xref: /freebsd/sys/amd64/amd64/sys_machdep.c (revision 19261079)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)sys_machdep.c	5.5 (Berkeley) 1/19/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_capsicum.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/capsicum.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mutex.h>
47 #include <sys/pcpu.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/smp.h>
51 #include <sys/sysproto.h>
52 #include <sys/uio.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 #include <vm/vm_kern.h>		/* for kernel_map */
57 #include <vm/vm_map.h>
58 #include <vm/vm_extern.h>
59 
60 #include <machine/frame.h>
61 #include <machine/md_var.h>
62 #include <machine/pcb.h>
63 #include <machine/specialreg.h>
64 #include <machine/sysarch.h>
65 #include <machine/tss.h>
66 #include <machine/vmparam.h>
67 
68 #include <security/audit/audit.h>
69 
70 static void user_ldt_deref(struct proc_ldt *pldt);
71 static void user_ldt_derefl(struct proc_ldt *pldt);
72 
73 #define	MAX_LD		8192
74 
75 int max_ldt_segment = 512;
76 SYSCTL_INT(_machdep, OID_AUTO, max_ldt_segment, CTLFLAG_RDTUN,
77     &max_ldt_segment, 0,
78     "Maximum number of allowed LDT segments in the single address space");
79 
80 static void
81 max_ldt_segment_init(void *arg __unused)
82 {
83 
84 	if (max_ldt_segment <= 0)
85 		max_ldt_segment = 1;
86 	if (max_ldt_segment > MAX_LD)
87 		max_ldt_segment = MAX_LD;
88 }
89 SYSINIT(maxldt, SI_SUB_VM_CONF, SI_ORDER_ANY, max_ldt_segment_init, NULL);
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct sysarch_args {
93 	int op;
94 	char *parms;
95 };
96 #endif
97 
98 int
99 sysarch_ldt(struct thread *td, struct sysarch_args *uap, int uap_space)
100 {
101 	struct i386_ldt_args *largs, la;
102 	struct user_segment_descriptor *lp;
103 	int error = 0;
104 
105 	/*
106 	 * XXXKIB check that the BSM generation code knows to encode
107 	 * the op argument.
108 	 */
109 	AUDIT_ARG_CMD(uap->op);
110 	if (uap_space == UIO_USERSPACE) {
111 		error = copyin(uap->parms, &la, sizeof(struct i386_ldt_args));
112 		if (error != 0)
113 			return (error);
114 		largs = &la;
115 	} else
116 		largs = (struct i386_ldt_args *)uap->parms;
117 
118 	switch (uap->op) {
119 	case I386_GET_LDT:
120 		error = amd64_get_ldt(td, largs);
121 		break;
122 	case I386_SET_LDT:
123 		if (largs->descs != NULL && largs->num > max_ldt_segment)
124 			return (EINVAL);
125 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
126 		if (largs->descs != NULL) {
127 			lp = malloc(largs->num * sizeof(struct
128 			    user_segment_descriptor), M_TEMP, M_WAITOK);
129 			error = copyin(largs->descs, lp, largs->num *
130 			    sizeof(struct user_segment_descriptor));
131 			if (error == 0)
132 				error = amd64_set_ldt(td, largs, lp);
133 			free(lp, M_TEMP);
134 		} else {
135 			error = amd64_set_ldt(td, largs, NULL);
136 		}
137 		break;
138 	}
139 	return (error);
140 }
141 
142 void
143 update_gdt_gsbase(struct thread *td, uint32_t base)
144 {
145 	struct user_segment_descriptor *sd;
146 
147 	if (td != curthread)
148 		return;
149 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
150 	critical_enter();
151 	sd = PCPU_GET(gs32p);
152 	sd->sd_lobase = base & 0xffffff;
153 	sd->sd_hibase = (base >> 24) & 0xff;
154 	critical_exit();
155 }
156 
157 void
158 update_gdt_fsbase(struct thread *td, uint32_t base)
159 {
160 	struct user_segment_descriptor *sd;
161 
162 	if (td != curthread)
163 		return;
164 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
165 	critical_enter();
166 	sd = PCPU_GET(fs32p);
167 	sd->sd_lobase = base & 0xffffff;
168 	sd->sd_hibase = (base >> 24) & 0xff;
169 	critical_exit();
170 }
171 
172 int
173 sysarch(struct thread *td, struct sysarch_args *uap)
174 {
175 	struct pcb *pcb;
176 	struct vm_map *map;
177 	uint32_t i386base;
178 	uint64_t a64base;
179 	struct i386_ioperm_args iargs;
180 	struct i386_get_xfpustate i386xfpu;
181 	struct i386_set_pkru i386pkru;
182 	struct amd64_get_xfpustate a64xfpu;
183 	struct amd64_set_pkru a64pkru;
184 	int error;
185 
186 #ifdef CAPABILITY_MODE
187 	/*
188 	 * When adding new operations, add a new case statement here to
189 	 * explicitly indicate whether or not the operation is safe to
190 	 * perform in capability mode.
191 	 */
192 	if (IN_CAPABILITY_MODE(td)) {
193 		switch (uap->op) {
194 		case I386_GET_LDT:
195 		case I386_SET_LDT:
196 		case I386_GET_IOPERM:
197 		case I386_GET_FSBASE:
198 		case I386_SET_FSBASE:
199 		case I386_GET_GSBASE:
200 		case I386_SET_GSBASE:
201 		case I386_GET_XFPUSTATE:
202 		case I386_SET_PKRU:
203 		case I386_CLEAR_PKRU:
204 		case AMD64_GET_FSBASE:
205 		case AMD64_SET_FSBASE:
206 		case AMD64_GET_GSBASE:
207 		case AMD64_SET_GSBASE:
208 		case AMD64_GET_XFPUSTATE:
209 		case AMD64_SET_PKRU:
210 		case AMD64_CLEAR_PKRU:
211 			break;
212 
213 		case I386_SET_IOPERM:
214 		default:
215 #ifdef KTRACE
216 			if (KTRPOINT(td, KTR_CAPFAIL))
217 				ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
218 #endif
219 			return (ECAPMODE);
220 		}
221 	}
222 #endif
223 
224 	if (uap->op == I386_GET_LDT || uap->op == I386_SET_LDT)
225 		return (sysarch_ldt(td, uap, UIO_USERSPACE));
226 
227 	error = 0;
228 	pcb = td->td_pcb;
229 
230 	/*
231 	 * XXXKIB check that the BSM generation code knows to encode
232 	 * the op argument.
233 	 */
234 	AUDIT_ARG_CMD(uap->op);
235 	switch (uap->op) {
236 	case I386_GET_IOPERM:
237 	case I386_SET_IOPERM:
238 		if ((error = copyin(uap->parms, &iargs,
239 		    sizeof(struct i386_ioperm_args))) != 0)
240 			return (error);
241 		break;
242 	case I386_GET_XFPUSTATE:
243 		if ((error = copyin(uap->parms, &i386xfpu,
244 		    sizeof(struct i386_get_xfpustate))) != 0)
245 			return (error);
246 		a64xfpu.addr = (void *)(uintptr_t)i386xfpu.addr;
247 		a64xfpu.len = i386xfpu.len;
248 		break;
249 	case I386_SET_PKRU:
250 	case I386_CLEAR_PKRU:
251 		if ((error = copyin(uap->parms, &i386pkru,
252 		    sizeof(struct i386_set_pkru))) != 0)
253 			return (error);
254 		a64pkru.addr = (void *)(uintptr_t)i386pkru.addr;
255 		a64pkru.len = i386pkru.len;
256 		a64pkru.keyidx = i386pkru.keyidx;
257 		a64pkru.flags = i386pkru.flags;
258 		break;
259 	case AMD64_GET_XFPUSTATE:
260 		if ((error = copyin(uap->parms, &a64xfpu,
261 		    sizeof(struct amd64_get_xfpustate))) != 0)
262 			return (error);
263 		break;
264 	case AMD64_SET_PKRU:
265 	case AMD64_CLEAR_PKRU:
266 		if ((error = copyin(uap->parms, &a64pkru,
267 		    sizeof(struct amd64_set_pkru))) != 0)
268 			return (error);
269 		break;
270 	default:
271 		break;
272 	}
273 
274 	switch (uap->op) {
275 	case I386_GET_IOPERM:
276 		error = amd64_get_ioperm(td, &iargs);
277 		if (error == 0)
278 			error = copyout(&iargs, uap->parms,
279 			    sizeof(struct i386_ioperm_args));
280 		break;
281 	case I386_SET_IOPERM:
282 		error = amd64_set_ioperm(td, &iargs);
283 		break;
284 	case I386_GET_FSBASE:
285 		update_pcb_bases(pcb);
286 		i386base = pcb->pcb_fsbase;
287 		error = copyout(&i386base, uap->parms, sizeof(i386base));
288 		break;
289 	case I386_SET_FSBASE:
290 		error = copyin(uap->parms, &i386base, sizeof(i386base));
291 		if (!error) {
292 			set_pcb_flags(pcb, PCB_FULL_IRET);
293 			pcb->pcb_fsbase = i386base;
294 			td->td_frame->tf_fs = _ufssel;
295 			update_gdt_fsbase(td, i386base);
296 		}
297 		break;
298 	case I386_GET_GSBASE:
299 		update_pcb_bases(pcb);
300 		i386base = pcb->pcb_gsbase;
301 		error = copyout(&i386base, uap->parms, sizeof(i386base));
302 		break;
303 	case I386_SET_GSBASE:
304 		error = copyin(uap->parms, &i386base, sizeof(i386base));
305 		if (!error) {
306 			set_pcb_flags(pcb, PCB_FULL_IRET);
307 			pcb->pcb_gsbase = i386base;
308 			td->td_frame->tf_gs = _ugssel;
309 			update_gdt_gsbase(td, i386base);
310 		}
311 		break;
312 	case AMD64_GET_FSBASE:
313 		update_pcb_bases(pcb);
314 		error = copyout(&pcb->pcb_fsbase, uap->parms,
315 		    sizeof(pcb->pcb_fsbase));
316 		break;
317 
318 	case AMD64_SET_FSBASE:
319 		error = copyin(uap->parms, &a64base, sizeof(a64base));
320 		if (!error) {
321 			if (a64base < VM_MAXUSER_ADDRESS) {
322 				set_pcb_flags(pcb, PCB_FULL_IRET);
323 				pcb->pcb_fsbase = a64base;
324 				td->td_frame->tf_fs = _ufssel;
325 			} else
326 				error = EINVAL;
327 		}
328 		break;
329 
330 	case AMD64_GET_GSBASE:
331 		update_pcb_bases(pcb);
332 		error = copyout(&pcb->pcb_gsbase, uap->parms,
333 		    sizeof(pcb->pcb_gsbase));
334 		break;
335 
336 	case AMD64_SET_GSBASE:
337 		error = copyin(uap->parms, &a64base, sizeof(a64base));
338 		if (!error) {
339 			if (a64base < VM_MAXUSER_ADDRESS) {
340 				set_pcb_flags(pcb, PCB_FULL_IRET);
341 				pcb->pcb_gsbase = a64base;
342 				td->td_frame->tf_gs = _ugssel;
343 			} else
344 				error = EINVAL;
345 		}
346 		break;
347 
348 	case I386_GET_XFPUSTATE:
349 	case AMD64_GET_XFPUSTATE:
350 		if (a64xfpu.len > cpu_max_ext_state_size -
351 		    sizeof(struct savefpu))
352 			return (EINVAL);
353 		fpugetregs(td);
354 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
355 		    a64xfpu.addr, a64xfpu.len);
356 		break;
357 
358 	case I386_SET_PKRU:
359 	case AMD64_SET_PKRU:
360 		/*
361 		 * Read-lock the map to synchronize with parallel
362 		 * pmap_vmspace_copy() on fork.
363 		 */
364 		map = &td->td_proc->p_vmspace->vm_map;
365 		vm_map_lock_read(map);
366 		error = pmap_pkru_set(PCPU_GET(curpmap),
367 		    (vm_offset_t)a64pkru.addr, (vm_offset_t)a64pkru.addr +
368 		    a64pkru.len, a64pkru.keyidx, a64pkru.flags);
369 		vm_map_unlock_read(map);
370 		break;
371 
372 	case I386_CLEAR_PKRU:
373 	case AMD64_CLEAR_PKRU:
374 		if (a64pkru.flags != 0 || a64pkru.keyidx != 0) {
375 			error = EINVAL;
376 			break;
377 		}
378 		map = &td->td_proc->p_vmspace->vm_map;
379 		vm_map_lock_read(map);
380 		error = pmap_pkru_clear(PCPU_GET(curpmap),
381 		    (vm_offset_t)a64pkru.addr,
382 		    (vm_offset_t)a64pkru.addr + a64pkru.len);
383 		vm_map_unlock_read(map);
384 		break;
385 
386 	default:
387 		error = EINVAL;
388 		break;
389 	}
390 	return (error);
391 }
392 
393 int
394 amd64_set_ioperm(td, uap)
395 	struct thread *td;
396 	struct i386_ioperm_args *uap;
397 {
398 	char *iomap;
399 	struct amd64tss *tssp;
400 	struct system_segment_descriptor *tss_sd;
401 	struct pcb *pcb;
402 	u_int i;
403 	int error;
404 
405 	if ((error = priv_check(td, PRIV_IO)) != 0)
406 		return (error);
407 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
408 		return (error);
409 	if (uap->start > uap->start + uap->length ||
410 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
411 		return (EINVAL);
412 
413 	/*
414 	 * XXX
415 	 * While this is restricted to root, we should probably figure out
416 	 * whether any other driver is using this i/o address, as so not to
417 	 * cause confusion.  This probably requires a global 'usage registry'.
418 	 */
419 	pcb = td->td_pcb;
420 	if (pcb->pcb_tssp == NULL) {
421 		tssp = (struct amd64tss *)kmem_malloc(ctob(IOPAGES + 1),
422 		    M_WAITOK);
423 		pmap_pti_add_kva((vm_offset_t)tssp, (vm_offset_t)tssp +
424 		    ctob(IOPAGES + 1), false);
425 		iomap = (char *)&tssp[1];
426 		memset(iomap, 0xff, IOPERM_BITMAP_SIZE);
427 		critical_enter();
428 		/* Takes care of tss_rsp0. */
429 		memcpy(tssp, PCPU_PTR(common_tss), sizeof(struct amd64tss));
430 		tssp->tss_iobase = sizeof(*tssp);
431 		pcb->pcb_tssp = tssp;
432 		tss_sd = PCPU_GET(tss);
433 		tss_sd->sd_lobase = (u_long)tssp & 0xffffff;
434 		tss_sd->sd_hibase = ((u_long)tssp >> 24) & 0xfffffffffful;
435 		tss_sd->sd_type = SDT_SYSTSS;
436 		ltr(GSEL(GPROC0_SEL, SEL_KPL));
437 		PCPU_SET(tssp, tssp);
438 		critical_exit();
439 	} else
440 		iomap = (char *)&pcb->pcb_tssp[1];
441 	for (i = uap->start; i < uap->start + uap->length; i++) {
442 		if (uap->enable)
443 			iomap[i >> 3] &= ~(1 << (i & 7));
444 		else
445 			iomap[i >> 3] |= (1 << (i & 7));
446 	}
447 	return (error);
448 }
449 
450 int
451 amd64_get_ioperm(td, uap)
452 	struct thread *td;
453 	struct i386_ioperm_args *uap;
454 {
455 	int i, state;
456 	char *iomap;
457 
458 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
459 		return (EINVAL);
460 	if (td->td_pcb->pcb_tssp == NULL) {
461 		uap->length = 0;
462 		goto done;
463 	}
464 
465 	iomap = (char *)&td->td_pcb->pcb_tssp[1];
466 
467 	i = uap->start;
468 	state = (iomap[i >> 3] >> (i & 7)) & 1;
469 	uap->enable = !state;
470 	uap->length = 1;
471 
472 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
473 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
474 			break;
475 		uap->length++;
476 	}
477 
478 done:
479 	return (0);
480 }
481 
482 /*
483  * Update the GDT entry pointing to the LDT to point to the LDT of the
484  * current process.
485  */
486 static void
487 set_user_ldt(struct mdproc *mdp)
488 {
489 
490 	*PCPU_GET(ldt) = mdp->md_ldt_sd;
491 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
492 }
493 
494 static void
495 set_user_ldt_rv(void *arg)
496 {
497 	struct proc *orig, *target;
498 	struct proc_ldt *ldt;
499 
500 	orig = arg;
501 	target = curthread->td_proc;
502 
503 	ldt = (void *)atomic_load_acq_ptr((uintptr_t *)&orig->p_md.md_ldt);
504 	if (target->p_md.md_ldt != ldt)
505 		return;
506 
507 	set_user_ldt(&target->p_md);
508 }
509 
510 struct proc_ldt *
511 user_ldt_alloc(struct proc *p, int force)
512 {
513 	struct proc_ldt *pldt, *new_ldt;
514 	struct mdproc *mdp;
515 	struct soft_segment_descriptor sldt;
516 	vm_offset_t sva;
517 	vm_size_t sz;
518 
519 	mtx_assert(&dt_lock, MA_OWNED);
520 	mdp = &p->p_md;
521 	if (!force && mdp->md_ldt != NULL)
522 		return (mdp->md_ldt);
523 	mtx_unlock(&dt_lock);
524 	new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK);
525 	sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
526 	sva = kmem_malloc(sz, M_WAITOK | M_ZERO);
527 	new_ldt->ldt_base = (caddr_t)sva;
528 	pmap_pti_add_kva(sva, sva + sz, false);
529 	new_ldt->ldt_refcnt = 1;
530 	sldt.ssd_base = sva;
531 	sldt.ssd_limit = sz - 1;
532 	sldt.ssd_type = SDT_SYSLDT;
533 	sldt.ssd_dpl = SEL_KPL;
534 	sldt.ssd_p = 1;
535 	sldt.ssd_long = 0;
536 	sldt.ssd_def32 = 0;
537 	sldt.ssd_gran = 0;
538 	mtx_lock(&dt_lock);
539 	pldt = mdp->md_ldt;
540 	if (pldt != NULL && !force) {
541 		pmap_pti_remove_kva(sva, sva + sz);
542 		kmem_free(sva, sz);
543 		free(new_ldt, M_SUBPROC);
544 		return (pldt);
545 	}
546 
547 	if (pldt != NULL) {
548 		bcopy(pldt->ldt_base, new_ldt->ldt_base, max_ldt_segment *
549 		    sizeof(struct user_segment_descriptor));
550 		user_ldt_derefl(pldt);
551 	}
552 	critical_enter();
553 	ssdtosyssd(&sldt, &p->p_md.md_ldt_sd);
554 	atomic_thread_fence_rel();
555 	mdp->md_ldt = new_ldt;
556 	critical_exit();
557 	smp_rendezvous(NULL, set_user_ldt_rv, NULL, p);
558 
559 	return (mdp->md_ldt);
560 }
561 
562 void
563 user_ldt_free(struct thread *td)
564 {
565 	struct proc *p = td->td_proc;
566 	struct mdproc *mdp = &p->p_md;
567 	struct proc_ldt *pldt;
568 
569 	mtx_lock(&dt_lock);
570 	if ((pldt = mdp->md_ldt) == NULL) {
571 		mtx_unlock(&dt_lock);
572 		return;
573 	}
574 
575 	critical_enter();
576 	mdp->md_ldt = NULL;
577 	atomic_thread_fence_rel();
578 	bzero(&mdp->md_ldt_sd, sizeof(mdp->md_ldt_sd));
579 	if (td == curthread)
580 		lldt(GSEL(GNULL_SEL, SEL_KPL));
581 	critical_exit();
582 	user_ldt_deref(pldt);
583 }
584 
585 static void
586 user_ldt_derefl(struct proc_ldt *pldt)
587 {
588 	vm_offset_t sva;
589 	vm_size_t sz;
590 
591 	if (--pldt->ldt_refcnt == 0) {
592 		sva = (vm_offset_t)pldt->ldt_base;
593 		sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
594 		pmap_pti_remove_kva(sva, sva + sz);
595 		kmem_free(sva, sz);
596 		free(pldt, M_SUBPROC);
597 	}
598 }
599 
600 static void
601 user_ldt_deref(struct proc_ldt *pldt)
602 {
603 
604 	mtx_assert(&dt_lock, MA_OWNED);
605 	user_ldt_derefl(pldt);
606 	mtx_unlock(&dt_lock);
607 }
608 
609 /*
610  * Note for the authors of compat layers (linux, etc): copyout() in
611  * the function below is not a problem since it presents data in
612  * arch-specific format (i.e. i386-specific in this case), not in
613  * the OS-specific one.
614  */
615 int
616 amd64_get_ldt(struct thread *td, struct i386_ldt_args *uap)
617 {
618 	struct proc_ldt *pldt;
619 	struct user_segment_descriptor *lp;
620 	uint64_t *data;
621 	u_int i, num;
622 	int error;
623 
624 #ifdef	DEBUG
625 	printf("amd64_get_ldt: start=%u num=%u descs=%p\n",
626 	    uap->start, uap->num, (void *)uap->descs);
627 #endif
628 
629 	pldt = td->td_proc->p_md.md_ldt;
630 	if (pldt == NULL || uap->start >= max_ldt_segment || uap->num == 0) {
631 		td->td_retval[0] = 0;
632 		return (0);
633 	}
634 	num = min(uap->num, max_ldt_segment - uap->start);
635 	lp = &((struct user_segment_descriptor *)(pldt->ldt_base))[uap->start];
636 	data = malloc(num * sizeof(struct user_segment_descriptor), M_TEMP,
637 	    M_WAITOK);
638 	mtx_lock(&dt_lock);
639 	for (i = 0; i < num; i++)
640 		data[i] = ((volatile uint64_t *)lp)[i];
641 	mtx_unlock(&dt_lock);
642 	error = copyout(data, uap->descs, num *
643 	    sizeof(struct user_segment_descriptor));
644 	free(data, M_TEMP);
645 	if (error == 0)
646 		td->td_retval[0] = num;
647 	return (error);
648 }
649 
650 int
651 amd64_set_ldt(struct thread *td, struct i386_ldt_args *uap,
652     struct user_segment_descriptor *descs)
653 {
654 	struct mdproc *mdp;
655 	struct proc_ldt *pldt;
656 	struct user_segment_descriptor *dp;
657 	struct proc *p;
658 	u_int largest_ld, i;
659 	int error;
660 
661 #ifdef	DEBUG
662 	printf("amd64_set_ldt: start=%u num=%u descs=%p\n",
663 	    uap->start, uap->num, (void *)uap->descs);
664 #endif
665 	mdp = &td->td_proc->p_md;
666 	error = 0;
667 
668 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
669 	p = td->td_proc;
670 	if (descs == NULL) {
671 		/* Free descriptors */
672 		if (uap->start == 0 && uap->num == 0)
673 			uap->num = max_ldt_segment;
674 		if (uap->num == 0)
675 			return (EINVAL);
676 		if ((pldt = mdp->md_ldt) == NULL ||
677 		    uap->start >= max_ldt_segment)
678 			return (0);
679 		largest_ld = uap->start + uap->num;
680 		if (largest_ld > max_ldt_segment)
681 			largest_ld = max_ldt_segment;
682 		if (largest_ld < uap->start)
683 			return (EINVAL);
684 		mtx_lock(&dt_lock);
685 		for (i = uap->start; i < largest_ld; i++)
686 			((volatile uint64_t *)(pldt->ldt_base))[i] = 0;
687 		mtx_unlock(&dt_lock);
688 		return (0);
689 	}
690 
691 	if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) {
692 		/* verify range of descriptors to modify */
693 		largest_ld = uap->start + uap->num;
694 		if (uap->start >= max_ldt_segment ||
695 		    largest_ld > max_ldt_segment ||
696 		    largest_ld < uap->start)
697 			return (EINVAL);
698 	}
699 
700 	/* Check descriptors for access violations */
701 	for (i = 0; i < uap->num; i++) {
702 		dp = &descs[i];
703 
704 		switch (dp->sd_type) {
705 		case SDT_SYSNULL:	/* system null */
706 			dp->sd_p = 0;
707 			break;
708 		case SDT_SYS286TSS:
709 		case SDT_SYSLDT:
710 		case SDT_SYS286BSY:
711 		case SDT_SYS286CGT:
712 		case SDT_SYSTASKGT:
713 		case SDT_SYS286IGT:
714 		case SDT_SYS286TGT:
715 		case SDT_SYSNULL2:
716 		case SDT_SYSTSS:
717 		case SDT_SYSNULL3:
718 		case SDT_SYSBSY:
719 		case SDT_SYSCGT:
720 		case SDT_SYSNULL4:
721 		case SDT_SYSIGT:
722 		case SDT_SYSTGT:
723 			return (EACCES);
724 
725 		/* memory segment types */
726 		case SDT_MEMEC:   /* memory execute only conforming */
727 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
728 		case SDT_MEMERC:  /* memory execute read conforming */
729 		case SDT_MEMERAC: /* memory execute read accessed conforming */
730 			 /* Must be "present" if executable and conforming. */
731 			if (dp->sd_p == 0)
732 				return (EACCES);
733 			break;
734 		case SDT_MEMRO:   /* memory read only */
735 		case SDT_MEMROA:  /* memory read only accessed */
736 		case SDT_MEMRW:   /* memory read write */
737 		case SDT_MEMRWA:  /* memory read write accessed */
738 		case SDT_MEMROD:  /* memory read only expand dwn limit */
739 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
740 		case SDT_MEMRWD:  /* memory read write expand dwn limit */
741 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
742 		case SDT_MEME:    /* memory execute only */
743 		case SDT_MEMEA:   /* memory execute only accessed */
744 		case SDT_MEMER:   /* memory execute read */
745 		case SDT_MEMERA:  /* memory execute read accessed */
746 			break;
747 		default:
748 			return(EINVAL);
749 		}
750 
751 		/* Only user (ring-3) descriptors may be present. */
752 		if ((dp->sd_p != 0) && (dp->sd_dpl != SEL_UPL))
753 			return (EACCES);
754 	}
755 
756 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
757 		/* Allocate a free slot */
758 		mtx_lock(&dt_lock);
759 		pldt = user_ldt_alloc(p, 0);
760 		if (pldt == NULL) {
761 			mtx_unlock(&dt_lock);
762 			return (ENOMEM);
763 		}
764 
765 		/*
766 		 * start scanning a bit up to leave room for NVidia and
767 		 * Wine, which still user the "Blat" method of allocation.
768 		 */
769 		i = 16;
770 		dp = &((struct user_segment_descriptor *)(pldt->ldt_base))[i];
771 		for (; i < max_ldt_segment; ++i, ++dp) {
772 			if (dp->sd_type == SDT_SYSNULL)
773 				break;
774 		}
775 		if (i >= max_ldt_segment) {
776 			mtx_unlock(&dt_lock);
777 			return (ENOSPC);
778 		}
779 		uap->start = i;
780 		error = amd64_set_ldt_data(td, i, 1, descs);
781 		mtx_unlock(&dt_lock);
782 	} else {
783 		largest_ld = uap->start + uap->num;
784 		if (largest_ld > max_ldt_segment)
785 			return (EINVAL);
786 		mtx_lock(&dt_lock);
787 		if (user_ldt_alloc(p, 0) != NULL) {
788 			error = amd64_set_ldt_data(td, uap->start, uap->num,
789 			    descs);
790 		}
791 		mtx_unlock(&dt_lock);
792 	}
793 	if (error == 0)
794 		td->td_retval[0] = uap->start;
795 	return (error);
796 }
797 
798 int
799 amd64_set_ldt_data(struct thread *td, int start, int num,
800     struct user_segment_descriptor *descs)
801 {
802 	struct mdproc *mdp;
803 	struct proc_ldt *pldt;
804 	volatile uint64_t *dst, *src;
805 	int i;
806 
807 	mtx_assert(&dt_lock, MA_OWNED);
808 
809 	mdp = &td->td_proc->p_md;
810 	pldt = mdp->md_ldt;
811 	dst = (volatile uint64_t *)(pldt->ldt_base);
812 	src = (volatile uint64_t *)descs;
813 	for (i = 0; i < num; i++)
814 		dst[start + i] = src[i];
815 	return (0);
816 }
817