xref: /freebsd/sys/arm/arm/generic_timer.c (revision 4f52dfbb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2011 The FreeBSD Foundation
5  * Copyright (c) 2013 Ruslan Bukin <br@bsdpad.com>
6  * All rights reserved.
7  *
8  * Based on mpcore_timer.c developed by Ben Gray <ben.r.gray@gmail.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the company nor the name of the author may be used to
19  *    endorse or promote products derived from this software without specific
20  *    prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /**
36  *      Cortex-A7, Cortex-A15, ARMv8 and later Generic Timer
37  */
38 
39 #include "opt_acpi.h"
40 #include "opt_platform.h"
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bus.h>
48 #include <sys/kernel.h>
49 #include <sys/module.h>
50 #include <sys/malloc.h>
51 #include <sys/rman.h>
52 #include <sys/timeet.h>
53 #include <sys/timetc.h>
54 #include <sys/smp.h>
55 #include <sys/vdso.h>
56 #include <sys/watchdog.h>
57 #include <machine/bus.h>
58 #include <machine/cpu.h>
59 #include <machine/intr.h>
60 #include <machine/md_var.h>
61 
62 #if defined(__arm__)
63 #include <machine/machdep.h> /* For arm_set_delay */
64 #endif
65 
66 #ifdef FDT
67 #include <dev/ofw/openfirm.h>
68 #include <dev/ofw/ofw_bus.h>
69 #include <dev/ofw/ofw_bus_subr.h>
70 #endif
71 
72 #ifdef DEV_ACPI
73 #include <contrib/dev/acpica/include/acpi.h>
74 #include <dev/acpica/acpivar.h>
75 #include "acpi_bus_if.h"
76 #endif
77 
78 #define	GT_CTRL_ENABLE		(1 << 0)
79 #define	GT_CTRL_INT_MASK	(1 << 1)
80 #define	GT_CTRL_INT_STAT	(1 << 2)
81 #define	GT_REG_CTRL		0
82 #define	GT_REG_TVAL		1
83 
84 #define	GT_CNTKCTL_PL0PTEN	(1 << 9) /* PL0 Physical timer reg access */
85 #define	GT_CNTKCTL_PL0VTEN	(1 << 8) /* PL0 Virtual timer reg access */
86 #define	GT_CNTKCTL_EVNTI	(0xf << 4) /* Virtual counter event bits */
87 #define	GT_CNTKCTL_EVNTDIR	(1 << 3) /* Virtual counter event transition */
88 #define	GT_CNTKCTL_EVNTEN	(1 << 2) /* Enables virtual counter events */
89 #define	GT_CNTKCTL_PL0VCTEN	(1 << 1) /* PL0 CNTVCT and CNTFRQ access */
90 #define	GT_CNTKCTL_PL0PCTEN	(1 << 0) /* PL0 CNTPCT and CNTFRQ access */
91 
92 struct arm_tmr_softc {
93 	struct resource		*res[4];
94 	void			*ihl[4];
95 	uint32_t		clkfreq;
96 	struct eventtimer	et;
97 	bool			physical;
98 };
99 
100 static struct arm_tmr_softc *arm_tmr_sc = NULL;
101 
102 static struct resource_spec timer_spec[] = {
103 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },	/* Secure */
104 	{ SYS_RES_IRQ,		1,	RF_ACTIVE },	/* Non-secure */
105 	{ SYS_RES_IRQ,		2,	RF_ACTIVE | RF_OPTIONAL }, /* Virt */
106 	{ SYS_RES_IRQ,		3,	RF_ACTIVE | RF_OPTIONAL	}, /* Hyp */
107 	{ -1, 0 }
108 };
109 
110 static uint32_t arm_tmr_fill_vdso_timehands(struct vdso_timehands *vdso_th,
111     struct timecounter *tc);
112 static void arm_tmr_do_delay(int usec, void *);
113 
114 static timecounter_get_t arm_tmr_get_timecount;
115 
116 static struct timecounter arm_tmr_timecount = {
117 	.tc_name           = "ARM MPCore Timecounter",
118 	.tc_get_timecount  = arm_tmr_get_timecount,
119 	.tc_poll_pps       = NULL,
120 	.tc_counter_mask   = ~0u,
121 	.tc_frequency      = 0,
122 	.tc_quality        = 1000,
123 	.tc_fill_vdso_timehands = arm_tmr_fill_vdso_timehands,
124 };
125 
126 #ifdef __arm__
127 #define	get_el0(x)	cp15_## x ##_get()
128 #define	get_el1(x)	cp15_## x ##_get()
129 #define	set_el0(x, val)	cp15_## x ##_set(val)
130 #define	set_el1(x, val)	cp15_## x ##_set(val)
131 #else /* __aarch64__ */
132 #define	get_el0(x)	READ_SPECIALREG(x ##_el0)
133 #define	get_el1(x)	READ_SPECIALREG(x ##_el1)
134 #define	set_el0(x, val)	WRITE_SPECIALREG(x ##_el0, val)
135 #define	set_el1(x, val)	WRITE_SPECIALREG(x ##_el1, val)
136 #endif
137 
138 static int
139 get_freq(void)
140 {
141 	return (get_el0(cntfrq));
142 }
143 
144 static uint64_t
145 get_cntxct(bool physical)
146 {
147 	uint64_t val;
148 
149 	isb();
150 	if (physical)
151 		val = get_el0(cntpct);
152 	else
153 		val = get_el0(cntvct);
154 
155 	return (val);
156 }
157 
158 static int
159 set_ctrl(uint32_t val, bool physical)
160 {
161 
162 	if (physical)
163 		set_el0(cntp_ctl, val);
164 	else
165 		set_el0(cntv_ctl, val);
166 	isb();
167 
168 	return (0);
169 }
170 
171 static int
172 set_tval(uint32_t val, bool physical)
173 {
174 
175 	if (physical)
176 		set_el0(cntp_tval, val);
177 	else
178 		set_el0(cntv_tval, val);
179 	isb();
180 
181 	return (0);
182 }
183 
184 static int
185 get_ctrl(bool physical)
186 {
187 	uint32_t val;
188 
189 	if (physical)
190 		val = get_el0(cntp_ctl);
191 	else
192 		val = get_el0(cntv_ctl);
193 
194 	return (val);
195 }
196 
197 static void
198 setup_user_access(void *arg __unused)
199 {
200 	uint32_t cntkctl;
201 
202 	cntkctl = get_el1(cntkctl);
203 	cntkctl &= ~(GT_CNTKCTL_PL0PTEN | GT_CNTKCTL_PL0VTEN |
204 	    GT_CNTKCTL_EVNTEN);
205 	if (arm_tmr_sc->physical) {
206 		cntkctl |= GT_CNTKCTL_PL0PCTEN;
207 		cntkctl &= ~GT_CNTKCTL_PL0VCTEN;
208 	} else {
209 		cntkctl |= GT_CNTKCTL_PL0VCTEN;
210 		cntkctl &= ~GT_CNTKCTL_PL0PCTEN;
211 	}
212 	set_el1(cntkctl, cntkctl);
213 	isb();
214 }
215 
216 static void
217 tmr_setup_user_access(void *arg __unused)
218 {
219 
220 	if (arm_tmr_sc != NULL)
221 		smp_rendezvous(NULL, setup_user_access, NULL, NULL);
222 }
223 SYSINIT(tmr_ua, SI_SUB_SMP, SI_ORDER_SECOND, tmr_setup_user_access, NULL);
224 
225 static unsigned
226 arm_tmr_get_timecount(struct timecounter *tc)
227 {
228 
229 	return (get_cntxct(arm_tmr_sc->physical));
230 }
231 
232 static int
233 arm_tmr_start(struct eventtimer *et, sbintime_t first,
234     sbintime_t period __unused)
235 {
236 	struct arm_tmr_softc *sc;
237 	int counts, ctrl;
238 
239 	sc = (struct arm_tmr_softc *)et->et_priv;
240 
241 	if (first != 0) {
242 		counts = ((uint32_t)et->et_frequency * first) >> 32;
243 		ctrl = get_ctrl(sc->physical);
244 		ctrl &= ~GT_CTRL_INT_MASK;
245 		ctrl |= GT_CTRL_ENABLE;
246 		set_tval(counts, sc->physical);
247 		set_ctrl(ctrl, sc->physical);
248 		return (0);
249 	}
250 
251 	return (EINVAL);
252 
253 }
254 
255 static void
256 arm_tmr_disable(bool physical)
257 {
258 	int ctrl;
259 
260 	ctrl = get_ctrl(physical);
261 	ctrl &= ~GT_CTRL_ENABLE;
262 	set_ctrl(ctrl, physical);
263 }
264 
265 static int
266 arm_tmr_stop(struct eventtimer *et)
267 {
268 	struct arm_tmr_softc *sc;
269 
270 	sc = (struct arm_tmr_softc *)et->et_priv;
271 	arm_tmr_disable(sc->physical);
272 
273 	return (0);
274 }
275 
276 static int
277 arm_tmr_intr(void *arg)
278 {
279 	struct arm_tmr_softc *sc;
280 	int ctrl;
281 
282 	sc = (struct arm_tmr_softc *)arg;
283 	ctrl = get_ctrl(sc->physical);
284 	if (ctrl & GT_CTRL_INT_STAT) {
285 		ctrl |= GT_CTRL_INT_MASK;
286 		set_ctrl(ctrl, sc->physical);
287 	}
288 
289 	if (sc->et.et_active)
290 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
291 
292 	return (FILTER_HANDLED);
293 }
294 
295 #ifdef FDT
296 static int
297 arm_tmr_fdt_probe(device_t dev)
298 {
299 
300 	if (!ofw_bus_status_okay(dev))
301 		return (ENXIO);
302 
303 	if (ofw_bus_is_compatible(dev, "arm,armv7-timer")) {
304 		device_set_desc(dev, "ARMv7 Generic Timer");
305 		return (BUS_PROBE_DEFAULT);
306 	} else if (ofw_bus_is_compatible(dev, "arm,armv8-timer")) {
307 		device_set_desc(dev, "ARMv8 Generic Timer");
308 		return (BUS_PROBE_DEFAULT);
309 	}
310 
311 	return (ENXIO);
312 }
313 #endif
314 
315 #ifdef DEV_ACPI
316 static void
317 arm_tmr_acpi_add_irq(device_t parent, device_t dev, int rid, u_int irq)
318 {
319 
320 	irq = ACPI_BUS_MAP_INTR(parent, dev, irq,
321 		INTR_TRIGGER_LEVEL, INTR_POLARITY_HIGH);
322 	BUS_SET_RESOURCE(parent, dev, SYS_RES_IRQ, rid, irq, 1);
323 }
324 
325 static void
326 arm_tmr_acpi_identify(driver_t *driver, device_t parent)
327 {
328 	ACPI_TABLE_GTDT *gtdt;
329 	vm_paddr_t physaddr;
330 	device_t dev;
331 
332 	physaddr = acpi_find_table(ACPI_SIG_GTDT);
333 	if (physaddr == 0)
334 		return;
335 
336 	gtdt = acpi_map_table(physaddr, ACPI_SIG_GTDT);
337 	if (gtdt == NULL) {
338 		device_printf(parent, "gic: Unable to map the GTDT\n");
339 		return;
340 	}
341 
342 	dev = BUS_ADD_CHILD(parent, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE,
343 	    "generic_timer", -1);
344 	if (dev == NULL) {
345 		device_printf(parent, "add gic child failed\n");
346 		goto out;
347 	}
348 
349 	arm_tmr_acpi_add_irq(parent, dev, 0, gtdt->SecureEl1Interrupt);
350 	arm_tmr_acpi_add_irq(parent, dev, 1, gtdt->NonSecureEl1Interrupt);
351 	arm_tmr_acpi_add_irq(parent, dev, 2, gtdt->VirtualTimerInterrupt);
352 
353 out:
354 	acpi_unmap_table(gtdt);
355 }
356 
357 static int
358 arm_tmr_acpi_probe(device_t dev)
359 {
360 
361 	device_set_desc(dev, "ARM Generic Timer");
362 	return (BUS_PROBE_NOWILDCARD);
363 }
364 #endif
365 
366 
367 static int
368 arm_tmr_attach(device_t dev)
369 {
370 	struct arm_tmr_softc *sc;
371 #ifdef FDT
372 	phandle_t node;
373 	pcell_t clock;
374 #endif
375 	int error;
376 	int i;
377 
378 	sc = device_get_softc(dev);
379 	if (arm_tmr_sc)
380 		return (ENXIO);
381 
382 #ifdef FDT
383 	/* Get the base clock frequency */
384 	node = ofw_bus_get_node(dev);
385 	if (node > 0) {
386 		error = OF_getencprop(node, "clock-frequency", &clock,
387 		    sizeof(clock));
388 		if (error > 0)
389 			sc->clkfreq = clock;
390 	}
391 #endif
392 
393 	if (sc->clkfreq == 0) {
394 		/* Try to get clock frequency from timer */
395 		sc->clkfreq = get_freq();
396 	}
397 
398 	if (sc->clkfreq == 0) {
399 		device_printf(dev, "No clock frequency specified\n");
400 		return (ENXIO);
401 	}
402 
403 	if (bus_alloc_resources(dev, timer_spec, sc->res)) {
404 		device_printf(dev, "could not allocate resources\n");
405 		return (ENXIO);
406 	}
407 
408 #ifdef __arm__
409 	sc->physical = true;
410 #else /* __aarch64__ */
411 	/* If we do not have a virtual timer use the physical. */
412 	sc->physical = (sc->res[2] == NULL) ? true : false;
413 #endif
414 
415 	arm_tmr_sc = sc;
416 
417 	/* Setup secure, non-secure and virtual IRQs handler */
418 	for (i = 0; i < 3; i++) {
419 		/* If we do not have the interrupt, skip it. */
420 		if (sc->res[i] == NULL)
421 			continue;
422 		error = bus_setup_intr(dev, sc->res[i], INTR_TYPE_CLK,
423 		    arm_tmr_intr, NULL, sc, &sc->ihl[i]);
424 		if (error) {
425 			device_printf(dev, "Unable to alloc int resource.\n");
426 			return (ENXIO);
427 		}
428 	}
429 
430 	/* Disable the virtual timer until we are ready */
431 	if (sc->res[2] != NULL)
432 		arm_tmr_disable(false);
433 	/* And the physical */
434 	if (sc->physical)
435 		arm_tmr_disable(true);
436 
437 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
438 	tc_init(&arm_tmr_timecount);
439 
440 	sc->et.et_name = "ARM MPCore Eventtimer";
441 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
442 	sc->et.et_quality = 1000;
443 
444 	sc->et.et_frequency = sc->clkfreq;
445 	sc->et.et_min_period = (0x00000010LLU << 32) / sc->et.et_frequency;
446 	sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
447 	sc->et.et_start = arm_tmr_start;
448 	sc->et.et_stop = arm_tmr_stop;
449 	sc->et.et_priv = sc;
450 	et_register(&sc->et);
451 
452 #if defined(__arm__)
453 	arm_set_delay(arm_tmr_do_delay, sc);
454 #endif
455 
456 	return (0);
457 }
458 
459 #ifdef FDT
460 static device_method_t arm_tmr_fdt_methods[] = {
461 	DEVMETHOD(device_probe,		arm_tmr_fdt_probe),
462 	DEVMETHOD(device_attach,	arm_tmr_attach),
463 	{ 0, 0 }
464 };
465 
466 static driver_t arm_tmr_fdt_driver = {
467 	"generic_timer",
468 	arm_tmr_fdt_methods,
469 	sizeof(struct arm_tmr_softc),
470 };
471 
472 static devclass_t arm_tmr_fdt_devclass;
473 
474 EARLY_DRIVER_MODULE(timer, simplebus, arm_tmr_fdt_driver, arm_tmr_fdt_devclass,
475     0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
476 EARLY_DRIVER_MODULE(timer, ofwbus, arm_tmr_fdt_driver, arm_tmr_fdt_devclass,
477     0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
478 #endif
479 
480 #ifdef DEV_ACPI
481 static device_method_t arm_tmr_acpi_methods[] = {
482 	DEVMETHOD(device_identify,	arm_tmr_acpi_identify),
483 	DEVMETHOD(device_probe,		arm_tmr_acpi_probe),
484 	DEVMETHOD(device_attach,	arm_tmr_attach),
485 	{ 0, 0 }
486 };
487 
488 static driver_t arm_tmr_acpi_driver = {
489 	"generic_timer",
490 	arm_tmr_acpi_methods,
491 	sizeof(struct arm_tmr_softc),
492 };
493 
494 static devclass_t arm_tmr_acpi_devclass;
495 
496 EARLY_DRIVER_MODULE(timer, acpi, arm_tmr_acpi_driver, arm_tmr_acpi_devclass,
497     0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
498 #endif
499 
500 static void
501 arm_tmr_do_delay(int usec, void *arg)
502 {
503 	struct arm_tmr_softc *sc = arg;
504 	int32_t counts, counts_per_usec;
505 	uint32_t first, last;
506 
507 	/* Get the number of times to count */
508 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
509 
510 	/*
511 	 * Clamp the timeout at a maximum value (about 32 seconds with
512 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
513 	 * near that length of time and if they are, they should be hung
514 	 * out to dry.
515 	 */
516 	if (usec >= (0x80000000U / counts_per_usec))
517 		counts = (0x80000000U / counts_per_usec) - 1;
518 	else
519 		counts = usec * counts_per_usec;
520 
521 	first = get_cntxct(sc->physical);
522 
523 	while (counts > 0) {
524 		last = get_cntxct(sc->physical);
525 		counts -= (int32_t)(last - first);
526 		first = last;
527 	}
528 }
529 
530 #if defined(__aarch64__)
531 void
532 DELAY(int usec)
533 {
534 	int32_t counts;
535 
536 	TSENTER();
537 	/*
538 	 * Check the timers are setup, if not just
539 	 * use a for loop for the meantime
540 	 */
541 	if (arm_tmr_sc == NULL) {
542 		for (; usec > 0; usec--)
543 			for (counts = 200; counts > 0; counts--)
544 				/*
545 				 * Prevent the compiler from optimizing
546 				 * out the loop
547 				 */
548 				cpufunc_nullop();
549 	} else
550 		arm_tmr_do_delay(usec, arm_tmr_sc);
551 	TSEXIT();
552 }
553 #endif
554 
555 static uint32_t
556 arm_tmr_fill_vdso_timehands(struct vdso_timehands *vdso_th,
557     struct timecounter *tc)
558 {
559 
560 	vdso_th->th_algo = VDSO_TH_ALGO_ARM_GENTIM;
561 	vdso_th->th_physical = arm_tmr_sc->physical;
562 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
563 	return (1);
564 }
565