xref: /freebsd/sys/amd64/amd64/sys_machdep.c (revision 4d3fc8b0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)sys_machdep.c	5.5 (Berkeley) 1/19/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_capsicum.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/capsicum.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mutex.h>
47 #include <sys/pcpu.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/smp.h>
51 #include <sys/sysproto.h>
52 #include <sys/uio.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 #include <vm/vm_kern.h>		/* for kernel_map */
57 #include <vm/vm_map.h>
58 #include <vm/vm_extern.h>
59 
60 #include <machine/frame.h>
61 #include <machine/md_var.h>
62 #include <machine/pcb.h>
63 #include <machine/specialreg.h>
64 #include <machine/sysarch.h>
65 #include <machine/tss.h>
66 #include <machine/vmparam.h>
67 
68 #include <security/audit/audit.h>
69 
70 static void user_ldt_deref(struct proc_ldt *pldt);
71 static void user_ldt_derefl(struct proc_ldt *pldt);
72 
73 #define	MAX_LD		8192
74 
75 int max_ldt_segment = 512;
76 SYSCTL_INT(_machdep, OID_AUTO, max_ldt_segment, CTLFLAG_RDTUN,
77     &max_ldt_segment, 0,
78     "Maximum number of allowed LDT segments in the single address space");
79 
80 static void
81 max_ldt_segment_init(void *arg __unused)
82 {
83 
84 	if (max_ldt_segment <= 0)
85 		max_ldt_segment = 1;
86 	if (max_ldt_segment > MAX_LD)
87 		max_ldt_segment = MAX_LD;
88 }
89 SYSINIT(maxldt, SI_SUB_VM_CONF, SI_ORDER_ANY, max_ldt_segment_init, NULL);
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct sysarch_args {
93 	int op;
94 	char *parms;
95 };
96 #endif
97 
98 int
99 sysarch_ldt(struct thread *td, struct sysarch_args *uap, int uap_space)
100 {
101 	struct i386_ldt_args *largs, la;
102 	struct user_segment_descriptor *lp;
103 	int error = 0;
104 
105 	/*
106 	 * XXXKIB check that the BSM generation code knows to encode
107 	 * the op argument.
108 	 */
109 	AUDIT_ARG_CMD(uap->op);
110 	if (uap_space == UIO_USERSPACE) {
111 		error = copyin(uap->parms, &la, sizeof(struct i386_ldt_args));
112 		if (error != 0)
113 			return (error);
114 		largs = &la;
115 	} else
116 		largs = (struct i386_ldt_args *)uap->parms;
117 
118 	switch (uap->op) {
119 	case I386_GET_LDT:
120 		error = amd64_get_ldt(td, largs);
121 		break;
122 	case I386_SET_LDT:
123 		if (largs->descs != NULL && largs->num > max_ldt_segment)
124 			return (EINVAL);
125 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
126 		if (largs->descs != NULL) {
127 			lp = malloc(largs->num * sizeof(struct
128 			    user_segment_descriptor), M_TEMP, M_WAITOK);
129 			error = copyin(largs->descs, lp, largs->num *
130 			    sizeof(struct user_segment_descriptor));
131 			if (error == 0)
132 				error = amd64_set_ldt(td, largs, lp);
133 			free(lp, M_TEMP);
134 		} else {
135 			error = amd64_set_ldt(td, largs, NULL);
136 		}
137 		break;
138 	}
139 	return (error);
140 }
141 
142 void
143 update_gdt_gsbase(struct thread *td, uint32_t base)
144 {
145 	struct user_segment_descriptor *sd;
146 
147 	if (td != curthread)
148 		return;
149 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
150 	critical_enter();
151 	sd = PCPU_GET(gs32p);
152 	sd->sd_lobase = base & 0xffffff;
153 	sd->sd_hibase = (base >> 24) & 0xff;
154 	critical_exit();
155 }
156 
157 void
158 update_gdt_fsbase(struct thread *td, uint32_t base)
159 {
160 	struct user_segment_descriptor *sd;
161 
162 	if (td != curthread)
163 		return;
164 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
165 	critical_enter();
166 	sd = PCPU_GET(fs32p);
167 	sd->sd_lobase = base & 0xffffff;
168 	sd->sd_hibase = (base >> 24) & 0xff;
169 	critical_exit();
170 }
171 
172 int
173 sysarch(struct thread *td, struct sysarch_args *uap)
174 {
175 	struct pcb *pcb;
176 	struct vm_map *map;
177 	uint32_t i386base;
178 	uint64_t a64base;
179 	struct i386_ioperm_args iargs;
180 	struct i386_get_xfpustate i386xfpu;
181 	struct i386_set_pkru i386pkru;
182 	struct amd64_get_xfpustate a64xfpu;
183 	struct amd64_set_pkru a64pkru;
184 	int error;
185 
186 #ifdef CAPABILITY_MODE
187 	/*
188 	 * When adding new operations, add a new case statement here to
189 	 * explicitly indicate whether or not the operation is safe to
190 	 * perform in capability mode.
191 	 */
192 	if (IN_CAPABILITY_MODE(td)) {
193 		switch (uap->op) {
194 		case I386_GET_LDT:
195 		case I386_SET_LDT:
196 		case I386_GET_IOPERM:
197 		case I386_GET_FSBASE:
198 		case I386_SET_FSBASE:
199 		case I386_GET_GSBASE:
200 		case I386_SET_GSBASE:
201 		case I386_GET_XFPUSTATE:
202 		case I386_SET_PKRU:
203 		case I386_CLEAR_PKRU:
204 		case AMD64_GET_FSBASE:
205 		case AMD64_SET_FSBASE:
206 		case AMD64_GET_GSBASE:
207 		case AMD64_SET_GSBASE:
208 		case AMD64_GET_XFPUSTATE:
209 		case AMD64_SET_PKRU:
210 		case AMD64_CLEAR_PKRU:
211 			break;
212 
213 		case I386_SET_IOPERM:
214 		default:
215 #ifdef KTRACE
216 			if (KTRPOINT(td, KTR_CAPFAIL))
217 				ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
218 #endif
219 			return (ECAPMODE);
220 		}
221 	}
222 #endif
223 
224 	if (uap->op == I386_GET_LDT || uap->op == I386_SET_LDT)
225 		return (sysarch_ldt(td, uap, UIO_USERSPACE));
226 
227 	error = 0;
228 	pcb = td->td_pcb;
229 
230 	/*
231 	 * XXXKIB check that the BSM generation code knows to encode
232 	 * the op argument.
233 	 */
234 	AUDIT_ARG_CMD(uap->op);
235 	switch (uap->op) {
236 	case I386_GET_IOPERM:
237 	case I386_SET_IOPERM:
238 		if ((error = copyin(uap->parms, &iargs,
239 		    sizeof(struct i386_ioperm_args))) != 0)
240 			return (error);
241 		break;
242 	case I386_GET_XFPUSTATE:
243 		if ((error = copyin(uap->parms, &i386xfpu,
244 		    sizeof(struct i386_get_xfpustate))) != 0)
245 			return (error);
246 		a64xfpu.addr = (void *)(uintptr_t)i386xfpu.addr;
247 		a64xfpu.len = i386xfpu.len;
248 		break;
249 	case I386_SET_PKRU:
250 	case I386_CLEAR_PKRU:
251 		if ((error = copyin(uap->parms, &i386pkru,
252 		    sizeof(struct i386_set_pkru))) != 0)
253 			return (error);
254 		a64pkru.addr = (void *)(uintptr_t)i386pkru.addr;
255 		a64pkru.len = i386pkru.len;
256 		a64pkru.keyidx = i386pkru.keyidx;
257 		a64pkru.flags = i386pkru.flags;
258 		break;
259 	case AMD64_GET_XFPUSTATE:
260 		if ((error = copyin(uap->parms, &a64xfpu,
261 		    sizeof(struct amd64_get_xfpustate))) != 0)
262 			return (error);
263 		break;
264 	case AMD64_SET_PKRU:
265 	case AMD64_CLEAR_PKRU:
266 		if ((error = copyin(uap->parms, &a64pkru,
267 		    sizeof(struct amd64_set_pkru))) != 0)
268 			return (error);
269 		break;
270 	default:
271 		break;
272 	}
273 
274 	switch (uap->op) {
275 	case I386_GET_IOPERM:
276 		error = amd64_get_ioperm(td, &iargs);
277 		if (error == 0)
278 			error = copyout(&iargs, uap->parms,
279 			    sizeof(struct i386_ioperm_args));
280 		break;
281 	case I386_SET_IOPERM:
282 		error = amd64_set_ioperm(td, &iargs);
283 		break;
284 	case I386_GET_FSBASE:
285 		update_pcb_bases(pcb);
286 		i386base = pcb->pcb_fsbase;
287 		error = copyout(&i386base, uap->parms, sizeof(i386base));
288 		break;
289 	case I386_SET_FSBASE:
290 		error = copyin(uap->parms, &i386base, sizeof(i386base));
291 		if (!error) {
292 			set_pcb_flags(pcb, PCB_FULL_IRET);
293 			pcb->pcb_fsbase = i386base;
294 			td->td_frame->tf_fs = _ufssel;
295 			update_gdt_fsbase(td, i386base);
296 		}
297 		break;
298 	case I386_GET_GSBASE:
299 		update_pcb_bases(pcb);
300 		i386base = pcb->pcb_gsbase;
301 		error = copyout(&i386base, uap->parms, sizeof(i386base));
302 		break;
303 	case I386_SET_GSBASE:
304 		error = copyin(uap->parms, &i386base, sizeof(i386base));
305 		if (!error) {
306 			set_pcb_flags(pcb, PCB_FULL_IRET);
307 			pcb->pcb_gsbase = i386base;
308 			td->td_frame->tf_gs = _ugssel;
309 			update_gdt_gsbase(td, i386base);
310 		}
311 		break;
312 	case AMD64_GET_FSBASE:
313 		update_pcb_bases(pcb);
314 		error = copyout(&pcb->pcb_fsbase, uap->parms,
315 		    sizeof(pcb->pcb_fsbase));
316 		break;
317 
318 	case AMD64_SET_FSBASE:
319 		error = copyin(uap->parms, &a64base, sizeof(a64base));
320 		if (!error) {
321 			if (a64base < VM_MAXUSER_ADDRESS) {
322 				set_pcb_flags(pcb, PCB_FULL_IRET);
323 				pcb->pcb_fsbase = a64base;
324 				td->td_frame->tf_fs = _ufssel;
325 			} else
326 				error = EINVAL;
327 		}
328 		break;
329 
330 	case AMD64_GET_GSBASE:
331 		update_pcb_bases(pcb);
332 		error = copyout(&pcb->pcb_gsbase, uap->parms,
333 		    sizeof(pcb->pcb_gsbase));
334 		break;
335 
336 	case AMD64_SET_GSBASE:
337 		error = copyin(uap->parms, &a64base, sizeof(a64base));
338 		if (!error) {
339 			if (a64base < VM_MAXUSER_ADDRESS) {
340 				set_pcb_flags(pcb, PCB_FULL_IRET);
341 				pcb->pcb_gsbase = a64base;
342 				td->td_frame->tf_gs = _ugssel;
343 			} else
344 				error = EINVAL;
345 		}
346 		break;
347 
348 	case I386_GET_XFPUSTATE:
349 	case AMD64_GET_XFPUSTATE:
350 		if (a64xfpu.len > cpu_max_ext_state_size -
351 		    sizeof(struct savefpu))
352 			return (EINVAL);
353 		fpugetregs(td);
354 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
355 		    a64xfpu.addr, a64xfpu.len);
356 		break;
357 
358 	case I386_SET_PKRU:
359 	case AMD64_SET_PKRU:
360 		/*
361 		 * Read-lock the map to synchronize with parallel
362 		 * pmap_vmspace_copy() on fork.
363 		 */
364 		map = &td->td_proc->p_vmspace->vm_map;
365 		vm_map_lock_read(map);
366 		error = pmap_pkru_set(PCPU_GET(curpmap),
367 		    (vm_offset_t)a64pkru.addr, (vm_offset_t)a64pkru.addr +
368 		    a64pkru.len, a64pkru.keyidx, a64pkru.flags);
369 		vm_map_unlock_read(map);
370 		break;
371 
372 	case I386_CLEAR_PKRU:
373 	case AMD64_CLEAR_PKRU:
374 		if (a64pkru.flags != 0 || a64pkru.keyidx != 0) {
375 			error = EINVAL;
376 			break;
377 		}
378 		map = &td->td_proc->p_vmspace->vm_map;
379 		vm_map_lock_read(map);
380 		error = pmap_pkru_clear(PCPU_GET(curpmap),
381 		    (vm_offset_t)a64pkru.addr,
382 		    (vm_offset_t)a64pkru.addr + a64pkru.len);
383 		vm_map_unlock_read(map);
384 		break;
385 
386 	default:
387 		error = EINVAL;
388 		break;
389 	}
390 	return (error);
391 }
392 
393 int
394 amd64_set_ioperm(struct thread *td, struct i386_ioperm_args *uap)
395 {
396 	char *iomap;
397 	struct amd64tss *tssp;
398 	struct system_segment_descriptor *tss_sd;
399 	struct pcb *pcb;
400 	u_int i;
401 	int error;
402 
403 	if ((error = priv_check(td, PRIV_IO)) != 0)
404 		return (error);
405 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
406 		return (error);
407 	if (uap->start > uap->start + uap->length ||
408 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
409 		return (EINVAL);
410 
411 	/*
412 	 * XXX
413 	 * While this is restricted to root, we should probably figure out
414 	 * whether any other driver is using this i/o address, as so not to
415 	 * cause confusion.  This probably requires a global 'usage registry'.
416 	 */
417 	pcb = td->td_pcb;
418 	if (pcb->pcb_tssp == NULL) {
419 		tssp = kmem_malloc(ctob(IOPAGES + 1), M_WAITOK);
420 		pmap_pti_add_kva((vm_offset_t)tssp, (vm_offset_t)tssp +
421 		    ctob(IOPAGES + 1), false);
422 		iomap = (char *)&tssp[1];
423 		memset(iomap, 0xff, IOPERM_BITMAP_SIZE);
424 		critical_enter();
425 		/* Takes care of tss_rsp0. */
426 		memcpy(tssp, PCPU_PTR(common_tss), sizeof(struct amd64tss));
427 		tssp->tss_iobase = sizeof(*tssp);
428 		pcb->pcb_tssp = tssp;
429 		tss_sd = PCPU_GET(tss);
430 		tss_sd->sd_lobase = (u_long)tssp & 0xffffff;
431 		tss_sd->sd_hibase = ((u_long)tssp >> 24) & 0xfffffffffful;
432 		tss_sd->sd_type = SDT_SYSTSS;
433 		ltr(GSEL(GPROC0_SEL, SEL_KPL));
434 		PCPU_SET(tssp, tssp);
435 		critical_exit();
436 	} else
437 		iomap = (char *)&pcb->pcb_tssp[1];
438 	for (i = uap->start; i < uap->start + uap->length; i++) {
439 		if (uap->enable)
440 			iomap[i >> 3] &= ~(1 << (i & 7));
441 		else
442 			iomap[i >> 3] |= (1 << (i & 7));
443 	}
444 	return (error);
445 }
446 
447 int
448 amd64_get_ioperm(struct thread *td, struct i386_ioperm_args *uap)
449 {
450 	int i, state;
451 	char *iomap;
452 
453 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
454 		return (EINVAL);
455 	if (td->td_pcb->pcb_tssp == NULL) {
456 		uap->length = 0;
457 		goto done;
458 	}
459 
460 	iomap = (char *)&td->td_pcb->pcb_tssp[1];
461 
462 	i = uap->start;
463 	state = (iomap[i >> 3] >> (i & 7)) & 1;
464 	uap->enable = !state;
465 	uap->length = 1;
466 
467 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
468 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
469 			break;
470 		uap->length++;
471 	}
472 
473 done:
474 	return (0);
475 }
476 
477 /*
478  * Update the GDT entry pointing to the LDT to point to the LDT of the
479  * current process.
480  */
481 static void
482 set_user_ldt(struct mdproc *mdp)
483 {
484 
485 	*PCPU_GET(ldt) = mdp->md_ldt_sd;
486 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
487 }
488 
489 static void
490 set_user_ldt_rv(void *arg)
491 {
492 	struct proc *orig, *target;
493 	struct proc_ldt *ldt;
494 
495 	orig = arg;
496 	target = curthread->td_proc;
497 
498 	ldt = (void *)atomic_load_acq_ptr((uintptr_t *)&orig->p_md.md_ldt);
499 	if (target->p_md.md_ldt != ldt)
500 		return;
501 
502 	set_user_ldt(&target->p_md);
503 }
504 
505 struct proc_ldt *
506 user_ldt_alloc(struct proc *p, int force)
507 {
508 	struct proc_ldt *pldt, *new_ldt;
509 	struct mdproc *mdp;
510 	struct soft_segment_descriptor sldt;
511 	vm_offset_t sva;
512 	vm_size_t sz;
513 
514 	mtx_assert(&dt_lock, MA_OWNED);
515 	mdp = &p->p_md;
516 	if (!force && mdp->md_ldt != NULL)
517 		return (mdp->md_ldt);
518 	mtx_unlock(&dt_lock);
519 	new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK);
520 	sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
521 	new_ldt->ldt_base = kmem_malloc(sz, M_WAITOK | M_ZERO);
522 	sva = (uintptr_t)new_ldt->ldt_base;
523 	pmap_pti_add_kva(sva, sva + sz, false);
524 	new_ldt->ldt_refcnt = 1;
525 	sldt.ssd_base = sva;
526 	sldt.ssd_limit = sz - 1;
527 	sldt.ssd_type = SDT_SYSLDT;
528 	sldt.ssd_dpl = SEL_KPL;
529 	sldt.ssd_p = 1;
530 	sldt.ssd_long = 0;
531 	sldt.ssd_def32 = 0;
532 	sldt.ssd_gran = 0;
533 	mtx_lock(&dt_lock);
534 	pldt = mdp->md_ldt;
535 	if (pldt != NULL && !force) {
536 		pmap_pti_remove_kva(sva, sva + sz);
537 		kmem_free(new_ldt->ldt_base, sz);
538 		free(new_ldt, M_SUBPROC);
539 		return (pldt);
540 	}
541 
542 	if (pldt != NULL) {
543 		bcopy(pldt->ldt_base, new_ldt->ldt_base, max_ldt_segment *
544 		    sizeof(struct user_segment_descriptor));
545 		user_ldt_derefl(pldt);
546 	}
547 	critical_enter();
548 	ssdtosyssd(&sldt, &p->p_md.md_ldt_sd);
549 	atomic_thread_fence_rel();
550 	mdp->md_ldt = new_ldt;
551 	critical_exit();
552 	smp_rendezvous(NULL, set_user_ldt_rv, NULL, p);
553 
554 	return (mdp->md_ldt);
555 }
556 
557 void
558 user_ldt_free(struct thread *td)
559 {
560 	struct proc *p = td->td_proc;
561 	struct mdproc *mdp = &p->p_md;
562 	struct proc_ldt *pldt;
563 
564 	mtx_lock(&dt_lock);
565 	if ((pldt = mdp->md_ldt) == NULL) {
566 		mtx_unlock(&dt_lock);
567 		return;
568 	}
569 
570 	critical_enter();
571 	mdp->md_ldt = NULL;
572 	atomic_thread_fence_rel();
573 	bzero(&mdp->md_ldt_sd, sizeof(mdp->md_ldt_sd));
574 	if (td == curthread)
575 		lldt(GSEL(GNULL_SEL, SEL_KPL));
576 	critical_exit();
577 	user_ldt_deref(pldt);
578 }
579 
580 static void
581 user_ldt_derefl(struct proc_ldt *pldt)
582 {
583 	vm_offset_t sva;
584 	vm_size_t sz;
585 
586 	if (--pldt->ldt_refcnt == 0) {
587 		sva = (vm_offset_t)pldt->ldt_base;
588 		sz = max_ldt_segment * sizeof(struct user_segment_descriptor);
589 		pmap_pti_remove_kva(sva, sva + sz);
590 		kmem_free(pldt->ldt_base, sz);
591 		free(pldt, M_SUBPROC);
592 	}
593 }
594 
595 static void
596 user_ldt_deref(struct proc_ldt *pldt)
597 {
598 
599 	mtx_assert(&dt_lock, MA_OWNED);
600 	user_ldt_derefl(pldt);
601 	mtx_unlock(&dt_lock);
602 }
603 
604 /*
605  * Note for the authors of compat layers (linux, etc): copyout() in
606  * the function below is not a problem since it presents data in
607  * arch-specific format (i.e. i386-specific in this case), not in
608  * the OS-specific one.
609  */
610 int
611 amd64_get_ldt(struct thread *td, struct i386_ldt_args *uap)
612 {
613 	struct proc_ldt *pldt;
614 	struct user_segment_descriptor *lp;
615 	uint64_t *data;
616 	u_int i, num;
617 	int error;
618 
619 #ifdef	DEBUG
620 	printf("amd64_get_ldt: start=%u num=%u descs=%p\n",
621 	    uap->start, uap->num, (void *)uap->descs);
622 #endif
623 
624 	pldt = td->td_proc->p_md.md_ldt;
625 	if (pldt == NULL || uap->start >= max_ldt_segment || uap->num == 0) {
626 		td->td_retval[0] = 0;
627 		return (0);
628 	}
629 	num = min(uap->num, max_ldt_segment - uap->start);
630 	lp = &((struct user_segment_descriptor *)(pldt->ldt_base))[uap->start];
631 	data = malloc(num * sizeof(struct user_segment_descriptor), M_TEMP,
632 	    M_WAITOK);
633 	mtx_lock(&dt_lock);
634 	for (i = 0; i < num; i++)
635 		data[i] = ((volatile uint64_t *)lp)[i];
636 	mtx_unlock(&dt_lock);
637 	error = copyout(data, uap->descs, num *
638 	    sizeof(struct user_segment_descriptor));
639 	free(data, M_TEMP);
640 	if (error == 0)
641 		td->td_retval[0] = num;
642 	return (error);
643 }
644 
645 int
646 amd64_set_ldt(struct thread *td, struct i386_ldt_args *uap,
647     struct user_segment_descriptor *descs)
648 {
649 	struct mdproc *mdp;
650 	struct proc_ldt *pldt;
651 	struct user_segment_descriptor *dp;
652 	struct proc *p;
653 	u_int largest_ld, i;
654 	int error;
655 
656 #ifdef	DEBUG
657 	printf("amd64_set_ldt: start=%u num=%u descs=%p\n",
658 	    uap->start, uap->num, (void *)uap->descs);
659 #endif
660 	mdp = &td->td_proc->p_md;
661 	error = 0;
662 
663 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
664 	p = td->td_proc;
665 	if (descs == NULL) {
666 		/* Free descriptors */
667 		if (uap->start == 0 && uap->num == 0)
668 			uap->num = max_ldt_segment;
669 		if (uap->num == 0)
670 			return (EINVAL);
671 		if ((pldt = mdp->md_ldt) == NULL ||
672 		    uap->start >= max_ldt_segment)
673 			return (0);
674 		largest_ld = uap->start + uap->num;
675 		if (largest_ld > max_ldt_segment)
676 			largest_ld = max_ldt_segment;
677 		if (largest_ld < uap->start)
678 			return (EINVAL);
679 		mtx_lock(&dt_lock);
680 		for (i = uap->start; i < largest_ld; i++)
681 			((volatile uint64_t *)(pldt->ldt_base))[i] = 0;
682 		mtx_unlock(&dt_lock);
683 		return (0);
684 	}
685 
686 	if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) {
687 		/* verify range of descriptors to modify */
688 		largest_ld = uap->start + uap->num;
689 		if (uap->start >= max_ldt_segment ||
690 		    largest_ld > max_ldt_segment ||
691 		    largest_ld < uap->start)
692 			return (EINVAL);
693 	}
694 
695 	/* Check descriptors for access violations */
696 	for (i = 0; i < uap->num; i++) {
697 		dp = &descs[i];
698 
699 		switch (dp->sd_type) {
700 		case SDT_SYSNULL:	/* system null */
701 			dp->sd_p = 0;
702 			break;
703 		case SDT_SYS286TSS:
704 		case SDT_SYSLDT:
705 		case SDT_SYS286BSY:
706 		case SDT_SYS286CGT:
707 		case SDT_SYSTASKGT:
708 		case SDT_SYS286IGT:
709 		case SDT_SYS286TGT:
710 		case SDT_SYSNULL2:
711 		case SDT_SYSTSS:
712 		case SDT_SYSNULL3:
713 		case SDT_SYSBSY:
714 		case SDT_SYSCGT:
715 		case SDT_SYSNULL4:
716 		case SDT_SYSIGT:
717 		case SDT_SYSTGT:
718 			return (EACCES);
719 
720 		/* memory segment types */
721 		case SDT_MEMEC:   /* memory execute only conforming */
722 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
723 		case SDT_MEMERC:  /* memory execute read conforming */
724 		case SDT_MEMERAC: /* memory execute read accessed conforming */
725 			 /* Must be "present" if executable and conforming. */
726 			if (dp->sd_p == 0)
727 				return (EACCES);
728 			break;
729 		case SDT_MEMRO:   /* memory read only */
730 		case SDT_MEMROA:  /* memory read only accessed */
731 		case SDT_MEMRW:   /* memory read write */
732 		case SDT_MEMRWA:  /* memory read write accessed */
733 		case SDT_MEMROD:  /* memory read only expand dwn limit */
734 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
735 		case SDT_MEMRWD:  /* memory read write expand dwn limit */
736 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
737 		case SDT_MEME:    /* memory execute only */
738 		case SDT_MEMEA:   /* memory execute only accessed */
739 		case SDT_MEMER:   /* memory execute read */
740 		case SDT_MEMERA:  /* memory execute read accessed */
741 			break;
742 		default:
743 			return(EINVAL);
744 		}
745 
746 		/* Only user (ring-3) descriptors may be present. */
747 		if ((dp->sd_p != 0) && (dp->sd_dpl != SEL_UPL))
748 			return (EACCES);
749 	}
750 
751 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
752 		/* Allocate a free slot */
753 		mtx_lock(&dt_lock);
754 		pldt = user_ldt_alloc(p, 0);
755 		if (pldt == NULL) {
756 			mtx_unlock(&dt_lock);
757 			return (ENOMEM);
758 		}
759 
760 		/*
761 		 * start scanning a bit up to leave room for NVidia and
762 		 * Wine, which still user the "Blat" method of allocation.
763 		 */
764 		i = 16;
765 		dp = &((struct user_segment_descriptor *)(pldt->ldt_base))[i];
766 		for (; i < max_ldt_segment; ++i, ++dp) {
767 			if (dp->sd_type == SDT_SYSNULL)
768 				break;
769 		}
770 		if (i >= max_ldt_segment) {
771 			mtx_unlock(&dt_lock);
772 			return (ENOSPC);
773 		}
774 		uap->start = i;
775 		error = amd64_set_ldt_data(td, i, 1, descs);
776 		mtx_unlock(&dt_lock);
777 	} else {
778 		largest_ld = uap->start + uap->num;
779 		if (largest_ld > max_ldt_segment)
780 			return (EINVAL);
781 		mtx_lock(&dt_lock);
782 		if (user_ldt_alloc(p, 0) != NULL) {
783 			error = amd64_set_ldt_data(td, uap->start, uap->num,
784 			    descs);
785 		}
786 		mtx_unlock(&dt_lock);
787 	}
788 	if (error == 0)
789 		td->td_retval[0] = uap->start;
790 	return (error);
791 }
792 
793 int
794 amd64_set_ldt_data(struct thread *td, int start, int num,
795     struct user_segment_descriptor *descs)
796 {
797 	struct mdproc *mdp;
798 	struct proc_ldt *pldt;
799 	volatile uint64_t *dst, *src;
800 	int i;
801 
802 	mtx_assert(&dt_lock, MA_OWNED);
803 
804 	mdp = &td->td_proc->p_md;
805 	pldt = mdp->md_ldt;
806 	dst = (volatile uint64_t *)(pldt->ldt_base);
807 	src = (volatile uint64_t *)descs;
808 	for (i = 0; i < num; i++)
809 		dst[start + i] = src[i];
810 	return (0);
811 }
812