1 /*-
2  * Copyright (c) 2012 Sandvine, Inc.
3  * Copyright (c) 2012 NetApp, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef _KERNEL
34 #include <sys/param.h>
35 #include <sys/pcpu.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/vmparam.h>
43 #include <machine/vmm.h>
44 #else	/* !_KERNEL */
45 #include <sys/types.h>
46 #include <sys/errno.h>
47 #include <sys/_iovec.h>
48 
49 #include <machine/vmm.h>
50 
51 #include <assert.h>
52 #include <vmmapi.h>
53 #define	KASSERT(exp,msg)	assert((exp))
54 #endif	/* _KERNEL */
55 
56 #include <machine/vmm_instruction_emul.h>
57 #include <x86/psl.h>
58 #include <x86/specialreg.h>
59 
60 /* struct vie_op.op_type */
61 enum {
62 	VIE_OP_TYPE_NONE = 0,
63 	VIE_OP_TYPE_MOV,
64 	VIE_OP_TYPE_MOVSX,
65 	VIE_OP_TYPE_MOVZX,
66 	VIE_OP_TYPE_AND,
67 	VIE_OP_TYPE_OR,
68 	VIE_OP_TYPE_SUB,
69 	VIE_OP_TYPE_TWO_BYTE,
70 	VIE_OP_TYPE_PUSH,
71 	VIE_OP_TYPE_CMP,
72 	VIE_OP_TYPE_POP,
73 	VIE_OP_TYPE_MOVS,
74 	VIE_OP_TYPE_GROUP1,
75 	VIE_OP_TYPE_STOS,
76 	VIE_OP_TYPE_BITTEST,
77 	VIE_OP_TYPE_LAST
78 };
79 
80 /* struct vie_op.op_flags */
81 #define	VIE_OP_F_IMM		(1 << 0)  /* 16/32-bit immediate operand */
82 #define	VIE_OP_F_IMM8		(1 << 1)  /* 8-bit immediate operand */
83 #define	VIE_OP_F_MOFFSET	(1 << 2)  /* 16/32/64-bit immediate moffset */
84 #define	VIE_OP_F_NO_MODRM	(1 << 3)
85 #define	VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
86 
87 static const struct vie_op two_byte_opcodes[256] = {
88 	[0xB6] = {
89 		.op_byte = 0xB6,
90 		.op_type = VIE_OP_TYPE_MOVZX,
91 	},
92 	[0xB7] = {
93 		.op_byte = 0xB7,
94 		.op_type = VIE_OP_TYPE_MOVZX,
95 	},
96 	[0xBA] = {
97 		.op_byte = 0xBA,
98 		.op_type = VIE_OP_TYPE_BITTEST,
99 		.op_flags = VIE_OP_F_IMM8,
100 	},
101 	[0xBE] = {
102 		.op_byte = 0xBE,
103 		.op_type = VIE_OP_TYPE_MOVSX,
104 	},
105 };
106 
107 static const struct vie_op one_byte_opcodes[256] = {
108 	[0x0F] = {
109 		.op_byte = 0x0F,
110 		.op_type = VIE_OP_TYPE_TWO_BYTE
111 	},
112 	[0x2B] = {
113 		.op_byte = 0x2B,
114 		.op_type = VIE_OP_TYPE_SUB,
115 	},
116 	[0x39] = {
117 		.op_byte = 0x39,
118 		.op_type = VIE_OP_TYPE_CMP,
119 	},
120 	[0x3B] = {
121 		.op_byte = 0x3B,
122 		.op_type = VIE_OP_TYPE_CMP,
123 	},
124 	[0x88] = {
125 		.op_byte = 0x88,
126 		.op_type = VIE_OP_TYPE_MOV,
127 	},
128 	[0x89] = {
129 		.op_byte = 0x89,
130 		.op_type = VIE_OP_TYPE_MOV,
131 	},
132 	[0x8A] = {
133 		.op_byte = 0x8A,
134 		.op_type = VIE_OP_TYPE_MOV,
135 	},
136 	[0x8B] = {
137 		.op_byte = 0x8B,
138 		.op_type = VIE_OP_TYPE_MOV,
139 	},
140 	[0xA1] = {
141 		.op_byte = 0xA1,
142 		.op_type = VIE_OP_TYPE_MOV,
143 		.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
144 	},
145 	[0xA3] = {
146 		.op_byte = 0xA3,
147 		.op_type = VIE_OP_TYPE_MOV,
148 		.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
149 	},
150 	[0xA4] = {
151 		.op_byte = 0xA4,
152 		.op_type = VIE_OP_TYPE_MOVS,
153 		.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
154 	},
155 	[0xA5] = {
156 		.op_byte = 0xA5,
157 		.op_type = VIE_OP_TYPE_MOVS,
158 		.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
159 	},
160 	[0xAA] = {
161 		.op_byte = 0xAA,
162 		.op_type = VIE_OP_TYPE_STOS,
163 		.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
164 	},
165 	[0xAB] = {
166 		.op_byte = 0xAB,
167 		.op_type = VIE_OP_TYPE_STOS,
168 		.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
169 	},
170 	[0xC6] = {
171 		/* XXX Group 11 extended opcode - not just MOV */
172 		.op_byte = 0xC6,
173 		.op_type = VIE_OP_TYPE_MOV,
174 		.op_flags = VIE_OP_F_IMM8,
175 	},
176 	[0xC7] = {
177 		.op_byte = 0xC7,
178 		.op_type = VIE_OP_TYPE_MOV,
179 		.op_flags = VIE_OP_F_IMM,
180 	},
181 	[0x23] = {
182 		.op_byte = 0x23,
183 		.op_type = VIE_OP_TYPE_AND,
184 	},
185 	[0x80] = {
186 		/* Group 1 extended opcode */
187 		.op_byte = 0x80,
188 		.op_type = VIE_OP_TYPE_GROUP1,
189 		.op_flags = VIE_OP_F_IMM8,
190 	},
191 	[0x81] = {
192 		/* Group 1 extended opcode */
193 		.op_byte = 0x81,
194 		.op_type = VIE_OP_TYPE_GROUP1,
195 		.op_flags = VIE_OP_F_IMM,
196 	},
197 	[0x83] = {
198 		/* Group 1 extended opcode */
199 		.op_byte = 0x83,
200 		.op_type = VIE_OP_TYPE_GROUP1,
201 		.op_flags = VIE_OP_F_IMM8,
202 	},
203 	[0x8F] = {
204 		/* XXX Group 1A extended opcode - not just POP */
205 		.op_byte = 0x8F,
206 		.op_type = VIE_OP_TYPE_POP,
207 	},
208 	[0xFF] = {
209 		/* XXX Group 5 extended opcode - not just PUSH */
210 		.op_byte = 0xFF,
211 		.op_type = VIE_OP_TYPE_PUSH,
212 	}
213 };
214 
215 /* struct vie.mod */
216 #define	VIE_MOD_INDIRECT		0
217 #define	VIE_MOD_INDIRECT_DISP8		1
218 #define	VIE_MOD_INDIRECT_DISP32		2
219 #define	VIE_MOD_DIRECT			3
220 
221 /* struct vie.rm */
222 #define	VIE_RM_SIB			4
223 #define	VIE_RM_DISP32			5
224 
225 #define	GB				(1024 * 1024 * 1024)
226 
227 static enum vm_reg_name gpr_map[16] = {
228 	VM_REG_GUEST_RAX,
229 	VM_REG_GUEST_RCX,
230 	VM_REG_GUEST_RDX,
231 	VM_REG_GUEST_RBX,
232 	VM_REG_GUEST_RSP,
233 	VM_REG_GUEST_RBP,
234 	VM_REG_GUEST_RSI,
235 	VM_REG_GUEST_RDI,
236 	VM_REG_GUEST_R8,
237 	VM_REG_GUEST_R9,
238 	VM_REG_GUEST_R10,
239 	VM_REG_GUEST_R11,
240 	VM_REG_GUEST_R12,
241 	VM_REG_GUEST_R13,
242 	VM_REG_GUEST_R14,
243 	VM_REG_GUEST_R15
244 };
245 
246 static uint64_t size2mask[] = {
247 	[1] = 0xff,
248 	[2] = 0xffff,
249 	[4] = 0xffffffff,
250 	[8] = 0xffffffffffffffff,
251 };
252 
253 static int
254 vie_read_register(void *vm, int vcpuid, enum vm_reg_name reg, uint64_t *rval)
255 {
256 	int error;
257 
258 	error = vm_get_register(vm, vcpuid, reg, rval);
259 
260 	return (error);
261 }
262 
263 static void
264 vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
265 {
266 	*lhbr = 0;
267 	*reg = gpr_map[vie->reg];
268 
269 	/*
270 	 * 64-bit mode imposes limitations on accessing legacy high byte
271 	 * registers (lhbr).
272 	 *
273 	 * The legacy high-byte registers cannot be addressed if the REX
274 	 * prefix is present. In this case the values 4, 5, 6 and 7 of the
275 	 * 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
276 	 *
277 	 * If the REX prefix is not present then the values 4, 5, 6 and 7
278 	 * of the 'ModRM:reg' field address the legacy high-byte registers,
279 	 * %ah, %ch, %dh and %bh respectively.
280 	 */
281 	if (!vie->rex_present) {
282 		if (vie->reg & 0x4) {
283 			*lhbr = 1;
284 			*reg = gpr_map[vie->reg & 0x3];
285 		}
286 	}
287 }
288 
289 static int
290 vie_read_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t *rval)
291 {
292 	uint64_t val;
293 	int error, lhbr;
294 	enum vm_reg_name reg;
295 
296 	vie_calc_bytereg(vie, &reg, &lhbr);
297 	error = vm_get_register(vm, vcpuid, reg, &val);
298 
299 	/*
300 	 * To obtain the value of a legacy high byte register shift the
301 	 * base register right by 8 bits (%ah = %rax >> 8).
302 	 */
303 	if (lhbr)
304 		*rval = val >> 8;
305 	else
306 		*rval = val;
307 	return (error);
308 }
309 
310 static int
311 vie_write_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t byte)
312 {
313 	uint64_t origval, val, mask;
314 	int error, lhbr;
315 	enum vm_reg_name reg;
316 
317 	vie_calc_bytereg(vie, &reg, &lhbr);
318 	error = vm_get_register(vm, vcpuid, reg, &origval);
319 	if (error == 0) {
320 		val = byte;
321 		mask = 0xff;
322 		if (lhbr) {
323 			/*
324 			 * Shift left by 8 to store 'byte' in a legacy high
325 			 * byte register.
326 			 */
327 			val <<= 8;
328 			mask <<= 8;
329 		}
330 		val |= origval & ~mask;
331 		error = vm_set_register(vm, vcpuid, reg, val);
332 	}
333 	return (error);
334 }
335 
336 int
337 vie_update_register(void *vm, int vcpuid, enum vm_reg_name reg,
338 		    uint64_t val, int size)
339 {
340 	int error;
341 	uint64_t origval;
342 
343 	switch (size) {
344 	case 1:
345 	case 2:
346 		error = vie_read_register(vm, vcpuid, reg, &origval);
347 		if (error)
348 			return (error);
349 		val &= size2mask[size];
350 		val |= origval & ~size2mask[size];
351 		break;
352 	case 4:
353 		val &= 0xffffffffUL;
354 		break;
355 	case 8:
356 		break;
357 	default:
358 		return (EINVAL);
359 	}
360 
361 	error = vm_set_register(vm, vcpuid, reg, val);
362 	return (error);
363 }
364 
365 #define	RFLAGS_STATUS_BITS    (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
366 
367 /*
368  * Return the status flags that would result from doing (x - y).
369  */
370 #define	GETCC(sz)							\
371 static u_long								\
372 getcc##sz(uint##sz##_t x, uint##sz##_t y)				\
373 {									\
374 	u_long rflags;							\
375 									\
376 	__asm __volatile("sub %2,%1; pushfq; popq %0" :			\
377 	    "=r" (rflags), "+r" (x) : "m" (y));				\
378 	return (rflags);						\
379 } struct __hack
380 
381 GETCC(8);
382 GETCC(16);
383 GETCC(32);
384 GETCC(64);
385 
386 static u_long
387 getcc(int opsize, uint64_t x, uint64_t y)
388 {
389 	KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
390 	    ("getcc: invalid operand size %d", opsize));
391 
392 	if (opsize == 1)
393 		return (getcc8(x, y));
394 	else if (opsize == 2)
395 		return (getcc16(x, y));
396 	else if (opsize == 4)
397 		return (getcc32(x, y));
398 	else
399 		return (getcc64(x, y));
400 }
401 
402 static int
403 emulate_mov(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
404 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
405 {
406 	int error, size;
407 	enum vm_reg_name reg;
408 	uint8_t byte;
409 	uint64_t val;
410 
411 	size = vie->opsize;
412 	error = EINVAL;
413 
414 	switch (vie->op.op_byte) {
415 	case 0x88:
416 		/*
417 		 * MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
418 		 * 88/r:	mov r/m8, r8
419 		 * REX + 88/r:	mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
420 		 */
421 		size = 1;	/* override for byte operation */
422 		error = vie_read_bytereg(vm, vcpuid, vie, &byte);
423 		if (error == 0)
424 			error = memwrite(vm, vcpuid, gpa, byte, size, arg);
425 		break;
426 	case 0x89:
427 		/*
428 		 * MOV from reg (ModRM:reg) to mem (ModRM:r/m)
429 		 * 89/r:	mov r/m16, r16
430 		 * 89/r:	mov r/m32, r32
431 		 * REX.W + 89/r	mov r/m64, r64
432 		 */
433 		reg = gpr_map[vie->reg];
434 		error = vie_read_register(vm, vcpuid, reg, &val);
435 		if (error == 0) {
436 			val &= size2mask[size];
437 			error = memwrite(vm, vcpuid, gpa, val, size, arg);
438 		}
439 		break;
440 	case 0x8A:
441 		/*
442 		 * MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
443 		 * 8A/r:	mov r8, r/m8
444 		 * REX + 8A/r:	mov r8, r/m8
445 		 */
446 		size = 1;	/* override for byte operation */
447 		error = memread(vm, vcpuid, gpa, &val, size, arg);
448 		if (error == 0)
449 			error = vie_write_bytereg(vm, vcpuid, vie, val);
450 		break;
451 	case 0x8B:
452 		/*
453 		 * MOV from mem (ModRM:r/m) to reg (ModRM:reg)
454 		 * 8B/r:	mov r16, r/m16
455 		 * 8B/r:	mov r32, r/m32
456 		 * REX.W 8B/r:	mov r64, r/m64
457 		 */
458 		error = memread(vm, vcpuid, gpa, &val, size, arg);
459 		if (error == 0) {
460 			reg = gpr_map[vie->reg];
461 			error = vie_update_register(vm, vcpuid, reg, val, size);
462 		}
463 		break;
464 	case 0xA1:
465 		/*
466 		 * MOV from seg:moffset to AX/EAX/RAX
467 		 * A1:		mov AX, moffs16
468 		 * A1:		mov EAX, moffs32
469 		 * REX.W + A1:	mov RAX, moffs64
470 		 */
471 		error = memread(vm, vcpuid, gpa, &val, size, arg);
472 		if (error == 0) {
473 			reg = VM_REG_GUEST_RAX;
474 			error = vie_update_register(vm, vcpuid, reg, val, size);
475 		}
476 		break;
477 	case 0xA3:
478 		/*
479 		 * MOV from AX/EAX/RAX to seg:moffset
480 		 * A3:		mov moffs16, AX
481 		 * A3:		mov moffs32, EAX
482 		 * REX.W + A3:	mov moffs64, RAX
483 		 */
484 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
485 		if (error == 0) {
486 			val &= size2mask[size];
487 			error = memwrite(vm, vcpuid, gpa, val, size, arg);
488 		}
489 		break;
490 	case 0xC6:
491 		/*
492 		 * MOV from imm8 to mem (ModRM:r/m)
493 		 * C6/0		mov r/m8, imm8
494 		 * REX + C6/0	mov r/m8, imm8
495 		 */
496 		size = 1;	/* override for byte operation */
497 		error = memwrite(vm, vcpuid, gpa, vie->immediate, size, arg);
498 		break;
499 	case 0xC7:
500 		/*
501 		 * MOV from imm16/imm32 to mem (ModRM:r/m)
502 		 * C7/0		mov r/m16, imm16
503 		 * C7/0		mov r/m32, imm32
504 		 * REX.W + C7/0	mov r/m64, imm32 (sign-extended to 64-bits)
505 		 */
506 		val = vie->immediate & size2mask[size];
507 		error = memwrite(vm, vcpuid, gpa, val, size, arg);
508 		break;
509 	default:
510 		break;
511 	}
512 
513 	return (error);
514 }
515 
516 static int
517 emulate_movx(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
518 	     mem_region_read_t memread, mem_region_write_t memwrite,
519 	     void *arg)
520 {
521 	int error, size;
522 	enum vm_reg_name reg;
523 	uint64_t val;
524 
525 	size = vie->opsize;
526 	error = EINVAL;
527 
528 	switch (vie->op.op_byte) {
529 	case 0xB6:
530 		/*
531 		 * MOV and zero extend byte from mem (ModRM:r/m) to
532 		 * reg (ModRM:reg).
533 		 *
534 		 * 0F B6/r		movzx r16, r/m8
535 		 * 0F B6/r		movzx r32, r/m8
536 		 * REX.W + 0F B6/r	movzx r64, r/m8
537 		 */
538 
539 		/* get the first operand */
540 		error = memread(vm, vcpuid, gpa, &val, 1, arg);
541 		if (error)
542 			break;
543 
544 		/* get the second operand */
545 		reg = gpr_map[vie->reg];
546 
547 		/* zero-extend byte */
548 		val = (uint8_t)val;
549 
550 		/* write the result */
551 		error = vie_update_register(vm, vcpuid, reg, val, size);
552 		break;
553 	case 0xB7:
554 		/*
555 		 * MOV and zero extend word from mem (ModRM:r/m) to
556 		 * reg (ModRM:reg).
557 		 *
558 		 * 0F B7/r		movzx r32, r/m16
559 		 * REX.W + 0F B7/r	movzx r64, r/m16
560 		 */
561 		error = memread(vm, vcpuid, gpa, &val, 2, arg);
562 		if (error)
563 			return (error);
564 
565 		reg = gpr_map[vie->reg];
566 
567 		/* zero-extend word */
568 		val = (uint16_t)val;
569 
570 		error = vie_update_register(vm, vcpuid, reg, val, size);
571 		break;
572 	case 0xBE:
573 		/*
574 		 * MOV and sign extend byte from mem (ModRM:r/m) to
575 		 * reg (ModRM:reg).
576 		 *
577 		 * 0F BE/r		movsx r16, r/m8
578 		 * 0F BE/r		movsx r32, r/m8
579 		 * REX.W + 0F BE/r	movsx r64, r/m8
580 		 */
581 
582 		/* get the first operand */
583 		error = memread(vm, vcpuid, gpa, &val, 1, arg);
584 		if (error)
585 			break;
586 
587 		/* get the second operand */
588 		reg = gpr_map[vie->reg];
589 
590 		/* sign extend byte */
591 		val = (int8_t)val;
592 
593 		/* write the result */
594 		error = vie_update_register(vm, vcpuid, reg, val, size);
595 		break;
596 	default:
597 		break;
598 	}
599 	return (error);
600 }
601 
602 /*
603  * Helper function to calculate and validate a linear address.
604  */
605 static int
606 get_gla(void *vm, int vcpuid, struct vie *vie, struct vm_guest_paging *paging,
607     int opsize, int addrsize, int prot, enum vm_reg_name seg,
608     enum vm_reg_name gpr, uint64_t *gla, int *fault)
609 {
610 	struct seg_desc desc;
611 	uint64_t cr0, val, rflags;
612 	int error;
613 
614 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
615 	KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
616 
617 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
618 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
619 
620 	error = vm_get_seg_desc(vm, vcpuid, seg, &desc);
621 	KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
622 	    __func__, error, seg));
623 
624 	error = vie_read_register(vm, vcpuid, gpr, &val);
625 	KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
626 	    error, gpr));
627 
628 	if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
629 	    addrsize, prot, gla)) {
630 		if (seg == VM_REG_GUEST_SS)
631 			vm_inject_ss(vm, vcpuid, 0);
632 		else
633 			vm_inject_gp(vm, vcpuid);
634 		goto guest_fault;
635 	}
636 
637 	if (vie_canonical_check(paging->cpu_mode, *gla)) {
638 		if (seg == VM_REG_GUEST_SS)
639 			vm_inject_ss(vm, vcpuid, 0);
640 		else
641 			vm_inject_gp(vm, vcpuid);
642 		goto guest_fault;
643 	}
644 
645 	if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
646 		vm_inject_ac(vm, vcpuid, 0);
647 		goto guest_fault;
648 	}
649 
650 	*fault = 0;
651 	return (0);
652 
653 guest_fault:
654 	*fault = 1;
655 	return (0);
656 }
657 
658 static int
659 emulate_movs(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
660     struct vm_guest_paging *paging, mem_region_read_t memread,
661     mem_region_write_t memwrite, void *arg)
662 {
663 #ifdef _KERNEL
664 	struct vm_copyinfo copyinfo[2];
665 #else
666 	struct iovec copyinfo[2];
667 #endif
668 	uint64_t dstaddr, srcaddr, dstgpa, srcgpa, val;
669 	uint64_t rcx, rdi, rsi, rflags;
670 	int error, fault, opsize, seg, repeat;
671 
672 	opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
673 	val = 0;
674 	error = 0;
675 
676 	/*
677 	 * XXX although the MOVS instruction is only supposed to be used with
678 	 * the "rep" prefix some guests like FreeBSD will use "repnz" instead.
679 	 *
680 	 * Empirically the "repnz" prefix has identical behavior to "rep"
681 	 * and the zero flag does not make a difference.
682 	 */
683 	repeat = vie->repz_present | vie->repnz_present;
684 
685 	if (repeat) {
686 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
687 		KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
688 
689 		/*
690 		 * The count register is %rcx, %ecx or %cx depending on the
691 		 * address size of the instruction.
692 		 */
693 		if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
694 			error = 0;
695 			goto done;
696 		}
697 	}
698 
699 	/*
700 	 *	Source		Destination	Comments
701 	 *	--------------------------------------------
702 	 * (1)  memory		memory		n/a
703 	 * (2)  memory		mmio		emulated
704 	 * (3)  mmio		memory		emulated
705 	 * (4)  mmio		mmio		emulated
706 	 *
707 	 * At this point we don't have sufficient information to distinguish
708 	 * between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
709 	 * out because it will succeed only when operating on regular memory.
710 	 *
711 	 * XXX the emulation doesn't properly handle the case where 'gpa'
712 	 * is straddling the boundary between the normal memory and MMIO.
713 	 */
714 
715 	seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
716 	error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
717 	    PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
718 	if (error || fault)
719 		goto done;
720 
721 	error = vm_copy_setup(vm, vcpuid, paging, srcaddr, opsize, PROT_READ,
722 	    copyinfo, nitems(copyinfo), &fault);
723 	if (error == 0) {
724 		if (fault)
725 			goto done;	/* Resume guest to handle fault */
726 
727 		/*
728 		 * case (2): read from system memory and write to mmio.
729 		 */
730 		vm_copyin(vm, vcpuid, copyinfo, &val, opsize);
731 		vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
732 		error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
733 		if (error)
734 			goto done;
735 	} else {
736 		/*
737 		 * 'vm_copy_setup()' is expected to fail for cases (3) and (4)
738 		 * if 'srcaddr' is in the mmio space.
739 		 */
740 
741 		error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
742 		    PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
743 		    &fault);
744 		if (error || fault)
745 			goto done;
746 
747 		error = vm_copy_setup(vm, vcpuid, paging, dstaddr, opsize,
748 		    PROT_WRITE, copyinfo, nitems(copyinfo), &fault);
749 		if (error == 0) {
750 			if (fault)
751 				goto done;    /* Resume guest to handle fault */
752 
753 			/*
754 			 * case (3): read from MMIO and write to system memory.
755 			 *
756 			 * A MMIO read can have side-effects so we
757 			 * commit to it only after vm_copy_setup() is
758 			 * successful. If a page-fault needs to be
759 			 * injected into the guest then it will happen
760 			 * before the MMIO read is attempted.
761 			 */
762 			error = memread(vm, vcpuid, gpa, &val, opsize, arg);
763 			if (error)
764 				goto done;
765 
766 			vm_copyout(vm, vcpuid, &val, copyinfo, opsize);
767 			vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
768 		} else {
769 			/*
770 			 * Case (4): read from and write to mmio.
771 			 *
772 			 * Commit to the MMIO read/write (with potential
773 			 * side-effects) only after we are sure that the
774 			 * instruction is not going to be restarted due
775 			 * to address translation faults.
776 			 */
777 			error = vm_gla2gpa(vm, vcpuid, paging, srcaddr,
778 			    PROT_READ, &srcgpa, &fault);
779 			if (error || fault)
780 				goto done;
781 
782 			error = vm_gla2gpa(vm, vcpuid, paging, dstaddr,
783 			   PROT_WRITE, &dstgpa, &fault);
784 			if (error || fault)
785 				goto done;
786 
787 			error = memread(vm, vcpuid, srcgpa, &val, opsize, arg);
788 			if (error)
789 				goto done;
790 
791 			error = memwrite(vm, vcpuid, dstgpa, val, opsize, arg);
792 			if (error)
793 				goto done;
794 		}
795 	}
796 
797 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSI, &rsi);
798 	KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
799 
800 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
801 	KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
802 
803 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
804 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
805 
806 	if (rflags & PSL_D) {
807 		rsi -= opsize;
808 		rdi -= opsize;
809 	} else {
810 		rsi += opsize;
811 		rdi += opsize;
812 	}
813 
814 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSI, rsi,
815 	    vie->addrsize);
816 	KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
817 
818 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
819 	    vie->addrsize);
820 	KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
821 
822 	if (repeat) {
823 		rcx = rcx - 1;
824 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
825 		    rcx, vie->addrsize);
826 		KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
827 
828 		/*
829 		 * Repeat the instruction if the count register is not zero.
830 		 */
831 		if ((rcx & vie_size2mask(vie->addrsize)) != 0)
832 			vm_restart_instruction(vm, vcpuid);
833 	}
834 done:
835 	KASSERT(error == 0 || error == EFAULT, ("%s: unexpected error %d",
836 	    __func__, error));
837 	return (error);
838 }
839 
840 static int
841 emulate_stos(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
842     struct vm_guest_paging *paging, mem_region_read_t memread,
843     mem_region_write_t memwrite, void *arg)
844 {
845 	int error, opsize, repeat;
846 	uint64_t val;
847 	uint64_t rcx, rdi, rflags;
848 
849 	opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
850 	repeat = vie->repz_present | vie->repnz_present;
851 
852 	if (repeat) {
853 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
854 		KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
855 
856 		/*
857 		 * The count register is %rcx, %ecx or %cx depending on the
858 		 * address size of the instruction.
859 		 */
860 		if ((rcx & vie_size2mask(vie->addrsize)) == 0)
861 			return (0);
862 	}
863 
864 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
865 	KASSERT(!error, ("%s: error %d getting rax", __func__, error));
866 
867 	error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
868 	if (error)
869 		return (error);
870 
871 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
872 	KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
873 
874 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
875 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
876 
877 	if (rflags & PSL_D)
878 		rdi -= opsize;
879 	else
880 		rdi += opsize;
881 
882 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
883 	    vie->addrsize);
884 	KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
885 
886 	if (repeat) {
887 		rcx = rcx - 1;
888 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
889 		    rcx, vie->addrsize);
890 		KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
891 
892 		/*
893 		 * Repeat the instruction if the count register is not zero.
894 		 */
895 		if ((rcx & vie_size2mask(vie->addrsize)) != 0)
896 			vm_restart_instruction(vm, vcpuid);
897 	}
898 
899 	return (0);
900 }
901 
902 static int
903 emulate_and(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
904 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
905 {
906 	int error, size;
907 	enum vm_reg_name reg;
908 	uint64_t result, rflags, rflags2, val1, val2;
909 
910 	size = vie->opsize;
911 	error = EINVAL;
912 
913 	switch (vie->op.op_byte) {
914 	case 0x23:
915 		/*
916 		 * AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
917 		 * result in reg.
918 		 *
919 		 * 23/r		and r16, r/m16
920 		 * 23/r		and r32, r/m32
921 		 * REX.W + 23/r	and r64, r/m64
922 		 */
923 
924 		/* get the first operand */
925 		reg = gpr_map[vie->reg];
926 		error = vie_read_register(vm, vcpuid, reg, &val1);
927 		if (error)
928 			break;
929 
930 		/* get the second operand */
931 		error = memread(vm, vcpuid, gpa, &val2, size, arg);
932 		if (error)
933 			break;
934 
935 		/* perform the operation and write the result */
936 		result = val1 & val2;
937 		error = vie_update_register(vm, vcpuid, reg, result, size);
938 		break;
939 	case 0x81:
940 	case 0x83:
941 		/*
942 		 * AND mem (ModRM:r/m) with immediate and store the
943 		 * result in mem.
944 		 *
945 		 * 81 /4		and r/m16, imm16
946 		 * 81 /4		and r/m32, imm32
947 		 * REX.W + 81 /4	and r/m64, imm32 sign-extended to 64
948 		 *
949 		 * 83 /4		and r/m16, imm8 sign-extended to 16
950 		 * 83 /4		and r/m32, imm8 sign-extended to 32
951 		 * REX.W + 83/4		and r/m64, imm8 sign-extended to 64
952 		 */
953 
954 		/* get the first operand */
955                 error = memread(vm, vcpuid, gpa, &val1, size, arg);
956                 if (error)
957 			break;
958 
959                 /*
960 		 * perform the operation with the pre-fetched immediate
961 		 * operand and write the result
962 		 */
963                 result = val1 & vie->immediate;
964                 error = memwrite(vm, vcpuid, gpa, result, size, arg);
965 		break;
966 	default:
967 		break;
968 	}
969 	if (error)
970 		return (error);
971 
972 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
973 	if (error)
974 		return (error);
975 
976 	/*
977 	 * OF and CF are cleared; the SF, ZF and PF flags are set according
978 	 * to the result; AF is undefined.
979 	 *
980 	 * The updated status flags are obtained by subtracting 0 from 'result'.
981 	 */
982 	rflags2 = getcc(size, result, 0);
983 	rflags &= ~RFLAGS_STATUS_BITS;
984 	rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
985 
986 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
987 	return (error);
988 }
989 
990 static int
991 emulate_or(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
992 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
993 {
994 	int error, size;
995 	uint64_t val1, result, rflags, rflags2;
996 
997 	size = vie->opsize;
998 	error = EINVAL;
999 
1000 	switch (vie->op.op_byte) {
1001 	case 0x81:
1002 	case 0x83:
1003 		/*
1004 		 * OR mem (ModRM:r/m) with immediate and store the
1005 		 * result in mem.
1006 		 *
1007 		 * 81 /1		or r/m16, imm16
1008 		 * 81 /1		or r/m32, imm32
1009 		 * REX.W + 81 /1	or r/m64, imm32 sign-extended to 64
1010 		 *
1011 		 * 83 /1		or r/m16, imm8 sign-extended to 16
1012 		 * 83 /1		or r/m32, imm8 sign-extended to 32
1013 		 * REX.W + 83/1		or r/m64, imm8 sign-extended to 64
1014 		 */
1015 
1016 		/* get the first operand */
1017                 error = memread(vm, vcpuid, gpa, &val1, size, arg);
1018                 if (error)
1019 			break;
1020 
1021                 /*
1022 		 * perform the operation with the pre-fetched immediate
1023 		 * operand and write the result
1024 		 */
1025                 result = val1 | vie->immediate;
1026                 error = memwrite(vm, vcpuid, gpa, result, size, arg);
1027 		break;
1028 	default:
1029 		break;
1030 	}
1031 	if (error)
1032 		return (error);
1033 
1034 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1035 	if (error)
1036 		return (error);
1037 
1038 	/*
1039 	 * OF and CF are cleared; the SF, ZF and PF flags are set according
1040 	 * to the result; AF is undefined.
1041 	 *
1042 	 * The updated status flags are obtained by subtracting 0 from 'result'.
1043 	 */
1044 	rflags2 = getcc(size, result, 0);
1045 	rflags &= ~RFLAGS_STATUS_BITS;
1046 	rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1047 
1048 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1049 	return (error);
1050 }
1051 
1052 static int
1053 emulate_cmp(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1054 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1055 {
1056 	int error, size;
1057 	uint64_t regop, memop, op1, op2, rflags, rflags2;
1058 	enum vm_reg_name reg;
1059 
1060 	size = vie->opsize;
1061 	switch (vie->op.op_byte) {
1062 	case 0x39:
1063 	case 0x3B:
1064 		/*
1065 		 * 39/r		CMP r/m16, r16
1066 		 * 39/r		CMP r/m32, r32
1067 		 * REX.W 39/r	CMP r/m64, r64
1068 		 *
1069 		 * 3B/r		CMP r16, r/m16
1070 		 * 3B/r		CMP r32, r/m32
1071 		 * REX.W + 3B/r	CMP r64, r/m64
1072 		 *
1073 		 * Compare the first operand with the second operand and
1074 		 * set status flags in EFLAGS register. The comparison is
1075 		 * performed by subtracting the second operand from the first
1076 		 * operand and then setting the status flags.
1077 		 */
1078 
1079 		/* Get the register operand */
1080 		reg = gpr_map[vie->reg];
1081 		error = vie_read_register(vm, vcpuid, reg, &regop);
1082 		if (error)
1083 			return (error);
1084 
1085 		/* Get the memory operand */
1086 		error = memread(vm, vcpuid, gpa, &memop, size, arg);
1087 		if (error)
1088 			return (error);
1089 
1090 		if (vie->op.op_byte == 0x3B) {
1091 			op1 = regop;
1092 			op2 = memop;
1093 		} else {
1094 			op1 = memop;
1095 			op2 = regop;
1096 		}
1097 		rflags2 = getcc(size, op1, op2);
1098 		break;
1099 	case 0x80:
1100 	case 0x81:
1101 	case 0x83:
1102 		/*
1103 		 * 80 /7		cmp r/m8, imm8
1104 		 * REX + 80 /7		cmp r/m8, imm8
1105 		 *
1106 		 * 81 /7		cmp r/m16, imm16
1107 		 * 81 /7		cmp r/m32, imm32
1108 		 * REX.W + 81 /7	cmp r/m64, imm32 sign-extended to 64
1109 		 *
1110 		 * 83 /7		cmp r/m16, imm8 sign-extended to 16
1111 		 * 83 /7		cmp r/m32, imm8 sign-extended to 32
1112 		 * REX.W + 83 /7	cmp r/m64, imm8 sign-extended to 64
1113 		 *
1114 		 * Compare mem (ModRM:r/m) with immediate and set
1115 		 * status flags according to the results.  The
1116 		 * comparison is performed by subtracting the
1117 		 * immediate from the first operand and then setting
1118 		 * the status flags.
1119 		 *
1120 		 */
1121 		if (vie->op.op_byte == 0x80)
1122 			size = 1;
1123 
1124 		/* get the first operand */
1125                 error = memread(vm, vcpuid, gpa, &op1, size, arg);
1126 		if (error)
1127 			return (error);
1128 
1129 		rflags2 = getcc(size, op1, vie->immediate);
1130 		break;
1131 	default:
1132 		return (EINVAL);
1133 	}
1134 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1135 	if (error)
1136 		return (error);
1137 	rflags &= ~RFLAGS_STATUS_BITS;
1138 	rflags |= rflags2 & RFLAGS_STATUS_BITS;
1139 
1140 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1141 	return (error);
1142 }
1143 
1144 static int
1145 emulate_sub(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1146 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1147 {
1148 	int error, size;
1149 	uint64_t nval, rflags, rflags2, val1, val2;
1150 	enum vm_reg_name reg;
1151 
1152 	size = vie->opsize;
1153 	error = EINVAL;
1154 
1155 	switch (vie->op.op_byte) {
1156 	case 0x2B:
1157 		/*
1158 		 * SUB r/m from r and store the result in r
1159 		 *
1160 		 * 2B/r            SUB r16, r/m16
1161 		 * 2B/r            SUB r32, r/m32
1162 		 * REX.W + 2B/r    SUB r64, r/m64
1163 		 */
1164 
1165 		/* get the first operand */
1166 		reg = gpr_map[vie->reg];
1167 		error = vie_read_register(vm, vcpuid, reg, &val1);
1168 		if (error)
1169 			break;
1170 
1171 		/* get the second operand */
1172 		error = memread(vm, vcpuid, gpa, &val2, size, arg);
1173 		if (error)
1174 			break;
1175 
1176 		/* perform the operation and write the result */
1177 		nval = val1 - val2;
1178 		error = vie_update_register(vm, vcpuid, reg, nval, size);
1179 		break;
1180 	default:
1181 		break;
1182 	}
1183 
1184 	if (!error) {
1185 		rflags2 = getcc(size, val1, val2);
1186 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1187 		    &rflags);
1188 		if (error)
1189 			return (error);
1190 
1191 		rflags &= ~RFLAGS_STATUS_BITS;
1192 		rflags |= rflags2 & RFLAGS_STATUS_BITS;
1193 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1194 		    rflags, 8);
1195 	}
1196 
1197 	return (error);
1198 }
1199 
1200 static int
1201 emulate_stack_op(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1202     struct vm_guest_paging *paging, mem_region_read_t memread,
1203     mem_region_write_t memwrite, void *arg)
1204 {
1205 #ifdef _KERNEL
1206 	struct vm_copyinfo copyinfo[2];
1207 #else
1208 	struct iovec copyinfo[2];
1209 #endif
1210 	struct seg_desc ss_desc;
1211 	uint64_t cr0, rflags, rsp, stack_gla, val;
1212 	int error, fault, size, stackaddrsize, pushop;
1213 
1214 	val = 0;
1215 	size = vie->opsize;
1216 	pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
1217 
1218 	/*
1219 	 * From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
1220 	 */
1221 	if (paging->cpu_mode == CPU_MODE_REAL) {
1222 		stackaddrsize = 2;
1223 	} else if (paging->cpu_mode == CPU_MODE_64BIT) {
1224 		/*
1225 		 * "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
1226 		 * - Stack pointer size is always 64-bits.
1227 		 * - PUSH/POP of 32-bit values is not possible in 64-bit mode.
1228 		 * - 16-bit PUSH/POP is supported by using the operand size
1229 		 *   override prefix (66H).
1230 		 */
1231 		stackaddrsize = 8;
1232 		size = vie->opsize_override ? 2 : 8;
1233 	} else {
1234 		/*
1235 		 * In protected or compability mode the 'B' flag in the
1236 		 * stack-segment descriptor determines the size of the
1237 		 * stack pointer.
1238 		 */
1239 		error = vm_get_seg_desc(vm, vcpuid, VM_REG_GUEST_SS, &ss_desc);
1240 		KASSERT(error == 0, ("%s: error %d getting SS descriptor",
1241 		    __func__, error));
1242 		if (SEG_DESC_DEF32(ss_desc.access))
1243 			stackaddrsize = 4;
1244 		else
1245 			stackaddrsize = 2;
1246 	}
1247 
1248 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
1249 	KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
1250 
1251 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1252 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1253 
1254 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSP, &rsp);
1255 	KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
1256 	if (pushop) {
1257 		rsp -= size;
1258 	}
1259 
1260 	if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
1261 	    rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
1262 	    &stack_gla)) {
1263 		vm_inject_ss(vm, vcpuid, 0);
1264 		return (0);
1265 	}
1266 
1267 	if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
1268 		vm_inject_ss(vm, vcpuid, 0);
1269 		return (0);
1270 	}
1271 
1272 	if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
1273 		vm_inject_ac(vm, vcpuid, 0);
1274 		return (0);
1275 	}
1276 
1277 	error = vm_copy_setup(vm, vcpuid, paging, stack_gla, size,
1278 	    pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo),
1279 	    &fault);
1280 	if (error || fault)
1281 		return (error);
1282 
1283 	if (pushop) {
1284 		error = memread(vm, vcpuid, mmio_gpa, &val, size, arg);
1285 		if (error == 0)
1286 			vm_copyout(vm, vcpuid, &val, copyinfo, size);
1287 	} else {
1288 		vm_copyin(vm, vcpuid, copyinfo, &val, size);
1289 		error = memwrite(vm, vcpuid, mmio_gpa, val, size, arg);
1290 		rsp += size;
1291 	}
1292 	vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
1293 
1294 	if (error == 0) {
1295 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSP, rsp,
1296 		    stackaddrsize);
1297 		KASSERT(error == 0, ("error %d updating rsp", error));
1298 	}
1299 	return (error);
1300 }
1301 
1302 static int
1303 emulate_push(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1304     struct vm_guest_paging *paging, mem_region_read_t memread,
1305     mem_region_write_t memwrite, void *arg)
1306 {
1307 	int error;
1308 
1309 	/*
1310 	 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1311 	 *
1312 	 * PUSH is part of the group 5 extended opcodes and is identified
1313 	 * by ModRM:reg = b110.
1314 	 */
1315 	if ((vie->reg & 7) != 6)
1316 		return (EINVAL);
1317 
1318 	error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
1319 	    memwrite, arg);
1320 	return (error);
1321 }
1322 
1323 static int
1324 emulate_pop(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1325     struct vm_guest_paging *paging, mem_region_read_t memread,
1326     mem_region_write_t memwrite, void *arg)
1327 {
1328 	int error;
1329 
1330 	/*
1331 	 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1332 	 *
1333 	 * POP is part of the group 1A extended opcodes and is identified
1334 	 * by ModRM:reg = b000.
1335 	 */
1336 	if ((vie->reg & 7) != 0)
1337 		return (EINVAL);
1338 
1339 	error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
1340 	    memwrite, arg);
1341 	return (error);
1342 }
1343 
1344 static int
1345 emulate_group1(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1346     struct vm_guest_paging *paging, mem_region_read_t memread,
1347     mem_region_write_t memwrite, void *memarg)
1348 {
1349 	int error;
1350 
1351 	switch (vie->reg & 7) {
1352 	case 0x1:	/* OR */
1353 		error = emulate_or(vm, vcpuid, gpa, vie,
1354 		    memread, memwrite, memarg);
1355 		break;
1356 	case 0x4:	/* AND */
1357 		error = emulate_and(vm, vcpuid, gpa, vie,
1358 		    memread, memwrite, memarg);
1359 		break;
1360 	case 0x7:	/* CMP */
1361 		error = emulate_cmp(vm, vcpuid, gpa, vie,
1362 		    memread, memwrite, memarg);
1363 		break;
1364 	default:
1365 		error = EINVAL;
1366 		break;
1367 	}
1368 
1369 	return (error);
1370 }
1371 
1372 static int
1373 emulate_bittest(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1374     mem_region_read_t memread, mem_region_write_t memwrite, void *memarg)
1375 {
1376 	uint64_t val, rflags;
1377 	int error, bitmask, bitoff;
1378 
1379 	/*
1380 	 * 0F BA is a Group 8 extended opcode.
1381 	 *
1382 	 * Currently we only emulate the 'Bit Test' instruction which is
1383 	 * identified by a ModR/M:reg encoding of 100b.
1384 	 */
1385 	if ((vie->reg & 7) != 4)
1386 		return (EINVAL);
1387 
1388 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1389 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1390 
1391 	error = memread(vm, vcpuid, gpa, &val, vie->opsize, memarg);
1392 	if (error)
1393 		return (error);
1394 
1395 	/*
1396 	 * Intel SDM, Vol 2, Table 3-2:
1397 	 * "Range of Bit Positions Specified by Bit Offset Operands"
1398 	 */
1399 	bitmask = vie->opsize * 8 - 1;
1400 	bitoff = vie->immediate & bitmask;
1401 
1402 	/* Copy the bit into the Carry flag in %rflags */
1403 	if (val & (1UL << bitoff))
1404 		rflags |= PSL_C;
1405 	else
1406 		rflags &= ~PSL_C;
1407 
1408 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
1409 	KASSERT(error == 0, ("%s: error %d updating rflags", __func__, error));
1410 
1411 	return (0);
1412 }
1413 
1414 int
1415 vmm_emulate_instruction(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1416     struct vm_guest_paging *paging, mem_region_read_t memread,
1417     mem_region_write_t memwrite, void *memarg)
1418 {
1419 	int error;
1420 
1421 	if (!vie->decoded)
1422 		return (EINVAL);
1423 
1424 	switch (vie->op.op_type) {
1425 	case VIE_OP_TYPE_GROUP1:
1426 		error = emulate_group1(vm, vcpuid, gpa, vie, paging, memread,
1427 		    memwrite, memarg);
1428 		break;
1429 	case VIE_OP_TYPE_POP:
1430 		error = emulate_pop(vm, vcpuid, gpa, vie, paging, memread,
1431 		    memwrite, memarg);
1432 		break;
1433 	case VIE_OP_TYPE_PUSH:
1434 		error = emulate_push(vm, vcpuid, gpa, vie, paging, memread,
1435 		    memwrite, memarg);
1436 		break;
1437 	case VIE_OP_TYPE_CMP:
1438 		error = emulate_cmp(vm, vcpuid, gpa, vie,
1439 				    memread, memwrite, memarg);
1440 		break;
1441 	case VIE_OP_TYPE_MOV:
1442 		error = emulate_mov(vm, vcpuid, gpa, vie,
1443 				    memread, memwrite, memarg);
1444 		break;
1445 	case VIE_OP_TYPE_MOVSX:
1446 	case VIE_OP_TYPE_MOVZX:
1447 		error = emulate_movx(vm, vcpuid, gpa, vie,
1448 				     memread, memwrite, memarg);
1449 		break;
1450 	case VIE_OP_TYPE_MOVS:
1451 		error = emulate_movs(vm, vcpuid, gpa, vie, paging, memread,
1452 		    memwrite, memarg);
1453 		break;
1454 	case VIE_OP_TYPE_STOS:
1455 		error = emulate_stos(vm, vcpuid, gpa, vie, paging, memread,
1456 		    memwrite, memarg);
1457 		break;
1458 	case VIE_OP_TYPE_AND:
1459 		error = emulate_and(vm, vcpuid, gpa, vie,
1460 				    memread, memwrite, memarg);
1461 		break;
1462 	case VIE_OP_TYPE_OR:
1463 		error = emulate_or(vm, vcpuid, gpa, vie,
1464 				    memread, memwrite, memarg);
1465 		break;
1466 	case VIE_OP_TYPE_SUB:
1467 		error = emulate_sub(vm, vcpuid, gpa, vie,
1468 				    memread, memwrite, memarg);
1469 		break;
1470 	case VIE_OP_TYPE_BITTEST:
1471 		error = emulate_bittest(vm, vcpuid, gpa, vie,
1472 		    memread, memwrite, memarg);
1473 		break;
1474 	default:
1475 		error = EINVAL;
1476 		break;
1477 	}
1478 
1479 	return (error);
1480 }
1481 
1482 int
1483 vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
1484 {
1485 	KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1486 	    ("%s: invalid size %d", __func__, size));
1487 	KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
1488 
1489 	if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
1490 		return (0);
1491 
1492 	return ((gla & (size - 1)) ? 1 : 0);
1493 }
1494 
1495 int
1496 vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
1497 {
1498 	uint64_t mask;
1499 
1500 	if (cpu_mode != CPU_MODE_64BIT)
1501 		return (0);
1502 
1503 	/*
1504 	 * The value of the bit 47 in the 'gla' should be replicated in the
1505 	 * most significant 16 bits.
1506 	 */
1507 	mask = ~((1UL << 48) - 1);
1508 	if (gla & (1UL << 47))
1509 		return ((gla & mask) != mask);
1510 	else
1511 		return ((gla & mask) != 0);
1512 }
1513 
1514 uint64_t
1515 vie_size2mask(int size)
1516 {
1517 	KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1518 	    ("vie_size2mask: invalid size %d", size));
1519 	return (size2mask[size]);
1520 }
1521 
1522 int
1523 vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
1524     struct seg_desc *desc, uint64_t offset, int length, int addrsize,
1525     int prot, uint64_t *gla)
1526 {
1527 	uint64_t firstoff, low_limit, high_limit, segbase;
1528 	int glasize, type;
1529 
1530 	KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
1531 	    ("%s: invalid segment %d", __func__, seg));
1532 	KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
1533 	    ("%s: invalid operand size %d", __func__, length));
1534 	KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
1535 	    ("%s: invalid prot %#x", __func__, prot));
1536 
1537 	firstoff = offset;
1538 	if (cpu_mode == CPU_MODE_64BIT) {
1539 		KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
1540 		    "size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
1541 		glasize = 8;
1542 	} else {
1543 		KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
1544 		    "size %d for cpu mode %d", __func__, addrsize, cpu_mode));
1545 		glasize = 4;
1546 		/*
1547 		 * If the segment selector is loaded with a NULL selector
1548 		 * then the descriptor is unusable and attempting to use
1549 		 * it results in a #GP(0).
1550 		 */
1551 		if (SEG_DESC_UNUSABLE(desc->access))
1552 			return (-1);
1553 
1554 		/*
1555 		 * The processor generates a #NP exception when a segment
1556 		 * register is loaded with a selector that points to a
1557 		 * descriptor that is not present. If this was the case then
1558 		 * it would have been checked before the VM-exit.
1559 		 */
1560 		KASSERT(SEG_DESC_PRESENT(desc->access),
1561 		    ("segment %d not present: %#x", seg, desc->access));
1562 
1563 		/*
1564 		 * The descriptor type must indicate a code/data segment.
1565 		 */
1566 		type = SEG_DESC_TYPE(desc->access);
1567 		KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
1568 		    "descriptor type %#x", seg, type));
1569 
1570 		if (prot & PROT_READ) {
1571 			/* #GP on a read access to a exec-only code segment */
1572 			if ((type & 0xA) == 0x8)
1573 				return (-1);
1574 		}
1575 
1576 		if (prot & PROT_WRITE) {
1577 			/*
1578 			 * #GP on a write access to a code segment or a
1579 			 * read-only data segment.
1580 			 */
1581 			if (type & 0x8)			/* code segment */
1582 				return (-1);
1583 
1584 			if ((type & 0xA) == 0)		/* read-only data seg */
1585 				return (-1);
1586 		}
1587 
1588 		/*
1589 		 * 'desc->limit' is fully expanded taking granularity into
1590 		 * account.
1591 		 */
1592 		if ((type & 0xC) == 0x4) {
1593 			/* expand-down data segment */
1594 			low_limit = desc->limit + 1;
1595 			high_limit = SEG_DESC_DEF32(desc->access) ?
1596 			    0xffffffff : 0xffff;
1597 		} else {
1598 			/* code segment or expand-up data segment */
1599 			low_limit = 0;
1600 			high_limit = desc->limit;
1601 		}
1602 
1603 		while (length > 0) {
1604 			offset &= vie_size2mask(addrsize);
1605 			if (offset < low_limit || offset > high_limit)
1606 				return (-1);
1607 			offset++;
1608 			length--;
1609 		}
1610 	}
1611 
1612 	/*
1613 	 * In 64-bit mode all segments except %fs and %gs have a segment
1614 	 * base address of 0.
1615 	 */
1616 	if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
1617 	    seg != VM_REG_GUEST_GS) {
1618 		segbase = 0;
1619 	} else {
1620 		segbase = desc->base;
1621 	}
1622 
1623 	/*
1624 	 * Truncate 'firstoff' to the effective address size before adding
1625 	 * it to the segment base.
1626 	 */
1627 	firstoff &= vie_size2mask(addrsize);
1628 	*gla = (segbase + firstoff) & vie_size2mask(glasize);
1629 	return (0);
1630 }
1631 
1632 #ifdef _KERNEL
1633 void
1634 vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
1635 {
1636 	KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
1637 	    ("%s: invalid instruction length (%d)", __func__, inst_length));
1638 
1639 	bzero(vie, sizeof(struct vie));
1640 
1641 	vie->base_register = VM_REG_LAST;
1642 	vie->index_register = VM_REG_LAST;
1643 	vie->segment_register = VM_REG_LAST;
1644 
1645 	if (inst_length) {
1646 		bcopy(inst_bytes, vie->inst, inst_length);
1647 		vie->num_valid = inst_length;
1648 	}
1649 }
1650 
1651 static int
1652 pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
1653 {
1654 	int error_code = 0;
1655 
1656 	if (pte & PG_V)
1657 		error_code |= PGEX_P;
1658 	if (prot & VM_PROT_WRITE)
1659 		error_code |= PGEX_W;
1660 	if (usermode)
1661 		error_code |= PGEX_U;
1662 	if (rsvd)
1663 		error_code |= PGEX_RSV;
1664 	if (prot & VM_PROT_EXECUTE)
1665 		error_code |= PGEX_I;
1666 
1667 	return (error_code);
1668 }
1669 
1670 static void
1671 ptp_release(void **cookie)
1672 {
1673 	if (*cookie != NULL) {
1674 		vm_gpa_release(*cookie);
1675 		*cookie = NULL;
1676 	}
1677 }
1678 
1679 static void *
1680 ptp_hold(struct vm *vm, int vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
1681 {
1682 	void *ptr;
1683 
1684 	ptp_release(cookie);
1685 	ptr = vm_gpa_hold(vm, vcpu, ptpphys, len, VM_PROT_RW, cookie);
1686 	return (ptr);
1687 }
1688 
1689 int
1690 vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
1691     uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
1692 {
1693 	int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
1694 	u_int retries;
1695 	uint64_t *ptpbase, ptpphys, pte, pgsize;
1696 	uint32_t *ptpbase32, pte32;
1697 	void *cookie;
1698 
1699 	*guest_fault = 0;
1700 
1701 	usermode = (paging->cpl == 3 ? 1 : 0);
1702 	writable = prot & VM_PROT_WRITE;
1703 	cookie = NULL;
1704 	retval = 0;
1705 	retries = 0;
1706 restart:
1707 	ptpphys = paging->cr3;		/* root of the page tables */
1708 	ptp_release(&cookie);
1709 	if (retries++ > 0)
1710 		maybe_yield();
1711 
1712 	if (vie_canonical_check(paging->cpu_mode, gla)) {
1713 		/*
1714 		 * XXX assuming a non-stack reference otherwise a stack fault
1715 		 * should be generated.
1716 		 */
1717 		vm_inject_gp(vm, vcpuid);
1718 		goto fault;
1719 	}
1720 
1721 	if (paging->paging_mode == PAGING_MODE_FLAT) {
1722 		*gpa = gla;
1723 		goto done;
1724 	}
1725 
1726 	if (paging->paging_mode == PAGING_MODE_32) {
1727 		nlevels = 2;
1728 		while (--nlevels >= 0) {
1729 			/* Zero out the lower 12 bits. */
1730 			ptpphys &= ~0xfff;
1731 
1732 			ptpbase32 = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE,
1733 			    &cookie);
1734 
1735 			if (ptpbase32 == NULL)
1736 				goto error;
1737 
1738 			ptpshift = PAGE_SHIFT + nlevels * 10;
1739 			ptpindex = (gla >> ptpshift) & 0x3FF;
1740 			pgsize = 1UL << ptpshift;
1741 
1742 			pte32 = ptpbase32[ptpindex];
1743 
1744 			if ((pte32 & PG_V) == 0 ||
1745 			    (usermode && (pte32 & PG_U) == 0) ||
1746 			    (writable && (pte32 & PG_RW) == 0)) {
1747 				pfcode = pf_error_code(usermode, prot, 0,
1748 				    pte32);
1749 				vm_inject_pf(vm, vcpuid, pfcode, gla);
1750 				goto fault;
1751 			}
1752 
1753 			/*
1754 			 * Emulate the x86 MMU's management of the accessed
1755 			 * and dirty flags. While the accessed flag is set
1756 			 * at every level of the page table, the dirty flag
1757 			 * is only set at the last level providing the guest
1758 			 * physical address.
1759 			 */
1760 			if ((pte32 & PG_A) == 0) {
1761 				if (atomic_cmpset_32(&ptpbase32[ptpindex],
1762 				    pte32, pte32 | PG_A) == 0) {
1763 					goto restart;
1764 				}
1765 			}
1766 
1767 			/* XXX must be ignored if CR4.PSE=0 */
1768 			if (nlevels > 0 && (pte32 & PG_PS) != 0)
1769 				break;
1770 
1771 			ptpphys = pte32;
1772 		}
1773 
1774 		/* Set the dirty bit in the page table entry if necessary */
1775 		if (writable && (pte32 & PG_M) == 0) {
1776 			if (atomic_cmpset_32(&ptpbase32[ptpindex],
1777 			    pte32, pte32 | PG_M) == 0) {
1778 				goto restart;
1779 			}
1780 		}
1781 
1782 		/* Zero out the lower 'ptpshift' bits */
1783 		pte32 >>= ptpshift; pte32 <<= ptpshift;
1784 		*gpa = pte32 | (gla & (pgsize - 1));
1785 		goto done;
1786 	}
1787 
1788 	if (paging->paging_mode == PAGING_MODE_PAE) {
1789 		/* Zero out the lower 5 bits and the upper 32 bits */
1790 		ptpphys &= 0xffffffe0UL;
1791 
1792 		ptpbase = ptp_hold(vm, vcpuid, ptpphys, sizeof(*ptpbase) * 4,
1793 		    &cookie);
1794 		if (ptpbase == NULL)
1795 			goto error;
1796 
1797 		ptpindex = (gla >> 30) & 0x3;
1798 
1799 		pte = ptpbase[ptpindex];
1800 
1801 		if ((pte & PG_V) == 0) {
1802 			pfcode = pf_error_code(usermode, prot, 0, pte);
1803 			vm_inject_pf(vm, vcpuid, pfcode, gla);
1804 			goto fault;
1805 		}
1806 
1807 		ptpphys = pte;
1808 
1809 		nlevels = 2;
1810 	} else
1811 		nlevels = 4;
1812 	while (--nlevels >= 0) {
1813 		/* Zero out the lower 12 bits and the upper 12 bits */
1814 		ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
1815 
1816 		ptpbase = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE, &cookie);
1817 		if (ptpbase == NULL)
1818 			goto error;
1819 
1820 		ptpshift = PAGE_SHIFT + nlevels * 9;
1821 		ptpindex = (gla >> ptpshift) & 0x1FF;
1822 		pgsize = 1UL << ptpshift;
1823 
1824 		pte = ptpbase[ptpindex];
1825 
1826 		if ((pte & PG_V) == 0 ||
1827 		    (usermode && (pte & PG_U) == 0) ||
1828 		    (writable && (pte & PG_RW) == 0)) {
1829 			pfcode = pf_error_code(usermode, prot, 0, pte);
1830 			vm_inject_pf(vm, vcpuid, pfcode, gla);
1831 			goto fault;
1832 		}
1833 
1834 		/* Set the accessed bit in the page table entry */
1835 		if ((pte & PG_A) == 0) {
1836 			if (atomic_cmpset_64(&ptpbase[ptpindex],
1837 			    pte, pte | PG_A) == 0) {
1838 				goto restart;
1839 			}
1840 		}
1841 
1842 		if (nlevels > 0 && (pte & PG_PS) != 0) {
1843 			if (pgsize > 1 * GB) {
1844 				pfcode = pf_error_code(usermode, prot, 1, pte);
1845 				vm_inject_pf(vm, vcpuid, pfcode, gla);
1846 				goto fault;
1847 			}
1848 			break;
1849 		}
1850 
1851 		ptpphys = pte;
1852 	}
1853 
1854 	/* Set the dirty bit in the page table entry if necessary */
1855 	if (writable && (pte & PG_M) == 0) {
1856 		if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
1857 			goto restart;
1858 	}
1859 
1860 	/* Zero out the lower 'ptpshift' bits and the upper 12 bits */
1861 	pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
1862 	*gpa = pte | (gla & (pgsize - 1));
1863 done:
1864 	ptp_release(&cookie);
1865 	KASSERT(retval == 0 || retval == EFAULT, ("%s: unexpected retval %d",
1866 	    __func__, retval));
1867 	return (retval);
1868 error:
1869 	retval = EFAULT;
1870 	goto done;
1871 fault:
1872 	*guest_fault = 1;
1873 	goto done;
1874 }
1875 
1876 int
1877 vmm_fetch_instruction(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
1878     uint64_t rip, int inst_length, struct vie *vie, int *faultptr)
1879 {
1880 	struct vm_copyinfo copyinfo[2];
1881 	int error, prot;
1882 
1883 	if (inst_length > VIE_INST_SIZE)
1884 		panic("vmm_fetch_instruction: invalid length %d", inst_length);
1885 
1886 	prot = PROT_READ | PROT_EXEC;
1887 	error = vm_copy_setup(vm, vcpuid, paging, rip, inst_length, prot,
1888 	    copyinfo, nitems(copyinfo), faultptr);
1889 	if (error || *faultptr)
1890 		return (error);
1891 
1892 	vm_copyin(vm, vcpuid, copyinfo, vie->inst, inst_length);
1893 	vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
1894 	vie->num_valid = inst_length;
1895 	return (0);
1896 }
1897 
1898 static int
1899 vie_peek(struct vie *vie, uint8_t *x)
1900 {
1901 
1902 	if (vie->num_processed < vie->num_valid) {
1903 		*x = vie->inst[vie->num_processed];
1904 		return (0);
1905 	} else
1906 		return (-1);
1907 }
1908 
1909 static void
1910 vie_advance(struct vie *vie)
1911 {
1912 
1913 	vie->num_processed++;
1914 }
1915 
1916 static bool
1917 segment_override(uint8_t x, int *seg)
1918 {
1919 
1920 	switch (x) {
1921 	case 0x2E:
1922 		*seg = VM_REG_GUEST_CS;
1923 		break;
1924 	case 0x36:
1925 		*seg = VM_REG_GUEST_SS;
1926 		break;
1927 	case 0x3E:
1928 		*seg = VM_REG_GUEST_DS;
1929 		break;
1930 	case 0x26:
1931 		*seg = VM_REG_GUEST_ES;
1932 		break;
1933 	case 0x64:
1934 		*seg = VM_REG_GUEST_FS;
1935 		break;
1936 	case 0x65:
1937 		*seg = VM_REG_GUEST_GS;
1938 		break;
1939 	default:
1940 		return (false);
1941 	}
1942 	return (true);
1943 }
1944 
1945 static int
1946 decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
1947 {
1948 	uint8_t x;
1949 
1950 	while (1) {
1951 		if (vie_peek(vie, &x))
1952 			return (-1);
1953 
1954 		if (x == 0x66)
1955 			vie->opsize_override = 1;
1956 		else if (x == 0x67)
1957 			vie->addrsize_override = 1;
1958 		else if (x == 0xF3)
1959 			vie->repz_present = 1;
1960 		else if (x == 0xF2)
1961 			vie->repnz_present = 1;
1962 		else if (segment_override(x, &vie->segment_register))
1963 			vie->segment_override = 1;
1964 		else
1965 			break;
1966 
1967 		vie_advance(vie);
1968 	}
1969 
1970 	/*
1971 	 * From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
1972 	 * - Only one REX prefix is allowed per instruction.
1973 	 * - The REX prefix must immediately precede the opcode byte or the
1974 	 *   escape opcode byte.
1975 	 * - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
1976 	 *   the mandatory prefix must come before the REX prefix.
1977 	 */
1978 	if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
1979 		vie->rex_present = 1;
1980 		vie->rex_w = x & 0x8 ? 1 : 0;
1981 		vie->rex_r = x & 0x4 ? 1 : 0;
1982 		vie->rex_x = x & 0x2 ? 1 : 0;
1983 		vie->rex_b = x & 0x1 ? 1 : 0;
1984 		vie_advance(vie);
1985 	}
1986 
1987 	/*
1988 	 * Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
1989 	 */
1990 	if (cpu_mode == CPU_MODE_64BIT) {
1991 		/*
1992 		 * Default address size is 64-bits and default operand size
1993 		 * is 32-bits.
1994 		 */
1995 		vie->addrsize = vie->addrsize_override ? 4 : 8;
1996 		if (vie->rex_w)
1997 			vie->opsize = 8;
1998 		else if (vie->opsize_override)
1999 			vie->opsize = 2;
2000 		else
2001 			vie->opsize = 4;
2002 	} else if (cs_d) {
2003 		/* Default address and operand sizes are 32-bits */
2004 		vie->addrsize = vie->addrsize_override ? 2 : 4;
2005 		vie->opsize = vie->opsize_override ? 2 : 4;
2006 	} else {
2007 		/* Default address and operand sizes are 16-bits */
2008 		vie->addrsize = vie->addrsize_override ? 4 : 2;
2009 		vie->opsize = vie->opsize_override ? 4 : 2;
2010 	}
2011 	return (0);
2012 }
2013 
2014 static int
2015 decode_two_byte_opcode(struct vie *vie)
2016 {
2017 	uint8_t x;
2018 
2019 	if (vie_peek(vie, &x))
2020 		return (-1);
2021 
2022 	vie->op = two_byte_opcodes[x];
2023 
2024 	if (vie->op.op_type == VIE_OP_TYPE_NONE)
2025 		return (-1);
2026 
2027 	vie_advance(vie);
2028 	return (0);
2029 }
2030 
2031 static int
2032 decode_opcode(struct vie *vie)
2033 {
2034 	uint8_t x;
2035 
2036 	if (vie_peek(vie, &x))
2037 		return (-1);
2038 
2039 	vie->op = one_byte_opcodes[x];
2040 
2041 	if (vie->op.op_type == VIE_OP_TYPE_NONE)
2042 		return (-1);
2043 
2044 	vie_advance(vie);
2045 
2046 	if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
2047 		return (decode_two_byte_opcode(vie));
2048 
2049 	return (0);
2050 }
2051 
2052 static int
2053 decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
2054 {
2055 	uint8_t x;
2056 
2057 	if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
2058 		return (0);
2059 
2060 	if (cpu_mode == CPU_MODE_REAL)
2061 		return (-1);
2062 
2063 	if (vie_peek(vie, &x))
2064 		return (-1);
2065 
2066 	vie->mod = (x >> 6) & 0x3;
2067 	vie->rm =  (x >> 0) & 0x7;
2068 	vie->reg = (x >> 3) & 0x7;
2069 
2070 	/*
2071 	 * A direct addressing mode makes no sense in the context of an EPT
2072 	 * fault. There has to be a memory access involved to cause the
2073 	 * EPT fault.
2074 	 */
2075 	if (vie->mod == VIE_MOD_DIRECT)
2076 		return (-1);
2077 
2078 	if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
2079 	    (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
2080 		/*
2081 		 * Table 2-5: Special Cases of REX Encodings
2082 		 *
2083 		 * mod=0, r/m=5 is used in the compatibility mode to
2084 		 * indicate a disp32 without a base register.
2085 		 *
2086 		 * mod!=3, r/m=4 is used in the compatibility mode to
2087 		 * indicate that the SIB byte is present.
2088 		 *
2089 		 * The 'b' bit in the REX prefix is don't care in
2090 		 * this case.
2091 		 */
2092 	} else {
2093 		vie->rm |= (vie->rex_b << 3);
2094 	}
2095 
2096 	vie->reg |= (vie->rex_r << 3);
2097 
2098 	/* SIB */
2099 	if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
2100 		goto done;
2101 
2102 	vie->base_register = gpr_map[vie->rm];
2103 
2104 	switch (vie->mod) {
2105 	case VIE_MOD_INDIRECT_DISP8:
2106 		vie->disp_bytes = 1;
2107 		break;
2108 	case VIE_MOD_INDIRECT_DISP32:
2109 		vie->disp_bytes = 4;
2110 		break;
2111 	case VIE_MOD_INDIRECT:
2112 		if (vie->rm == VIE_RM_DISP32) {
2113 			vie->disp_bytes = 4;
2114 			/*
2115 			 * Table 2-7. RIP-Relative Addressing
2116 			 *
2117 			 * In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
2118 			 * whereas in compatibility mode it just implies disp32.
2119 			 */
2120 
2121 			if (cpu_mode == CPU_MODE_64BIT)
2122 				vie->base_register = VM_REG_GUEST_RIP;
2123 			else
2124 				vie->base_register = VM_REG_LAST;
2125 		}
2126 		break;
2127 	}
2128 
2129 done:
2130 	vie_advance(vie);
2131 
2132 	return (0);
2133 }
2134 
2135 static int
2136 decode_sib(struct vie *vie)
2137 {
2138 	uint8_t x;
2139 
2140 	/* Proceed only if SIB byte is present */
2141 	if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
2142 		return (0);
2143 
2144 	if (vie_peek(vie, &x))
2145 		return (-1);
2146 
2147 	/* De-construct the SIB byte */
2148 	vie->ss = (x >> 6) & 0x3;
2149 	vie->index = (x >> 3) & 0x7;
2150 	vie->base = (x >> 0) & 0x7;
2151 
2152 	/* Apply the REX prefix modifiers */
2153 	vie->index |= vie->rex_x << 3;
2154 	vie->base |= vie->rex_b << 3;
2155 
2156 	switch (vie->mod) {
2157 	case VIE_MOD_INDIRECT_DISP8:
2158 		vie->disp_bytes = 1;
2159 		break;
2160 	case VIE_MOD_INDIRECT_DISP32:
2161 		vie->disp_bytes = 4;
2162 		break;
2163 	}
2164 
2165 	if (vie->mod == VIE_MOD_INDIRECT &&
2166 	    (vie->base == 5 || vie->base == 13)) {
2167 		/*
2168 		 * Special case when base register is unused if mod = 0
2169 		 * and base = %rbp or %r13.
2170 		 *
2171 		 * Documented in:
2172 		 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
2173 		 * Table 2-5: Special Cases of REX Encodings
2174 		 */
2175 		vie->disp_bytes = 4;
2176 	} else {
2177 		vie->base_register = gpr_map[vie->base];
2178 	}
2179 
2180 	/*
2181 	 * All encodings of 'index' are valid except for %rsp (4).
2182 	 *
2183 	 * Documented in:
2184 	 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
2185 	 * Table 2-5: Special Cases of REX Encodings
2186 	 */
2187 	if (vie->index != 4)
2188 		vie->index_register = gpr_map[vie->index];
2189 
2190 	/* 'scale' makes sense only in the context of an index register */
2191 	if (vie->index_register < VM_REG_LAST)
2192 		vie->scale = 1 << vie->ss;
2193 
2194 	vie_advance(vie);
2195 
2196 	return (0);
2197 }
2198 
2199 static int
2200 decode_displacement(struct vie *vie)
2201 {
2202 	int n, i;
2203 	uint8_t x;
2204 
2205 	union {
2206 		char	buf[4];
2207 		int8_t	signed8;
2208 		int32_t	signed32;
2209 	} u;
2210 
2211 	if ((n = vie->disp_bytes) == 0)
2212 		return (0);
2213 
2214 	if (n != 1 && n != 4)
2215 		panic("decode_displacement: invalid disp_bytes %d", n);
2216 
2217 	for (i = 0; i < n; i++) {
2218 		if (vie_peek(vie, &x))
2219 			return (-1);
2220 
2221 		u.buf[i] = x;
2222 		vie_advance(vie);
2223 	}
2224 
2225 	if (n == 1)
2226 		vie->displacement = u.signed8;		/* sign-extended */
2227 	else
2228 		vie->displacement = u.signed32;		/* sign-extended */
2229 
2230 	return (0);
2231 }
2232 
2233 static int
2234 decode_immediate(struct vie *vie)
2235 {
2236 	int i, n;
2237 	uint8_t x;
2238 	union {
2239 		char	buf[4];
2240 		int8_t	signed8;
2241 		int16_t	signed16;
2242 		int32_t	signed32;
2243 	} u;
2244 
2245 	/* Figure out immediate operand size (if any) */
2246 	if (vie->op.op_flags & VIE_OP_F_IMM) {
2247 		/*
2248 		 * Section 2.2.1.5 "Immediates", Intel SDM:
2249 		 * In 64-bit mode the typical size of immediate operands
2250 		 * remains 32-bits. When the operand size if 64-bits, the
2251 		 * processor sign-extends all immediates to 64-bits prior
2252 		 * to their use.
2253 		 */
2254 		if (vie->opsize == 4 || vie->opsize == 8)
2255 			vie->imm_bytes = 4;
2256 		else
2257 			vie->imm_bytes = 2;
2258 	} else if (vie->op.op_flags & VIE_OP_F_IMM8) {
2259 		vie->imm_bytes = 1;
2260 	}
2261 
2262 	if ((n = vie->imm_bytes) == 0)
2263 		return (0);
2264 
2265 	KASSERT(n == 1 || n == 2 || n == 4,
2266 	    ("%s: invalid number of immediate bytes: %d", __func__, n));
2267 
2268 	for (i = 0; i < n; i++) {
2269 		if (vie_peek(vie, &x))
2270 			return (-1);
2271 
2272 		u.buf[i] = x;
2273 		vie_advance(vie);
2274 	}
2275 
2276 	/* sign-extend the immediate value before use */
2277 	if (n == 1)
2278 		vie->immediate = u.signed8;
2279 	else if (n == 2)
2280 		vie->immediate = u.signed16;
2281 	else
2282 		vie->immediate = u.signed32;
2283 
2284 	return (0);
2285 }
2286 
2287 static int
2288 decode_moffset(struct vie *vie)
2289 {
2290 	int i, n;
2291 	uint8_t x;
2292 	union {
2293 		char	buf[8];
2294 		uint64_t u64;
2295 	} u;
2296 
2297 	if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
2298 		return (0);
2299 
2300 	/*
2301 	 * Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
2302 	 * The memory offset size follows the address-size of the instruction.
2303 	 */
2304 	n = vie->addrsize;
2305 	KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
2306 
2307 	u.u64 = 0;
2308 	for (i = 0; i < n; i++) {
2309 		if (vie_peek(vie, &x))
2310 			return (-1);
2311 
2312 		u.buf[i] = x;
2313 		vie_advance(vie);
2314 	}
2315 	vie->displacement = u.u64;
2316 	return (0);
2317 }
2318 
2319 /*
2320  * Verify that the 'guest linear address' provided as collateral of the nested
2321  * page table fault matches with our instruction decoding.
2322  */
2323 static int
2324 verify_gla(struct vm *vm, int cpuid, uint64_t gla, struct vie *vie,
2325     enum vm_cpu_mode cpu_mode)
2326 {
2327 	int error;
2328 	uint64_t base, segbase, idx, gla2;
2329 	enum vm_reg_name seg;
2330 	struct seg_desc desc;
2331 
2332 	/* Skip 'gla' verification */
2333 	if (gla == VIE_INVALID_GLA)
2334 		return (0);
2335 
2336 	base = 0;
2337 	if (vie->base_register != VM_REG_LAST) {
2338 		error = vm_get_register(vm, cpuid, vie->base_register, &base);
2339 		if (error) {
2340 			printf("verify_gla: error %d getting base reg %d\n",
2341 				error, vie->base_register);
2342 			return (-1);
2343 		}
2344 
2345 		/*
2346 		 * RIP-relative addressing starts from the following
2347 		 * instruction
2348 		 */
2349 		if (vie->base_register == VM_REG_GUEST_RIP)
2350 			base += vie->num_processed;
2351 	}
2352 
2353 	idx = 0;
2354 	if (vie->index_register != VM_REG_LAST) {
2355 		error = vm_get_register(vm, cpuid, vie->index_register, &idx);
2356 		if (error) {
2357 			printf("verify_gla: error %d getting index reg %d\n",
2358 				error, vie->index_register);
2359 			return (-1);
2360 		}
2361 	}
2362 
2363 	/*
2364 	 * From "Specifying a Segment Selector", Intel SDM, Vol 1
2365 	 *
2366 	 * In 64-bit mode, segmentation is generally (but not
2367 	 * completely) disabled.  The exceptions are the FS and GS
2368 	 * segments.
2369 	 *
2370 	 * In legacy IA-32 mode, when the ESP or EBP register is used
2371 	 * as the base, the SS segment is the default segment.  For
2372 	 * other data references, except when relative to stack or
2373 	 * string destination the DS segment is the default.  These
2374 	 * can be overridden to allow other segments to be accessed.
2375 	 */
2376 	if (vie->segment_override)
2377 		seg = vie->segment_register;
2378 	else if (vie->base_register == VM_REG_GUEST_RSP ||
2379 	    vie->base_register == VM_REG_GUEST_RBP)
2380 		seg = VM_REG_GUEST_SS;
2381 	else
2382 		seg = VM_REG_GUEST_DS;
2383 	if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
2384 	    seg != VM_REG_GUEST_GS) {
2385 		segbase = 0;
2386 	} else {
2387 		error = vm_get_seg_desc(vm, cpuid, seg, &desc);
2388 		if (error) {
2389 			printf("verify_gla: error %d getting segment"
2390 			       " descriptor %d", error,
2391 			       vie->segment_register);
2392 			return (-1);
2393 		}
2394 		segbase = desc.base;
2395 	}
2396 
2397 	gla2 = segbase + base + vie->scale * idx + vie->displacement;
2398 	gla2 &= size2mask[vie->addrsize];
2399 	if (gla != gla2) {
2400 		printf("verify_gla mismatch: segbase(0x%0lx)"
2401 		       "base(0x%0lx), scale(%d), index(0x%0lx), "
2402 		       "disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
2403 		       segbase, base, vie->scale, idx, vie->displacement,
2404 		       gla, gla2);
2405 		return (-1);
2406 	}
2407 
2408 	return (0);
2409 }
2410 
2411 int
2412 vmm_decode_instruction(struct vm *vm, int cpuid, uint64_t gla,
2413 		       enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
2414 {
2415 
2416 	if (decode_prefixes(vie, cpu_mode, cs_d))
2417 		return (-1);
2418 
2419 	if (decode_opcode(vie))
2420 		return (-1);
2421 
2422 	if (decode_modrm(vie, cpu_mode))
2423 		return (-1);
2424 
2425 	if (decode_sib(vie))
2426 		return (-1);
2427 
2428 	if (decode_displacement(vie))
2429 		return (-1);
2430 
2431 	if (decode_immediate(vie))
2432 		return (-1);
2433 
2434 	if (decode_moffset(vie))
2435 		return (-1);
2436 
2437 	if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
2438 		if (verify_gla(vm, cpuid, gla, vie, cpu_mode))
2439 			return (-1);
2440 	}
2441 
2442 	vie->decoded = 1;	/* success */
2443 
2444 	return (0);
2445 }
2446 #endif	/* _KERNEL */
2447