, va, mpte, &lock);
10254 #ifdef INVARIANTS
10255 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10256 #endif
10257 	}
10258 #endif
10259 
10260 #ifdef INVARIANTS
10261 	if (ftype == VM_PROT_WRITE)
10262 		atomic_add_long(&num_dirty_emulations, 1);
10263 	else
10264 		atomic_add_long(&num_accessed_emulations, 1);
10265 #endif
10266 	rv = 0;		/* success */
10267 done:
10268 	if (lock != NULL)
10269 		rw_wunlock(lock);
10270 	PMAP_UNLOCK(pmap);
10271 	return (rv);
10272 }
10273 
10274 void
10275 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10276 {
10277 	pml4_entry_t *pml4;
10278 	pdp_entry_t *pdp;
10279 	pd_entry_t *pde;
10280 	pt_entry_t *pte, PG_V;
10281 	int idx;
10282 
10283 	idx = 0;
10284 	PG_V = pmap_valid_bit(pmap);
10285 	PMAP_LOCK(pmap);
10286 
10287 	pml4 = pmap_pml4e(pmap, va);
10288 	if (pml4 == NULL)
10289 		goto done;
10290 	ptr[idx++] = *pml4;
10291 	if ((*pml4 & PG_V) == 0)
10292 		goto done;
10293 
10294 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10295 	ptr[idx++] = *pdp;
10296 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10297 		goto done;
10298 
10299 	pde = pmap_pdpe_to_pde(pdp, va);
10300 	ptr[idx++] = *pde;
10301 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10302 		goto done;
10303 
10304 	pte = pmap_pde_to_pte(pde, va);
10305 	ptr[idx++] = *pte;
10306 
10307 done:
10308 	PMAP_UNLOCK(pmap);
10309 	*num = idx;
10310 }
10311 
10312 /**
10313  * Get the kernel virtual address of a set of physical pages. If there are
10314  * physical addresses not covered by the DMAP perform a transient mapping
10315  * that will be removed when calling pmap_unmap_io_transient.
10316  *
10317  * \param page        The pages the caller wishes to obtain the virtual
10318  *                    address on the kernel memory map.
10319  * \param vaddr       On return contains the kernel virtual memory address
10320  *                    of the pages passed in the page parameter.
10321  * \param count       Number of pages passed in.
10322  * \param can_fault   TRUE if the thread using the mapped pages can take
10323  *                    page faults, FALSE otherwise.
10324  *
10325  * \returns TRUE if the caller must call pmap_unmap_io_transient when
10326  *          finished or FALSE otherwise.
10327  *
10328  */
10329 boolean_t
10330 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10331     boolean_t can_fault)
10332 {
10333 	vm_paddr_t paddr;
10334 	boolean_t needs_mapping;
10335 	pt_entry_t *pte;
10336 	int cache_bits, error __unused, i;
10337 
10338 	/*
10339 	 * Allocate any KVA space that we need, this is done in a separate
10340 	 * loop to prevent calling vmem_alloc while pinned.
10341 	 */
10342 	needs_mapping = FALSE;
10343 	for (i = 0; i < count; i++) {
10344 		paddr = VM_PAGE_TO_PHYS(page[i]);
10345 		if (__predict_false(paddr >= dmaplimit)) {
10346 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10347 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10348 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10349 			needs_mapping = TRUE;
10350 		} else {
10351 			vaddr[i] = PHYS_TO_DMAP(paddr);
10352 		}
10353 	}
10354 
10355 	/* Exit early if everything is covered by the DMAP */
10356 	if (!needs_mapping)
10357 		return (FALSE);
10358 
10359 	/*
10360 	 * NB:  The sequence of updating a page table followed by accesses
10361 	 * to the corresponding pages used in the !DMAP case is subject to
10362 	 * the situation described in the "AMD64 Architecture Programmer's
10363 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10364 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10365 	 * after modifying the PTE bits is crucial.
10366 	 */
10367 	if (!can_fault)
10368 		sched_pin();
10369 	for (i = 0; i < count; i++) {
10370 		paddr = VM_PAGE_TO_PHYS(page[i]);
10371 		if (paddr >= dmaplimit) {
10372 			if (can_fault) {
10373 				/*
10374 				 * Slow path, since we can get page faults
10375 				 * while mappings are active don't pin the
10376 				 * thread to the CPU and instead add a global
10377 				 * mapping visible to all CPUs.
10378 				 */
10379 				pmap_qenter(vaddr[i], &page[i], 1);
10380 			} else {
10381 				pte = vtopte(vaddr[i]);
10382 				cache_bits = pmap_cache_bits(kernel_pmap,
10383 				    page[i]->md.pat_mode, 0);
10384 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10385 				    cache_bits);
10386 				pmap_invlpg(kernel_pmap, vaddr[i]);
10387 			}
10388 		}
10389 	}
10390 
10391 	return (needs_mapping);
10392 }
10393 
10394 void
10395 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10396     boolean_t can_fault)
10397 {
10398 	vm_paddr_t paddr;
10399 	int i;
10400 
10401 	if (!can_fault)
10402 		sched_unpin();
10403 	for (i = 0; i < count; i++) {
10404 		paddr = VM_PAGE_TO_PHYS(page[i]);
10405 		if (paddr >= dmaplimit) {
10406 			if (can_fault)
10407 				pmap_qremove(vaddr[i], 1);
10408 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10409 		}
10410 	}
10411 }
10412 
10413 vm_offset_t
10414 pmap_quick_enter_page(vm_page_t m)
10415 {
10416 	vm_paddr_t paddr;
10417 
10418 	paddr = VM_PAGE_TO_PHYS(m);
10419 	if (paddr < dmaplimit)
10420 		return (PHYS_TO_DMAP(paddr));
10421 	mtx_lock_spin(&qframe_mtx);
10422 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10423 
10424 	/*
10425 	 * Since qframe is exclusively mapped by us, and we do not set
10426 	 * PG_G, we can use INVLPG here.
10427 	 */
10428 	invlpg(qframe);
10429 
10430 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10431 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
10432 	return (qframe);
10433 }
10434 
10435 void
10436 pmap_quick_remove_page(vm_offset_t addr)
10437 {
10438 
10439 	if (addr != qframe)
10440 		return;
10441 	pte_store(vtopte(qframe), 0);
10442 	mtx_unlock_spin(&qframe_mtx);
10443 }
10444 
10445 /*
10446  * Pdp pages from the large map are managed differently from either
10447  * kernel or user page table pages.  They are permanently allocated at
10448  * initialization time, and their reference count is permanently set to
10449  * zero.  The pml4 entries pointing to those pages are copied into
10450  * each allocated pmap.
10451  *
10452  * In contrast, pd and pt pages are managed like user page table
10453  * pages.  They are dynamically allocated, and their reference count
10454  * represents the number of valid entries within the page.
10455  */
10456 static vm_page_t
10457 pmap_large_map_getptp_unlocked(void)
10458 {
10459 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10460 }
10461 
10462 static vm_page_t
10463 pmap_large_map_getptp(void)
10464 {
10465 	vm_page_t m;
10466 
10467 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10468 	m = pmap_large_map_getptp_unlocked();
10469 	if (m == NULL) {
10470 		PMAP_UNLOCK(kernel_pmap);
10471 		vm_wait(NULL);
10472 		PMAP_LOCK(kernel_pmap);
10473 		/* Callers retry. */
10474 	}
10475 	return (m);
10476 }
10477 
10478 static pdp_entry_t *
10479 pmap_large_map_pdpe(vm_offset_t va)
10480 {
10481 	vm_pindex_t pml4_idx;
10482 	vm_paddr_t mphys;
10483 
10484 	pml4_idx = pmap_pml4e_index(va);
10485 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10486 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10487 	    "%#jx lm_ents %d",
10488 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10489 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10490 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10491 	    "LMSPML4I %#jx lm_ents %d",
10492 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10493 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10494 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10495 }
10496 
10497 static pd_entry_t *
10498 pmap_large_map_pde(vm_offset_t va)
10499 {
10500 	pdp_entry_t *pdpe;
10501 	vm_page_t m;
10502 	vm_paddr_t mphys;
10503 
10504 retry:
10505 	pdpe = pmap_large_map_pdpe(va);
10506 	if (*pdpe == 0) {
10507 		m = pmap_large_map_getptp();
10508 		if (m == NULL)
10509 			goto retry;
10510 		mphys = VM_PAGE_TO_PHYS(m);
10511 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10512 	} else {
10513 		MPASS((*pdpe & X86_PG_PS) == 0);
10514 		mphys = *pdpe & PG_FRAME;
10515 	}
10516 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10517 }
10518 
10519 static pt_entry_t *
10520 pmap_large_map_pte(vm_offset_t va)
10521 {
10522 	pd_entry_t *pde;
10523 	vm_page_t m;
10524 	vm_paddr_t mphys;
10525 
10526 retry:
10527 	pde = pmap_large_map_pde(va);
10528 	if (*pde == 0) {
10529 		m = pmap_large_map_getptp();
10530 		if (m == NULL)
10531 			goto retry;
10532 		mphys = VM_PAGE_TO_PHYS(m);
10533 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10534 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10535 	} else {
10536 		MPASS((*pde & X86_PG_PS) == 0);
10537 		mphys = *pde & PG_FRAME;
10538 	}
10539 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10540 }
10541 
10542 static vm_paddr_t
10543 pmap_large_map_kextract(vm_offset_t va)
10544 {
10545 	pdp_entry_t *pdpe, pdp;
10546 	pd_entry_t *pde, pd;
10547 	pt_entry_t *pte, pt;
10548 
10549 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10550 	    ("not largemap range %#lx", (u_long)va));
10551 	pdpe = pmap_large_map_pdpe(va);
10552 	pdp = *pdpe;
10553 	KASSERT((pdp & X86_PG_V) != 0,
10554 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10555 	    (u_long)pdpe, pdp));
10556 	if ((pdp & X86_PG_PS) != 0) {
10557 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10558 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10559 		    (u_long)pdpe, pdp));
10560 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10561 	}
10562 	pde = pmap_pdpe_to_pde(pdpe, va);
10563 	pd = *pde;
10564 	KASSERT((pd & X86_PG_V) != 0,
10565 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10566 	if ((pd & X86_PG_PS) != 0)
10567 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10568 	pte = pmap_pde_to_pte(pde, va);
10569 	pt = *pte;
10570 	KASSERT((pt & X86_PG_V) != 0,
10571 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10572 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10573 }
10574 
10575 static int
10576 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10577     vmem_addr_t *vmem_res)
10578 {
10579 
10580 	/*
10581 	 * Large mappings are all but static.  Consequently, there
10582 	 * is no point in waiting for an earlier allocation to be
10583 	 * freed.
10584 	 */
10585 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10586 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10587 }
10588 
10589 int
10590 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10591     vm_memattr_t mattr)
10592 {
10593 	pdp_entry_t *pdpe;
10594 	pd_entry_t *pde;
10595 	pt_entry_t *pte;
10596 	vm_offset_t va, inc;
10597 	vmem_addr_t vmem_res;
10598 	vm_paddr_t pa;
10599 	int error;
10600 
10601 	if (len == 0 || spa + len < spa)
10602 		return (EINVAL);
10603 
10604 	/* See if DMAP can serve. */
10605 	if (spa + len <= dmaplimit) {
10606 		va = PHYS_TO_DMAP(spa);
10607 		*addr = (void *)va;
10608 		return (pmap_change_attr(va, len, mattr));
10609 	}
10610 
10611 	/*
10612 	 * No, allocate KVA.  Fit the address with best possible
10613 	 * alignment for superpages.  Fall back to worse align if
10614 	 * failed.
10615 	 */
10616 	error = ENOMEM;
10617 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10618 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10619 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10620 		    &vmem_res);
10621 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10622 	    NBPDR) + NBPDR)
10623 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10624 		    &vmem_res);
10625 	if (error != 0)
10626 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10627 	if (error != 0)
10628 		return (error);
10629 
10630 	/*
10631 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10632 	 * in the pagetable to minimize flushing.  No need to
10633 	 * invalidate TLB, since we only update invalid entries.
10634 	 */
10635 	PMAP_LOCK(kernel_pmap);
10636 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10637 	    len -= inc) {
10638 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10639 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10640 			pdpe = pmap_large_map_pdpe(va);
10641 			MPASS(*pdpe == 0);
10642 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10643 			    X86_PG_V | X86_PG_A | pg_nx |
10644 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10645 			inc = NBPDP;
10646 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10647 		    (va & PDRMASK) == 0) {
10648 			pde = pmap_large_map_pde(va);
10649 			MPASS(*pde == 0);
10650 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10651 			    X86_PG_V | X86_PG_A | pg_nx |
10652 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10653 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10654 			    ref_count++;
10655 			inc = NBPDR;
10656 		} else {
10657 			pte = pmap_large_map_pte(va);
10658 			MPASS(*pte == 0);
10659 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10660 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10661 			    mattr, FALSE);
10662 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10663 			    ref_count++;
10664 			inc = PAGE_SIZE;
10665 		}
10666 	}
10667 	PMAP_UNLOCK(kernel_pmap);
10668 	MPASS(len == 0);
10669 
10670 	*addr = (void *)vmem_res;
10671 	return (0);
10672 }
10673 
10674 void
10675 pmap_large_unmap(void *svaa, vm_size_t len)
10676 {
10677 	vm_offset_t sva, va;
10678 	vm_size_t inc;
10679 	pdp_entry_t *pdpe, pdp;
10680 	pd_entry_t *pde, pd;
10681 	pt_entry_t *pte;
10682 	vm_page_t m;
10683 	struct spglist spgf;
10684 
10685 	sva = (vm_offset_t)svaa;
10686 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10687 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10688 		return;
10689 
10690 	SLIST_INIT(&spgf);
10691 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10692 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10693 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10694 	PMAP_LOCK(kernel_pmap);
10695 	for (va = sva; va < sva + len; va += inc) {
10696 		pdpe = pmap_large_map_pdpe(va);
10697 		pdp = *pdpe;
10698 		KASSERT((pdp & X86_PG_V) != 0,
10699 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10700 		    (u_long)pdpe, pdp));
10701 		if ((pdp & X86_PG_PS) != 0) {
10702 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10703 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10704 			    (u_long)pdpe, pdp));
10705 			KASSERT((va & PDPMASK) == 0,
10706 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10707 			    (u_long)pdpe, pdp));
10708 			KASSERT(va + NBPDP <= sva + len,
10709 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10710 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10711 			    (u_long)pdpe, pdp, len));
10712 			*pdpe = 0;
10713 			inc = NBPDP;
10714 			continue;
10715 		}
10716 		pde = pmap_pdpe_to_pde(pdpe, va);
10717 		pd = *pde;
10718 		KASSERT((pd & X86_PG_V) != 0,
10719 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10720 		    (u_long)pde, pd));
10721 		if ((pd & X86_PG_PS) != 0) {
10722 			KASSERT((va & PDRMASK) == 0,
10723 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10724 			    (u_long)pde, pd));
10725 			KASSERT(va + NBPDR <= sva + len,
10726 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10727 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10728 			    pd, len));
10729 			pde_store(pde, 0);
10730 			inc = NBPDR;
10731 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10732 			m->ref_count--;
10733 			if (m->ref_count == 0) {
10734 				*pdpe = 0;
10735 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10736 			}
10737 			continue;
10738 		}
10739 		pte = pmap_pde_to_pte(pde, va);
10740 		KASSERT((*pte & X86_PG_V) != 0,
10741 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10742 		    (u_long)pte, *pte));
10743 		pte_clear(pte);
10744 		inc = PAGE_SIZE;
10745 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10746 		m->ref_count--;
10747 		if (m->ref_count == 0) {
10748 			*pde = 0;
10749 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10750 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10751 			m->ref_count--;
10752 			if (m->ref_count == 0) {
10753 				*pdpe = 0;
10754 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10755 			}
10756 		}
10757 	}
10758 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10759 	PMAP_UNLOCK(kernel_pmap);
10760 	vm_page_free_pages_toq(&spgf, false);
10761 	vmem_free(large_vmem, sva, len);
10762 }
10763 
10764 static void
10765 pmap_large_map_wb_fence_mfence(void)
10766 {
10767 
10768 	mfence();
10769 }
10770 
10771 static void
10772 pmap_large_map_wb_fence_atomic(void)
10773 {
10774 
10775 	atomic_thread_fence_seq_cst();
10776 }
10777 
10778 static void
10779 pmap_large_map_wb_fence_nop(void)
10780 {
10781 }
10782 
10783 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10784 {
10785 
10786 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10787 		return (pmap_large_map_wb_fence_mfence);
10788 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10789 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10790 		return (pmap_large_map_wb_fence_atomic);
10791 	else
10792 		/* clflush is strongly enough ordered */
10793 		return (pmap_large_map_wb_fence_nop);
10794 }
10795 
10796 static void
10797 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10798 {
10799 
10800 	for (; len > 0; len -= cpu_clflush_line_size,
10801 	    va += cpu_clflush_line_size)
10802 		clwb(va);
10803 }
10804 
10805 static void
10806 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10807 {
10808 
10809 	for (; len > 0; len -= cpu_clflush_line_size,
10810 	    va += cpu_clflush_line_size)
10811 		clflushopt(va);
10812 }
10813 
10814 static void
10815 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10816 {
10817 
10818 	for (; len > 0; len -= cpu_clflush_line_size,
10819 	    va += cpu_clflush_line_size)
10820 		clflush(va);
10821 }
10822 
10823 static void
10824 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10825 {
10826 }
10827 
10828 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10829 {
10830 
10831 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10832 		return (pmap_large_map_flush_range_clwb);
10833 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10834 		return (pmap_large_map_flush_range_clflushopt);
10835 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10836 		return (pmap_large_map_flush_range_clflush);
10837 	else
10838 		return (pmap_large_map_flush_range_nop);
10839 }
10840 
10841 static void
10842 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10843 {
10844 	volatile u_long *pe;
10845 	u_long p;
10846 	vm_offset_t va;
10847 	vm_size_t inc;
10848 	bool seen_other;
10849 
10850 	for (va = sva; va < eva; va += inc) {
10851 		inc = 0;
10852 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
10853 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
10854 			p = *pe;
10855 			if ((p & X86_PG_PS) != 0)
10856 				inc = NBPDP;
10857 		}
10858 		if (inc == 0) {
10859 			pe = (volatile u_long *)pmap_large_map_pde(va);
10860 			p = *pe;
10861 			if ((p & X86_PG_PS) != 0)
10862 				inc = NBPDR;
10863 		}
10864 		if (inc == 0) {
10865 			pe = (volatile u_long *)pmap_large_map_pte(va);
10866 			p = *pe;
10867 			inc = PAGE_SIZE;
10868 		}
10869 		seen_other = false;
10870 		for (;;) {
10871 			if ((p & X86_PG_AVAIL1) != 0) {
10872 				/*
10873 				 * Spin-wait for the end of a parallel
10874 				 * write-back.
10875 				 */
10876 				cpu_spinwait();
10877 				p = *pe;
10878 
10879 				/*
10880 				 * If we saw other write-back
10881 				 * occuring, we cannot rely on PG_M to
10882 				 * indicate state of the cache.  The
10883 				 * PG_M bit is cleared before the
10884 				 * flush to avoid ignoring new writes,
10885 				 * and writes which are relevant for
10886 				 * us might happen after.
10887 				 */
10888 				seen_other = true;
10889 				continue;
10890 			}
10891 
10892 			if ((p & X86_PG_M) != 0 || seen_other) {
10893 				if (!atomic_fcmpset_long(pe, &p,
10894 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
10895 					/*
10896 					 * If we saw PG_M without
10897 					 * PG_AVAIL1, and then on the
10898 					 * next attempt we do not
10899 					 * observe either PG_M or
10900 					 * PG_AVAIL1, the other
10901 					 * write-back started after us
10902 					 * and finished before us.  We
10903 					 * can rely on it doing our
10904 					 * work.
10905 					 */
10906 					continue;
10907 				pmap_large_map_flush_range(va, inc);
10908 				atomic_clear_long(pe, X86_PG_AVAIL1);
10909 			}
10910 			break;
10911 		}
10912 		maybe_yield();
10913 	}
10914 }
10915 
10916 /*
10917  * Write-back cache lines for the given address range.
10918  *
10919  * Must be called only on the range or sub-range returned from
10920  * pmap_large_map().  Must not be called on the coalesced ranges.
10921  *
10922  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
10923  * instructions support.
10924  */
10925 void
10926 pmap_large_map_wb(void *svap, vm_size_t len)
10927 {
10928 	vm_offset_t eva, sva;
10929 
10930 	sva = (vm_offset_t)svap;
10931 	eva = sva + len;
10932 	pmap_large_map_wb_fence();
10933 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
10934 		pmap_large_map_flush_range(sva, len);
10935 	} else {
10936 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
10937 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
10938 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
10939 		pmap_large_map_wb_large(sva, eva);
10940 	}
10941 	pmap_large_map_wb_fence();
10942 }
10943 
10944 static vm_page_t
10945 pmap_pti_alloc_page(void)
10946 {
10947 	vm_page_t m;
10948 
10949 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10950 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
10951 	return (m);
10952 }
10953 
10954 static bool
10955 pmap_pti_free_page(vm_page_t m)
10956 {
10957 	if (!vm_page_unwire_noq(m))
10958 		return (false);
10959 	vm_page_xbusy_claim(m);
10960 	vm_page_free_zero(m);
10961 	return (true);
10962 }
10963 
10964 static void
10965 pmap_pti_init(void)
10966 {
10967 	vm_page_t pml4_pg;
10968 	pdp_entry_t *pdpe;
10969 	vm_offset_t va;
10970 	int i;
10971 
10972 	if (!pti)
10973 		return;
10974 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
10975 	VM_OBJECT_WLOCK(pti_obj);
10976 	pml4_pg = pmap_pti_alloc_page();
10977 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
10978 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
10979 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
10980 		pdpe = pmap_pti_pdpe(va);
10981 		pmap_pti_wire_pte(pdpe);
10982 	}
10983 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
10984 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
10985 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
10986 	    sizeof(struct gate_descriptor) * NIDT, false);
10987 	CPU_FOREACH(i) {
10988 		/* Doublefault stack IST 1 */
10989 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
10990 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
10991 		/* NMI stack IST 2 */
10992 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
10993 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
10994 		/* MC# stack IST 3 */
10995 		va = __pcpu[i].pc_common_tss.tss_ist3 +
10996 		    sizeof(struct nmi_pcpu);
10997 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
10998 		/* DB# stack IST 4 */
10999 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11000 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11001 	}
11002 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11003 	    true);
11004 	pti_finalized = true;
11005 	VM_OBJECT_WUNLOCK(pti_obj);
11006 }
11007 
11008 static void
11009 pmap_cpu_init(void *arg __unused)
11010 {
11011 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11012 	pmap_pti_init();
11013 }
11014 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11015 
11016 static pdp_entry_t *
11017 pmap_pti_pdpe(vm_offset_t va)
11018 {
11019 	pml4_entry_t *pml4e;
11020 	pdp_entry_t *pdpe;
11021 	vm_page_t m;
11022 	vm_pindex_t pml4_idx;
11023 	vm_paddr_t mphys;
11024 
11025 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11026 
11027 	pml4_idx = pmap_pml4e_index(va);
11028 	pml4e = &pti_pml4[pml4_idx];
11029 	m = NULL;
11030 	if (*pml4e == 0) {
11031 		if (pti_finalized)
11032 			panic("pml4 alloc after finalization\n");
11033 		m = pmap_pti_alloc_page();
11034 		if (*pml4e != 0) {
11035 			pmap_pti_free_page(m);
11036 			mphys = *pml4e & ~PAGE_MASK;
11037 		} else {
11038 			mphys = VM_PAGE_TO_PHYS(m);
11039 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11040 		}
11041 	} else {
11042 		mphys = *pml4e & ~PAGE_MASK;
11043 	}
11044 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11045 	return (pdpe);
11046 }
11047 
11048 static void
11049 pmap_pti_wire_pte(void *pte)
11050 {
11051 	vm_page_t m;
11052 
11053 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11054 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11055 	m->ref_count++;
11056 }
11057 
11058 static void
11059 pmap_pti_unwire_pde(void *pde, bool only_ref)
11060 {
11061 	vm_page_t m;
11062 
11063 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11064 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11065 	MPASS(only_ref || m->ref_count > 1);
11066 	pmap_pti_free_page(m);
11067 }
11068 
11069 static void
11070 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11071 {
11072 	vm_page_t m;
11073 	pd_entry_t *pde;
11074 
11075 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11076 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11077 	if (pmap_pti_free_page(m)) {
11078 		pde = pmap_pti_pde(va);
11079 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11080 		*pde = 0;
11081 		pmap_pti_unwire_pde(pde, false);
11082 	}
11083 }
11084 
11085 static pd_entry_t *
11086 pmap_pti_pde(vm_offset_t va)
11087 {
11088 	pdp_entry_t *pdpe;
11089 	pd_entry_t *pde;
11090 	vm_page_t m;
11091 	vm_pindex_t pd_idx;
11092 	vm_paddr_t mphys;
11093 
11094 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11095 
11096 	pdpe = pmap_pti_pdpe(va);
11097 	if (*pdpe == 0) {
11098 		m = pmap_pti_alloc_page();
11099 		if (*pdpe != 0) {
11100 			pmap_pti_free_page(m);
11101 			MPASS((*pdpe & X86_PG_PS) == 0);
11102 			mphys = *pdpe & ~PAGE_MASK;
11103 		} else {
11104 			mphys =  VM_PAGE_TO_PHYS(m);
11105 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11106 		}
11107 	} else {
11108 		MPASS((*pdpe & X86_PG_PS) == 0);
11109 		mphys = *pdpe & ~PAGE_MASK;
11110 	}
11111 
11112 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11113 	pd_idx = pmap_pde_index(va);
11114 	pde += pd_idx;
11115 	return (pde);
11116 }
11117 
11118 static pt_entry_t *
11119 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11120 {
11121 	pd_entry_t *pde;
11122 	pt_entry_t *pte;
11123 	vm_page_t m;
11124 	vm_paddr_t mphys;
11125 
11126 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11127 
11128 	pde = pmap_pti_pde(va);
11129 	if (unwire_pde != NULL) {
11130 		*unwire_pde = true;
11131 		pmap_pti_wire_pte(pde);
11132 	}
11133 	if (*pde == 0) {
11134 		m = pmap_pti_alloc_page();
11135 		if (*pde != 0) {
11136 			pmap_pti_free_page(m);
11137 			MPASS((*pde & X86_PG_PS) == 0);
11138 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11139 		} else {
11140 			mphys = VM_PAGE_TO_PHYS(m);
11141 			*pde = mphys | X86_PG_RW | X86_PG_V;
11142 			if (unwire_pde != NULL)
11143 				*unwire_pde = false;
11144 		}
11145 	} else {
11146 		MPASS((*pde & X86_PG_PS) == 0);
11147 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11148 	}
11149 
11150 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11151 	pte += pmap_pte_index(va);
11152 
11153 	return (pte);
11154 }
11155 
11156 static void
11157 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11158 {
11159 	vm_paddr_t pa;
11160 	pd_entry_t *pde;
11161 	pt_entry_t *pte, ptev;
11162 	bool unwire_pde;
11163 
11164 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11165 
11166 	sva = trunc_page(sva);
11167 	MPASS(sva > VM_MAXUSER_ADDRESS);
11168 	eva = round_page(eva);
11169 	MPASS(sva < eva);
11170 	for (; sva < eva; sva += PAGE_SIZE) {
11171 		pte = pmap_pti_pte(sva, &unwire_pde);
11172 		pa = pmap_kextract(sva);
11173 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11174 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11175 		    VM_MEMATTR_DEFAULT, FALSE);
11176 		if (*pte == 0) {
11177 			pte_store(pte, ptev);
11178 			pmap_pti_wire_pte(pte);
11179 		} else {
11180 			KASSERT(!pti_finalized,
11181 			    ("pti overlap after fin %#lx %#lx %#lx",
11182 			    sva, *pte, ptev));
11183 			KASSERT(*pte == ptev,
11184 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11185 			    sva, *pte, ptev));
11186 		}
11187 		if (unwire_pde) {
11188 			pde = pmap_pti_pde(sva);
11189 			pmap_pti_unwire_pde(pde, true);
11190 		}
11191 	}
11192 }
11193 
11194 void
11195 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11196 {
11197 
11198 	if (!pti)
11199 		return;
11200 	VM_OBJECT_WLOCK(pti_obj);
11201 	pmap_pti_add_kva_locked(sva, eva, exec);
11202 	VM_OBJECT_WUNLOCK(pti_obj);
11203 }
11204 
11205 void
11206 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11207 {
11208 	pt_entry_t *pte;
11209 	vm_offset_t va;
11210 
11211 	if (!pti)
11212 		return;
11213 	sva = rounddown2(sva, PAGE_SIZE);
11214 	MPASS(sva > VM_MAXUSER_ADDRESS);
11215 	eva = roundup2(eva, PAGE_SIZE);
11216 	MPASS(sva < eva);
11217 	VM_OBJECT_WLOCK(pti_obj);
11218 	for (va = sva; va < eva; va += PAGE_SIZE) {
11219 		pte = pmap_pti_pte(va, NULL);
11220 		KASSERT((*pte & X86_PG_V) != 0,
11221 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11222 		    (u_long)pte, *pte));
11223 		pte_clear(pte);
11224 		pmap_pti_unwire_pte(pte, va);
11225 	}
11226 	pmap_invalidate_range(kernel_pmap, sva, eva);
11227 	VM_OBJECT_WUNLOCK(pti_obj);
11228 }
11229 
11230 static void *
11231 pkru_dup_range(void *ctx __unused, void *data)
11232 {
11233 	struct pmap_pkru_range *node, *new_node;
11234 
11235 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11236 	if (new_node == NULL)
11237 		return (NULL);
11238 	node = data;
11239 	memcpy(new_node, node, sizeof(*node));
11240 	return (new_node);
11241 }
11242 
11243 static void
11244 pkru_free_range(void *ctx __unused, void *node)
11245 {
11246 
11247 	uma_zfree(pmap_pkru_ranges_zone, node);
11248 }
11249 
11250 static int
11251 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11252     int flags)
11253 {
11254 	struct pmap_pkru_range *ppr;
11255 	int error;
11256 
11257 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11258 	MPASS(pmap->pm_type == PT_X86);
11259 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11260 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11261 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11262 		return (EBUSY);
11263 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11264 	if (ppr == NULL)
11265 		return (ENOMEM);
11266 	ppr->pkru_keyidx = keyidx;
11267 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11268 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11269 	if (error != 0)
11270 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11271 	return (error);
11272 }
11273 
11274 static int
11275 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11276 {
11277 
11278 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11279 	MPASS(pmap->pm_type == PT_X86);
11280 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11281 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11282 }
11283 
11284 static void
11285 pmap_pkru_deassign_all(pmap_t pmap)
11286 {
11287 
11288 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11289 	if (pmap->pm_type == PT_X86 &&
11290 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11291 		rangeset_remove_all(&pmap->pm_pkru);
11292 }
11293 
11294 static bool
11295 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11296 {
11297 	struct pmap_pkru_range *ppr, *prev_ppr;
11298 	vm_offset_t va;
11299 
11300 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11301 	if (pmap->pm_type != PT_X86 ||
11302 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11303 	    sva >= VM_MAXUSER_ADDRESS)
11304 		return (true);
11305 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11306 	for (va = sva; va < eva; prev_ppr = ppr) {
11307 		ppr = rangeset_lookup(&pmap->pm_pkru, va);
11308 		if (va == sva)
11309 			prev_ppr = ppr;
11310 		else if ((ppr == NULL) ^ (prev_ppr == NULL))
11311 			return (false);
11312 		if (ppr == NULL) {
11313 			va += PAGE_SIZE;
11314 			continue;
11315 		}
11316 		if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
11317 			return (false);
11318 		va = ppr->pkru_rs_el.re_end;
11319 	}
11320 	return (true);
11321 }
11322 
11323 static pt_entry_t
11324 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11325 {
11326 	struct pmap_pkru_range *ppr;
11327 
11328 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11329 	if (pmap->pm_type != PT_X86 ||
11330 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11331 	    va >= VM_MAXUSER_ADDRESS)
11332 		return (0);
11333 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11334 	if (ppr != NULL)
11335 		return (X86_PG_PKU(ppr->pkru_keyidx));
11336 	return (0);
11337 }
11338 
11339 static bool
11340 pred_pkru_on_remove(void *ctx __unused, void *r)
11341 {
11342 	struct pmap_pkru_range *ppr;
11343 
11344 	ppr = r;
11345 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11346 }
11347 
11348 static void
11349 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11350 {
11351 
11352 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11353 	if (pmap->pm_type == PT_X86 &&
11354 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11355 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11356 		    pred_pkru_on_remove);
11357 	}
11358 }
11359 
11360 static int
11361 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11362 {
11363 
11364 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11365 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11366 	MPASS(dst_pmap->pm_type == PT_X86);
11367 	MPASS(src_pmap->pm_type == PT_X86);
11368 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11369 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11370 		return (0);
11371 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11372 }
11373 
11374 static void
11375 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11376     u_int keyidx)
11377 {
11378 	pml4_entry_t *pml4e;
11379 	pdp_entry_t *pdpe;
11380 	pd_entry_t newpde, ptpaddr, *pde;
11381 	pt_entry_t newpte, *ptep, pte;
11382 	vm_offset_t va, va_next;
11383 	bool changed;
11384 
11385 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11386 	MPASS(pmap->pm_type == PT_X86);
11387 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11388 
11389 	for (changed = false, va = sva; va < eva; va = va_next) {
11390 		pml4e = pmap_pml4e(pmap, va);
11391 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11392 			va_next = (va + NBPML4) & ~PML4MASK;
11393 			if (va_next < va)
11394 				va_next = eva;
11395 			continue;
11396 		}
11397 
11398 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11399 		if ((*pdpe & X86_PG_V) == 0) {
11400 			va_next = (va + NBPDP) & ~PDPMASK;
11401 			if (va_next < va)
11402 				va_next = eva;
11403 			continue;
11404 		}
11405 
11406 		va_next = (va + NBPDR) & ~PDRMASK;
11407 		if (va_next < va)
11408 			va_next = eva;
11409 
11410 		pde = pmap_pdpe_to_pde(pdpe, va);
11411 		ptpaddr = *pde;
11412 		if (ptpaddr == 0)
11413 			continue;
11414 
11415 		MPASS((ptpaddr & X86_PG_V) != 0);
11416 		if ((ptpaddr & PG_PS) != 0) {
11417 			if (va + NBPDR == va_next && eva >= va_next) {
11418 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11419 				    X86_PG_PKU(keyidx);
11420 				if (newpde != ptpaddr) {
11421 					*pde = newpde;
11422 					changed = true;
11423 				}
11424 				continue;
11425 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11426 				continue;
11427 			}
11428 		}
11429 
11430 		if (va_next > eva)
11431 			va_next = eva;
11432 
11433 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11434 		    ptep++, va += PAGE_SIZE) {
11435 			pte = *ptep;
11436 			if ((pte & X86_PG_V) == 0)
11437 				continue;
11438 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11439 			if (newpte != pte) {
11440 				*ptep = newpte;
11441 				changed = true;
11442 			}
11443 		}
11444 	}
11445 	if (changed)
11446 		pmap_invalidate_range(pmap, sva, eva);
11447 }
11448 
11449 static int
11450 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11451     u_int keyidx, int flags)
11452 {
11453 
11454 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11455 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11456 		return (EINVAL);
11457 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11458 		return (EFAULT);
11459 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11460 		return (ENOTSUP);
11461 	return (0);
11462 }
11463 
11464 int
11465 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11466     int flags)
11467 {
11468 	int error;
11469 
11470 	sva = trunc_page(sva);
11471 	eva = round_page(eva);
11472 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11473 	if (error != 0)
11474 		return (error);
11475 	for (;;) {
11476 		PMAP_LOCK(pmap);
11477 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11478 		if (error == 0)
11479 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11480 		PMAP_UNLOCK(pmap);
11481 		if (error != ENOMEM)
11482 			break;
11483 		vm_wait(NULL);
11484 	}
11485 	return (error);
11486 }
11487 
11488 int
11489 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11490 {
11491 	int error;
11492 
11493 	sva = trunc_page(sva);
11494 	eva = round_page(eva);
11495 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11496 	if (error != 0)
11497 		return (error);
11498 	for (;;) {
11499 		PMAP_LOCK(pmap);
11500 		error = pmap_pkru_deassign(pmap, sva, eva);
11501 		if (error == 0)
11502 			pmap_pkru_update_range(pmap, sva, eva, 0);
11503 		PMAP_UNLOCK(pmap);
11504 		if (error != ENOMEM)
11505 			break;
11506 		vm_wait(NULL);
11507 	}
11508 	return (error);
11509 }
11510 
11511 #if defined(KASAN) || defined(KMSAN)
11512 
11513 /*
11514  * Reserve enough memory to:
11515  * 1) allocate PDP pages for the shadow map(s),
11516  * 2) shadow one page of memory, so one PD page, one PT page, and one shadow
11517  *    page per shadow map.
11518  */
11519 #ifdef KASAN
11520 #define	SAN_EARLY_PAGES	(NKASANPML4E + 3)
11521 #else
11522 #define	SAN_EARLY_PAGES	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * 3)
11523 #endif
11524 
11525 static uint64_t __nosanitizeaddress __nosanitizememory
11526 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11527 {
11528 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11529 	static size_t offset = 0;
11530 	uint64_t pa;
11531 
11532 	if (offset == sizeof(data)) {
11533 		panic("%s: ran out of memory for the bootstrap shadow map",
11534 		    __func__);
11535 	}
11536 
11537 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11538 	offset += PAGE_SIZE;
11539 	return (pa);
11540 }
11541 
11542 /*
11543  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11544  * is currently only used to shadow the temporary boot stack set up by locore.
11545  */
11546 static void __nosanitizeaddress __nosanitizememory
11547 pmap_san_enter_early(vm_offset_t va)
11548 {
11549 	static bool first = true;
11550 	pml4_entry_t *pml4e;
11551 	pdp_entry_t *pdpe;
11552 	pd_entry_t *pde;
11553 	pt_entry_t *pte;
11554 	uint64_t cr3, pa, base;
11555 	int i;
11556 
11557 	base = amd64_loadaddr();
11558 	cr3 = rcr3();
11559 
11560 	if (first) {
11561 		/*
11562 		 * If this the first call, we need to allocate new PML4Es for
11563 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11564 		 * was initialized by the boot loader, so we can't simply test
11565 		 * whether the shadow map's PML4Es are zero.
11566 		 */
11567 		first = false;
11568 #ifdef KASAN
11569 		for (i = 0; i < NKASANPML4E; i++) {
11570 			pa = pmap_san_enter_early_alloc_4k(base);
11571 
11572 			pml4e = (pml4_entry_t *)cr3 +
11573 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11574 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11575 		}
11576 #else
11577 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11578 			pa = pmap_san_enter_early_alloc_4k(base);
11579 
11580 			pml4e = (pml4_entry_t *)cr3 +
11581 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11582 			    i * NBPML4);
11583 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11584 		}
11585 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11586 			pa = pmap_san_enter_early_alloc_4k(base);
11587 
11588 			pml4e = (pml4_entry_t *)cr3 +
11589 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11590 			    i * NBPML4);
11591 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11592 		}
11593 #endif
11594 	}
11595 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11596 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11597 	if (*pdpe == 0) {
11598 		pa = pmap_san_enter_early_alloc_4k(base);
11599 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11600 	}
11601 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11602 	if (*pde == 0) {
11603 		pa = pmap_san_enter_early_alloc_4k(base);
11604 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11605 	}
11606 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11607 	if (*pte != 0)
11608 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11609 	pa = pmap_san_enter_early_alloc_4k(base);
11610 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11611 }
11612 
11613 static vm_page_t
11614 pmap_san_enter_alloc_4k(void)
11615 {
11616 	vm_page_t m;
11617 
11618 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11619 	    VM_ALLOC_ZERO);
11620 	if (m == NULL)
11621 		panic("%s: no memory to grow shadow map", __func__);
11622 	return (m);
11623 }
11624 
11625 static vm_page_t
11626 pmap_san_enter_alloc_2m(void)
11627 {
11628 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11629 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11630 }
11631 
11632 /*
11633  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11634  * pages when possible.
11635  */
11636 void __nosanitizeaddress __nosanitizememory
11637 pmap_san_enter(vm_offset_t va)
11638 {
11639 	pdp_entry_t *pdpe;
11640 	pd_entry_t *pde;
11641 	pt_entry_t *pte;
11642 	vm_page_t m;
11643 
11644 	if (kernphys == 0) {
11645 		/*
11646 		 * We're creating a temporary shadow map for the boot stack.
11647 		 */
11648 		pmap_san_enter_early(va);
11649 		return;
11650 	}
11651 
11652 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11653 
11654 	pdpe = pmap_pdpe(kernel_pmap, va);
11655 	if ((*pdpe & X86_PG_V) == 0) {
11656 		m = pmap_san_enter_alloc_4k();
11657 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11658 		    X86_PG_V | pg_nx);
11659 	}
11660 	pde = pmap_pdpe_to_pde(pdpe, va);
11661 	if ((*pde & X86_PG_V) == 0) {
11662 		m = pmap_san_enter_alloc_2m();
11663 		if (m != NULL) {
11664 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11665 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11666 		} else {
11667 			m = pmap_san_enter_alloc_4k();
11668 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11669 			    X86_PG_V | pg_nx);
11670 		}
11671 	}
11672 	if ((*pde & X86_PG_PS) != 0)
11673 		return;
11674 	pte = pmap_pde_to_pte(pde, va);
11675 	if ((*pte & X86_PG_V) != 0)
11676 		return;
11677 	m = pmap_san_enter_alloc_4k();
11678 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11679 	    X86_PG_M | X86_PG_A | pg_nx);
11680 }
11681 #endif
11682 
11683 /*
11684  * Track a range of the kernel's virtual address space that is contiguous
11685  * in various mapping attributes.
11686  */
11687 struct pmap_kernel_map_range {
11688 	vm_offset_t sva;
11689 	pt_entry_t attrs;
11690 	int ptes;
11691 	int pdes;
11692 	int pdpes;
11693 };
11694 
11695 static void
11696 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11697     vm_offset_t eva)
11698 {
11699 	const char *mode;
11700 	int i, pat_idx;
11701 
11702 	if (eva <= range->sva)
11703 		return;
11704 
11705 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11706 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11707 		if (pat_index[i] == pat_idx)
11708 			break;
11709 
11710 	switch (i) {
11711 	case PAT_WRITE_BACK:
11712 		mode = "WB";
11713 		break;
11714 	case PAT_WRITE_THROUGH:
11715 		mode = "WT";
11716 		break;
11717 	case PAT_UNCACHEABLE:
11718 		mode = "UC";
11719 		break;
11720 	case PAT_UNCACHED:
11721 		mode = "U-";
11722 		break;
11723 	case PAT_WRITE_PROTECTED:
11724 		mode = "WP";
11725 		break;
11726 	case PAT_WRITE_COMBINING:
11727 		mode = "WC";
11728 		break;
11729 	default:
11730 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11731 		    __func__, pat_idx, range->sva, eva);
11732 		mode = "??";
11733 		break;
11734 	}
11735 
11736 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11737 	    range->sva, eva,
11738 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11739 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11740 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11741 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11742 	    mode, range->pdpes, range->pdes, range->ptes);
11743 
11744 	/* Reset to sentinel value. */
11745 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11746 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11747 	    NPDEPG - 1, NPTEPG - 1);
11748 }
11749 
11750 /*
11751  * Determine whether the attributes specified by a page table entry match those
11752  * being tracked by the current range.  This is not quite as simple as a direct
11753  * flag comparison since some PAT modes have multiple representations.
11754  */
11755 static bool
11756 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11757 {
11758 	pt_entry_t diff, mask;
11759 
11760 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11761 	diff = (range->attrs ^ attrs) & mask;
11762 	if (diff == 0)
11763 		return (true);
11764 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11765 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11766 	    pmap_pat_index(kernel_pmap, attrs, true))
11767 		return (true);
11768 	return (false);
11769 }
11770 
11771 static void
11772 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11773     pt_entry_t attrs)
11774 {
11775 
11776 	memset(range, 0, sizeof(*range));
11777 	range->sva = va;
11778 	range->attrs = attrs;
11779 }
11780 
11781 /*
11782  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11783  * those of the current run, dump the address range and its attributes, and
11784  * begin a new run.
11785  */
11786 static void
11787 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11788     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11789     pt_entry_t pte)
11790 {
11791 	pt_entry_t attrs;
11792 
11793 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11794 
11795 	attrs |= pdpe & pg_nx;
11796 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11797 	if ((pdpe & PG_PS) != 0) {
11798 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11799 	} else if (pde != 0) {
11800 		attrs |= pde & pg_nx;
11801 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11802 	}
11803 	if ((pde & PG_PS) != 0) {
11804 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11805 	} else if (pte != 0) {
11806 		attrs |= pte & pg_nx;
11807 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11808 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11809 
11810 		/* Canonicalize by always using the PDE PAT bit. */
11811 		if ((attrs & X86_PG_PTE_PAT) != 0)
11812 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11813 	}
11814 
11815 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11816 		sysctl_kmaps_dump(sb, range, va);
11817 		sysctl_kmaps_reinit(range, va, attrs);
11818 	}
11819 }
11820 
11821 static int
11822 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11823 {
11824 	struct pmap_kernel_map_range range;
11825 	struct sbuf sbuf, *sb;
11826 	pml4_entry_t pml4e;
11827 	pdp_entry_t *pdp, pdpe;
11828 	pd_entry_t *pd, pde;
11829 	pt_entry_t *pt, pte;
11830 	vm_offset_t sva;
11831 	vm_paddr_t pa;
11832 	int error, i, j, k, l;
11833 
11834 	error = sysctl_wire_old_buffer(req, 0);
11835 	if (error != 0)
11836 		return (error);
11837 	sb = &sbuf;
11838 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11839 
11840 	/* Sentinel value. */
11841 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11842 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11843 	    NPDEPG - 1, NPTEPG - 1);
11844 
11845 	/*
11846 	 * Iterate over the kernel page tables without holding the kernel pmap
11847 	 * lock.  Outside of the large map, kernel page table pages are never
11848 	 * freed, so at worst we will observe inconsistencies in the output.
11849 	 * Within the large map, ensure that PDP and PD page addresses are
11850 	 * valid before descending.
11851 	 */
11852 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
11853 		switch (i) {
11854 		case PML4PML4I:
11855 			sbuf_printf(sb, "\nRecursive map:\n");
11856 			break;
11857 		case DMPML4I:
11858 			sbuf_printf(sb, "\nDirect map:\n");
11859 			break;
11860 #ifdef KASAN
11861 		case KASANPML4I:
11862 			sbuf_printf(sb, "\nKASAN shadow map:\n");
11863 			break;
11864 #endif
11865 #ifdef KMSAN
11866 		case KMSANSHADPML4I:
11867 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
11868 			break;
11869 		case KMSANORIGPML4I:
11870 			sbuf_printf(sb, "\nKMSAN origin map:\n");
11871 			break;
11872 #endif
11873 		case KPML4BASE:
11874 			sbuf_printf(sb, "\nKernel map:\n");
11875 			break;
11876 		case LMSPML4I:
11877 			sbuf_printf(sb, "\nLarge map:\n");
11878 			break;
11879 		}
11880 
11881 		/* Convert to canonical form. */
11882 		if (sva == 1ul << 47)
11883 			sva |= -1ul << 48;
11884 
11885 restart:
11886 		pml4e = kernel_pml4[i];
11887 		if ((pml4e & X86_PG_V) == 0) {
11888 			sva = rounddown2(sva, NBPML4);
11889 			sysctl_kmaps_dump(sb, &range, sva);
11890 			sva += NBPML4;
11891 			continue;
11892 		}
11893 		pa = pml4e & PG_FRAME;
11894 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
11895 
11896 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
11897 			pdpe = pdp[j];
11898 			if ((pdpe & X86_PG_V) == 0) {
11899 				sva = rounddown2(sva, NBPDP);
11900 				sysctl_kmaps_dump(sb, &range, sva);
11901 				sva += NBPDP;
11902 				continue;
11903 			}
11904 			pa = pdpe & PG_FRAME;
11905 			if ((pdpe & PG_PS) != 0) {
11906 				sva = rounddown2(sva, NBPDP);
11907 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
11908 				    0, 0);
11909 				range.pdpes++;
11910 				sva += NBPDP;
11911 				continue;
11912 			}
11913 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11914 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
11915 				/*
11916 				 * Page table pages for the large map may be
11917 				 * freed.  Validate the next-level address
11918 				 * before descending.
11919 				 */
11920 				goto restart;
11921 			}
11922 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
11923 
11924 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
11925 				pde = pd[k];
11926 				if ((pde & X86_PG_V) == 0) {
11927 					sva = rounddown2(sva, NBPDR);
11928 					sysctl_kmaps_dump(sb, &range, sva);
11929 					sva += NBPDR;
11930 					continue;
11931 				}
11932 				pa = pde & PG_FRAME;
11933 				if ((pde & PG_PS) != 0) {
11934 					sva = rounddown2(sva, NBPDR);
11935 					sysctl_kmaps_check(sb, &range, sva,
11936 					    pml4e, pdpe, pde, 0);
11937 					range.pdes++;
11938 					sva += NBPDR;
11939 					continue;
11940 				}
11941 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11942 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
11943 					/*
11944 					 * Page table pages for the large map
11945 					 * may be freed.  Validate the
11946 					 * next-level address before descending.
11947 					 */
11948 					goto restart;
11949 				}
11950 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
11951 
11952 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
11953 				    sva += PAGE_SIZE) {
11954 					pte = pt[l];
11955 					if ((pte & X86_PG_V) == 0) {
11956 						sysctl_kmaps_dump(sb, &range,
11957 						    sva);
11958 						continue;
11959 					}
11960 					sysctl_kmaps_check(sb, &range, sva,
11961 					    pml4e, pdpe, pde, pte);
11962 					range.ptes++;
11963 				}
11964 			}
11965 		}
11966 	}
11967 
11968 	error = sbuf_finish(sb);
11969 	sbuf_delete(sb);
11970 	return (error);
11971 }
11972 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
11973     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
11974     NULL, 0, sysctl_kmaps, "A",
11975     "Dump kernel address layout");
11976 
11977 #ifdef DDB
11978 DB_SHOW_COMMAND(pte, pmap_print_pte)
11979 {
11980 	pmap_t pmap;
11981 	pml5_entry_t *pml5;
11982 	pml4_entry_t *pml4;
11983 	pdp_entry_t *pdp;
11984 	pd_entry_t *pde;
11985 	pt_entry_t *pte, PG_V;
11986 	vm_offset_t va;
11987 
11988 	if (!have_addr) {
11989 		db_printf("show pte addr\n");
11990 		return;
11991 	}
11992 	va = (vm_offset_t)addr;
11993 
11994 	if (kdb_thread != NULL)
11995 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
11996 	else
11997 		pmap = PCPU_GET(curpmap);
11998 
11999 	PG_V = pmap_valid_bit(pmap);
12000 	db_printf("VA 0x%016lx", va);
12001 
12002 	if (pmap_is_la57(pmap)) {
12003 		pml5 = pmap_pml5e(pmap, va);
12004 		db_printf(" pml5e 0x%016lx", *pml5);
12005 		if ((*pml5 & PG_V) == 0) {
12006 			db_printf("\n");
12007 			return;
12008 		}
12009 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12010 	} else {
12011 		pml4 = pmap_pml4e(pmap, va);
12012 	}
12013 	db_printf(" pml4e 0x%016lx", *pml4);
12014 	if ((*pml4 & PG_V) == 0) {
12015 		db_printf("\n");
12016 		return;
12017 	}
12018 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12019 	db_printf(" pdpe 0x%016lx", *pdp);
12020 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12021 		db_printf("\n");
12022 		return;
12023 	}
12024 	pde = pmap_pdpe_to_pde(pdp, va);
12025 	db_printf(" pde 0x%016lx", *pde);
12026 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12027 		db_printf("\n");
12028 		return;
12029 	}
12030 	pte = pmap_pde_to_pte(pde, va);
12031 	db_printf(" pte 0x%016lx\n", *pte);
12032 }
12033 
12034 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12035 {
12036 	vm_paddr_t a;
12037 
12038 	if (have_addr) {
12039 		a = (vm_paddr_t)addr;
12040 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12041 	} else {
12042 		db_printf("show phys2dmap addr\n");
12043 	}
12044 }
12045 
12046 static void
12047 ptpages_show_page(int level, int idx, vm_page_t pg)
12048 {
12049 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12050 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12051 }
12052 
12053 static void
12054 ptpages_show_complain(int level, int idx, uint64_t pte)
12055 {
12056 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12057 }
12058 
12059 static void
12060 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12061 {
12062 	vm_page_t pg3, pg2, pg1;
12063 	pml4_entry_t *pml4;
12064 	pdp_entry_t *pdp;
12065 	pd_entry_t *pd;
12066 	int i4, i3, i2;
12067 
12068 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12069 	for (i4 = 0; i4 < num_entries; i4++) {
12070 		if ((pml4[i4] & PG_V) == 0)
12071 			continue;
12072 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12073 		if (pg3 == NULL) {
12074 			ptpages_show_complain(3, i4, pml4[i4]);
12075 			continue;
12076 		}
12077 		ptpages_show_page(3, i4, pg3);
12078 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12079 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12080 			if ((pdp[i3] & PG_V) == 0)
12081 				continue;
12082 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12083 			if (pg3 == NULL) {
12084 				ptpages_show_complain(2, i3, pdp[i3]);
12085 				continue;
12086 			}
12087 			ptpages_show_page(2, i3, pg2);
12088 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12089 			for (i2 = 0; i2 < NPDEPG; i2++) {
12090 				if ((pd[i2] & PG_V) == 0)
12091 					continue;
12092 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12093 				if (pg1 == NULL) {
12094 					ptpages_show_complain(1, i2, pd[i2]);
12095 					continue;
12096 				}
12097 				ptpages_show_page(1, i2, pg1);
12098 			}
12099 		}
12100 	}
12101 }
12102 
12103 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12104 {
12105 	pmap_t pmap;
12106 	vm_page_t pg;
12107 	pml5_entry_t *pml5;
12108 	uint64_t PG_V;
12109 	int i5;
12110 
12111 	if (have_addr)
12112 		pmap = (pmap_t)addr;
12113 	else
12114 		pmap = PCPU_GET(curpmap);
12115 
12116 	PG_V = pmap_valid_bit(pmap);
12117 
12118 	if (pmap_is_la57(pmap)) {
12119 		pml5 = pmap->pm_pmltop;
12120 		for (i5 = 0; i5 < NUPML5E; i5++) {
12121 			if ((pml5[i5] & PG_V) == 0)
12122 				continue;
12123 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12124 			if (pg == NULL) {
12125 				ptpages_show_complain(4, i5, pml5[i5]);
12126 				continue;
12127 			}
12128 			ptpages_show_page(4, i5, pg);
12129 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12130 		}
12131 	} else {
12132 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12133 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12134 	}
12135 }
12136 #endif
12137