xref: /freebsd/sys/arm/allwinner/if_awg.c (revision a19071ce)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
18  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
20  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
21  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 /*
29  * Allwinner Gigabit Ethernet MAC (EMAC) controller
30  */
31 
32 #include "opt_device_polling.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/rman.h>
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/module.h>
47 #include <sys/gpio.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_var.h>
56 
57 #include <machine/bus.h>
58 
59 #include <dev/ofw/ofw_bus.h>
60 #include <dev/ofw/ofw_bus_subr.h>
61 
62 #include <arm/allwinner/if_awgreg.h>
63 #include <arm/allwinner/aw_sid.h>
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/extres/clk/clk.h>
68 #include <dev/extres/hwreset/hwreset.h>
69 #include <dev/extres/regulator/regulator.h>
70 #include <dev/extres/syscon/syscon.h>
71 
72 #include "syscon_if.h"
73 #include "miibus_if.h"
74 #include "gpio_if.h"
75 
76 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
77 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
78 
79 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
80 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
81 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
82 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
83 
84 #define	DESC_ALIGN		4
85 #define	TX_DESC_COUNT		1024
86 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
87 #define	RX_DESC_COUNT		256
88 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
89 
90 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
91 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
92 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
93 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
94 
95 #define	TX_MAX_SEGS		20
96 
97 #define	SOFT_RST_RETRY		1000
98 #define	MII_BUSY_RETRY		1000
99 #define	MDIO_FREQ		2500000
100 
101 #define	BURST_LEN_DEFAULT	8
102 #define	RX_TX_PRI_DEFAULT	0
103 #define	PAUSE_TIME_DEFAULT	0x400
104 #define	TX_INTERVAL_DEFAULT	64
105 #define	RX_BATCH_DEFAULT	64
106 
107 /* syscon EMAC clock register */
108 #define	EMAC_CLK_REG		0x30
109 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
110 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
111 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
112 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
113 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
114 #define	EMAC_CLK_RMII_EN	(1 << 13)
115 #define	EMAC_CLK_ETXDC		(0x7 << 10)
116 #define	EMAC_CLK_ETXDC_SHIFT	10
117 #define	EMAC_CLK_ERXDC		(0x1f << 5)
118 #define	EMAC_CLK_ERXDC_SHIFT	5
119 #define	EMAC_CLK_PIT		(0x1 << 2)
120 #define	 EMAC_CLK_PIT_MII	(0 << 2)
121 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
122 #define	EMAC_CLK_SRC		(0x3 << 0)
123 #define	 EMAC_CLK_SRC_MII	(0 << 0)
124 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
125 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
126 
127 /* Burst length of RX and TX DMA transfers */
128 static int awg_burst_len = BURST_LEN_DEFAULT;
129 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
130 
131 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
132 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
133 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
134 
135 /* Pause time field in the transmitted control frame */
136 static int awg_pause_time = PAUSE_TIME_DEFAULT;
137 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
138 
139 /* Request a TX interrupt every <n> descriptors */
140 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
141 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
142 
143 /* Maximum number of mbufs to send to if_input */
144 static int awg_rx_batch = RX_BATCH_DEFAULT;
145 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
146 
147 enum awg_type {
148 	EMAC_A83T = 1,
149 	EMAC_H3,
150 	EMAC_A64,
151 };
152 
153 static struct ofw_compat_data compat_data[] = {
154 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
155 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
156 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
157 	{ NULL,					0 }
158 };
159 
160 struct awg_bufmap {
161 	bus_dmamap_t		map;
162 	struct mbuf		*mbuf;
163 };
164 
165 struct awg_txring {
166 	bus_dma_tag_t		desc_tag;
167 	bus_dmamap_t		desc_map;
168 	struct emac_desc	*desc_ring;
169 	bus_addr_t		desc_ring_paddr;
170 	bus_dma_tag_t		buf_tag;
171 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
172 	u_int			cur, next, queued;
173 	u_int			segs;
174 };
175 
176 struct awg_rxring {
177 	bus_dma_tag_t		desc_tag;
178 	bus_dmamap_t		desc_map;
179 	struct emac_desc	*desc_ring;
180 	bus_addr_t		desc_ring_paddr;
181 	bus_dma_tag_t		buf_tag;
182 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
183 	bus_dmamap_t		buf_spare_map;
184 	u_int			cur;
185 };
186 
187 enum {
188 	_RES_EMAC,
189 	_RES_IRQ,
190 	_RES_SYSCON,
191 	_RES_NITEMS
192 };
193 
194 struct awg_softc {
195 	struct resource		*res[_RES_NITEMS];
196 	struct mtx		mtx;
197 	if_t			ifp;
198 	device_t		dev;
199 	device_t		miibus;
200 	struct callout		stat_ch;
201 	void			*ih;
202 	u_int			mdc_div_ratio_m;
203 	int			link;
204 	int			if_flags;
205 	enum awg_type		type;
206 	struct syscon		*syscon;
207 
208 	struct awg_txring	tx;
209 	struct awg_rxring	rx;
210 };
211 
212 static struct resource_spec awg_spec[] = {
213 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
214 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
215 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
216 	{ -1, 0 }
217 };
218 
219 static void awg_txeof(struct awg_softc *sc);
220 
221 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
222     uint32_t *rx_delay);
223 static uint32_t syscon_read_emac_clk_reg(device_t dev);
224 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
225 static phandle_t awg_get_phy_node(device_t dev);
226 static bool awg_has_internal_phy(device_t dev);
227 
228 static int
229 awg_miibus_readreg(device_t dev, int phy, int reg)
230 {
231 	struct awg_softc *sc;
232 	int retry, val;
233 
234 	sc = device_get_softc(dev);
235 	val = 0;
236 
237 	WR4(sc, EMAC_MII_CMD,
238 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
239 	    (phy << PHY_ADDR_SHIFT) |
240 	    (reg << PHY_REG_ADDR_SHIFT) |
241 	    MII_BUSY);
242 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
243 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
244 			val = RD4(sc, EMAC_MII_DATA);
245 			break;
246 		}
247 		DELAY(10);
248 	}
249 
250 	if (retry == 0)
251 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
252 		    phy, reg);
253 
254 	return (val);
255 }
256 
257 static int
258 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
259 {
260 	struct awg_softc *sc;
261 	int retry;
262 
263 	sc = device_get_softc(dev);
264 
265 	WR4(sc, EMAC_MII_DATA, val);
266 	WR4(sc, EMAC_MII_CMD,
267 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
268 	    (phy << PHY_ADDR_SHIFT) |
269 	    (reg << PHY_REG_ADDR_SHIFT) |
270 	    MII_WR | MII_BUSY);
271 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
272 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
273 			break;
274 		DELAY(10);
275 	}
276 
277 	if (retry == 0)
278 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
279 		    phy, reg);
280 
281 	return (0);
282 }
283 
284 static void
285 awg_miibus_statchg(device_t dev)
286 {
287 	struct awg_softc *sc;
288 	struct mii_data *mii;
289 	uint32_t val;
290 
291 	sc = device_get_softc(dev);
292 
293 	AWG_ASSERT_LOCKED(sc);
294 
295 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
296 		return;
297 	mii = device_get_softc(sc->miibus);
298 
299 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
300 	    (IFM_ACTIVE | IFM_AVALID)) {
301 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
302 		case IFM_1000_T:
303 		case IFM_1000_SX:
304 		case IFM_100_TX:
305 		case IFM_10_T:
306 			sc->link = 1;
307 			break;
308 		default:
309 			sc->link = 0;
310 			break;
311 		}
312 	} else
313 		sc->link = 0;
314 
315 	if (sc->link == 0)
316 		return;
317 
318 	val = RD4(sc, EMAC_BASIC_CTL_0);
319 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
320 
321 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
322 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
323 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
324 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
325 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
326 	else
327 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
328 
329 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
330 		val |= BASIC_CTL_DUPLEX;
331 
332 	WR4(sc, EMAC_BASIC_CTL_0, val);
333 
334 	val = RD4(sc, EMAC_RX_CTL_0);
335 	val &= ~RX_FLOW_CTL_EN;
336 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
337 		val |= RX_FLOW_CTL_EN;
338 	WR4(sc, EMAC_RX_CTL_0, val);
339 
340 	val = RD4(sc, EMAC_TX_FLOW_CTL);
341 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
342 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
343 		val |= TX_FLOW_CTL_EN;
344 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
345 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
346 	WR4(sc, EMAC_TX_FLOW_CTL, val);
347 }
348 
349 static void
350 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
351 {
352 	struct awg_softc *sc;
353 	struct mii_data *mii;
354 
355 	sc = if_getsoftc(ifp);
356 	mii = device_get_softc(sc->miibus);
357 
358 	AWG_LOCK(sc);
359 	mii_pollstat(mii);
360 	ifmr->ifm_active = mii->mii_media_active;
361 	ifmr->ifm_status = mii->mii_media_status;
362 	AWG_UNLOCK(sc);
363 }
364 
365 static int
366 awg_media_change(if_t ifp)
367 {
368 	struct awg_softc *sc;
369 	struct mii_data *mii;
370 	int error;
371 
372 	sc = if_getsoftc(ifp);
373 	mii = device_get_softc(sc->miibus);
374 
375 	AWG_LOCK(sc);
376 	error = mii_mediachg(mii);
377 	AWG_UNLOCK(sc);
378 
379 	return (error);
380 }
381 
382 static int
383 awg_encap(struct awg_softc *sc, struct mbuf **mp)
384 {
385 	bus_dmamap_t map;
386 	bus_dma_segment_t segs[TX_MAX_SEGS];
387 	int error, nsegs, cur, first, last, i;
388 	u_int csum_flags;
389 	uint32_t flags, status;
390 	struct mbuf *m;
391 
392 	cur = first = sc->tx.cur;
393 	map = sc->tx.buf_map[first].map;
394 
395 	m = *mp;
396 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
397 	    &nsegs, BUS_DMA_NOWAIT);
398 	if (error == EFBIG) {
399 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
400 		if (m == NULL) {
401 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
402 			m_freem(*mp);
403 			*mp = NULL;
404 			return (ENOMEM);
405 		}
406 		*mp = m;
407 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
408 		    segs, &nsegs, BUS_DMA_NOWAIT);
409 		if (error != 0) {
410 			m_freem(*mp);
411 			*mp = NULL;
412 		}
413 	}
414 	if (error != 0) {
415 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
416 		return (error);
417 	}
418 	if (nsegs == 0) {
419 		m_freem(*mp);
420 		*mp = NULL;
421 		return (EIO);
422 	}
423 
424 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
425 		bus_dmamap_unload(sc->tx.buf_tag, map);
426 		return (ENOBUFS);
427 	}
428 
429 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
430 
431 	flags = TX_FIR_DESC;
432 	status = 0;
433 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
434 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
435 			csum_flags = TX_CHECKSUM_CTL_FULL;
436 		else
437 			csum_flags = TX_CHECKSUM_CTL_IP;
438 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
439 	}
440 
441 	for (i = 0; i < nsegs; i++) {
442 		sc->tx.segs++;
443 		if (i == nsegs - 1) {
444 			flags |= TX_LAST_DESC;
445 			/*
446 			 * Can only request TX completion
447 			 * interrupt on last descriptor.
448 			 */
449 			if (sc->tx.segs >= awg_tx_interval) {
450 				sc->tx.segs = 0;
451 				flags |= TX_INT_CTL;
452 			}
453 		}
454 
455 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
456 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
457 		sc->tx.desc_ring[cur].status = htole32(status);
458 
459 		flags &= ~TX_FIR_DESC;
460 		/*
461 		 * Setting of the valid bit in the first descriptor is
462 		 * deferred until the whole chain is fully set up.
463 		 */
464 		status = TX_DESC_CTL;
465 
466 		++sc->tx.queued;
467 		cur = TX_NEXT(cur);
468 	}
469 
470 	sc->tx.cur = cur;
471 
472 	/* Store mapping and mbuf in the last segment */
473 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
474 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
475 	sc->tx.buf_map[last].map = map;
476 	sc->tx.buf_map[last].mbuf = m;
477 
478 	/*
479 	 * The whole mbuf chain has been DMA mapped,
480 	 * fix the first descriptor.
481 	 */
482 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
483 
484 	return (0);
485 }
486 
487 static void
488 awg_clean_txbuf(struct awg_softc *sc, int index)
489 {
490 	struct awg_bufmap *bmap;
491 
492 	--sc->tx.queued;
493 
494 	bmap = &sc->tx.buf_map[index];
495 	if (bmap->mbuf != NULL) {
496 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
497 		    BUS_DMASYNC_POSTWRITE);
498 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
499 		m_freem(bmap->mbuf);
500 		bmap->mbuf = NULL;
501 	}
502 }
503 
504 static void
505 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
506 {
507 	uint32_t status, size;
508 
509 	status = RX_DESC_CTL;
510 	size = MCLBYTES - 1;
511 
512 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
513 	sc->rx.desc_ring[index].size = htole32(size);
514 	sc->rx.desc_ring[index].status = htole32(status);
515 }
516 
517 static void
518 awg_reuse_rxdesc(struct awg_softc *sc, int index)
519 {
520 
521 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
522 }
523 
524 static int
525 awg_newbuf_rx(struct awg_softc *sc, int index)
526 {
527 	struct mbuf *m;
528 	bus_dma_segment_t seg;
529 	bus_dmamap_t map;
530 	int nsegs;
531 
532 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
533 	if (m == NULL)
534 		return (ENOBUFS);
535 
536 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
537 	m_adj(m, ETHER_ALIGN);
538 
539 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
540 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
541 		m_freem(m);
542 		return (ENOBUFS);
543 	}
544 
545 	if (sc->rx.buf_map[index].mbuf != NULL) {
546 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
547 		    BUS_DMASYNC_POSTREAD);
548 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
549 	}
550 	map = sc->rx.buf_map[index].map;
551 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
552 	sc->rx.buf_spare_map = map;
553 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
554 	    BUS_DMASYNC_PREREAD);
555 
556 	sc->rx.buf_map[index].mbuf = m;
557 	awg_setup_rxdesc(sc, index, seg.ds_addr);
558 
559 	return (0);
560 }
561 
562 static void
563 awg_start_locked(struct awg_softc *sc)
564 {
565 	struct mbuf *m;
566 	uint32_t val;
567 	if_t ifp;
568 	int cnt, err;
569 
570 	AWG_ASSERT_LOCKED(sc);
571 
572 	if (!sc->link)
573 		return;
574 
575 	ifp = sc->ifp;
576 
577 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
578 	    IFF_DRV_RUNNING)
579 		return;
580 
581 	for (cnt = 0; ; cnt++) {
582 		m = if_dequeue(ifp);
583 		if (m == NULL)
584 			break;
585 
586 		err = awg_encap(sc, &m);
587 		if (err != 0) {
588 			if (err == ENOBUFS)
589 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
590 			if (m != NULL)
591 				if_sendq_prepend(ifp, m);
592 			break;
593 		}
594 		if_bpfmtap(ifp, m);
595 	}
596 
597 	if (cnt != 0) {
598 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
599 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
600 
601 		/* Start and run TX DMA */
602 		val = RD4(sc, EMAC_TX_CTL_1);
603 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
604 	}
605 }
606 
607 static void
608 awg_start(if_t ifp)
609 {
610 	struct awg_softc *sc;
611 
612 	sc = if_getsoftc(ifp);
613 
614 	AWG_LOCK(sc);
615 	awg_start_locked(sc);
616 	AWG_UNLOCK(sc);
617 }
618 
619 static void
620 awg_tick(void *softc)
621 {
622 	struct awg_softc *sc;
623 	struct mii_data *mii;
624 	if_t ifp;
625 	int link;
626 
627 	sc = softc;
628 	ifp = sc->ifp;
629 	mii = device_get_softc(sc->miibus);
630 
631 	AWG_ASSERT_LOCKED(sc);
632 
633 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
634 		return;
635 
636 	link = sc->link;
637 	mii_tick(mii);
638 	if (sc->link && !link)
639 		awg_start_locked(sc);
640 
641 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
642 }
643 
644 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
645 static uint32_t
646 bitrev32(uint32_t x)
647 {
648 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
649 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
650 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
651 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
652 
653 	return (x >> 16) | (x << 16);
654 }
655 
656 static u_int
657 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
658 {
659 	uint32_t crc, hashreg, hashbit, *hash = arg;
660 
661 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
662 	crc = bitrev32(~crc) >> 26;
663 	hashreg = (crc >> 5);
664 	hashbit = (crc & 0x1f);
665 	hash[hashreg] |= (1 << hashbit);
666 
667 	return (1);
668 }
669 
670 static void
671 awg_setup_rxfilter(struct awg_softc *sc)
672 {
673 	uint32_t val, hash[2], machi, maclo;
674 	uint8_t *eaddr;
675 	if_t ifp;
676 
677 	AWG_ASSERT_LOCKED(sc);
678 
679 	ifp = sc->ifp;
680 	val = 0;
681 	hash[0] = hash[1] = 0;
682 
683 	if (if_getflags(ifp) & IFF_PROMISC)
684 		val |= DIS_ADDR_FILTER;
685 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
686 		val |= RX_ALL_MULTICAST;
687 		hash[0] = hash[1] = ~0;
688 	} else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
689 		val |= HASH_MULTICAST;
690 
691 	/* Write our unicast address */
692 	eaddr = IF_LLADDR(ifp);
693 	machi = (eaddr[5] << 8) | eaddr[4];
694 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
695 	   (eaddr[0] << 0);
696 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
697 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
698 
699 	/* Multicast hash filters */
700 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
701 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
702 
703 	/* RX frame filter config */
704 	WR4(sc, EMAC_RX_FRM_FLT, val);
705 }
706 
707 static void
708 awg_setup_core(struct awg_softc *sc)
709 {
710 	uint32_t val;
711 
712 	AWG_ASSERT_LOCKED(sc);
713 	/* Configure DMA burst length and priorities */
714 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
715 	if (awg_rx_tx_pri)
716 		val |= BASIC_CTL_RX_TX_PRI;
717 	WR4(sc, EMAC_BASIC_CTL_1, val);
718 
719 }
720 
721 static void
722 awg_enable_mac(struct awg_softc *sc, bool enable)
723 {
724 	uint32_t tx, rx;
725 
726 	AWG_ASSERT_LOCKED(sc);
727 
728 	tx = RD4(sc, EMAC_TX_CTL_0);
729 	rx = RD4(sc, EMAC_RX_CTL_0);
730 	if (enable) {
731 		tx |= TX_EN;
732 		rx |= RX_EN | CHECK_CRC;
733 	} else {
734 		tx &= ~TX_EN;
735 		rx &= ~(RX_EN | CHECK_CRC);
736 	}
737 
738 	WR4(sc, EMAC_TX_CTL_0, tx);
739 	WR4(sc, EMAC_RX_CTL_0, rx);
740 }
741 
742 
743 static void
744 awg_enable_dma_intr(struct awg_softc *sc)
745 {
746 	/* Enable interrupts */
747 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
748 }
749 
750 static void
751 awg_disable_dma_intr(struct awg_softc *sc)
752 {
753 	/* Disable interrupts */
754 	WR4(sc, EMAC_INT_EN, 0);
755 }
756 
757 static void
758 awg_init_dma(struct awg_softc *sc)
759 {
760 	uint32_t val;
761 
762 	AWG_ASSERT_LOCKED(sc);
763 
764 	/* Enable interrupts */
765 #ifdef DEVICE_POLLING
766 	if ((if_getcapenable(sc->ifp) & IFCAP_POLLING) == 0)
767 		awg_enable_dma_intr(sc);
768 	else
769 		awg_disable_dma_intr(sc);
770 #else
771 	awg_enable_dma_intr(sc);
772 #endif
773 
774 	/* Enable transmit DMA */
775 	val = RD4(sc, EMAC_TX_CTL_1);
776 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
777 
778 	/* Enable receive DMA */
779 	val = RD4(sc, EMAC_RX_CTL_1);
780 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
781 }
782 
783 static void
784 awg_stop_dma(struct awg_softc *sc)
785 {
786 	uint32_t val;
787 
788 	AWG_ASSERT_LOCKED(sc);
789 
790 	/* Stop transmit DMA and flush data in the TX FIFO */
791 	val = RD4(sc, EMAC_TX_CTL_1);
792 	val &= ~TX_DMA_EN;
793 	val |= FLUSH_TX_FIFO;
794 	WR4(sc, EMAC_TX_CTL_1, val);
795 
796 	/* Disable interrupts */
797 	awg_disable_dma_intr(sc);
798 
799 	/* Disable transmit DMA */
800 	val = RD4(sc, EMAC_TX_CTL_1);
801 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
802 
803 	/* Disable receive DMA */
804 	val = RD4(sc, EMAC_RX_CTL_1);
805 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
806 }
807 
808 static void
809 awg_init_locked(struct awg_softc *sc)
810 {
811 	struct mii_data *mii;
812 	if_t ifp;
813 
814 	mii = device_get_softc(sc->miibus);
815 	ifp = sc->ifp;
816 
817 	AWG_ASSERT_LOCKED(sc);
818 
819 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
820 		return;
821 
822 	awg_setup_rxfilter(sc);
823 	awg_setup_core(sc);
824 	awg_enable_mac(sc, true);
825 	awg_init_dma(sc);
826 
827 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
828 
829 	mii_mediachg(mii);
830 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
831 }
832 
833 static void
834 awg_init(void *softc)
835 {
836 	struct awg_softc *sc;
837 
838 	sc = softc;
839 
840 	AWG_LOCK(sc);
841 	awg_init_locked(sc);
842 	AWG_UNLOCK(sc);
843 }
844 
845 static void
846 awg_stop(struct awg_softc *sc)
847 {
848 	if_t ifp;
849 	uint32_t val;
850 	int i;
851 
852 	AWG_ASSERT_LOCKED(sc);
853 
854 	ifp = sc->ifp;
855 
856 	callout_stop(&sc->stat_ch);
857 
858 	awg_stop_dma(sc);
859 	awg_enable_mac(sc, false);
860 
861 	sc->link = 0;
862 
863 	/* Finish handling transmitted buffers */
864 	awg_txeof(sc);
865 
866 	/* Release any untransmitted buffers. */
867 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
868 		val = le32toh(sc->tx.desc_ring[i].status);
869 		if ((val & TX_DESC_CTL) != 0)
870 			break;
871 		awg_clean_txbuf(sc, i);
872 	}
873 	sc->tx.next = i;
874 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
875 		sc->tx.desc_ring[i].status = 0;
876 		awg_clean_txbuf(sc, i);
877 	}
878 	sc->tx.cur = sc->tx.next;
879 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
880 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
881 
882 	/* Setup RX buffers for reuse */
883 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
884 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885 
886 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
887 		val = le32toh(sc->rx.desc_ring[i].status);
888 		if ((val & RX_DESC_CTL) != 0)
889 			break;
890 		awg_reuse_rxdesc(sc, i);
891 	}
892 	sc->rx.cur = i;
893 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
894 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
895 
896 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
897 }
898 
899 static int
900 awg_rxintr(struct awg_softc *sc)
901 {
902 	if_t ifp;
903 	struct mbuf *m, *mh, *mt;
904 	int error, index, len, cnt, npkt;
905 	uint32_t status;
906 
907 	ifp = sc->ifp;
908 	mh = mt = NULL;
909 	cnt = 0;
910 	npkt = 0;
911 
912 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
913 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
914 
915 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
916 		status = le32toh(sc->rx.desc_ring[index].status);
917 		if ((status & RX_DESC_CTL) != 0)
918 			break;
919 
920 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
921 
922 		if (len == 0) {
923 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
924 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
925 			awg_reuse_rxdesc(sc, index);
926 			continue;
927 		}
928 
929 		m = sc->rx.buf_map[index].mbuf;
930 
931 		error = awg_newbuf_rx(sc, index);
932 		if (error != 0) {
933 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
934 			awg_reuse_rxdesc(sc, index);
935 			continue;
936 		}
937 
938 		m->m_pkthdr.rcvif = ifp;
939 		m->m_pkthdr.len = len;
940 		m->m_len = len;
941 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
942 
943 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
944 		    (status & RX_FRM_TYPE) != 0) {
945 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
946 			if ((status & RX_HEADER_ERR) == 0)
947 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
948 			if ((status & RX_PAYLOAD_ERR) == 0) {
949 				m->m_pkthdr.csum_flags |=
950 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
951 				m->m_pkthdr.csum_data = 0xffff;
952 			}
953 		}
954 
955 		m->m_nextpkt = NULL;
956 		if (mh == NULL)
957 			mh = m;
958 		else
959 			mt->m_nextpkt = m;
960 		mt = m;
961 		++cnt;
962 		++npkt;
963 
964 		if (cnt == awg_rx_batch) {
965 			AWG_UNLOCK(sc);
966 			if_input(ifp, mh);
967 			AWG_LOCK(sc);
968 			mh = mt = NULL;
969 			cnt = 0;
970 		}
971 	}
972 
973 	if (index != sc->rx.cur) {
974 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
975 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
976 	}
977 
978 	if (mh != NULL) {
979 		AWG_UNLOCK(sc);
980 		if_input(ifp, mh);
981 		AWG_LOCK(sc);
982 	}
983 
984 	sc->rx.cur = index;
985 
986 	return (npkt);
987 }
988 
989 static void
990 awg_txeof(struct awg_softc *sc)
991 {
992 	struct emac_desc *desc;
993 	uint32_t status, size;
994 	if_t ifp;
995 	int i, prog;
996 
997 	AWG_ASSERT_LOCKED(sc);
998 
999 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1000 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1001 
1002 	ifp = sc->ifp;
1003 
1004 	prog = 0;
1005 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1006 		desc = &sc->tx.desc_ring[i];
1007 		status = le32toh(desc->status);
1008 		if ((status & TX_DESC_CTL) != 0)
1009 			break;
1010 		size = le32toh(desc->size);
1011 		if (size & TX_LAST_DESC) {
1012 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1013 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1014 			else
1015 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1016 		}
1017 		prog++;
1018 		awg_clean_txbuf(sc, i);
1019 	}
1020 
1021 	if (prog > 0) {
1022 		sc->tx.next = i;
1023 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1024 	}
1025 }
1026 
1027 static void
1028 awg_intr(void *arg)
1029 {
1030 	struct awg_softc *sc;
1031 	uint32_t val;
1032 
1033 	sc = arg;
1034 
1035 	AWG_LOCK(sc);
1036 	val = RD4(sc, EMAC_INT_STA);
1037 	WR4(sc, EMAC_INT_STA, val);
1038 
1039 	if (val & RX_INT)
1040 		awg_rxintr(sc);
1041 
1042 	if (val & TX_INT)
1043 		awg_txeof(sc);
1044 
1045 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1046 		if (!if_sendq_empty(sc->ifp))
1047 			awg_start_locked(sc);
1048 	}
1049 
1050 	AWG_UNLOCK(sc);
1051 }
1052 
1053 #ifdef DEVICE_POLLING
1054 static int
1055 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1056 {
1057 	struct awg_softc *sc;
1058 	uint32_t val;
1059 	int rx_npkts;
1060 
1061 	sc = if_getsoftc(ifp);
1062 	rx_npkts = 0;
1063 
1064 	AWG_LOCK(sc);
1065 
1066 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1067 		AWG_UNLOCK(sc);
1068 		return (0);
1069 	}
1070 
1071 	rx_npkts = awg_rxintr(sc);
1072 	awg_txeof(sc);
1073 	if (!if_sendq_empty(ifp))
1074 		awg_start_locked(sc);
1075 
1076 	if (cmd == POLL_AND_CHECK_STATUS) {
1077 		val = RD4(sc, EMAC_INT_STA);
1078 		if (val != 0)
1079 			WR4(sc, EMAC_INT_STA, val);
1080 	}
1081 
1082 	AWG_UNLOCK(sc);
1083 
1084 	return (rx_npkts);
1085 }
1086 #endif
1087 
1088 static int
1089 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1090 {
1091 	struct awg_softc *sc;
1092 	struct mii_data *mii;
1093 	struct ifreq *ifr;
1094 	int flags, mask, error;
1095 
1096 	sc = if_getsoftc(ifp);
1097 	mii = device_get_softc(sc->miibus);
1098 	ifr = (struct ifreq *)data;
1099 	error = 0;
1100 
1101 	switch (cmd) {
1102 	case SIOCSIFFLAGS:
1103 		AWG_LOCK(sc);
1104 		if (if_getflags(ifp) & IFF_UP) {
1105 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1106 				flags = if_getflags(ifp) ^ sc->if_flags;
1107 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1108 					awg_setup_rxfilter(sc);
1109 			} else
1110 				awg_init_locked(sc);
1111 		} else {
1112 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1113 				awg_stop(sc);
1114 		}
1115 		sc->if_flags = if_getflags(ifp);
1116 		AWG_UNLOCK(sc);
1117 		break;
1118 	case SIOCADDMULTI:
1119 	case SIOCDELMULTI:
1120 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1121 			AWG_LOCK(sc);
1122 			awg_setup_rxfilter(sc);
1123 			AWG_UNLOCK(sc);
1124 		}
1125 		break;
1126 	case SIOCSIFMEDIA:
1127 	case SIOCGIFMEDIA:
1128 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1129 		break;
1130 	case SIOCSIFCAP:
1131 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1132 #ifdef DEVICE_POLLING
1133 		if (mask & IFCAP_POLLING) {
1134 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1135 				error = ether_poll_register(awg_poll, ifp);
1136 				if (error != 0)
1137 					break;
1138 				AWG_LOCK(sc);
1139 				awg_disable_dma_intr(sc);
1140 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1141 				AWG_UNLOCK(sc);
1142 			} else {
1143 				error = ether_poll_deregister(ifp);
1144 				AWG_LOCK(sc);
1145 				awg_enable_dma_intr(sc);
1146 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1147 				AWG_UNLOCK(sc);
1148 			}
1149 		}
1150 #endif
1151 		if (mask & IFCAP_VLAN_MTU)
1152 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1153 		if (mask & IFCAP_RXCSUM)
1154 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1155 		if (mask & IFCAP_TXCSUM)
1156 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1157 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1158 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1159 		else
1160 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1161 		break;
1162 	default:
1163 		error = ether_ioctl(ifp, cmd, data);
1164 		break;
1165 	}
1166 
1167 	return (error);
1168 }
1169 
1170 static uint32_t
1171 syscon_read_emac_clk_reg(device_t dev)
1172 {
1173 	struct awg_softc *sc;
1174 
1175 	sc = device_get_softc(dev);
1176 	if (sc->syscon != NULL)
1177 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1178 	else if (sc->res[_RES_SYSCON] != NULL)
1179 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1180 
1181 	return (0);
1182 }
1183 
1184 static void
1185 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1186 {
1187 	struct awg_softc *sc;
1188 
1189 	sc = device_get_softc(dev);
1190 	if (sc->syscon != NULL)
1191 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1192 	else if (sc->res[_RES_SYSCON] != NULL)
1193 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1194 }
1195 
1196 static phandle_t
1197 awg_get_phy_node(device_t dev)
1198 {
1199 	phandle_t node;
1200 	pcell_t phy_handle;
1201 
1202 	node = ofw_bus_get_node(dev);
1203 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1204 	    sizeof(phy_handle)) <= 0)
1205 		return (0);
1206 
1207 	return (OF_node_from_xref(phy_handle));
1208 }
1209 
1210 static bool
1211 awg_has_internal_phy(device_t dev)
1212 {
1213 	phandle_t node, phy_node;
1214 
1215 	node = ofw_bus_get_node(dev);
1216 	/* Legacy binding */
1217 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1218 		return (true);
1219 
1220 	phy_node = awg_get_phy_node(dev);
1221 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1222 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1223 }
1224 
1225 static int
1226 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1227 {
1228 	phandle_t node;
1229 	uint32_t delay;
1230 
1231 	if (tx_delay == NULL || rx_delay == NULL)
1232 		return (EINVAL);
1233 	*tx_delay = *rx_delay = 0;
1234 	node = ofw_bus_get_node(dev);
1235 
1236 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1237 		*tx_delay = delay;
1238 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1239 	    sizeof(delay)) >= 0) {
1240 		if ((delay % 100) != 0) {
1241 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1242 			return (EDOM);
1243 		}
1244 		*tx_delay = delay / 100;
1245 	}
1246 	if (*tx_delay > 7) {
1247 		device_printf(dev, "tx-delay out of range\n");
1248 		return (ERANGE);
1249 	}
1250 
1251 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1252 		*rx_delay = delay;
1253 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1254 	    sizeof(delay)) >= 0) {
1255 		if ((delay % 100) != 0) {
1256 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1257 			return (EDOM);
1258 		}
1259 		*rx_delay = delay / 100;
1260 	}
1261 	if (*rx_delay > 31) {
1262 		device_printf(dev, "rx-delay out of range\n");
1263 		return (ERANGE);
1264 	}
1265 
1266 	return (0);
1267 }
1268 
1269 static int
1270 awg_setup_phy(device_t dev)
1271 {
1272 	struct awg_softc *sc;
1273 	clk_t clk_tx, clk_tx_parent;
1274 	const char *tx_parent_name;
1275 	char *phy_type;
1276 	phandle_t node;
1277 	uint32_t reg, tx_delay, rx_delay;
1278 	int error;
1279 	bool use_syscon;
1280 
1281 	sc = device_get_softc(dev);
1282 	node = ofw_bus_get_node(dev);
1283 	use_syscon = false;
1284 
1285 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1286 		return (0);
1287 
1288 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1289 		use_syscon = true;
1290 
1291 	if (bootverbose)
1292 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1293 		    use_syscon ? "reg" : "clk");
1294 
1295 	if (use_syscon) {
1296 		/*
1297 		 * Abstract away writing to syscon for devices like the pine64.
1298 		 * For the pine64, we get dtb from U-Boot and it still uses the
1299 		 * legacy setup of specifying syscon register in emac node
1300 		 * rather than as its own node and using an xref in emac.
1301 		 * These abstractions can go away once U-Boot dts is up-to-date.
1302 		 */
1303 		reg = syscon_read_emac_clk_reg(dev);
1304 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1305 		if (strncmp(phy_type, "rgmii", 5) == 0)
1306 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1307 		else if (strcmp(phy_type, "rmii") == 0)
1308 			reg |= EMAC_CLK_RMII_EN;
1309 		else
1310 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1311 
1312 		/*
1313 		 * Fail attach if we fail to parse either of the delay
1314 		 * parameters. If we don't have the proper delay to write to
1315 		 * syscon, then awg likely won't function properly anyways.
1316 		 * Lack of delay is not an error!
1317 		 */
1318 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1319 		if (error != 0)
1320 			goto fail;
1321 
1322 		/* Default to 0 and we'll increase it if we need to. */
1323 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1324 		if (tx_delay > 0)
1325 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1326 		if (rx_delay > 0)
1327 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1328 
1329 		if (sc->type == EMAC_H3) {
1330 			if (awg_has_internal_phy(dev)) {
1331 				reg |= EMAC_CLK_EPHY_SELECT;
1332 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1333 				if (OF_hasprop(node,
1334 				    "allwinner,leds-active-low"))
1335 					reg |= EMAC_CLK_EPHY_LED_POL;
1336 				else
1337 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1338 
1339 				/* Set internal PHY addr to 1 */
1340 				reg &= ~EMAC_CLK_EPHY_ADDR;
1341 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1342 			} else {
1343 				reg &= ~EMAC_CLK_EPHY_SELECT;
1344 			}
1345 		}
1346 
1347 		if (bootverbose)
1348 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1349 		syscon_write_emac_clk_reg(dev, reg);
1350 	} else {
1351 		if (strncmp(phy_type, "rgmii", 5) == 0)
1352 			tx_parent_name = "emac_int_tx";
1353 		else
1354 			tx_parent_name = "mii_phy_tx";
1355 
1356 		/* Get the TX clock */
1357 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1358 		if (error != 0) {
1359 			device_printf(dev, "cannot get tx clock\n");
1360 			goto fail;
1361 		}
1362 
1363 		/* Find the desired parent clock based on phy-mode property */
1364 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1365 		if (error != 0) {
1366 			device_printf(dev, "cannot get clock '%s'\n",
1367 			    tx_parent_name);
1368 			goto fail;
1369 		}
1370 
1371 		/* Set TX clock parent */
1372 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1373 		if (error != 0) {
1374 			device_printf(dev, "cannot set tx clock parent\n");
1375 			goto fail;
1376 		}
1377 
1378 		/* Enable TX clock */
1379 		error = clk_enable(clk_tx);
1380 		if (error != 0) {
1381 			device_printf(dev, "cannot enable tx clock\n");
1382 			goto fail;
1383 		}
1384 	}
1385 
1386 	error = 0;
1387 
1388 fail:
1389 	OF_prop_free(phy_type);
1390 	return (error);
1391 }
1392 
1393 static int
1394 awg_setup_extres(device_t dev)
1395 {
1396 	struct awg_softc *sc;
1397 	phandle_t node, phy_node;
1398 	hwreset_t rst_ahb, rst_ephy;
1399 	clk_t clk_ahb, clk_ephy;
1400 	regulator_t reg;
1401 	uint64_t freq;
1402 	int error, div;
1403 
1404 	sc = device_get_softc(dev);
1405 	rst_ahb = rst_ephy = NULL;
1406 	clk_ahb = clk_ephy = NULL;
1407 	reg = NULL;
1408 	node = ofw_bus_get_node(dev);
1409 	phy_node = awg_get_phy_node(dev);
1410 
1411 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1412 		error = ENXIO;
1413 		device_printf(dev, "cannot get phy handle\n");
1414 		goto fail;
1415 	}
1416 
1417 	/* Get AHB clock and reset resources */
1418 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1419 	if (error != 0)
1420 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1421 	if (error != 0) {
1422 		device_printf(dev, "cannot get ahb reset\n");
1423 		goto fail;
1424 	}
1425 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1426 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1427 		    &rst_ephy) != 0)
1428 			rst_ephy = NULL;
1429 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1430 	if (error != 0)
1431 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1432 	if (error != 0) {
1433 		device_printf(dev, "cannot get ahb clock\n");
1434 		goto fail;
1435 	}
1436 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1437 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1438 		    &clk_ephy) != 0)
1439 			clk_ephy = NULL;
1440 
1441 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1442 	    "syscon", &sc->syscon) != 0) {
1443 		device_printf(dev, "cannot get syscon driver handle\n");
1444 		goto fail;
1445 	}
1446 
1447 	/* Configure PHY for MII or RGMII mode */
1448 	if (awg_setup_phy(dev) != 0)
1449 		goto fail;
1450 
1451 	/* Enable clocks */
1452 	error = clk_enable(clk_ahb);
1453 	if (error != 0) {
1454 		device_printf(dev, "cannot enable ahb clock\n");
1455 		goto fail;
1456 	}
1457 	if (clk_ephy != NULL) {
1458 		error = clk_enable(clk_ephy);
1459 		if (error != 0) {
1460 			device_printf(dev, "cannot enable ephy clock\n");
1461 			goto fail;
1462 		}
1463 	}
1464 
1465 	/* De-assert reset */
1466 	error = hwreset_deassert(rst_ahb);
1467 	if (error != 0) {
1468 		device_printf(dev, "cannot de-assert ahb reset\n");
1469 		goto fail;
1470 	}
1471 	if (rst_ephy != NULL) {
1472 		/*
1473 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1474 		 * here to make sure that we're in a known good state going
1475 		 * into the PHY reset.
1476 		 */
1477 		hwreset_assert(rst_ephy);
1478 		error = hwreset_deassert(rst_ephy);
1479 		if (error != 0) {
1480 			device_printf(dev, "cannot de-assert ephy reset\n");
1481 			goto fail;
1482 		}
1483 	}
1484 
1485 	/* Enable PHY regulator if applicable */
1486 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1487 		error = regulator_enable(reg);
1488 		if (error != 0) {
1489 			device_printf(dev, "cannot enable PHY regulator\n");
1490 			goto fail;
1491 		}
1492 	}
1493 
1494 	/* Determine MDC clock divide ratio based on AHB clock */
1495 	error = clk_get_freq(clk_ahb, &freq);
1496 	if (error != 0) {
1497 		device_printf(dev, "cannot get AHB clock frequency\n");
1498 		goto fail;
1499 	}
1500 	div = freq / MDIO_FREQ;
1501 	if (div <= 16)
1502 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1503 	else if (div <= 32)
1504 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1505 	else if (div <= 64)
1506 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1507 	else if (div <= 128)
1508 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1509 	else {
1510 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1511 		error = ENXIO;
1512 		goto fail;
1513 	}
1514 
1515 	if (bootverbose)
1516 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1517 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1518 
1519 	return (0);
1520 
1521 fail:
1522 	if (reg != NULL)
1523 		regulator_release(reg);
1524 	if (clk_ephy != NULL)
1525 		clk_release(clk_ephy);
1526 	if (clk_ahb != NULL)
1527 		clk_release(clk_ahb);
1528 	if (rst_ephy != NULL)
1529 		hwreset_release(rst_ephy);
1530 	if (rst_ahb != NULL)
1531 		hwreset_release(rst_ahb);
1532 	return (error);
1533 }
1534 
1535 static void
1536 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1537 {
1538 	struct awg_softc *sc;
1539 	uint32_t maclo, machi, rnd;
1540 	u_char rootkey[16];
1541 	uint32_t rootkey_size;
1542 
1543 	sc = device_get_softc(dev);
1544 
1545 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1546 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1547 
1548 	rootkey_size = sizeof(rootkey);
1549 	if (maclo == 0xffffffff && machi == 0xffff) {
1550 		/* MAC address in hardware is invalid, create one */
1551 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
1552 		    &rootkey_size) == 0 &&
1553 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1554 		     rootkey[15]) != 0) {
1555 			/* MAC address is derived from the root key in SID */
1556 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1557 				(rootkey[3] << 8) | 0x02;
1558 			machi = (rootkey[15] << 8) | rootkey[14];
1559 		} else {
1560 			/* Create one */
1561 			rnd = arc4random();
1562 			maclo = 0x00f2 | (rnd & 0xffff0000);
1563 			machi = rnd & 0xffff;
1564 		}
1565 	}
1566 
1567 	eaddr[0] = maclo & 0xff;
1568 	eaddr[1] = (maclo >> 8) & 0xff;
1569 	eaddr[2] = (maclo >> 16) & 0xff;
1570 	eaddr[3] = (maclo >> 24) & 0xff;
1571 	eaddr[4] = machi & 0xff;
1572 	eaddr[5] = (machi >> 8) & 0xff;
1573 }
1574 
1575 #ifdef AWG_DEBUG
1576 static void
1577 awg_dump_regs(device_t dev)
1578 {
1579 	static const struct {
1580 		const char *name;
1581 		u_int reg;
1582 	} regs[] = {
1583 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1584 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1585 		{ "INT_STA", EMAC_INT_STA },
1586 		{ "INT_EN", EMAC_INT_EN },
1587 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1588 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1589 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1590 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1591 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1592 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1593 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1594 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1595 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1596 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1597 		{ "MII_CMD", EMAC_MII_CMD },
1598 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1599 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1600 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1601 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1602 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1603 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1604 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1605 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1606 		{ "RGMII_STA", EMAC_RGMII_STA },
1607 	};
1608 	struct awg_softc *sc;
1609 	unsigned int n;
1610 
1611 	sc = device_get_softc(dev);
1612 
1613 	for (n = 0; n < nitems(regs); n++)
1614 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1615 		    RD4(sc, regs[n].reg));
1616 }
1617 #endif
1618 
1619 #define	GPIO_ACTIVE_LOW		1
1620 
1621 static int
1622 awg_phy_reset(device_t dev)
1623 {
1624 	pcell_t gpio_prop[4], delay_prop[3];
1625 	phandle_t node, gpio_node;
1626 	device_t gpio;
1627 	uint32_t pin, flags;
1628 	uint32_t pin_value;
1629 
1630 	node = ofw_bus_get_node(dev);
1631 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1632 	    sizeof(gpio_prop)) <= 0)
1633 		return (0);
1634 
1635 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1636 	    sizeof(delay_prop)) <= 0)
1637 		return (ENXIO);
1638 
1639 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1640 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1641 		return (ENXIO);
1642 
1643 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1644 	    gpio_prop + 1, &pin, &flags) != 0)
1645 		return (ENXIO);
1646 
1647 	pin_value = GPIO_PIN_LOW;
1648 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1649 		pin_value = GPIO_PIN_HIGH;
1650 
1651 	if (flags & GPIO_ACTIVE_LOW)
1652 		pin_value = !pin_value;
1653 
1654 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1655 	GPIO_PIN_SET(gpio, pin, pin_value);
1656 	DELAY(delay_prop[0]);
1657 	GPIO_PIN_SET(gpio, pin, !pin_value);
1658 	DELAY(delay_prop[1]);
1659 	GPIO_PIN_SET(gpio, pin, pin_value);
1660 	DELAY(delay_prop[2]);
1661 
1662 	return (0);
1663 }
1664 
1665 static int
1666 awg_reset(device_t dev)
1667 {
1668 	struct awg_softc *sc;
1669 	int retry;
1670 
1671 	sc = device_get_softc(dev);
1672 
1673 	/* Reset PHY if necessary */
1674 	if (awg_phy_reset(dev) != 0) {
1675 		device_printf(dev, "failed to reset PHY\n");
1676 		return (ENXIO);
1677 	}
1678 
1679 	/* Soft reset all registers and logic */
1680 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1681 
1682 	/* Wait for soft reset bit to self-clear */
1683 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1684 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1685 			break;
1686 		DELAY(10);
1687 	}
1688 	if (retry == 0) {
1689 		device_printf(dev, "soft reset timed out\n");
1690 #ifdef AWG_DEBUG
1691 		awg_dump_regs(dev);
1692 #endif
1693 		return (ETIMEDOUT);
1694 	}
1695 
1696 	return (0);
1697 }
1698 
1699 static void
1700 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1701 {
1702 	if (error != 0)
1703 		return;
1704 	*(bus_addr_t *)arg = segs[0].ds_addr;
1705 }
1706 
1707 static int
1708 awg_setup_dma(device_t dev)
1709 {
1710 	struct awg_softc *sc;
1711 	int error, i;
1712 
1713 	sc = device_get_softc(dev);
1714 
1715 	/* Setup TX ring */
1716 	error = bus_dma_tag_create(
1717 	    bus_get_dma_tag(dev),	/* Parent tag */
1718 	    DESC_ALIGN, 0,		/* alignment, boundary */
1719 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1720 	    BUS_SPACE_MAXADDR,		/* highaddr */
1721 	    NULL, NULL,			/* filter, filterarg */
1722 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1723 	    TX_DESC_SIZE,		/* maxsegsize */
1724 	    0,				/* flags */
1725 	    NULL, NULL,			/* lockfunc, lockarg */
1726 	    &sc->tx.desc_tag);
1727 	if (error != 0) {
1728 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1729 		return (error);
1730 	}
1731 
1732 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1733 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1734 	if (error != 0) {
1735 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1736 		return (error);
1737 	}
1738 
1739 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1740 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1741 	    &sc->tx.desc_ring_paddr, 0);
1742 	if (error != 0) {
1743 		device_printf(dev, "cannot load TX descriptor ring\n");
1744 		return (error);
1745 	}
1746 
1747 	for (i = 0; i < TX_DESC_COUNT; i++)
1748 		sc->tx.desc_ring[i].next =
1749 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1750 
1751 	error = bus_dma_tag_create(
1752 	    bus_get_dma_tag(dev),	/* Parent tag */
1753 	    1, 0,			/* alignment, boundary */
1754 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1755 	    BUS_SPACE_MAXADDR,		/* highaddr */
1756 	    NULL, NULL,			/* filter, filterarg */
1757 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1758 	    MCLBYTES,			/* maxsegsize */
1759 	    0,				/* flags */
1760 	    NULL, NULL,			/* lockfunc, lockarg */
1761 	    &sc->tx.buf_tag);
1762 	if (error != 0) {
1763 		device_printf(dev, "cannot create TX buffer tag\n");
1764 		return (error);
1765 	}
1766 
1767 	sc->tx.queued = 0;
1768 	for (i = 0; i < TX_DESC_COUNT; i++) {
1769 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1770 		    &sc->tx.buf_map[i].map);
1771 		if (error != 0) {
1772 			device_printf(dev, "cannot create TX buffer map\n");
1773 			return (error);
1774 		}
1775 	}
1776 
1777 	/* Setup RX ring */
1778 	error = bus_dma_tag_create(
1779 	    bus_get_dma_tag(dev),	/* Parent tag */
1780 	    DESC_ALIGN, 0,		/* alignment, boundary */
1781 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1782 	    BUS_SPACE_MAXADDR,		/* highaddr */
1783 	    NULL, NULL,			/* filter, filterarg */
1784 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1785 	    RX_DESC_SIZE,		/* maxsegsize */
1786 	    0,				/* flags */
1787 	    NULL, NULL,			/* lockfunc, lockarg */
1788 	    &sc->rx.desc_tag);
1789 	if (error != 0) {
1790 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1791 		return (error);
1792 	}
1793 
1794 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1795 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1796 	if (error != 0) {
1797 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1798 		return (error);
1799 	}
1800 
1801 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1802 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1803 	    &sc->rx.desc_ring_paddr, 0);
1804 	if (error != 0) {
1805 		device_printf(dev, "cannot load RX descriptor ring\n");
1806 		return (error);
1807 	}
1808 
1809 	error = bus_dma_tag_create(
1810 	    bus_get_dma_tag(dev),	/* Parent tag */
1811 	    1, 0,			/* alignment, boundary */
1812 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1813 	    BUS_SPACE_MAXADDR,		/* highaddr */
1814 	    NULL, NULL,			/* filter, filterarg */
1815 	    MCLBYTES, 1,		/* maxsize, nsegs */
1816 	    MCLBYTES,			/* maxsegsize */
1817 	    0,				/* flags */
1818 	    NULL, NULL,			/* lockfunc, lockarg */
1819 	    &sc->rx.buf_tag);
1820 	if (error != 0) {
1821 		device_printf(dev, "cannot create RX buffer tag\n");
1822 		return (error);
1823 	}
1824 
1825 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
1826 	if (error != 0) {
1827 		device_printf(dev,
1828 		    "cannot create RX buffer spare map\n");
1829 		return (error);
1830 	}
1831 
1832 	for (i = 0; i < RX_DESC_COUNT; i++) {
1833 		sc->rx.desc_ring[i].next =
1834 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
1835 
1836 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1837 		    &sc->rx.buf_map[i].map);
1838 		if (error != 0) {
1839 			device_printf(dev, "cannot create RX buffer map\n");
1840 			return (error);
1841 		}
1842 		sc->rx.buf_map[i].mbuf = NULL;
1843 		error = awg_newbuf_rx(sc, i);
1844 		if (error != 0) {
1845 			device_printf(dev, "cannot create RX buffer\n");
1846 			return (error);
1847 		}
1848 	}
1849 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1850 	    BUS_DMASYNC_PREWRITE);
1851 
1852 	/* Write transmit and receive descriptor base address registers */
1853 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1854 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1855 
1856 	return (0);
1857 }
1858 
1859 static int
1860 awg_probe(device_t dev)
1861 {
1862 	if (!ofw_bus_status_okay(dev))
1863 		return (ENXIO);
1864 
1865 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1866 		return (ENXIO);
1867 
1868 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1869 	return (BUS_PROBE_DEFAULT);
1870 }
1871 
1872 static int
1873 awg_attach(device_t dev)
1874 {
1875 	uint8_t eaddr[ETHER_ADDR_LEN];
1876 	struct awg_softc *sc;
1877 	int error;
1878 
1879 	sc = device_get_softc(dev);
1880 	sc->dev = dev;
1881 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1882 
1883 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1884 		device_printf(dev, "cannot allocate resources for device\n");
1885 		return (ENXIO);
1886 	}
1887 
1888 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1889 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1890 
1891 	/* Setup clocks and regulators */
1892 	error = awg_setup_extres(dev);
1893 	if (error != 0)
1894 		return (error);
1895 
1896 	/* Read MAC address before resetting the chip */
1897 	awg_get_eaddr(dev, eaddr);
1898 
1899 	/* Soft reset EMAC core */
1900 	error = awg_reset(dev);
1901 	if (error != 0)
1902 		return (error);
1903 
1904 	/* Setup DMA descriptors */
1905 	error = awg_setup_dma(dev);
1906 	if (error != 0)
1907 		return (error);
1908 
1909 	/* Install interrupt handler */
1910 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1911 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1912 	if (error != 0) {
1913 		device_printf(dev, "cannot setup interrupt handler\n");
1914 		return (error);
1915 	}
1916 
1917 	/* Setup ethernet interface */
1918 	sc->ifp = if_alloc(IFT_ETHER);
1919 	if_setsoftc(sc->ifp, sc);
1920 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1921 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1922 	if_setstartfn(sc->ifp, awg_start);
1923 	if_setioctlfn(sc->ifp, awg_ioctl);
1924 	if_setinitfn(sc->ifp, awg_init);
1925 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1926 	if_setsendqready(sc->ifp);
1927 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1928 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1929 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1930 #ifdef DEVICE_POLLING
1931 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1932 #endif
1933 
1934 	/* Attach MII driver */
1935 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1936 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1937 	    MIIF_DOPAUSE);
1938 	if (error != 0) {
1939 		device_printf(dev, "cannot attach PHY\n");
1940 		return (error);
1941 	}
1942 
1943 	/* Attach ethernet interface */
1944 	ether_ifattach(sc->ifp, eaddr);
1945 
1946 	return (0);
1947 }
1948 
1949 static device_method_t awg_methods[] = {
1950 	/* Device interface */
1951 	DEVMETHOD(device_probe,		awg_probe),
1952 	DEVMETHOD(device_attach,	awg_attach),
1953 
1954 	/* MII interface */
1955 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1956 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1957 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1958 
1959 	DEVMETHOD_END
1960 };
1961 
1962 static driver_t awg_driver = {
1963 	"awg",
1964 	awg_methods,
1965 	sizeof(struct awg_softc),
1966 };
1967 
1968 static devclass_t awg_devclass;
1969 
1970 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1971 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1972 MODULE_DEPEND(awg, ether, 1, 1, 1);
1973 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1974 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
1975 SIMPLEBUS_PNP_INFO(compat_data);
1976