xref: /freebsd/sys/arm/arm/pmap-v6.c (revision 4f52dfbb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
8  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
9  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
41  */
42 /*-
43  * Copyright (c) 2003 Networks Associates Technology, Inc.
44  * All rights reserved.
45  *
46  * This software was developed for the FreeBSD Project by Jake Burkholder,
47  * Safeport Network Services, and Network Associates Laboratories, the
48  * Security Research Division of Network Associates, Inc. under
49  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
50  * CHATS research program.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 /*
78  *	Manages physical address maps.
79  *
80  *	Since the information managed by this module is
81  *	also stored by the logical address mapping module,
82  *	this module may throw away valid virtual-to-physical
83  *	mappings at almost any time.  However, invalidations
84  *	of virtual-to-physical mappings must be done as
85  *	requested.
86  *
87  *	In order to cope with hardware architectures which
88  *	make virtual-to-physical map invalidates expensive,
89  *	this module may delay invalidate or reduced protection
90  *	operations until such time as they are actually
91  *	necessary.  This module is given full information as
92  *	to which processors are currently using which maps,
93  *	and to when physical maps must be made correct.
94  */
95 
96 #include "opt_vm.h"
97 #include "opt_pmap.h"
98 #include "opt_ddb.h"
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/lock.h>
105 #include <sys/proc.h>
106 #include <sys/rwlock.h>
107 #include <sys/malloc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/malloc.h>
110 #include <sys/mman.h>
111 #include <sys/sf_buf.h>
112 #include <sys/smp.h>
113 #include <sys/sched.h>
114 #include <sys/sysctl.h>
115 
116 #ifdef DDB
117 #include <ddb/ddb.h>
118 #endif
119 
120 #include <machine/physmem.h>
121 
122 #include <vm/vm.h>
123 #include <vm/uma.h>
124 #include <vm/pmap.h>
125 #include <vm/vm_param.h>
126 #include <vm/vm_kern.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/vm_pageout.h>
131 #include <vm/vm_phys.h>
132 #include <vm/vm_extern.h>
133 #include <vm/vm_reserv.h>
134 #include <sys/lock.h>
135 #include <sys/mutex.h>
136 
137 #include <machine/md_var.h>
138 #include <machine/pmap_var.h>
139 #include <machine/cpu.h>
140 #include <machine/pcb.h>
141 #include <machine/sf_buf.h>
142 #ifdef SMP
143 #include <machine/smp.h>
144 #endif
145 #ifndef PMAP_SHPGPERPROC
146 #define PMAP_SHPGPERPROC 200
147 #endif
148 
149 #ifndef DIAGNOSTIC
150 #define PMAP_INLINE	__inline
151 #else
152 #define PMAP_INLINE
153 #endif
154 
155 #ifdef PMAP_DEBUG
156 static void pmap_zero_page_check(vm_page_t m);
157 void pmap_debug(int level);
158 int pmap_pid_dump(int pid);
159 
160 #define PDEBUG(_lev_,_stat_) \
161 	if (pmap_debug_level >= (_lev_)) \
162 		((_stat_))
163 #define dprintf printf
164 int pmap_debug_level = 1;
165 #else   /* PMAP_DEBUG */
166 #define PDEBUG(_lev_,_stat_) /* Nothing */
167 #define dprintf(x, arg...)
168 #endif  /* PMAP_DEBUG */
169 
170 /*
171  *  Level 2 page tables map definion ('max' is excluded).
172  */
173 
174 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
175 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
176 
177 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
178 #define UPT2V_MAX_ADDRESS \
179     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
180 
181 /*
182  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
183  *  4KB (PTE2) page mappings have identical settings for the following fields:
184  */
185 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
186 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
187 			 PTE2_ATTR_MASK)
188 
189 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
190 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
191 			 PTE1_ATTR_MASK)
192 
193 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
194 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
195 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
196 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
197 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
198 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
199 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
200 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
201 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
202 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
203 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
204 
205 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
206 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
207 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
208 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
209 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
210 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
211 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
212 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
213 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
214 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
215 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
216 
217 /*
218  *  PTE2 descriptors creation macros.
219  */
220 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
221 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
222 
223 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
224 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
225 
226 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
227 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
228 
229 #define PV_STATS
230 #ifdef PV_STATS
231 #define PV_STAT(x)	do { x ; } while (0)
232 #else
233 #define PV_STAT(x)	do { } while (0)
234 #endif
235 
236 /*
237  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
238  *  We can init many things with no memory allocation thanks to its static
239  *  allocation and this brings two main advantages:
240  *  (1) other cores can be started very simply,
241  *  (2) various boot loaders can be supported as its arguments can be processed
242  *      in virtual address space and can be moved to safe location before
243  *      first allocation happened.
244  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
245  *  However, the table is uninitialized and so lays in bss. Therefore kernel
246  *  image size is not influenced.
247  *
248  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
249  *       CPU suspend/resume game.
250  */
251 extern pt1_entry_t boot_pt1[];
252 
253 vm_paddr_t base_pt1;
254 pt1_entry_t *kern_pt1;
255 pt2_entry_t *kern_pt2tab;
256 pt2_entry_t *PT2MAP;
257 
258 static uint32_t ttb_flags;
259 static vm_memattr_t pt_memattr;
260 ttb_entry_t pmap_kern_ttb;
261 
262 struct pmap kernel_pmap_store;
263 LIST_HEAD(pmaplist, pmap);
264 static struct pmaplist allpmaps;
265 static struct mtx allpmaps_lock;
266 
267 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
268 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
269 
270 static vm_offset_t kernel_vm_end_new;
271 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
272 vm_offset_t vm_max_kernel_address;
273 vm_paddr_t kernel_l1pa;
274 
275 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
276 
277 /*
278  *  Data for the pv entry allocation mechanism
279  */
280 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
281 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
282 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
283 static int shpgperproc = PMAP_SHPGPERPROC;
284 
285 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
286 int pv_maxchunks;			/* How many chunks we have KVA for */
287 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
288 
289 vm_paddr_t first_managed_pa;
290 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
291 
292 /*
293  *  All those kernel PT submaps that BSD is so fond of
294  */
295 caddr_t _tmppt = 0;
296 
297 /*
298  *  Crashdump maps.
299  */
300 static caddr_t crashdumpmap;
301 
302 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
303 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
304 #ifdef DDB
305 static pt2_entry_t *PMAP3;
306 static pt2_entry_t *PADDR3;
307 static int PMAP3cpu __unused; /* for SMP only */
308 #endif
309 #ifdef SMP
310 static int PMAP1cpu;
311 static int PMAP1changedcpu;
312 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
313     &PMAP1changedcpu, 0,
314     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
315 #endif
316 static int PMAP1changed;
317 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
318     &PMAP1changed, 0,
319     "Number of times pmap_pte2_quick changed PMAP1");
320 static int PMAP1unchanged;
321 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
322     &PMAP1unchanged, 0,
323     "Number of times pmap_pte2_quick didn't change PMAP1");
324 static struct mtx PMAP2mutex;
325 
326 static __inline void pt2_wirecount_init(vm_page_t m);
327 static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
328     vm_offset_t va);
329 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
330 
331 /*
332  *  Function to set the debug level of the pmap code.
333  */
334 #ifdef PMAP_DEBUG
335 void
336 pmap_debug(int level)
337 {
338 
339 	pmap_debug_level = level;
340 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
341 }
342 #endif /* PMAP_DEBUG */
343 
344 /*
345  *  This table must corespond with memory attribute configuration in vm.h.
346  *  First entry is used for normal system mapping.
347  *
348  *  Device memory is always marked as shared.
349  *  Normal memory is shared only in SMP .
350  *  Not outer shareable bits are not used yet.
351  *  Class 6 cannot be used on ARM11.
352  */
353 #define TEXDEF_TYPE_SHIFT	0
354 #define TEXDEF_TYPE_MASK	0x3
355 #define TEXDEF_INNER_SHIFT	2
356 #define TEXDEF_INNER_MASK	0x3
357 #define TEXDEF_OUTER_SHIFT	4
358 #define TEXDEF_OUTER_MASK	0x3
359 #define TEXDEF_NOS_SHIFT	6
360 #define TEXDEF_NOS_MASK		0x1
361 
362 #define TEX(t, i, o, s) 			\
363 		((t) << TEXDEF_TYPE_SHIFT) |	\
364 		((i) << TEXDEF_INNER_SHIFT) |	\
365 		((o) << TEXDEF_OUTER_SHIFT | 	\
366 		((s) << TEXDEF_NOS_SHIFT))
367 
368 static uint32_t tex_class[8] = {
369 /*	    type      inner cache outer cache */
370 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
371 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
372 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
373 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
374 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
375 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
376 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
377 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
378 };
379 #undef TEX
380 
381 static uint32_t pte2_attr_tab[8] = {
382 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
383 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
384 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
385 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
386 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
387 	0,			/* 5 - NOT USED YET */
388 	0,			/* 6 - NOT USED YET */
389 	0			/* 7 - NOT USED YET */
390 };
391 CTASSERT(VM_MEMATTR_WB_WA == 0);
392 CTASSERT(VM_MEMATTR_NOCACHE == 1);
393 CTASSERT(VM_MEMATTR_DEVICE == 2);
394 CTASSERT(VM_MEMATTR_SO == 3);
395 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
396 
397 static inline uint32_t
398 vm_memattr_to_pte2(vm_memattr_t ma)
399 {
400 
401 	KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
402 	return (pte2_attr_tab[(u_int)ma]);
403 }
404 
405 static inline uint32_t
406 vm_page_pte2_attr(vm_page_t m)
407 {
408 
409 	return (vm_memattr_to_pte2(m->md.pat_mode));
410 }
411 
412 /*
413  * Convert TEX definition entry to TTB flags.
414  */
415 static uint32_t
416 encode_ttb_flags(int idx)
417 {
418 	uint32_t inner, outer, nos, reg;
419 
420 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
421 		TEXDEF_INNER_MASK;
422 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
423 		TEXDEF_OUTER_MASK;
424 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
425 		TEXDEF_NOS_MASK;
426 
427 	reg = nos << 5;
428 	reg |= outer << 3;
429 	if (cpuinfo.coherent_walk)
430 		reg |= (inner & 0x1) << 6;
431 	reg |= (inner & 0x2) >> 1;
432 #ifdef SMP
433 	ARM_SMP_UP(
434 		reg |= 1 << 1,
435 	);
436 #endif
437 	return reg;
438 }
439 
440 /*
441  *  Set TEX remapping registers in current CPU.
442  */
443 void
444 pmap_set_tex(void)
445 {
446 	uint32_t prrr, nmrr;
447 	uint32_t type, inner, outer, nos;
448 	int i;
449 
450 #ifdef PMAP_PTE_NOCACHE
451 	/* XXX fixme */
452 	if (cpuinfo.coherent_walk) {
453 		pt_memattr = VM_MEMATTR_WB_WA;
454 		ttb_flags = encode_ttb_flags(0);
455 	}
456 	else {
457 		pt_memattr = VM_MEMATTR_NOCACHE;
458 		ttb_flags = encode_ttb_flags(1);
459 	}
460 #else
461 	pt_memattr = VM_MEMATTR_WB_WA;
462 	ttb_flags = encode_ttb_flags(0);
463 #endif
464 
465 	prrr = 0;
466 	nmrr = 0;
467 
468 	/* Build remapping register from TEX classes. */
469 	for (i = 0; i < 8; i++) {
470 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
471 			TEXDEF_TYPE_MASK;
472 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
473 			TEXDEF_INNER_MASK;
474 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
475 			TEXDEF_OUTER_MASK;
476 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
477 			TEXDEF_NOS_MASK;
478 
479 		prrr |= type  << (i * 2);
480 		prrr |= nos   << (i + 24);
481 		nmrr |= inner << (i * 2);
482 		nmrr |= outer << (i * 2 + 16);
483 	}
484 	/* Add shareable bits for device memory. */
485 	prrr |= PRRR_DS0 | PRRR_DS1;
486 
487 	/* Add shareable bits for normal memory in SMP case. */
488 #ifdef SMP
489 	ARM_SMP_UP(
490 		prrr |= PRRR_NS1,
491 	);
492 #endif
493 	cp15_prrr_set(prrr);
494 	cp15_nmrr_set(nmrr);
495 
496 	/* Caches are disabled, so full TLB flush should be enough. */
497 	tlb_flush_all_local();
498 }
499 
500 /*
501  * Remap one vm_meattr class to another one. This can be useful as
502  * workaround for SOC errata, e.g. if devices must be accessed using
503  * SO memory class.
504  *
505  * !!! Please note that this function is absolutely last resort thing.
506  * It should not be used under normal circumstances. !!!
507  *
508  * Usage rules:
509  * - it shall be called after pmap_bootstrap_prepare() and before
510  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
511  *   to be called from platform_attach() or platform_late_init().
512  *
513  * - if remapping doesn't change caching mode, or until uncached class
514  *   is remapped to any kind of cached one, then no other restriction exists.
515  *
516  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
517  *   remapped) remain cached, then caller is resposible for calling
518  *   of dcache_wbinv_poc_all().
519  *
520  * - remapping of any kind of cached class to uncached is not permitted.
521  */
522 void
523 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
524 {
525 	int old_idx, new_idx;
526 
527 	/* Map VM memattrs to indexes to tex_class table. */
528 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
529 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
530 
531 	/* Replace TEX attribute and apply it. */
532 	tex_class[old_idx] = tex_class[new_idx];
533 	pmap_set_tex();
534 }
535 
536 /*
537  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
538  * KERNBASE is mapped by first L2 page table in L2 page table page. It
539  * meets same constrain due to PT2MAP being placed just under KERNBASE.
540  */
541 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
542 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
543 
544 /*
545  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
546  *  For now, anyhow, the following check must be fulfilled.
547  */
548 CTASSERT(PAGE_SIZE == PTE2_SIZE);
549 /*
550  *  We don't want to mess up MI code with all MMU and PMAP definitions,
551  *  so some things, which depend on other ones, are defined independently.
552  *  Now, it is time to check that we don't screw up something.
553  */
554 CTASSERT(PDRSHIFT == PTE1_SHIFT);
555 /*
556  *  Check L1 and L2 page table entries definitions consistency.
557  */
558 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
559 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
560 /*
561  *  Check L2 page tables page consistency.
562  */
563 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
564 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
565 /*
566  *  Check PT2TAB consistency.
567  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
568  *  This should be done without remainder.
569  */
570 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
571 
572 /*
573  *	A PT2MAP magic.
574  *
575  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
576  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
577  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
578  *  must be used together, but not necessary at once. The first PT2 in a page
579  *  must map things on correctly aligned address and the others must follow
580  *  in right order.
581  */
582 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
583 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
584 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
585 
586 /*
587  *  Check PT2TAB consistency.
588  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
589  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
590  *  The both should be done without remainder.
591  */
592 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
593 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
594 /*
595  *  The implementation was made general, however, with the assumption
596  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
597  *  the code should be once more rechecked.
598  */
599 CTASSERT(NPG_IN_PT2TAB == 1);
600 
601 /*
602  *  Get offset of PT2 in a page
603  *  associated with given PT1 index.
604  */
605 static __inline u_int
606 page_pt2off(u_int pt1_idx)
607 {
608 
609 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
610 }
611 
612 /*
613  *  Get physical address of PT2
614  *  associated with given PT2s page and PT1 index.
615  */
616 static __inline vm_paddr_t
617 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
618 {
619 
620 	return (pgpa + page_pt2off(pt1_idx));
621 }
622 
623 /*
624  *  Get first entry of PT2
625  *  associated with given PT2s page and PT1 index.
626  */
627 static __inline pt2_entry_t *
628 page_pt2(vm_offset_t pgva, u_int pt1_idx)
629 {
630 
631 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
632 }
633 
634 /*
635  *  Get virtual address of PT2s page (mapped in PT2MAP)
636  *  which holds PT2 which holds entry which maps given virtual address.
637  */
638 static __inline vm_offset_t
639 pt2map_pt2pg(vm_offset_t va)
640 {
641 
642 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
643 	return ((vm_offset_t)pt2map_entry(va));
644 }
645 
646 /*****************************************************************************
647  *
648  *     THREE pmap initialization milestones exist:
649  *
650  *  locore.S
651  *    -> fundamental init (including MMU) in ASM
652  *
653  *  initarm()
654  *    -> fundamental init continues in C
655  *    -> first available physical address is known
656  *
657  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
658  *      -> basic (safe) interface for physical address allocation is made
659  *      -> basic (safe) interface for virtual mapping is made
660  *      -> limited not SMP coherent work is possible
661  *
662  *    -> more fundamental init continues in C
663  *    -> locks and some more things are available
664  *    -> all fundamental allocations and mappings are done
665  *
666  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
667  *      -> phys_avail[] and virtual_avail is set
668  *      -> control is passed to vm subsystem
669  *      -> physical and virtual address allocation are off limit
670  *      -> low level mapping functions, some SMP coherent,
671  *         are available, which cannot be used before vm subsystem
672  *         is being inited
673  *
674  *  mi_startup()
675  *    -> vm subsystem is being inited
676  *
677  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
678  *        -> pmap is fully inited
679  *
680  *****************************************************************************/
681 
682 /*****************************************************************************
683  *
684  *	PMAP first stage initialization and utility functions
685  *	for pre-bootstrap epoch.
686  *
687  *  After pmap_bootstrap_prepare() is called, the following functions
688  *  can be used:
689  *
690  *  (1) strictly only for this stage functions for physical page allocations,
691  *      virtual space allocations, and mappings:
692  *
693  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
694  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
695  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
696  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
697  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
698  *      vm_prot_t prot, vm_memattr_t attr);
699  *
700  *  (2) for all stages:
701  *
702  *  vm_paddr_t pmap_kextract(vm_offset_t va);
703  *
704  *  NOTE: This is not SMP coherent stage.
705  *
706  *****************************************************************************/
707 
708 #define KERNEL_P2V(pa) \
709     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
710 #define KERNEL_V2P(va) \
711     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
712 
713 static vm_paddr_t last_paddr;
714 
715 /*
716  *  Pre-bootstrap epoch page allocator.
717  */
718 vm_paddr_t
719 pmap_preboot_get_pages(u_int num)
720 {
721 	vm_paddr_t ret;
722 
723 	ret = last_paddr;
724 	last_paddr += num * PAGE_SIZE;
725 
726 	return (ret);
727 }
728 
729 /*
730  *	The fundamental initialization of PMAP stuff.
731  *
732  *  Some things already happened in locore.S and some things could happen
733  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
734  *  1. Caches are disabled.
735  *  2. We are running on virtual addresses already with 'boot_pt1'
736  *     as L1 page table.
737  *  3. So far, all virtual addresses can be converted to physical ones and
738  *     vice versa by the following macros:
739  *       KERNEL_P2V(pa) .... physical to virtual ones,
740  *       KERNEL_V2P(va) .... virtual to physical ones.
741  *
742  *  What is done herein:
743  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
744  *  2. PT2MAP magic is brought to live.
745  *  3. Basic preboot functions for page allocations and mappings can be used.
746  *  4. Everything is prepared for L1 cache enabling.
747  *
748  *  Variations:
749  *  1. To use second TTB register, so kernel and users page tables will be
750  *     separated. This way process forking - pmap_pinit() - could be faster,
751  *     it saves physical pages and KVA per a process, and it's simple change.
752  *     However, it will lead, due to hardware matter, to the following:
753  *     (a) 2G space for kernel and 2G space for users.
754  *     (b) 1G space for kernel in low addresses and 3G for users above it.
755  *     A question is: Is the case (b) really an option? Note that case (b)
756  *     does save neither physical memory and KVA.
757  */
758 void
759 pmap_bootstrap_prepare(vm_paddr_t last)
760 {
761 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
762 	vm_offset_t pt2pg_va;
763 	pt1_entry_t *pte1p;
764 	pt2_entry_t *pte2p;
765 	u_int i;
766 	uint32_t l1_attr;
767 
768 	/*
769 	 * Now, we are going to make real kernel mapping. Note that we are
770 	 * already running on some mapping made in locore.S and we expect
771 	 * that it's large enough to ensure nofault access to physical memory
772 	 * allocated herein before switch.
773 	 *
774 	 * As kernel image and everything needed before are and will be mapped
775 	 * by section mappings, we align last physical address to PTE1_SIZE.
776 	 */
777 	last_paddr = pte1_roundup(last);
778 
779 	/*
780 	 * Allocate and zero page(s) for kernel L1 page table.
781 	 *
782 	 * Note that it's first allocation on space which was PTE1_SIZE
783 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
784 	 */
785 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
786 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
787 	bzero((void*)kern_pt1, NB_IN_PT1);
788 	pte1_sync_range(kern_pt1, NB_IN_PT1);
789 
790 	/* Allocate and zero page(s) for kernel PT2TAB. */
791 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
792 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
793 	bzero(kern_pt2tab, NB_IN_PT2TAB);
794 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
795 
796 	/* Allocate and zero page(s) for kernel L2 page tables. */
797 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
798 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
799 	size = NKPT2PG * PAGE_SIZE;
800 	bzero((void*)pt2pg_va, size);
801 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
802 
803 	/*
804 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
805 	 * preallocated pages for kernel L2 page tables so that vm_page
806 	 * structures representing these pages will be created. The vm_page
807 	 * structures are required for promotion of the corresponding kernel
808 	 * virtual addresses to section mappings.
809 	 */
810 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
811 
812 	/*
813 	 * Insert allocated L2 page table pages to PT2TAB and make
814 	 * link to all PT2s in L1 page table. See how kernel_vm_end
815 	 * is initialized.
816 	 *
817 	 * We play simple and safe. So every KVA will have underlaying
818 	 * L2 page table, even kernel image mapped by sections.
819 	 */
820 	pte2p = kern_pt2tab_entry(KERNBASE);
821 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
822 		pt2tab_store(pte2p++, PTE2_KPT(pa));
823 
824 	pte1p = kern_pte1(KERNBASE);
825 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
826 		pte1_store(pte1p++, PTE1_LINK(pa));
827 
828 	/* Make section mappings for kernel. */
829 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
830 	pte1p = kern_pte1(KERNBASE);
831 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
832 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
833 
834 	/*
835 	 * Get free and aligned space for PT2MAP and make L1 page table links
836 	 * to L2 page tables held in PT2TAB.
837 	 *
838 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
839 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
840 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
841 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
842 	 */
843 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
844 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
845 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
846 		pte1_store(pte1p++, PTE1_LINK(pa));
847 	}
848 
849 	/*
850 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
851 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
852 	 */
853 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
854 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
855 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
856 	}
857 
858 	/*
859 	 * Choose correct L2 page table and make mappings for allocations
860 	 * made herein which replaces temporary locore.S mappings after a while.
861 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
862 	 *
863 	 * Note, that these allocations started aligned on 1M section and
864 	 * kernel PT1 was allocated first. Making of mappings must follow
865 	 * order of physical allocations as we've used KERNEL_P2V() macro
866 	 * for virtual addresses resolution.
867 	 */
868 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
869 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
870 
871 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
872 
873 	/* Make mapping for kernel L1 page table. */
874 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
875 		pte2_store(pte2p++, PTE2_KPT(pa));
876 
877 	/* Make mapping for kernel PT2TAB. */
878 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
879 		pte2_store(pte2p++, PTE2_KPT(pa));
880 
881 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
882 	pmap_kern_ttb = base_pt1 | ttb_flags;
883 	cpuinfo_reinit_mmu(pmap_kern_ttb);
884 	/*
885 	 * Initialize the first available KVA. As kernel image is mapped by
886 	 * sections, we are leaving some gap behind.
887 	 */
888 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
889 }
890 
891 /*
892  *  Setup L2 page table page for given KVA.
893  *  Used in pre-bootstrap epoch.
894  *
895  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
896  *  and used them for mapping KVA starting from KERNBASE. However, this is not
897  *  enough. Vectors and devices need L2 page tables too. Note that they are
898  *  even above VM_MAX_KERNEL_ADDRESS.
899  */
900 static __inline vm_paddr_t
901 pmap_preboot_pt2pg_setup(vm_offset_t va)
902 {
903 	pt2_entry_t *pte2p, pte2;
904 	vm_paddr_t pt2pg_pa;
905 
906 	/* Get associated entry in PT2TAB. */
907 	pte2p = kern_pt2tab_entry(va);
908 
909 	/* Just return, if PT2s page exists already. */
910 	pte2 = pt2tab_load(pte2p);
911 	if (pte2_is_valid(pte2))
912 		return (pte2_pa(pte2));
913 
914 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
915 	    ("%s: NKPT2PG too small", __func__));
916 
917 	/*
918 	 * Allocate page for PT2s and insert it to PT2TAB.
919 	 * In other words, map it into PT2MAP space.
920 	 */
921 	pt2pg_pa = pmap_preboot_get_pages(1);
922 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
923 
924 	/* Zero all PT2s in allocated page. */
925 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
926 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
927 
928 	return (pt2pg_pa);
929 }
930 
931 /*
932  *  Setup L2 page table for given KVA.
933  *  Used in pre-bootstrap epoch.
934  */
935 static void
936 pmap_preboot_pt2_setup(vm_offset_t va)
937 {
938 	pt1_entry_t *pte1p;
939 	vm_paddr_t pt2pg_pa, pt2_pa;
940 
941 	/* Setup PT2's page. */
942 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
943 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
944 
945 	/* Insert PT2 to PT1. */
946 	pte1p = kern_pte1(va);
947 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
948 }
949 
950 /*
951  *  Get L2 page entry associated with given KVA.
952  *  Used in pre-bootstrap epoch.
953  */
954 static __inline pt2_entry_t*
955 pmap_preboot_vtopte2(vm_offset_t va)
956 {
957 	pt1_entry_t *pte1p;
958 
959 	/* Setup PT2 if needed. */
960 	pte1p = kern_pte1(va);
961 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
962 		pmap_preboot_pt2_setup(va);
963 
964 	return (pt2map_entry(va));
965 }
966 
967 /*
968  *  Pre-bootstrap epoch page(s) mapping(s).
969  */
970 void
971 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
972 {
973 	u_int i;
974 	pt2_entry_t *pte2p;
975 
976 	/* Map all the pages. */
977 	for (i = 0; i < num; i++) {
978 		pte2p = pmap_preboot_vtopte2(va);
979 		pte2_store(pte2p, PTE2_KRW(pa));
980 		va += PAGE_SIZE;
981 		pa += PAGE_SIZE;
982 	}
983 }
984 
985 /*
986  *  Pre-bootstrap epoch virtual space alocator.
987  */
988 vm_offset_t
989 pmap_preboot_reserve_pages(u_int num)
990 {
991 	u_int i;
992 	vm_offset_t start, va;
993 	pt2_entry_t *pte2p;
994 
995 	/* Allocate virtual space. */
996 	start = va = virtual_avail;
997 	virtual_avail += num * PAGE_SIZE;
998 
999 	/* Zero the mapping. */
1000 	for (i = 0; i < num; i++) {
1001 		pte2p = pmap_preboot_vtopte2(va);
1002 		pte2_store(pte2p, 0);
1003 		va += PAGE_SIZE;
1004 	}
1005 
1006 	return (start);
1007 }
1008 
1009 /*
1010  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1011  */
1012 vm_offset_t
1013 pmap_preboot_get_vpages(u_int num)
1014 {
1015 	vm_paddr_t  pa;
1016 	vm_offset_t va;
1017 
1018 	/* Allocate physical page(s). */
1019 	pa = pmap_preboot_get_pages(num);
1020 
1021 	/* Allocate virtual space. */
1022 	va = virtual_avail;
1023 	virtual_avail += num * PAGE_SIZE;
1024 
1025 	/* Map and zero all. */
1026 	pmap_preboot_map_pages(pa, va, num);
1027 	bzero((void *)va, num * PAGE_SIZE);
1028 
1029 	return (va);
1030 }
1031 
1032 /*
1033  *  Pre-bootstrap epoch page mapping(s) with attributes.
1034  */
1035 void
1036 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1037     vm_prot_t prot, vm_memattr_t attr)
1038 {
1039 	u_int num;
1040 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1041 	pt1_entry_t *pte1p;
1042 	pt2_entry_t *pte2p;
1043 
1044 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1045 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1046 	l2_attr = vm_memattr_to_pte2(attr);
1047 	l1_prot = ATTR_TO_L1(l2_prot);
1048 	l1_attr = ATTR_TO_L1(l2_attr);
1049 
1050 	/* Map all the pages. */
1051 	num = round_page(size);
1052 	while (num > 0) {
1053 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1054 			pte1p = kern_pte1(va);
1055 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1056 			va += PTE1_SIZE;
1057 			pa += PTE1_SIZE;
1058 			num -= PTE1_SIZE;
1059 		} else {
1060 			pte2p = pmap_preboot_vtopte2(va);
1061 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1062 			va += PAGE_SIZE;
1063 			pa += PAGE_SIZE;
1064 			num -= PAGE_SIZE;
1065 		}
1066 	}
1067 }
1068 
1069 /*
1070  *  Extract from the kernel page table the physical address
1071  *  that is mapped by the given virtual address "va".
1072  */
1073 vm_paddr_t
1074 pmap_kextract(vm_offset_t va)
1075 {
1076 	vm_paddr_t pa;
1077 	pt1_entry_t pte1;
1078 	pt2_entry_t pte2;
1079 
1080 	pte1 = pte1_load(kern_pte1(va));
1081 	if (pte1_is_section(pte1)) {
1082 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1083 	} else if (pte1_is_link(pte1)) {
1084 		/*
1085 		 * We should beware of concurrent promotion that changes
1086 		 * pte1 at this point. However, it's not a problem as PT2
1087 		 * page is preserved by promotion in PT2TAB. So even if
1088 		 * it happens, using of PT2MAP is still safe.
1089 		 *
1090 		 * QQQ: However, concurrent removing is a problem which
1091 		 *      ends in abort on PT2MAP space. Locking must be used
1092 		 *      to deal with this.
1093 		 */
1094 		pte2 = pte2_load(pt2map_entry(va));
1095 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1096 	}
1097 	else {
1098 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1099 	}
1100 	return (pa);
1101 }
1102 
1103 /*
1104  *  Extract from the kernel page table the physical address
1105  *  that is mapped by the given virtual address "va". Also
1106  *  return L2 page table entry which maps the address.
1107  *
1108  *  This is only intended to be used for panic dumps.
1109  */
1110 vm_paddr_t
1111 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1112 {
1113 	vm_paddr_t pa;
1114 	pt1_entry_t pte1;
1115 	pt2_entry_t pte2;
1116 
1117 	pte1 = pte1_load(kern_pte1(va));
1118 	if (pte1_is_section(pte1)) {
1119 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1120 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1121 	} else if (pte1_is_link(pte1)) {
1122 		pte2 = pte2_load(pt2map_entry(va));
1123 		pa = pte2_pa(pte2);
1124 	} else {
1125 		pte2 = 0;
1126 		pa = 0;
1127 	}
1128 	if (pte2p != NULL)
1129 		*pte2p = pte2;
1130 	return (pa);
1131 }
1132 
1133 /*****************************************************************************
1134  *
1135  *	PMAP second stage initialization and utility functions
1136  *	for bootstrap epoch.
1137  *
1138  *  After pmap_bootstrap() is called, the following functions for
1139  *  mappings can be used:
1140  *
1141  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1142  *  void pmap_kremove(vm_offset_t va);
1143  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1144  *      int prot);
1145  *
1146  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1147  *        allowed during this stage.
1148  *
1149  *****************************************************************************/
1150 
1151 /*
1152  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1153  *  reserve various virtual spaces for temporary mappings.
1154  */
1155 void
1156 pmap_bootstrap(vm_offset_t firstaddr)
1157 {
1158 	pt2_entry_t *unused __unused;
1159 	struct pcpu *pc;
1160 
1161 	/*
1162 	 * Initialize the kernel pmap (which is statically allocated).
1163 	 */
1164 	PMAP_LOCK_INIT(kernel_pmap);
1165 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1166 	kernel_pmap->pm_pt1 = kern_pt1;
1167 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1168 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1169 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1170 
1171 	/*
1172 	 * Initialize the global pv list lock.
1173 	 */
1174 	rw_init(&pvh_global_lock, "pmap pv global");
1175 
1176 	LIST_INIT(&allpmaps);
1177 
1178 	/*
1179 	 * Request a spin mutex so that changes to allpmaps cannot be
1180 	 * preempted by smp_rendezvous_cpus().
1181 	 */
1182 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1183 	mtx_lock_spin(&allpmaps_lock);
1184 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1185 	mtx_unlock_spin(&allpmaps_lock);
1186 
1187 	/*
1188 	 * Reserve some special page table entries/VA space for temporary
1189 	 * mapping of pages.
1190 	 */
1191 #define	SYSMAP(c, p, v, n)  do {		\
1192 	v = (c)pmap_preboot_reserve_pages(n);	\
1193 	p = pt2map_entry((vm_offset_t)v);	\
1194 	} while (0)
1195 
1196 	/*
1197 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1198 	 * Local CMAP2 is also used for data cache cleaning.
1199 	 */
1200 	pc = get_pcpu();
1201 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1202 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1203 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1204 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1205 
1206 	/*
1207 	 * Crashdump maps.
1208 	 */
1209 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1210 
1211 	/*
1212 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1213 	 */
1214 	SYSMAP(caddr_t, unused, _tmppt, 1);
1215 
1216 	/*
1217 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1218 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1219 	 */
1220 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1221 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1222 #ifdef DDB
1223 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1224 #endif
1225 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1226 
1227 	/*
1228 	 * Note that in very short time in initarm(), we are going to
1229 	 * initialize phys_avail[] array and no further page allocation
1230 	 * can happen after that until vm subsystem will be initialized.
1231 	 */
1232 	kernel_vm_end_new = kernel_vm_end;
1233 	virtual_end = vm_max_kernel_address;
1234 }
1235 
1236 static void
1237 pmap_init_reserved_pages(void)
1238 {
1239 	struct pcpu *pc;
1240 	vm_offset_t pages;
1241 	int i;
1242 
1243 	CPU_FOREACH(i) {
1244 		pc = pcpu_find(i);
1245 		/*
1246 		 * Skip if the mapping has already been initialized,
1247 		 * i.e. this is the BSP.
1248 		 */
1249 		if (pc->pc_cmap1_addr != 0)
1250 			continue;
1251 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1252 		pages = kva_alloc(PAGE_SIZE * 3);
1253 		if (pages == 0)
1254 			panic("%s: unable to allocate KVA", __func__);
1255 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1256 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1257 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1258 		pc->pc_cmap1_addr = (caddr_t)pages;
1259 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1260 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1261 	}
1262 }
1263 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1264 
1265 /*
1266  *  The function can already be use in second initialization stage.
1267  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1268  *  allocation can happen. So if used, be sure that PT2 for given
1269  *  virtual address is allocated already!
1270  *
1271  *  Add a wired page to the kva.
1272  *  Note: not SMP coherent.
1273  */
1274 static __inline void
1275 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1276     uint32_t attr)
1277 {
1278 	pt1_entry_t *pte1p;
1279 	pt2_entry_t *pte2p;
1280 
1281 	pte1p = kern_pte1(va);
1282 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1283 		/*
1284 		 * This is a very low level function, so PT2 and particularly
1285 		 * PT2PG associated with given virtual address must be already
1286 		 * allocated. It's a pain mainly during pmap initialization
1287 		 * stage. However, called after pmap initialization with
1288 		 * virtual address not under kernel_vm_end will lead to
1289 		 * the same misery.
1290 		 */
1291 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1292 			panic("%s: kernel PT2 not allocated!", __func__);
1293 	}
1294 
1295 	pte2p = pt2map_entry(va);
1296 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1297 }
1298 
1299 PMAP_INLINE void
1300 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1301 {
1302 
1303 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1304 }
1305 
1306 /*
1307  *  Remove a page from the kernel pagetables.
1308  *  Note: not SMP coherent.
1309  */
1310 PMAP_INLINE void
1311 pmap_kremove(vm_offset_t va)
1312 {
1313 	pt1_entry_t *pte1p;
1314 	pt2_entry_t *pte2p;
1315 
1316 	pte1p = kern_pte1(va);
1317 	if (pte1_is_section(pte1_load(pte1p))) {
1318 		pte1_clear(pte1p);
1319 	} else {
1320 		pte2p = pt2map_entry(va);
1321 		pte2_clear(pte2p);
1322 	}
1323 }
1324 
1325 /*
1326  *  Share new kernel PT2PG with all pmaps.
1327  *  The caller is responsible for maintaining TLB consistency.
1328  */
1329 static void
1330 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1331 {
1332 	pmap_t pmap;
1333 	pt2_entry_t *pte2p;
1334 
1335 	mtx_lock_spin(&allpmaps_lock);
1336 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1337 		pte2p = pmap_pt2tab_entry(pmap, va);
1338 		pt2tab_store(pte2p, npte2);
1339 	}
1340 	mtx_unlock_spin(&allpmaps_lock);
1341 }
1342 
1343 /*
1344  *  Share new kernel PTE1 with all pmaps.
1345  *  The caller is responsible for maintaining TLB consistency.
1346  */
1347 static void
1348 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1349 {
1350 	pmap_t pmap;
1351 	pt1_entry_t *pte1p;
1352 
1353 	mtx_lock_spin(&allpmaps_lock);
1354 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1355 		pte1p = pmap_pte1(pmap, va);
1356 		pte1_store(pte1p, npte1);
1357 	}
1358 	mtx_unlock_spin(&allpmaps_lock);
1359 }
1360 
1361 /*
1362  *  Used to map a range of physical addresses into kernel
1363  *  virtual address space.
1364  *
1365  *  The value passed in '*virt' is a suggested virtual address for
1366  *  the mapping. Architectures which can support a direct-mapped
1367  *  physical to virtual region can return the appropriate address
1368  *  within that region, leaving '*virt' unchanged. Other
1369  *  architectures should map the pages starting at '*virt' and
1370  *  update '*virt' with the first usable address after the mapped
1371  *  region.
1372  *
1373  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1374  *        the function is used herein!
1375  */
1376 vm_offset_t
1377 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1378 {
1379 	vm_offset_t va, sva;
1380 	vm_paddr_t pte1_offset;
1381 	pt1_entry_t npte1;
1382 	uint32_t l1prot, l2prot;
1383 	uint32_t l1attr, l2attr;
1384 
1385 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1386 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1387 
1388 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1389 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1390 	l1prot = ATTR_TO_L1(l2prot);
1391 
1392 	l2attr = PTE2_ATTR_DEFAULT;
1393 	l1attr = ATTR_TO_L1(l2attr);
1394 
1395 	va = *virt;
1396 	/*
1397 	 * Does the physical address range's size and alignment permit at
1398 	 * least one section mapping to be created?
1399 	 */
1400 	pte1_offset = start & PTE1_OFFSET;
1401 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1402 	    PTE1_SIZE) {
1403 		/*
1404 		 * Increase the starting virtual address so that its alignment
1405 		 * does not preclude the use of section mappings.
1406 		 */
1407 		if ((va & PTE1_OFFSET) < pte1_offset)
1408 			va = pte1_trunc(va) + pte1_offset;
1409 		else if ((va & PTE1_OFFSET) > pte1_offset)
1410 			va = pte1_roundup(va) + pte1_offset;
1411 	}
1412 	sva = va;
1413 	while (start < end) {
1414 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1415 			KASSERT((va & PTE1_OFFSET) == 0,
1416 			    ("%s: misaligned va %#x", __func__, va));
1417 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1418 			pmap_kenter_pte1(va, npte1);
1419 			va += PTE1_SIZE;
1420 			start += PTE1_SIZE;
1421 		} else {
1422 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1423 			va += PAGE_SIZE;
1424 			start += PAGE_SIZE;
1425 		}
1426 	}
1427 	tlb_flush_range(sva, va - sva);
1428 	*virt = va;
1429 	return (sva);
1430 }
1431 
1432 /*
1433  *  Make a temporary mapping for a physical address.
1434  *  This is only intended to be used for panic dumps.
1435  */
1436 void *
1437 pmap_kenter_temporary(vm_paddr_t pa, int i)
1438 {
1439 	vm_offset_t va;
1440 
1441 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1442 
1443 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1444 	pmap_kenter(va, pa);
1445 	tlb_flush_local(va);
1446 	return ((void *)crashdumpmap);
1447 }
1448 
1449 
1450 /*************************************
1451  *
1452  *  TLB & cache maintenance routines.
1453  *
1454  *************************************/
1455 
1456 /*
1457  *  We inline these within pmap.c for speed.
1458  */
1459 PMAP_INLINE void
1460 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1461 {
1462 
1463 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1464 		tlb_flush(va);
1465 }
1466 
1467 PMAP_INLINE void
1468 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1469 {
1470 
1471 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1472 		tlb_flush_range(sva, size);
1473 }
1474 
1475 /*
1476  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1477  *  Requirements:
1478  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1479  *     are ever set, PTE2_V in particular.
1480  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1481  *   - Assumes nothing will ever test these addresses for 0 to indicate
1482  *     no mapping instead of correctly checking PTE2_V.
1483  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1484  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1485  */
1486 static vm_offset_t
1487 pmap_pte2list_alloc(vm_offset_t *head)
1488 {
1489 	pt2_entry_t *pte2p;
1490 	vm_offset_t va;
1491 
1492 	va = *head;
1493 	if (va == 0)
1494 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1495 	pte2p = pt2map_entry(va);
1496 	*head = *pte2p;
1497 	if (*head & PTE2_V)
1498 		panic("%s: va with PTE2_V set!", __func__);
1499 	*pte2p = 0;
1500 	return (va);
1501 }
1502 
1503 static void
1504 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1505 {
1506 	pt2_entry_t *pte2p;
1507 
1508 	if (va & PTE2_V)
1509 		panic("%s: freeing va with PTE2_V set!", __func__);
1510 	pte2p = pt2map_entry(va);
1511 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1512 	*head = va;
1513 }
1514 
1515 static void
1516 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1517 {
1518 	int i;
1519 	vm_offset_t va;
1520 
1521 	*head = 0;
1522 	for (i = npages - 1; i >= 0; i--) {
1523 		va = (vm_offset_t)base + i * PAGE_SIZE;
1524 		pmap_pte2list_free(head, va);
1525 	}
1526 }
1527 
1528 /*****************************************************************************
1529  *
1530  *	PMAP third and final stage initialization.
1531  *
1532  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1533  *
1534  *****************************************************************************/
1535 
1536 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1537 
1538 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1539     "Max number of PV entries");
1540 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1541     "Page share factor per proc");
1542 
1543 static u_long nkpt2pg = NKPT2PG;
1544 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1545     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1546 
1547 static int sp_enabled = 1;
1548 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1549     &sp_enabled, 0, "Are large page mappings enabled?");
1550 
1551 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
1552     "1MB page mapping counters");
1553 
1554 static u_long pmap_pte1_demotions;
1555 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1556     &pmap_pte1_demotions, 0, "1MB page demotions");
1557 
1558 static u_long pmap_pte1_mappings;
1559 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1560     &pmap_pte1_mappings, 0, "1MB page mappings");
1561 
1562 static u_long pmap_pte1_p_failures;
1563 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1564     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1565 
1566 static u_long pmap_pte1_promotions;
1567 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1568     &pmap_pte1_promotions, 0, "1MB page promotions");
1569 
1570 static u_long pmap_pte1_kern_demotions;
1571 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1572     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1573 
1574 static u_long pmap_pte1_kern_promotions;
1575 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1576     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1577 
1578 static __inline ttb_entry_t
1579 pmap_ttb_get(pmap_t pmap)
1580 {
1581 
1582 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1583 }
1584 
1585 /*
1586  *  Initialize a vm_page's machine-dependent fields.
1587  *
1588  *  Variations:
1589  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1590  *     pt2_wirecount can share same physical space. However, proper
1591  *     initialization on a page alloc for page tables and reinitialization
1592  *     on the page free must be ensured.
1593  */
1594 void
1595 pmap_page_init(vm_page_t m)
1596 {
1597 
1598 	TAILQ_INIT(&m->md.pv_list);
1599 	pt2_wirecount_init(m);
1600 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1601 }
1602 
1603 /*
1604  *  Virtualization for faster way how to zero whole page.
1605  */
1606 static __inline void
1607 pagezero(void *page)
1608 {
1609 
1610 	bzero(page, PAGE_SIZE);
1611 }
1612 
1613 /*
1614  *  Zero L2 page table page.
1615  *  Use same KVA as in pmap_zero_page().
1616  */
1617 static __inline vm_paddr_t
1618 pmap_pt2pg_zero(vm_page_t m)
1619 {
1620 	pt2_entry_t *cmap2_pte2p;
1621 	vm_paddr_t pa;
1622 	struct pcpu *pc;
1623 
1624 	pa = VM_PAGE_TO_PHYS(m);
1625 
1626 	/*
1627 	 * XXX: For now, we map whole page even if it's already zero,
1628 	 *      to sync it even if the sync is only DSB.
1629 	 */
1630 	sched_pin();
1631 	pc = get_pcpu();
1632 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1633 	mtx_lock(&pc->pc_cmap_lock);
1634 	if (pte2_load(cmap2_pte2p) != 0)
1635 		panic("%s: CMAP2 busy", __func__);
1636 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1637 	    vm_page_pte2_attr(m)));
1638 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1639 	if ((m->flags & PG_ZERO) == 0)
1640 		pagezero(pc->pc_cmap2_addr);
1641 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1642 	pte2_clear(cmap2_pte2p);
1643 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1644 
1645 	/*
1646 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1647 	 * could be rescheduled while still bound to the current CPU, only
1648 	 * to unpin itself immediately upon resuming execution.
1649 	 */
1650 	sched_unpin();
1651 	mtx_unlock(&pc->pc_cmap_lock);
1652 
1653 	return (pa);
1654 }
1655 
1656 /*
1657  *  Init just allocated page as L2 page table(s) holder
1658  *  and return its physical address.
1659  */
1660 static __inline vm_paddr_t
1661 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1662 {
1663 	vm_paddr_t pa;
1664 	pt2_entry_t *pte2p;
1665 
1666 	/* Check page attributes. */
1667 	if (m->md.pat_mode != pt_memattr)
1668 		pmap_page_set_memattr(m, pt_memattr);
1669 
1670 	/* Zero page and init wire counts. */
1671 	pa = pmap_pt2pg_zero(m);
1672 	pt2_wirecount_init(m);
1673 
1674 	/*
1675 	 * Map page to PT2MAP address space for given pmap.
1676 	 * Note that PT2MAP space is shared with all pmaps.
1677 	 */
1678 	if (pmap == kernel_pmap)
1679 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1680 	else {
1681 		pte2p = pmap_pt2tab_entry(pmap, va);
1682 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1683 	}
1684 
1685 	return (pa);
1686 }
1687 
1688 /*
1689  *  Initialize the pmap module.
1690  *  Called by vm_init, to initialize any structures that the pmap
1691  *  system needs to map virtual memory.
1692  */
1693 void
1694 pmap_init(void)
1695 {
1696 	vm_size_t s;
1697 	pt2_entry_t *pte2p, pte2;
1698 	u_int i, pte1_idx, pv_npg;
1699 
1700 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1701 
1702 	/*
1703 	 * Initialize the vm page array entries for kernel pmap's
1704 	 * L2 page table pages allocated in advance.
1705 	 */
1706 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1707 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1708 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1709 		vm_paddr_t pa;
1710 		vm_page_t m;
1711 
1712 		pte2 = pte2_load(pte2p);
1713 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1714 
1715 		pa = pte2_pa(pte2);
1716 		m = PHYS_TO_VM_PAGE(pa);
1717 		KASSERT(m >= vm_page_array &&
1718 		    m < &vm_page_array[vm_page_array_size],
1719 		    ("%s: L2 page table page is out of range", __func__));
1720 
1721 		m->pindex = pte1_idx;
1722 		m->phys_addr = pa;
1723 		pte1_idx += NPT2_IN_PG;
1724 	}
1725 
1726 	/*
1727 	 * Initialize the address space (zone) for the pv entries.  Set a
1728 	 * high water mark so that the system can recover from excessive
1729 	 * numbers of pv entries.
1730 	 */
1731 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1732 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1733 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1734 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1735 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1736 
1737 	/*
1738 	 * Are large page mappings enabled?
1739 	 */
1740 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1741 	if (sp_enabled) {
1742 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1743 		    ("%s: can't assign to pagesizes[1]", __func__));
1744 		pagesizes[1] = PTE1_SIZE;
1745 	}
1746 
1747 	/*
1748 	 * Calculate the size of the pv head table for sections.
1749 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1750 	 * Note that the table is only for sections which could be promoted.
1751 	 */
1752 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1753 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1754 	    - first_managed_pa) / PTE1_SIZE + 1;
1755 
1756 	/*
1757 	 * Allocate memory for the pv head table for sections.
1758 	 */
1759 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1760 	s = round_page(s);
1761 	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1762 	    M_WAITOK | M_ZERO);
1763 	for (i = 0; i < pv_npg; i++)
1764 		TAILQ_INIT(&pv_table[i].pv_list);
1765 
1766 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1767 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1768 	if (pv_chunkbase == NULL)
1769 		panic("%s: not enough kvm for pv chunks", __func__);
1770 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1771 }
1772 
1773 /*
1774  *  Add a list of wired pages to the kva
1775  *  this routine is only used for temporary
1776  *  kernel mappings that do not need to have
1777  *  page modification or references recorded.
1778  *  Note that old mappings are simply written
1779  *  over.  The page *must* be wired.
1780  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1781  */
1782 void
1783 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1784 {
1785 	u_int anychanged;
1786 	pt2_entry_t *epte2p, *pte2p, pte2;
1787 	vm_page_t m;
1788 	vm_paddr_t pa;
1789 
1790 	anychanged = 0;
1791 	pte2p = pt2map_entry(sva);
1792 	epte2p = pte2p + count;
1793 	while (pte2p < epte2p) {
1794 		m = *ma++;
1795 		pa = VM_PAGE_TO_PHYS(m);
1796 		pte2 = pte2_load(pte2p);
1797 		if ((pte2_pa(pte2) != pa) ||
1798 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1799 			anychanged++;
1800 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1801 			    vm_page_pte2_attr(m)));
1802 		}
1803 		pte2p++;
1804 	}
1805 	if (__predict_false(anychanged))
1806 		tlb_flush_range(sva, count * PAGE_SIZE);
1807 }
1808 
1809 /*
1810  *  This routine tears out page mappings from the
1811  *  kernel -- it is meant only for temporary mappings.
1812  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1813  */
1814 void
1815 pmap_qremove(vm_offset_t sva, int count)
1816 {
1817 	vm_offset_t va;
1818 
1819 	va = sva;
1820 	while (count-- > 0) {
1821 		pmap_kremove(va);
1822 		va += PAGE_SIZE;
1823 	}
1824 	tlb_flush_range(sva, va - sva);
1825 }
1826 
1827 /*
1828  *  Are we current address space or kernel?
1829  */
1830 static __inline int
1831 pmap_is_current(pmap_t pmap)
1832 {
1833 
1834 	return (pmap == kernel_pmap ||
1835 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1836 }
1837 
1838 /*
1839  *  If the given pmap is not the current or kernel pmap, the returned
1840  *  pte2 must be released by passing it to pmap_pte2_release().
1841  */
1842 static pt2_entry_t *
1843 pmap_pte2(pmap_t pmap, vm_offset_t va)
1844 {
1845 	pt1_entry_t pte1;
1846 	vm_paddr_t pt2pg_pa;
1847 
1848 	pte1 = pte1_load(pmap_pte1(pmap, va));
1849 	if (pte1_is_section(pte1))
1850 		panic("%s: attempt to map PTE1", __func__);
1851 	if (pte1_is_link(pte1)) {
1852 		/* Are we current address space or kernel? */
1853 		if (pmap_is_current(pmap))
1854 			return (pt2map_entry(va));
1855 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1856 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1857 		mtx_lock(&PMAP2mutex);
1858 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1859 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1860 			tlb_flush((vm_offset_t)PADDR2);
1861 		}
1862 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1863 	}
1864 	return (NULL);
1865 }
1866 
1867 /*
1868  *  Releases a pte2 that was obtained from pmap_pte2().
1869  *  Be prepared for the pte2p being NULL.
1870  */
1871 static __inline void
1872 pmap_pte2_release(pt2_entry_t *pte2p)
1873 {
1874 
1875 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1876 		mtx_unlock(&PMAP2mutex);
1877 	}
1878 }
1879 
1880 /*
1881  *  Super fast pmap_pte2 routine best used when scanning
1882  *  the pv lists.  This eliminates many coarse-grained
1883  *  invltlb calls.  Note that many of the pv list
1884  *  scans are across different pmaps.  It is very wasteful
1885  *  to do an entire tlb flush for checking a single mapping.
1886  *
1887  *  If the given pmap is not the current pmap, pvh_global_lock
1888  *  must be held and curthread pinned to a CPU.
1889  */
1890 static pt2_entry_t *
1891 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1892 {
1893 	pt1_entry_t pte1;
1894 	vm_paddr_t pt2pg_pa;
1895 
1896 	pte1 = pte1_load(pmap_pte1(pmap, va));
1897 	if (pte1_is_section(pte1))
1898 		panic("%s: attempt to map PTE1", __func__);
1899 	if (pte1_is_link(pte1)) {
1900 		/* Are we current address space or kernel? */
1901 		if (pmap_is_current(pmap))
1902 			return (pt2map_entry(va));
1903 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1904 		KASSERT(curthread->td_pinned > 0,
1905 		    ("%s: curthread not pinned", __func__));
1906 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1907 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1908 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1909 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1910 #ifdef SMP
1911 			PMAP1cpu = PCPU_GET(cpuid);
1912 #endif
1913 			tlb_flush_local((vm_offset_t)PADDR1);
1914 			PMAP1changed++;
1915 		} else
1916 #ifdef SMP
1917 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1918 			PMAP1cpu = PCPU_GET(cpuid);
1919 			tlb_flush_local((vm_offset_t)PADDR1);
1920 			PMAP1changedcpu++;
1921 		} else
1922 #endif
1923 			PMAP1unchanged++;
1924 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1925 	}
1926 	return (NULL);
1927 }
1928 
1929 /*
1930  *  Routine: pmap_extract
1931  *  Function:
1932  * 	Extract the physical page address associated
1933  *	with the given map/virtual_address pair.
1934  */
1935 vm_paddr_t
1936 pmap_extract(pmap_t pmap, vm_offset_t va)
1937 {
1938 	vm_paddr_t pa;
1939 	pt1_entry_t pte1;
1940 	pt2_entry_t *pte2p;
1941 
1942 	PMAP_LOCK(pmap);
1943 	pte1 = pte1_load(pmap_pte1(pmap, va));
1944 	if (pte1_is_section(pte1))
1945 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1946 	else if (pte1_is_link(pte1)) {
1947 		pte2p = pmap_pte2(pmap, va);
1948 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1949 		pmap_pte2_release(pte2p);
1950 	} else
1951 		pa = 0;
1952 	PMAP_UNLOCK(pmap);
1953 	return (pa);
1954 }
1955 
1956 /*
1957  *  Routine: pmap_extract_and_hold
1958  *  Function:
1959  *	Atomically extract and hold the physical page
1960  *	with the given pmap and virtual address pair
1961  *	if that mapping permits the given protection.
1962  */
1963 vm_page_t
1964 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1965 {
1966 	vm_paddr_t pa, lockpa;
1967 	pt1_entry_t pte1;
1968 	pt2_entry_t pte2, *pte2p;
1969 	vm_page_t m;
1970 
1971 	lockpa = 0;
1972 	m = NULL;
1973 	PMAP_LOCK(pmap);
1974 retry:
1975 	pte1 = pte1_load(pmap_pte1(pmap, va));
1976 	if (pte1_is_section(pte1)) {
1977 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1978 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1979 			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1980 				goto retry;
1981 			m = PHYS_TO_VM_PAGE(pa);
1982 			vm_page_hold(m);
1983 		}
1984 	} else if (pte1_is_link(pte1)) {
1985 		pte2p = pmap_pte2(pmap, va);
1986 		pte2 = pte2_load(pte2p);
1987 		pmap_pte2_release(pte2p);
1988 		if (pte2_is_valid(pte2) &&
1989 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
1990 			pa = pte2_pa(pte2);
1991 			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1992 				goto retry;
1993 			m = PHYS_TO_VM_PAGE(pa);
1994 			vm_page_hold(m);
1995 		}
1996 	}
1997 	PA_UNLOCK_COND(lockpa);
1998 	PMAP_UNLOCK(pmap);
1999 	return (m);
2000 }
2001 
2002 /*
2003  *  Grow the number of kernel L2 page table entries, if needed.
2004  */
2005 void
2006 pmap_growkernel(vm_offset_t addr)
2007 {
2008 	vm_page_t m;
2009 	vm_paddr_t pt2pg_pa, pt2_pa;
2010 	pt1_entry_t pte1;
2011 	pt2_entry_t pte2;
2012 
2013 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2014 	/*
2015 	 * All the time kernel_vm_end is first KVA for which underlying
2016 	 * L2 page table is either not allocated or linked from L1 page table
2017 	 * (not considering sections). Except for two possible cases:
2018 	 *
2019 	 *   (1) in the very beginning as long as pmap_growkernel() was
2020 	 *       not called, it could be first unused KVA (which is not
2021 	 *       rounded up to PTE1_SIZE),
2022 	 *
2023 	 *   (2) when all KVA space is mapped and kernel_map->max_offset
2024 	 *       address is not rounded up to PTE1_SIZE. (For example,
2025 	 *       it could be 0xFFFFFFFF.)
2026 	 */
2027 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2028 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2029 	addr = roundup2(addr, PTE1_SIZE);
2030 	if (addr - 1 >= kernel_map->max_offset)
2031 		addr = kernel_map->max_offset;
2032 	while (kernel_vm_end < addr) {
2033 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2034 		if (pte1_is_valid(pte1)) {
2035 			kernel_vm_end += PTE1_SIZE;
2036 			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2037 				kernel_vm_end = kernel_map->max_offset;
2038 				break;
2039 			}
2040 			continue;
2041 		}
2042 
2043 		/*
2044 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2045 		 * mappings are entered to new pmap all at once to avoid race
2046 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2047 		 * The same aplies to pmap_kenter_pt2tab().
2048 		 */
2049 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2050 
2051 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2052 		if (!pte2_is_valid(pte2)) {
2053 			/*
2054 			 * Install new PT2s page into kernel PT2TAB.
2055 			 */
2056 			m = vm_page_alloc(NULL,
2057 			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2058 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2059 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2060 			if (m == NULL)
2061 				panic("%s: no memory to grow kernel", __func__);
2062 			/*
2063 			 * QQQ: To link all new L2 page tables from L1 page
2064 			 *      table now and so pmap_kenter_pte1() them
2065 			 *      at once together with pmap_kenter_pt2tab()
2066 			 *      could be nice speed up. However,
2067 			 *      pmap_growkernel() does not happen so often...
2068 			 * QQQ: The other TTBR is another option.
2069 			 */
2070 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2071 			    m);
2072 		} else
2073 			pt2pg_pa = pte2_pa(pte2);
2074 
2075 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2076 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2077 
2078 		kernel_vm_end = kernel_vm_end_new;
2079 		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2080 			kernel_vm_end = kernel_map->max_offset;
2081 			break;
2082 		}
2083 	}
2084 }
2085 
2086 static int
2087 kvm_size(SYSCTL_HANDLER_ARGS)
2088 {
2089 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2090 
2091 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2092 }
2093 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2094     0, 0, kvm_size, "IU", "Size of KVM");
2095 
2096 static int
2097 kvm_free(SYSCTL_HANDLER_ARGS)
2098 {
2099 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2100 
2101 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2102 }
2103 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2104     0, 0, kvm_free, "IU", "Amount of KVM free");
2105 
2106 /***********************************************
2107  *
2108  *  Pmap allocation/deallocation routines.
2109  *
2110  ***********************************************/
2111 
2112 /*
2113  *  Initialize the pmap for the swapper process.
2114  */
2115 void
2116 pmap_pinit0(pmap_t pmap)
2117 {
2118 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2119 
2120 	PMAP_LOCK_INIT(pmap);
2121 
2122 	/*
2123 	 * Kernel page table directory and pmap stuff around is already
2124 	 * initialized, we are using it right now and here. So, finish
2125 	 * only PMAP structures initialization for process0 ...
2126 	 *
2127 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2128 	 * which is already included in the list "allpmaps", this pmap does
2129 	 * not need to be inserted into that list.
2130 	 */
2131 	pmap->pm_pt1 = kern_pt1;
2132 	pmap->pm_pt2tab = kern_pt2tab;
2133 	CPU_ZERO(&pmap->pm_active);
2134 	PCPU_SET(curpmap, pmap);
2135 	TAILQ_INIT(&pmap->pm_pvchunk);
2136 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2137 	CPU_SET(0, &pmap->pm_active);
2138 }
2139 
2140 static __inline void
2141 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2142     vm_offset_t eva)
2143 {
2144 	u_int idx, count;
2145 
2146 	idx = pte1_index(sva);
2147 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2148 	bcopy(spte1p + idx, dpte1p + idx, count);
2149 }
2150 
2151 static __inline void
2152 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2153     vm_offset_t eva)
2154 {
2155 	u_int idx, count;
2156 
2157 	idx = pt2tab_index(sva);
2158 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2159 	bcopy(spte2p + idx, dpte2p + idx, count);
2160 }
2161 
2162 /*
2163  *  Initialize a preallocated and zeroed pmap structure,
2164  *  such as one in a vmspace structure.
2165  */
2166 int
2167 pmap_pinit(pmap_t pmap)
2168 {
2169 	pt1_entry_t *pte1p;
2170 	pt2_entry_t *pte2p;
2171 	vm_paddr_t pa, pt2tab_pa;
2172 	u_int i;
2173 
2174 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2175 	    pmap->pm_pt1));
2176 
2177 	/*
2178 	 * No need to allocate L2 page table space yet but we do need
2179 	 * a valid L1 page table and PT2TAB table.
2180 	 *
2181 	 * Install shared kernel mappings to these tables. It's a little
2182 	 * tricky as some parts of KVA are reserved for vectors, devices,
2183 	 * and whatever else. These parts are supposed to be above
2184 	 * vm_max_kernel_address. Thus two regions should be installed:
2185 	 *
2186 	 *   (1) <KERNBASE, kernel_vm_end),
2187 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2188 	 *
2189 	 * QQQ: The second region should be stable enough to be installed
2190 	 *      only once in time when the tables are allocated.
2191 	 * QQQ: Maybe copy of both regions at once could be faster ...
2192 	 * QQQ: Maybe the other TTBR is an option.
2193 	 *
2194 	 * Finally, install own PT2TAB table to these tables.
2195 	 */
2196 
2197 	if (pmap->pm_pt1 == NULL) {
2198 		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
2199 		    NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
2200 		    pt_memattr);
2201 		if (pmap->pm_pt1 == NULL)
2202 			return (0);
2203 	}
2204 	if (pmap->pm_pt2tab == NULL) {
2205 		/*
2206 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2207 		 *      only, what should be the only size for 32 bit systems,
2208 		 *      then we could allocate it with vm_page_alloc() and all
2209 		 *      the stuff needed as other L2 page table pages.
2210 		 *      (2) Note that a process PT2TAB is special L2 page table
2211 		 *      page. Its mapping in kernel_arena is permanent and can
2212 		 *      be used no matter which process is current. Its mapping
2213 		 *      in PT2MAP can be used only for current process.
2214 		 */
2215 		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
2216 		    NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2217 		if (pmap->pm_pt2tab == NULL) {
2218 			/*
2219 			 * QQQ: As struct pmap is allocated from UMA with
2220 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2221 			 *      no allocation in pmap if initialization failed.
2222 			 */
2223 			kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
2224 			    NB_IN_PT1);
2225 			pmap->pm_pt1 = NULL;
2226 			return (0);
2227 		}
2228 		/*
2229 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2230 		 *      pte1 index of virtual address mapped by this page.
2231 		 *      It's not valid for non kernel PT2TABs themselves.
2232 		 *      The pindex of these pages can not be altered because
2233 		 *      of the way how they are allocated now. However, it
2234 		 *      should not be a problem.
2235 		 */
2236 	}
2237 
2238 	mtx_lock_spin(&allpmaps_lock);
2239 	/*
2240 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2241 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2242 	 */
2243 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2244 	    kernel_vm_end_new - 1);
2245 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2246 	    0xFFFFFFFF);
2247 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2248 	    kernel_vm_end_new - 1);
2249 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2250 	    0xFFFFFFFF);
2251 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2252 	mtx_unlock_spin(&allpmaps_lock);
2253 
2254 	/*
2255 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2256 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2257 	 * into shared PT2MAP space, so the mapping should be not global.
2258 	 */
2259 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2260 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2261 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2262 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2263 	}
2264 
2265 	/* Insert PT2MAP PT2s into pmap PT1. */
2266 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2267 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2268 		pte1_store(pte1p++, PTE1_LINK(pa));
2269 	}
2270 
2271 	/*
2272 	 * Now synchronize new mapping which was made above.
2273 	 */
2274 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2275 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2276 
2277 	CPU_ZERO(&pmap->pm_active);
2278 	TAILQ_INIT(&pmap->pm_pvchunk);
2279 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2280 
2281 	return (1);
2282 }
2283 
2284 #ifdef INVARIANTS
2285 static boolean_t
2286 pt2tab_user_is_empty(pt2_entry_t *tab)
2287 {
2288 	u_int i, end;
2289 
2290 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2291 	for (i = 0; i < end; i++)
2292 		if (tab[i] != 0) return (FALSE);
2293 	return (TRUE);
2294 }
2295 #endif
2296 /*
2297  *  Release any resources held by the given physical map.
2298  *  Called when a pmap initialized by pmap_pinit is being released.
2299  *  Should only be called if the map contains no valid mappings.
2300  */
2301 void
2302 pmap_release(pmap_t pmap)
2303 {
2304 #ifdef INVARIANTS
2305 	vm_offset_t start, end;
2306 #endif
2307 	KASSERT(pmap->pm_stats.resident_count == 0,
2308 	    ("%s: pmap resident count %ld != 0", __func__,
2309 	    pmap->pm_stats.resident_count));
2310 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2311 	    ("%s: has allocated user PT2(s)", __func__));
2312 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2313 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2314 
2315 	mtx_lock_spin(&allpmaps_lock);
2316 	LIST_REMOVE(pmap, pm_list);
2317 	mtx_unlock_spin(&allpmaps_lock);
2318 
2319 #ifdef INVARIANTS
2320 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2321 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2322 	bzero((char *)pmap->pm_pt1 + start, end - start);
2323 
2324 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2325 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2326 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2327 #endif
2328 	/*
2329 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2330 	 * so hopefully UMA vmspace_zone will always be inited with
2331 	 * UMA_ZONE_NOFREE flag.
2332 	 */
2333 }
2334 
2335 /*********************************************************
2336  *
2337  *  L2 table pages and their pages management routines.
2338  *
2339  *********************************************************/
2340 
2341 /*
2342  *  Virtual interface for L2 page table wire counting.
2343  *
2344  *  Each L2 page table in a page has own counter which counts a number of
2345  *  valid mappings in a table. Global page counter counts mappings in all
2346  *  tables in a page plus a single itself mapping in PT2TAB.
2347  *
2348  *  During a promotion we leave the associated L2 page table counter
2349  *  untouched, so the table (strictly speaking a page which holds it)
2350  *  is never freed if promoted.
2351  *
2352  *  If a page m->wire_count == 1 then no valid mappings exist in any L2 page
2353  *  table in the page and the page itself is only mapped in PT2TAB.
2354  */
2355 
2356 static __inline void
2357 pt2_wirecount_init(vm_page_t m)
2358 {
2359 	u_int i;
2360 
2361 	/*
2362 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2363 	 *       m->wire_count should be already set correctly.
2364 	 *       So, there is no need to set it again herein.
2365 	 */
2366 	for (i = 0; i < NPT2_IN_PG; i++)
2367 		m->md.pt2_wirecount[i] = 0;
2368 }
2369 
2370 static __inline void
2371 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2372 {
2373 
2374 	/*
2375 	 * Note: A just modificated pte2 (i.e. already allocated)
2376 	 *       is acquiring one extra reference which must be
2377 	 *       explicitly cleared. It influences the KASSERTs herein.
2378 	 *       All L2 page tables in a page always belong to the same
2379 	 *       pmap, so we allow only one extra reference for the page.
2380 	 */
2381 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2382 	    ("%s: PT2 is overflowing ...", __func__));
2383 	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2384 	    ("%s: PT2PG is overflowing ...", __func__));
2385 
2386 	m->wire_count++;
2387 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2388 }
2389 
2390 static __inline void
2391 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2392 {
2393 
2394 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2395 	    ("%s: PT2 is underflowing ...", __func__));
2396 	KASSERT(m->wire_count > 1,
2397 	    ("%s: PT2PG is underflowing ...", __func__));
2398 
2399 	m->wire_count--;
2400 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2401 }
2402 
2403 static __inline void
2404 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2405 {
2406 
2407 	KASSERT(count <= NPTE2_IN_PT2,
2408 	    ("%s: invalid count %u", __func__, count));
2409 	KASSERT(m->wire_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2410 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
2411 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2412 
2413 	m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2414 	m->wire_count += count;
2415 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2416 
2417 	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2418 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
2419 }
2420 
2421 static __inline uint32_t
2422 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2423 {
2424 
2425 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2426 }
2427 
2428 static __inline boolean_t
2429 pt2_is_empty(vm_page_t m, vm_offset_t va)
2430 {
2431 
2432 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2433 }
2434 
2435 static __inline boolean_t
2436 pt2_is_full(vm_page_t m, vm_offset_t va)
2437 {
2438 
2439 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2440 	    NPTE2_IN_PT2);
2441 }
2442 
2443 static __inline boolean_t
2444 pt2pg_is_empty(vm_page_t m)
2445 {
2446 
2447 	return (m->wire_count == 1);
2448 }
2449 
2450 /*
2451  *  This routine is called if the L2 page table
2452  *  is not mapped correctly.
2453  */
2454 static vm_page_t
2455 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2456 {
2457 	uint32_t pte1_idx;
2458 	pt1_entry_t *pte1p;
2459 	pt2_entry_t pte2;
2460 	vm_page_t  m;
2461 	vm_paddr_t pt2pg_pa, pt2_pa;
2462 
2463 	pte1_idx = pte1_index(va);
2464 	pte1p = pmap->pm_pt1 + pte1_idx;
2465 
2466 	KASSERT(pte1_load(pte1p) == 0,
2467 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2468 	    pte1_load(pte1p)));
2469 
2470 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2471 	if (!pte2_is_valid(pte2)) {
2472 		/*
2473 		 * Install new PT2s page into pmap PT2TAB.
2474 		 */
2475 		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2476 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2477 		if (m == NULL) {
2478 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2479 				PMAP_UNLOCK(pmap);
2480 				rw_wunlock(&pvh_global_lock);
2481 				vm_wait(NULL);
2482 				rw_wlock(&pvh_global_lock);
2483 				PMAP_LOCK(pmap);
2484 			}
2485 
2486 			/*
2487 			 * Indicate the need to retry.  While waiting,
2488 			 * the L2 page table page may have been allocated.
2489 			 */
2490 			return (NULL);
2491 		}
2492 		pmap->pm_stats.resident_count++;
2493 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2494 	} else {
2495 		pt2pg_pa = pte2_pa(pte2);
2496 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2497 	}
2498 
2499 	pt2_wirecount_inc(m, pte1_idx);
2500 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2501 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2502 
2503 	return (m);
2504 }
2505 
2506 static vm_page_t
2507 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2508 {
2509 	u_int pte1_idx;
2510 	pt1_entry_t *pte1p, pte1;
2511 	vm_page_t m;
2512 
2513 	pte1_idx = pte1_index(va);
2514 retry:
2515 	pte1p = pmap->pm_pt1 + pte1_idx;
2516 	pte1 = pte1_load(pte1p);
2517 
2518 	/*
2519 	 * This supports switching from a 1MB page to a
2520 	 * normal 4K page.
2521 	 */
2522 	if (pte1_is_section(pte1)) {
2523 		(void)pmap_demote_pte1(pmap, pte1p, va);
2524 		/*
2525 		 * Reload pte1 after demotion.
2526 		 *
2527 		 * Note: Demotion can even fail as either PT2 is not find for
2528 		 *       the virtual address or PT2PG can not be allocated.
2529 		 */
2530 		pte1 = pte1_load(pte1p);
2531 	}
2532 
2533 	/*
2534 	 * If the L2 page table page is mapped, we just increment the
2535 	 * hold count, and activate it.
2536 	 */
2537 	if (pte1_is_link(pte1)) {
2538 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2539 		pt2_wirecount_inc(m, pte1_idx);
2540 	} else  {
2541 		/*
2542 		 * Here if the PT2 isn't mapped, or if it has
2543 		 * been deallocated.
2544 		 */
2545 		m = _pmap_allocpte2(pmap, va, flags);
2546 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2547 			goto retry;
2548 	}
2549 
2550 	return (m);
2551 }
2552 
2553 /*
2554  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2555  *  add the page to the specified list of pages that will be released to the
2556  *  physical memory manager after the TLB has been updated.
2557  */
2558 static __inline void
2559 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2560 {
2561 
2562 	/*
2563 	 * Put page on a list so that it is released after
2564 	 * *ALL* TLB shootdown is done
2565 	 */
2566 #ifdef PMAP_DEBUG
2567 	pmap_zero_page_check(m);
2568 #endif
2569 	m->flags |= PG_ZERO;
2570 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2571 }
2572 
2573 /*
2574  *  Unwire L2 page tables page.
2575  */
2576 static void
2577 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2578 {
2579 	pt1_entry_t *pte1p, opte1 __unused;
2580 	pt2_entry_t *pte2p;
2581 	uint32_t i;
2582 
2583 	KASSERT(pt2pg_is_empty(m),
2584 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2585 
2586 	/*
2587 	 * Unmap all L2 page tables in the page from L1 page table.
2588 	 *
2589 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2590 	 * earlier. However, we are doing that this way.
2591 	 */
2592 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2593 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2594 	pte1p = pmap->pm_pt1 + m->pindex;
2595 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2596 		KASSERT(m->md.pt2_wirecount[i] == 0,
2597 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2598 		opte1 = pte1_load(pte1p);
2599 		if (pte1_is_link(opte1)) {
2600 			pte1_clear(pte1p);
2601 			/*
2602 			 * Flush intermediate TLB cache.
2603 			 */
2604 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2605 		}
2606 #ifdef INVARIANTS
2607 		else
2608 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2609 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2610 			    pmap, va, opte1, i));
2611 #endif
2612 	}
2613 
2614 	/*
2615 	 * Unmap the page from PT2TAB.
2616 	 */
2617 	pte2p = pmap_pt2tab_entry(pmap, va);
2618 	(void)pt2tab_load_clear(pte2p);
2619 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2620 
2621 	m->wire_count = 0;
2622 	pmap->pm_stats.resident_count--;
2623 
2624 	/*
2625 	 * This barrier is so that the ordinary store unmapping
2626 	 * the L2 page table page is globally performed before TLB shoot-
2627 	 * down is begun.
2628 	 */
2629 	wmb();
2630 	vm_wire_sub(1);
2631 }
2632 
2633 /*
2634  *  Decrements a L2 page table page's wire count, which is used to record the
2635  *  number of valid page table entries within the page.  If the wire count
2636  *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2637  *  page table page was unmapped and FALSE otherwise.
2638  */
2639 static __inline boolean_t
2640 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2641 {
2642 	pt2_wirecount_dec(m, pte1_index(va));
2643 	if (pt2pg_is_empty(m)) {
2644 		/*
2645 		 * QQQ: Wire count is zero, so whole page should be zero and
2646 		 *      we can set PG_ZERO flag to it.
2647 		 *      Note that when promotion is enabled, it takes some
2648 		 *      more efforts. See pmap_unwire_pt2_all() below.
2649 		 */
2650 		pmap_unwire_pt2pg(pmap, va, m);
2651 		pmap_add_delayed_free_list(m, free);
2652 		return (TRUE);
2653 	} else
2654 		return (FALSE);
2655 }
2656 
2657 /*
2658  *  Drop a L2 page table page's wire count at once, which is used to record
2659  *  the number of valid L2 page table entries within the page. If the wire
2660  *  count drops to zero, then the L2 page table page is unmapped.
2661  */
2662 static __inline void
2663 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2664     struct spglist *free)
2665 {
2666 	u_int pte1_idx = pte1_index(va);
2667 
2668 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2669 		("%s: PT2 page's pindex is wrong", __func__));
2670 	KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
2671 	    ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
2672 	    pt2_wirecount_get(m, pte1_idx)));
2673 
2674 	/*
2675 	 * It's possible that the L2 page table was never used.
2676 	 * It happened in case that a section was created without promotion.
2677 	 */
2678 	if (pt2_is_full(m, va)) {
2679 		pt2_wirecount_set(m, pte1_idx, 0);
2680 
2681 		/*
2682 		 * QQQ: We clear L2 page table now, so when L2 page table page
2683 		 *      is going to be freed, we can set it PG_ZERO flag ...
2684 		 *      This function is called only on section mappings, so
2685 		 *      hopefully it's not to big overload.
2686 		 *
2687 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2688 		 *      used for zeroing.
2689 		 */
2690 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2691 	}
2692 #ifdef INVARIANTS
2693 	else
2694 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2695 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2696 #endif
2697 	if (pt2pg_is_empty(m)) {
2698 		pmap_unwire_pt2pg(pmap, va, m);
2699 		pmap_add_delayed_free_list(m, free);
2700 	}
2701 }
2702 
2703 /*
2704  *  After removing a L2 page table entry, this routine is used to
2705  *  conditionally free the page, and manage the hold/wire counts.
2706  */
2707 static boolean_t
2708 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2709 {
2710 	pt1_entry_t pte1;
2711 	vm_page_t mpte;
2712 
2713 	if (va >= VM_MAXUSER_ADDRESS)
2714 		return (FALSE);
2715 	pte1 = pte1_load(pmap_pte1(pmap, va));
2716 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2717 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2718 }
2719 
2720 /*************************************
2721  *
2722  *  Page management routines.
2723  *
2724  *************************************/
2725 
2726 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2727 CTASSERT(_NPCM == 11);
2728 CTASSERT(_NPCPV == 336);
2729 
2730 static __inline struct pv_chunk *
2731 pv_to_chunk(pv_entry_t pv)
2732 {
2733 
2734 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2735 }
2736 
2737 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2738 
2739 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2740 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2741 
2742 static const uint32_t pc_freemask[_NPCM] = {
2743 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2744 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2745 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2746 	PC_FREE0_9, PC_FREE10
2747 };
2748 
2749 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2750 	"Current number of pv entries");
2751 
2752 #ifdef PV_STATS
2753 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2754 
2755 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2756     "Current number of pv entry chunks");
2757 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2758     "Current number of pv entry chunks allocated");
2759 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2760     "Current number of pv entry chunks frees");
2761 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2762     0, "Number of times tried to get a chunk page but failed.");
2763 
2764 static long pv_entry_frees, pv_entry_allocs;
2765 static int pv_entry_spare;
2766 
2767 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2768     "Current number of pv entry frees");
2769 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2770     0, "Current number of pv entry allocs");
2771 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2772     "Current number of spare pv entries");
2773 #endif
2774 
2775 /*
2776  *  Is given page managed?
2777  */
2778 static __inline bool
2779 is_managed(vm_paddr_t pa)
2780 {
2781 	vm_page_t m;
2782 
2783 	m = PHYS_TO_VM_PAGE(pa);
2784 	if (m == NULL)
2785 		return (false);
2786 	return ((m->oflags & VPO_UNMANAGED) == 0);
2787 }
2788 
2789 static __inline bool
2790 pte1_is_managed(pt1_entry_t pte1)
2791 {
2792 
2793 	return (is_managed(pte1_pa(pte1)));
2794 }
2795 
2796 static __inline bool
2797 pte2_is_managed(pt2_entry_t pte2)
2798 {
2799 
2800 	return (is_managed(pte2_pa(pte2)));
2801 }
2802 
2803 /*
2804  *  We are in a serious low memory condition.  Resort to
2805  *  drastic measures to free some pages so we can allocate
2806  *  another pv entry chunk.
2807  */
2808 static vm_page_t
2809 pmap_pv_reclaim(pmap_t locked_pmap)
2810 {
2811 	struct pch newtail;
2812 	struct pv_chunk *pc;
2813 	struct md_page *pvh;
2814 	pt1_entry_t *pte1p;
2815 	pmap_t pmap;
2816 	pt2_entry_t *pte2p, tpte2;
2817 	pv_entry_t pv;
2818 	vm_offset_t va;
2819 	vm_page_t m, m_pc;
2820 	struct spglist free;
2821 	uint32_t inuse;
2822 	int bit, field, freed;
2823 
2824 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2825 	pmap = NULL;
2826 	m_pc = NULL;
2827 	SLIST_INIT(&free);
2828 	TAILQ_INIT(&newtail);
2829 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2830 	    SLIST_EMPTY(&free))) {
2831 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2832 		if (pmap != pc->pc_pmap) {
2833 			if (pmap != NULL) {
2834 				if (pmap != locked_pmap)
2835 					PMAP_UNLOCK(pmap);
2836 			}
2837 			pmap = pc->pc_pmap;
2838 			/* Avoid deadlock and lock recursion. */
2839 			if (pmap > locked_pmap)
2840 				PMAP_LOCK(pmap);
2841 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2842 				pmap = NULL;
2843 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2844 				continue;
2845 			}
2846 		}
2847 
2848 		/*
2849 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2850 		 */
2851 		freed = 0;
2852 		for (field = 0; field < _NPCM; field++) {
2853 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2854 			    inuse != 0; inuse &= ~(1UL << bit)) {
2855 				bit = ffs(inuse) - 1;
2856 				pv = &pc->pc_pventry[field * 32 + bit];
2857 				va = pv->pv_va;
2858 				pte1p = pmap_pte1(pmap, va);
2859 				if (pte1_is_section(pte1_load(pte1p)))
2860 					continue;
2861 				pte2p = pmap_pte2(pmap, va);
2862 				tpte2 = pte2_load(pte2p);
2863 				if ((tpte2 & PTE2_W) == 0)
2864 					tpte2 = pte2_load_clear(pte2p);
2865 				pmap_pte2_release(pte2p);
2866 				if ((tpte2 & PTE2_W) != 0)
2867 					continue;
2868 				KASSERT(tpte2 != 0,
2869 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2870 				    pmap, va));
2871 				pmap_tlb_flush(pmap, va);
2872 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2873 				if (pte2_is_dirty(tpte2))
2874 					vm_page_dirty(m);
2875 				if ((tpte2 & PTE2_A) != 0)
2876 					vm_page_aflag_set(m, PGA_REFERENCED);
2877 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2878 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2879 				    (m->flags & PG_FICTITIOUS) == 0) {
2880 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2881 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2882 						vm_page_aflag_clear(m,
2883 						    PGA_WRITEABLE);
2884 					}
2885 				}
2886 				pc->pc_map[field] |= 1UL << bit;
2887 				pmap_unuse_pt2(pmap, va, &free);
2888 				freed++;
2889 			}
2890 		}
2891 		if (freed == 0) {
2892 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2893 			continue;
2894 		}
2895 		/* Every freed mapping is for a 4 KB page. */
2896 		pmap->pm_stats.resident_count -= freed;
2897 		PV_STAT(pv_entry_frees += freed);
2898 		PV_STAT(pv_entry_spare += freed);
2899 		pv_entry_count -= freed;
2900 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2901 		for (field = 0; field < _NPCM; field++)
2902 			if (pc->pc_map[field] != pc_freemask[field]) {
2903 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2904 				    pc_list);
2905 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2906 
2907 				/*
2908 				 * One freed pv entry in locked_pmap is
2909 				 * sufficient.
2910 				 */
2911 				if (pmap == locked_pmap)
2912 					goto out;
2913 				break;
2914 			}
2915 		if (field == _NPCM) {
2916 			PV_STAT(pv_entry_spare -= _NPCPV);
2917 			PV_STAT(pc_chunk_count--);
2918 			PV_STAT(pc_chunk_frees++);
2919 			/* Entire chunk is free; return it. */
2920 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2921 			pmap_qremove((vm_offset_t)pc, 1);
2922 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2923 			break;
2924 		}
2925 	}
2926 out:
2927 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2928 	if (pmap != NULL) {
2929 		if (pmap != locked_pmap)
2930 			PMAP_UNLOCK(pmap);
2931 	}
2932 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2933 		m_pc = SLIST_FIRST(&free);
2934 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2935 		/* Recycle a freed page table page. */
2936 		m_pc->wire_count = 1;
2937 		vm_wire_add(1);
2938 	}
2939 	vm_page_free_pages_toq(&free, false);
2940 	return (m_pc);
2941 }
2942 
2943 static void
2944 free_pv_chunk(struct pv_chunk *pc)
2945 {
2946 	vm_page_t m;
2947 
2948 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2949 	PV_STAT(pv_entry_spare -= _NPCPV);
2950 	PV_STAT(pc_chunk_count--);
2951 	PV_STAT(pc_chunk_frees++);
2952 	/* entire chunk is free, return it */
2953 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2954 	pmap_qremove((vm_offset_t)pc, 1);
2955 	vm_page_unwire(m, PQ_NONE);
2956 	vm_page_free(m);
2957 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2958 }
2959 
2960 /*
2961  *  Free the pv_entry back to the free list.
2962  */
2963 static void
2964 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2965 {
2966 	struct pv_chunk *pc;
2967 	int idx, field, bit;
2968 
2969 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2970 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2971 	PV_STAT(pv_entry_frees++);
2972 	PV_STAT(pv_entry_spare++);
2973 	pv_entry_count--;
2974 	pc = pv_to_chunk(pv);
2975 	idx = pv - &pc->pc_pventry[0];
2976 	field = idx / 32;
2977 	bit = idx % 32;
2978 	pc->pc_map[field] |= 1ul << bit;
2979 	for (idx = 0; idx < _NPCM; idx++)
2980 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2981 			/*
2982 			 * 98% of the time, pc is already at the head of the
2983 			 * list.  If it isn't already, move it to the head.
2984 			 */
2985 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2986 			    pc)) {
2987 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2988 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2989 				    pc_list);
2990 			}
2991 			return;
2992 		}
2993 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2994 	free_pv_chunk(pc);
2995 }
2996 
2997 /*
2998  *  Get a new pv_entry, allocating a block from the system
2999  *  when needed.
3000  */
3001 static pv_entry_t
3002 get_pv_entry(pmap_t pmap, boolean_t try)
3003 {
3004 	static const struct timeval printinterval = { 60, 0 };
3005 	static struct timeval lastprint;
3006 	int bit, field;
3007 	pv_entry_t pv;
3008 	struct pv_chunk *pc;
3009 	vm_page_t m;
3010 
3011 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3012 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3013 	PV_STAT(pv_entry_allocs++);
3014 	pv_entry_count++;
3015 	if (pv_entry_count > pv_entry_high_water)
3016 		if (ratecheck(&lastprint, &printinterval))
3017 			printf("Approaching the limit on PV entries, consider "
3018 			    "increasing either the vm.pmap.shpgperproc or the "
3019 			    "vm.pmap.pv_entry_max tunable.\n");
3020 retry:
3021 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3022 	if (pc != NULL) {
3023 		for (field = 0; field < _NPCM; field++) {
3024 			if (pc->pc_map[field]) {
3025 				bit = ffs(pc->pc_map[field]) - 1;
3026 				break;
3027 			}
3028 		}
3029 		if (field < _NPCM) {
3030 			pv = &pc->pc_pventry[field * 32 + bit];
3031 			pc->pc_map[field] &= ~(1ul << bit);
3032 			/* If this was the last item, move it to tail */
3033 			for (field = 0; field < _NPCM; field++)
3034 				if (pc->pc_map[field] != 0) {
3035 					PV_STAT(pv_entry_spare--);
3036 					return (pv);	/* not full, return */
3037 				}
3038 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3039 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3040 			PV_STAT(pv_entry_spare--);
3041 			return (pv);
3042 		}
3043 	}
3044 	/*
3045 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3046 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3047 	 * remain non-empty until pmap_pte2list_alloc() completes.
3048 	 */
3049 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3050 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3051 		if (try) {
3052 			pv_entry_count--;
3053 			PV_STAT(pc_chunk_tryfail++);
3054 			return (NULL);
3055 		}
3056 		m = pmap_pv_reclaim(pmap);
3057 		if (m == NULL)
3058 			goto retry;
3059 	}
3060 	PV_STAT(pc_chunk_count++);
3061 	PV_STAT(pc_chunk_allocs++);
3062 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3063 	pmap_qenter((vm_offset_t)pc, &m, 1);
3064 	pc->pc_pmap = pmap;
3065 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3066 	for (field = 1; field < _NPCM; field++)
3067 		pc->pc_map[field] = pc_freemask[field];
3068 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3069 	pv = &pc->pc_pventry[0];
3070 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3071 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3072 	return (pv);
3073 }
3074 
3075 /*
3076  *  Create a pv entry for page at pa for
3077  *  (pmap, va).
3078  */
3079 static void
3080 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3081 {
3082 	pv_entry_t pv;
3083 
3084 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3085 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3086 	pv = get_pv_entry(pmap, FALSE);
3087 	pv->pv_va = va;
3088 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3089 }
3090 
3091 static __inline pv_entry_t
3092 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3093 {
3094 	pv_entry_t pv;
3095 
3096 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3097 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3098 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3099 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3100 			break;
3101 		}
3102 	}
3103 	return (pv);
3104 }
3105 
3106 static void
3107 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3108 {
3109 	pv_entry_t pv;
3110 
3111 	pv = pmap_pvh_remove(pvh, pmap, va);
3112 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3113 	free_pv_entry(pmap, pv);
3114 }
3115 
3116 static void
3117 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3118 {
3119 	struct md_page *pvh;
3120 
3121 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3122 	pmap_pvh_free(&m->md, pmap, va);
3123 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3124 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3125 		if (TAILQ_EMPTY(&pvh->pv_list))
3126 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3127 	}
3128 }
3129 
3130 static void
3131 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3132 {
3133 	struct md_page *pvh;
3134 	pv_entry_t pv;
3135 	vm_offset_t va_last;
3136 	vm_page_t m;
3137 
3138 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3139 	KASSERT((pa & PTE1_OFFSET) == 0,
3140 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3141 
3142 	/*
3143 	 * Transfer the 1mpage's pv entry for this mapping to the first
3144 	 * page's pv list.
3145 	 */
3146 	pvh = pa_to_pvh(pa);
3147 	va = pte1_trunc(va);
3148 	pv = pmap_pvh_remove(pvh, pmap, va);
3149 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3150 	m = PHYS_TO_VM_PAGE(pa);
3151 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3152 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3153 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3154 	do {
3155 		m++;
3156 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3157 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3158 		va += PAGE_SIZE;
3159 		pmap_insert_entry(pmap, va, m);
3160 	} while (va < va_last);
3161 }
3162 
3163 #if VM_NRESERVLEVEL > 0
3164 static void
3165 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3166 {
3167 	struct md_page *pvh;
3168 	pv_entry_t pv;
3169 	vm_offset_t va_last;
3170 	vm_page_t m;
3171 
3172 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3173 	KASSERT((pa & PTE1_OFFSET) == 0,
3174 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3175 
3176 	/*
3177 	 * Transfer the first page's pv entry for this mapping to the
3178 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3179 	 * to get_pv_entry(), a transfer avoids the possibility that
3180 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3181 	 * removes one of the mappings that is being promoted.
3182 	 */
3183 	m = PHYS_TO_VM_PAGE(pa);
3184 	va = pte1_trunc(va);
3185 	pv = pmap_pvh_remove(&m->md, pmap, va);
3186 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3187 	pvh = pa_to_pvh(pa);
3188 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3189 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3190 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3191 	do {
3192 		m++;
3193 		va += PAGE_SIZE;
3194 		pmap_pvh_free(&m->md, pmap, va);
3195 	} while (va < va_last);
3196 }
3197 #endif
3198 
3199 /*
3200  *  Conditionally create a pv entry.
3201  */
3202 static boolean_t
3203 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3204 {
3205 	pv_entry_t pv;
3206 
3207 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3208 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3209 	if (pv_entry_count < pv_entry_high_water &&
3210 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3211 		pv->pv_va = va;
3212 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3213 		return (TRUE);
3214 	} else
3215 		return (FALSE);
3216 }
3217 
3218 /*
3219  *  Create the pv entries for each of the pages within a section.
3220  */
3221 static boolean_t
3222 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3223 {
3224 	struct md_page *pvh;
3225 	pv_entry_t pv;
3226 
3227 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3228 	if (pv_entry_count < pv_entry_high_water &&
3229 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3230 		pv->pv_va = va;
3231 		pvh = pa_to_pvh(pa);
3232 		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3233 		return (TRUE);
3234 	} else
3235 		return (FALSE);
3236 }
3237 
3238 static inline void
3239 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3240 {
3241 
3242 	/* Kill all the small mappings or the big one only. */
3243 	if (pte1_is_section(npte1))
3244 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3245 	else
3246 		pmap_tlb_flush(pmap, pte1_trunc(va));
3247 }
3248 
3249 /*
3250  *  Update kernel pte1 on all pmaps.
3251  *
3252  *  The following function is called only on one cpu with disabled interrupts.
3253  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3254  *  nobody can invoke explicit hardware table walk during the update of pte1.
3255  *  Unsolicited hardware table walk can still happen, invoked by speculative
3256  *  data or instruction prefetch or even by speculative hardware table walk.
3257  *
3258  *  The break-before-make approach should be implemented here. However, it's
3259  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3260  *  itself unexpectedly but voluntarily.
3261  */
3262 static void
3263 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3264 {
3265 	pmap_t pmap;
3266 	pt1_entry_t *pte1p;
3267 
3268 	/*
3269 	 * Get current pmap. Interrupts should be disabled here
3270 	 * so PCPU_GET() is done atomically.
3271 	 */
3272 	pmap = PCPU_GET(curpmap);
3273 	if (pmap == NULL)
3274 		pmap = kernel_pmap;
3275 
3276 	/*
3277 	 * (1) Change pte1 on current pmap.
3278 	 * (2) Flush all obsolete TLB entries on current CPU.
3279 	 * (3) Change pte1 on all pmaps.
3280 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3281 	 */
3282 
3283 	pte1p = pmap_pte1(pmap, va);
3284 	pte1_store(pte1p, npte1);
3285 
3286 	/* Kill all the small mappings or the big one only. */
3287 	if (pte1_is_section(npte1)) {
3288 		pmap_pte1_kern_promotions++;
3289 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3290 	} else {
3291 		pmap_pte1_kern_demotions++;
3292 		tlb_flush_local(pte1_trunc(va));
3293 	}
3294 
3295 	/*
3296 	 * In SMP case, this function is called when all cpus are at smp
3297 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3298 	 * In UP case, the function is called with this lock locked.
3299 	 */
3300 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3301 		pte1p = pmap_pte1(pmap, va);
3302 		pte1_store(pte1p, npte1);
3303 	}
3304 
3305 #ifdef SMP
3306 	/* Kill all the small mappings or the big one only. */
3307 	if (pte1_is_section(npte1))
3308 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3309 	else
3310 		tlb_flush(pte1_trunc(va));
3311 #endif
3312 }
3313 
3314 #ifdef SMP
3315 struct pte1_action {
3316 	vm_offset_t va;
3317 	pt1_entry_t npte1;
3318 	u_int update;		/* CPU that updates the PTE1 */
3319 };
3320 
3321 static void
3322 pmap_update_pte1_action(void *arg)
3323 {
3324 	struct pte1_action *act = arg;
3325 
3326 	if (act->update == PCPU_GET(cpuid))
3327 		pmap_update_pte1_kernel(act->va, act->npte1);
3328 }
3329 
3330 /*
3331  *  Change pte1 on current pmap.
3332  *  Note that kernel pte1 must be changed on all pmaps.
3333  *
3334  *  According to the architecture reference manual published by ARM,
3335  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3336  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3337  *  a viable system. In contrast, on x86 processors, it is not specified which
3338  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3339  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3340  *  Black).
3341  *
3342  *  It's a problem when either promotion or demotion is being done. The pte1
3343  *  update and appropriate TLB flush must be done atomically in general.
3344  */
3345 static void
3346 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3347     pt1_entry_t npte1)
3348 {
3349 
3350 	if (pmap == kernel_pmap) {
3351 		struct pte1_action act;
3352 
3353 		sched_pin();
3354 		act.va = va;
3355 		act.npte1 = npte1;
3356 		act.update = PCPU_GET(cpuid);
3357 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3358 		    pmap_update_pte1_action, NULL, &act);
3359 		sched_unpin();
3360 	} else {
3361 		register_t cspr;
3362 
3363 		/*
3364 		 * Use break-before-make approach for changing userland
3365 		 * mappings. It can cause L1 translation aborts on other
3366 		 * cores in SMP case. So, special treatment is implemented
3367 		 * in pmap_fault(). To reduce the likelihood that another core
3368 		 * will be affected by the broken mapping, disable interrupts
3369 		 * until the mapping change is completed.
3370 		 */
3371 		cspr = disable_interrupts(PSR_I | PSR_F);
3372 		pte1_clear(pte1p);
3373 		pmap_tlb_flush_pte1(pmap, va, npte1);
3374 		pte1_store(pte1p, npte1);
3375 		restore_interrupts(cspr);
3376 	}
3377 }
3378 #else
3379 static void
3380 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3381     pt1_entry_t npte1)
3382 {
3383 
3384 	if (pmap == kernel_pmap) {
3385 		mtx_lock_spin(&allpmaps_lock);
3386 		pmap_update_pte1_kernel(va, npte1);
3387 		mtx_unlock_spin(&allpmaps_lock);
3388 	} else {
3389 		register_t cspr;
3390 
3391 		/*
3392 		 * Use break-before-make approach for changing userland
3393 		 * mappings. It's absolutely safe in UP case when interrupts
3394 		 * are disabled.
3395 		 */
3396 		cspr = disable_interrupts(PSR_I | PSR_F);
3397 		pte1_clear(pte1p);
3398 		pmap_tlb_flush_pte1(pmap, va, npte1);
3399 		pte1_store(pte1p, npte1);
3400 		restore_interrupts(cspr);
3401 	}
3402 }
3403 #endif
3404 
3405 #if VM_NRESERVLEVEL > 0
3406 /*
3407  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3408  *  within a single page table page (PT2) to a single 1MB page mapping.
3409  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3410  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3411  *  mappings must have identical characteristics.
3412  *
3413  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3414  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3415  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3416  *  read the PTE1 from the kernel pmap.
3417  */
3418 static void
3419 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3420 {
3421 	pt1_entry_t npte1;
3422 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3423 	pt2_entry_t *pte2p, pte2;
3424 	vm_offset_t pteva __unused;
3425 	vm_page_t m __unused;
3426 
3427 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3428 	    pmap, va, pte1_load(pte1p), pte1p));
3429 
3430 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3431 
3432 	/*
3433 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3434 	 * either invalid, unused, or does not map the first 4KB physical page
3435 	 * within a 1MB page.
3436 	 */
3437 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3438 	fpte2 = pte2_load(fpte2p);
3439 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3440 	    (PTE2_A | PTE2_V)) {
3441 		pmap_pte1_p_failures++;
3442 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3443 		    __func__, va, pmap);
3444 		return;
3445 	}
3446 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3447 		pmap_pte1_p_failures++;
3448 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3449 		    __func__, va, pmap);
3450 		return;
3451 	}
3452 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3453 		/*
3454 		 * When page is not modified, PTE2_RO can be set without
3455 		 * a TLB invalidation.
3456 		 */
3457 		fpte2 |= PTE2_RO;
3458 		pte2_store(fpte2p, fpte2);
3459 	}
3460 
3461 	/*
3462 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3463 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3464 	 * characteristics to the first PTE2.
3465 	 */
3466 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3467 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3468 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3469 		pte2 = pte2_load(pte2p);
3470 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3471 			pmap_pte1_p_failures++;
3472 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3473 			    __func__, va, pmap);
3474 			return;
3475 		}
3476 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3477 			/*
3478 			 * When page is not modified, PTE2_RO can be set
3479 			 * without a TLB invalidation. See note above.
3480 			 */
3481 			pte2 |= PTE2_RO;
3482 			pte2_store(pte2p, pte2);
3483 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3484 			    PTE2_FRAME);
3485 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3486 			    __func__, pteva, pmap);
3487 		}
3488 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3489 			pmap_pte1_p_failures++;
3490 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3491 			    __func__, va, pmap);
3492 			return;
3493 		}
3494 
3495 		fpte2_fav -= PTE2_SIZE;
3496 	}
3497 	/*
3498 	 * The page table page in its current state will stay in PT2TAB
3499 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3500 	 * or destroyed by pmap_remove_pte1().
3501 	 *
3502 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3503 	 */
3504 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3505 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3506 	    ("%s: PT2 page is out of range", __func__));
3507 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3508 	    ("%s: PT2 page's pindex is wrong", __func__));
3509 
3510 	/*
3511 	 * Get pte1 from pte2 format.
3512 	 */
3513 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3514 
3515 	/*
3516 	 * Promote the pv entries.
3517 	 */
3518 	if (pte2_is_managed(fpte2))
3519 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3520 
3521 	/*
3522 	 * Promote the mappings.
3523 	 */
3524 	pmap_change_pte1(pmap, pte1p, va, npte1);
3525 
3526 	pmap_pte1_promotions++;
3527 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3528 	    __func__, va, pmap);
3529 
3530 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3531 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3532 }
3533 #endif /* VM_NRESERVLEVEL > 0 */
3534 
3535 /*
3536  *  Zero L2 page table page.
3537  */
3538 static __inline void
3539 pmap_clear_pt2(pt2_entry_t *fpte2p)
3540 {
3541 	pt2_entry_t *pte2p;
3542 
3543 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3544 		pte2_clear(pte2p);
3545 
3546 }
3547 
3548 /*
3549  *  Removes a 1MB page mapping from the kernel pmap.
3550  */
3551 static void
3552 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3553 {
3554 	vm_page_t m;
3555 	uint32_t pte1_idx;
3556 	pt2_entry_t *fpte2p;
3557 	vm_paddr_t pt2_pa;
3558 
3559 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3560 	m = pmap_pt2_page(pmap, va);
3561 	if (m == NULL)
3562 		/*
3563 		 * QQQ: Is this function called only on promoted pte1?
3564 		 *      We certainly do section mappings directly
3565 		 *      (without promotion) in kernel !!!
3566 		 */
3567 		panic("%s: missing pt2 page", __func__);
3568 
3569 	pte1_idx = pte1_index(va);
3570 
3571 	/*
3572 	 * Initialize the L2 page table.
3573 	 */
3574 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3575 	pmap_clear_pt2(fpte2p);
3576 
3577 	/*
3578 	 * Remove the mapping.
3579 	 */
3580 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3581 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3582 
3583 	/*
3584 	 * QQQ: We do not need to invalidate PT2MAP mapping
3585 	 * as we did not change it. I.e. the L2 page table page
3586 	 * was and still is mapped the same way.
3587 	 */
3588 }
3589 
3590 /*
3591  *  Do the things to unmap a section in a process
3592  */
3593 static void
3594 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3595     struct spglist *free)
3596 {
3597 	pt1_entry_t opte1;
3598 	struct md_page *pvh;
3599 	vm_offset_t eva, va;
3600 	vm_page_t m;
3601 
3602 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3603 	    pte1_load(pte1p), pte1p));
3604 
3605 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3606 	KASSERT((sva & PTE1_OFFSET) == 0,
3607 	    ("%s: sva is not 1mpage aligned", __func__));
3608 
3609 	/*
3610 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3611 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3612 	 * sufficient.
3613 	 */
3614 	opte1 = pte1_load_clear(pte1p);
3615 	pmap_tlb_flush(pmap, sva);
3616 
3617 	if (pte1_is_wired(opte1))
3618 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3619 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3620 	if (pte1_is_managed(opte1)) {
3621 		pvh = pa_to_pvh(pte1_pa(opte1));
3622 		pmap_pvh_free(pvh, pmap, sva);
3623 		eva = sva + PTE1_SIZE;
3624 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3625 		    va < eva; va += PAGE_SIZE, m++) {
3626 			if (pte1_is_dirty(opte1))
3627 				vm_page_dirty(m);
3628 			if (opte1 & PTE1_A)
3629 				vm_page_aflag_set(m, PGA_REFERENCED);
3630 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3631 			    TAILQ_EMPTY(&pvh->pv_list))
3632 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3633 		}
3634 	}
3635 	if (pmap == kernel_pmap) {
3636 		/*
3637 		 * L2 page table(s) can't be removed from kernel map as
3638 		 * kernel counts on it (stuff around pmap_growkernel()).
3639 		 */
3640 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3641 	} else {
3642 		/*
3643 		 * Get associated L2 page table page.
3644 		 * It's possible that the page was never allocated.
3645 		 */
3646 		m = pmap_pt2_page(pmap, sva);
3647 		if (m != NULL)
3648 			pmap_unwire_pt2_all(pmap, sva, m, free);
3649 	}
3650 }
3651 
3652 /*
3653  *  Fills L2 page table page with mappings to consecutive physical pages.
3654  */
3655 static __inline void
3656 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3657 {
3658 	pt2_entry_t *pte2p;
3659 
3660 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3661 		pte2_store(pte2p, npte2);
3662 		npte2 += PTE2_SIZE;
3663 	}
3664 }
3665 
3666 /*
3667  *  Tries to demote a 1MB page mapping. If demotion fails, the
3668  *  1MB page mapping is invalidated.
3669  */
3670 static boolean_t
3671 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3672 {
3673 	pt1_entry_t opte1, npte1;
3674 	pt2_entry_t *fpte2p, npte2;
3675 	vm_paddr_t pt2pg_pa, pt2_pa;
3676 	vm_page_t m;
3677 	struct spglist free;
3678 	uint32_t pte1_idx, isnew = 0;
3679 
3680 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3681 	    pmap, va, pte1_load(pte1p), pte1p));
3682 
3683 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3684 
3685 	opte1 = pte1_load(pte1p);
3686 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3687 
3688 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3689 		KASSERT(!pte1_is_wired(opte1),
3690 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3691 
3692 		/*
3693 		 * Invalidate the 1MB page mapping and return
3694 		 * "failure" if the mapping was never accessed or the
3695 		 * allocation of the new page table page fails.
3696 		 */
3697 		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3698 		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3699 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3700 			SLIST_INIT(&free);
3701 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3702 			vm_page_free_pages_toq(&free, false);
3703 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3704 			    __func__, va, pmap);
3705 			return (FALSE);
3706 		}
3707 		if (va < VM_MAXUSER_ADDRESS)
3708 			pmap->pm_stats.resident_count++;
3709 
3710 		isnew = 1;
3711 
3712 		/*
3713 		 * We init all L2 page tables in the page even if
3714 		 * we are going to change everything for one L2 page
3715 		 * table in a while.
3716 		 */
3717 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3718 	} else {
3719 		if (va < VM_MAXUSER_ADDRESS) {
3720 			if (pt2_is_empty(m, va))
3721 				isnew = 1; /* Demoting section w/o promotion. */
3722 #ifdef INVARIANTS
3723 			else
3724 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3725 				    " count %u", __func__,
3726 				    pt2_wirecount_get(m, pte1_index(va))));
3727 #endif
3728 		}
3729 	}
3730 
3731 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3732 	pte1_idx = pte1_index(va);
3733 	/*
3734 	 * If the pmap is current, then the PT2MAP can provide access to
3735 	 * the page table page (promoted L2 page tables are not unmapped).
3736 	 * Otherwise, temporarily map the L2 page table page (m) into
3737 	 * the kernel's address space at either PADDR1 or PADDR2.
3738 	 *
3739 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3740 	 */
3741 	if (pmap_is_current(pmap))
3742 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3743 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3744 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3745 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3746 #ifdef SMP
3747 			PMAP1cpu = PCPU_GET(cpuid);
3748 #endif
3749 			tlb_flush_local((vm_offset_t)PADDR1);
3750 			PMAP1changed++;
3751 		} else
3752 #ifdef SMP
3753 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3754 			PMAP1cpu = PCPU_GET(cpuid);
3755 			tlb_flush_local((vm_offset_t)PADDR1);
3756 			PMAP1changedcpu++;
3757 		} else
3758 #endif
3759 			PMAP1unchanged++;
3760 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3761 	} else {
3762 		mtx_lock(&PMAP2mutex);
3763 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3764 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3765 			tlb_flush((vm_offset_t)PADDR2);
3766 		}
3767 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3768 	}
3769 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3770 	npte1 = PTE1_LINK(pt2_pa);
3771 
3772 	KASSERT((opte1 & PTE1_A) != 0,
3773 	    ("%s: opte1 is missing PTE1_A", __func__));
3774 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3775 	    ("%s: opte1 has PTE1_NM", __func__));
3776 
3777 	/*
3778 	 *  Get pte2 from pte1 format.
3779 	*/
3780 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3781 
3782 	/*
3783 	 * If the L2 page table page is new, initialize it. If the mapping
3784 	 * has changed attributes, update the page table entries.
3785 	 */
3786 	if (isnew != 0) {
3787 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3788 		pmap_fill_pt2(fpte2p, npte2);
3789 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3790 		    (npte2 & PTE2_PROMOTE))
3791 		pmap_fill_pt2(fpte2p, npte2);
3792 
3793 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3794 	    ("%s: fpte2p and npte2 map different physical addresses",
3795 	    __func__));
3796 
3797 	if (fpte2p == PADDR2)
3798 		mtx_unlock(&PMAP2mutex);
3799 
3800 	/*
3801 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3802 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3803 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3804 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3805 	 * between the read above and the store below.
3806 	 */
3807 	pmap_change_pte1(pmap, pte1p, va, npte1);
3808 
3809 	/*
3810 	 * Demote the pv entry. This depends on the earlier demotion
3811 	 * of the mapping. Specifically, the (re)creation of a per-
3812 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3813 	 * which might reclaim a newly (re)created per-page pv entry
3814 	 * and destroy the associated mapping. In order to destroy
3815 	 * the mapping, the PTE1 must have already changed from mapping
3816 	 * the 1mpage to referencing the page table page.
3817 	 */
3818 	if (pte1_is_managed(opte1))
3819 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3820 
3821 	pmap_pte1_demotions++;
3822 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3823 	    __func__, va, pmap);
3824 
3825 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3826 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3827 	return (TRUE);
3828 }
3829 
3830 /*
3831  *	Insert the given physical page (p) at
3832  *	the specified virtual address (v) in the
3833  *	target physical map with the protection requested.
3834  *
3835  *	If specified, the page will be wired down, meaning
3836  *	that the related pte can not be reclaimed.
3837  *
3838  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3839  *	or lose information.  That is, this routine must actually
3840  *	insert this page into the given map NOW.
3841  */
3842 int
3843 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3844     u_int flags, int8_t psind)
3845 {
3846 	pt1_entry_t *pte1p;
3847 	pt2_entry_t *pte2p;
3848 	pt2_entry_t npte2, opte2;
3849 	pv_entry_t pv;
3850 	vm_paddr_t opa, pa;
3851 	vm_page_t mpte2, om;
3852 	boolean_t wired;
3853 
3854 	va = trunc_page(va);
3855 	mpte2 = NULL;
3856 	wired = (flags & PMAP_ENTER_WIRED) != 0;
3857 
3858 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3859 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3860 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3861 	    va));
3862 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3863 		VM_OBJECT_ASSERT_LOCKED(m->object);
3864 
3865 	rw_wlock(&pvh_global_lock);
3866 	PMAP_LOCK(pmap);
3867 	sched_pin();
3868 
3869 	/*
3870 	 * In the case that a page table page is not
3871 	 * resident, we are creating it here.
3872 	 */
3873 	if (va < VM_MAXUSER_ADDRESS) {
3874 		mpte2 = pmap_allocpte2(pmap, va, flags);
3875 		if (mpte2 == NULL) {
3876 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3877 			    ("pmap_allocpte2 failed with sleep allowed"));
3878 			sched_unpin();
3879 			rw_wunlock(&pvh_global_lock);
3880 			PMAP_UNLOCK(pmap);
3881 			return (KERN_RESOURCE_SHORTAGE);
3882 		}
3883 	}
3884 	pte1p = pmap_pte1(pmap, va);
3885 	if (pte1_is_section(pte1_load(pte1p)))
3886 		panic("%s: attempted on 1MB page", __func__);
3887 	pte2p = pmap_pte2_quick(pmap, va);
3888 	if (pte2p == NULL)
3889 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3890 
3891 	om = NULL;
3892 	pa = VM_PAGE_TO_PHYS(m);
3893 	opte2 = pte2_load(pte2p);
3894 	opa = pte2_pa(opte2);
3895 	/*
3896 	 * Mapping has not changed, must be protection or wiring change.
3897 	 */
3898 	if (pte2_is_valid(opte2) && (opa == pa)) {
3899 		/*
3900 		 * Wiring change, just update stats. We don't worry about
3901 		 * wiring PT2 pages as they remain resident as long as there
3902 		 * are valid mappings in them. Hence, if a user page is wired,
3903 		 * the PT2 page will be also.
3904 		 */
3905 		if (wired && !pte2_is_wired(opte2))
3906 			pmap->pm_stats.wired_count++;
3907 		else if (!wired && pte2_is_wired(opte2))
3908 			pmap->pm_stats.wired_count--;
3909 
3910 		/*
3911 		 * Remove extra pte2 reference
3912 		 */
3913 		if (mpte2)
3914 			pt2_wirecount_dec(mpte2, pte1_index(va));
3915 		if (pte2_is_managed(opte2))
3916 			om = m;
3917 		goto validate;
3918 	}
3919 
3920 	/*
3921 	 * QQQ: We think that changing physical address on writeable mapping
3922 	 *      is not safe. Well, maybe on kernel address space with correct
3923 	 *      locking, it can make a sense. However, we have no idea why
3924 	 *      anyone should do that on user address space. Are we wrong?
3925 	 */
3926 	KASSERT((opa == 0) || (opa == pa) ||
3927 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3928 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3929 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3930 
3931 	pv = NULL;
3932 
3933 	/*
3934 	 * Mapping has changed, invalidate old range and fall through to
3935 	 * handle validating new mapping.
3936 	 */
3937 	if (opa) {
3938 		if (pte2_is_wired(opte2))
3939 			pmap->pm_stats.wired_count--;
3940 		if (pte2_is_managed(opte2)) {
3941 			om = PHYS_TO_VM_PAGE(opa);
3942 			pv = pmap_pvh_remove(&om->md, pmap, va);
3943 		}
3944 		/*
3945 		 * Remove extra pte2 reference
3946 		 */
3947 		if (mpte2 != NULL)
3948 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3949 	} else
3950 		pmap->pm_stats.resident_count++;
3951 
3952 	/*
3953 	 * Enter on the PV list if part of our managed memory.
3954 	 */
3955 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3956 		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3957 		    ("%s: managed mapping within the clean submap", __func__));
3958 		if (pv == NULL)
3959 			pv = get_pv_entry(pmap, FALSE);
3960 		pv->pv_va = va;
3961 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3962 	} else if (pv != NULL)
3963 		free_pv_entry(pmap, pv);
3964 
3965 	/*
3966 	 * Increment counters
3967 	 */
3968 	if (wired)
3969 		pmap->pm_stats.wired_count++;
3970 
3971 validate:
3972 	/*
3973 	 * Now validate mapping with desired protection/wiring.
3974 	 */
3975 	npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
3976 	if (prot & VM_PROT_WRITE) {
3977 		if (pte2_is_managed(npte2))
3978 			vm_page_aflag_set(m, PGA_WRITEABLE);
3979 	}
3980 	else
3981 		npte2 |= PTE2_RO;
3982 	if ((prot & VM_PROT_EXECUTE) == 0)
3983 		npte2 |= PTE2_NX;
3984 	if (wired)
3985 		npte2 |= PTE2_W;
3986 	if (va < VM_MAXUSER_ADDRESS)
3987 		npte2 |= PTE2_U;
3988 	if (pmap != kernel_pmap)
3989 		npte2 |= PTE2_NG;
3990 
3991 	/*
3992 	 * If the mapping or permission bits are different, we need
3993 	 * to update the pte2.
3994 	 *
3995 	 * QQQ: Think again and again what to do
3996 	 *      if the mapping is going to be changed!
3997 	 */
3998 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
3999 		/*
4000 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4001 		 * is set. Do it now, before the mapping is stored and made
4002 		 * valid for hardware table walk. If done later, there is a race
4003 		 * for other threads of current process in lazy loading case.
4004 		 * Don't do it for kernel memory which is mapped with exec
4005 		 * permission even if the memory isn't going to hold executable
4006 		 * code. The only time when icache sync is needed is after
4007 		 * kernel module is loaded and the relocation info is processed.
4008 		 * And it's done in elf_cpu_load_file().
4009 		 *
4010 		 * QQQ: (1) Does it exist any better way where
4011 		 *          or how to sync icache?
4012 		 *      (2) Now, we do it on a page basis.
4013 		 */
4014 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4015 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4016 		    (opa != pa || (opte2 & PTE2_NX)))
4017 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4018 
4019 		npte2 |= PTE2_A;
4020 		if (flags & VM_PROT_WRITE)
4021 			npte2 &= ~PTE2_NM;
4022 		if (opte2 & PTE2_V) {
4023 			/* Change mapping with break-before-make approach. */
4024 			opte2 = pte2_load_clear(pte2p);
4025 			pmap_tlb_flush(pmap, va);
4026 			pte2_store(pte2p, npte2);
4027 			if (opte2 & PTE2_A) {
4028 				if (pte2_is_managed(opte2))
4029 					vm_page_aflag_set(om, PGA_REFERENCED);
4030 			}
4031 			if (pte2_is_dirty(opte2)) {
4032 				if (pte2_is_managed(opte2))
4033 					vm_page_dirty(om);
4034 			}
4035 			if (pte2_is_managed(opte2) &&
4036 			    TAILQ_EMPTY(&om->md.pv_list) &&
4037 			    ((om->flags & PG_FICTITIOUS) != 0 ||
4038 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4039 				vm_page_aflag_clear(om, PGA_WRITEABLE);
4040 		} else
4041 			pte2_store(pte2p, npte2);
4042 	}
4043 #if 0
4044 	else {
4045 		/*
4046 		 * QQQ: In time when both access and not mofified bits are
4047 		 *      emulated by software, this should not happen. Some
4048 		 *      analysis is need, if this really happen. Missing
4049 		 *      tlb flush somewhere could be the reason.
4050 		 */
4051 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4052 		    va, opte2, npte2);
4053 	}
4054 #endif
4055 
4056 #if VM_NRESERVLEVEL > 0
4057 	/*
4058 	 * If both the L2 page table page and the reservation are fully
4059 	 * populated, then attempt promotion.
4060 	 */
4061 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4062 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4063 	    vm_reserv_level_iffullpop(m) == 0)
4064 		pmap_promote_pte1(pmap, pte1p, va);
4065 #endif
4066 	sched_unpin();
4067 	rw_wunlock(&pvh_global_lock);
4068 	PMAP_UNLOCK(pmap);
4069 	return (KERN_SUCCESS);
4070 }
4071 
4072 /*
4073  *  Do the things to unmap a page in a process.
4074  */
4075 static int
4076 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4077     struct spglist *free)
4078 {
4079 	pt2_entry_t opte2;
4080 	vm_page_t m;
4081 
4082 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4083 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4084 
4085 	/* Clear and invalidate the mapping. */
4086 	opte2 = pte2_load_clear(pte2p);
4087 	pmap_tlb_flush(pmap, va);
4088 
4089 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4090 	    __func__, pmap, va, opte2));
4091 
4092 	if (opte2 & PTE2_W)
4093 		pmap->pm_stats.wired_count -= 1;
4094 	pmap->pm_stats.resident_count -= 1;
4095 	if (pte2_is_managed(opte2)) {
4096 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4097 		if (pte2_is_dirty(opte2))
4098 			vm_page_dirty(m);
4099 		if (opte2 & PTE2_A)
4100 			vm_page_aflag_set(m, PGA_REFERENCED);
4101 		pmap_remove_entry(pmap, m, va);
4102 	}
4103 	return (pmap_unuse_pt2(pmap, va, free));
4104 }
4105 
4106 /*
4107  *  Remove a single page from a process address space.
4108  */
4109 static void
4110 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4111 {
4112 	pt2_entry_t *pte2p;
4113 
4114 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4115 	KASSERT(curthread->td_pinned > 0,
4116 	    ("%s: curthread not pinned", __func__));
4117 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4118 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4119 	    !pte2_is_valid(pte2_load(pte2p)))
4120 		return;
4121 	pmap_remove_pte2(pmap, pte2p, va, free);
4122 }
4123 
4124 /*
4125  *  Remove the given range of addresses from the specified map.
4126  *
4127  *  It is assumed that the start and end are properly
4128  *  rounded to the page size.
4129  */
4130 void
4131 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4132 {
4133 	vm_offset_t nextva;
4134 	pt1_entry_t *pte1p, pte1;
4135 	pt2_entry_t *pte2p, pte2;
4136 	struct spglist free;
4137 
4138 	/*
4139 	 * Perform an unsynchronized read. This is, however, safe.
4140 	 */
4141 	if (pmap->pm_stats.resident_count == 0)
4142 		return;
4143 
4144 	SLIST_INIT(&free);
4145 
4146 	rw_wlock(&pvh_global_lock);
4147 	sched_pin();
4148 	PMAP_LOCK(pmap);
4149 
4150 	/*
4151 	 * Special handling of removing one page. A very common
4152 	 * operation and easy to short circuit some code.
4153 	 */
4154 	if (sva + PAGE_SIZE == eva) {
4155 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4156 		if (pte1_is_link(pte1)) {
4157 			pmap_remove_page(pmap, sva, &free);
4158 			goto out;
4159 		}
4160 	}
4161 
4162 	for (; sva < eva; sva = nextva) {
4163 		/*
4164 		 * Calculate address for next L2 page table.
4165 		 */
4166 		nextva = pte1_trunc(sva + PTE1_SIZE);
4167 		if (nextva < sva)
4168 			nextva = eva;
4169 		if (pmap->pm_stats.resident_count == 0)
4170 			break;
4171 
4172 		pte1p = pmap_pte1(pmap, sva);
4173 		pte1 = pte1_load(pte1p);
4174 
4175 		/*
4176 		 * Weed out invalid mappings. Note: we assume that the L1 page
4177 		 * table is always allocated, and in kernel virtual.
4178 		 */
4179 		if (pte1 == 0)
4180 			continue;
4181 
4182 		if (pte1_is_section(pte1)) {
4183 			/*
4184 			 * Are we removing the entire large page?  If not,
4185 			 * demote the mapping and fall through.
4186 			 */
4187 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4188 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4189 				continue;
4190 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4191 				/* The large page mapping was destroyed. */
4192 				continue;
4193 			}
4194 #ifdef INVARIANTS
4195 			else {
4196 				/* Update pte1 after demotion. */
4197 				pte1 = pte1_load(pte1p);
4198 			}
4199 #endif
4200 		}
4201 
4202 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4203 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4204 
4205 		/*
4206 		 * Limit our scan to either the end of the va represented
4207 		 * by the current L2 page table page, or to the end of the
4208 		 * range being removed.
4209 		 */
4210 		if (nextva > eva)
4211 			nextva = eva;
4212 
4213 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4214 		    pte2p++, sva += PAGE_SIZE) {
4215 			pte2 = pte2_load(pte2p);
4216 			if (!pte2_is_valid(pte2))
4217 				continue;
4218 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4219 				break;
4220 		}
4221 	}
4222 out:
4223 	sched_unpin();
4224 	rw_wunlock(&pvh_global_lock);
4225 	PMAP_UNLOCK(pmap);
4226 	vm_page_free_pages_toq(&free, false);
4227 }
4228 
4229 /*
4230  *	Routine:	pmap_remove_all
4231  *	Function:
4232  *		Removes this physical page from
4233  *		all physical maps in which it resides.
4234  *		Reflects back modify bits to the pager.
4235  *
4236  *	Notes:
4237  *		Original versions of this routine were very
4238  *		inefficient because they iteratively called
4239  *		pmap_remove (slow...)
4240  */
4241 
4242 void
4243 pmap_remove_all(vm_page_t m)
4244 {
4245 	struct md_page *pvh;
4246 	pv_entry_t pv;
4247 	pmap_t pmap;
4248 	pt2_entry_t *pte2p, opte2;
4249 	pt1_entry_t *pte1p;
4250 	vm_offset_t va;
4251 	struct spglist free;
4252 
4253 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4254 	    ("%s: page %p is not managed", __func__, m));
4255 	SLIST_INIT(&free);
4256 	rw_wlock(&pvh_global_lock);
4257 	sched_pin();
4258 	if ((m->flags & PG_FICTITIOUS) != 0)
4259 		goto small_mappings;
4260 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4261 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4262 		va = pv->pv_va;
4263 		pmap = PV_PMAP(pv);
4264 		PMAP_LOCK(pmap);
4265 		pte1p = pmap_pte1(pmap, va);
4266 		(void)pmap_demote_pte1(pmap, pte1p, va);
4267 		PMAP_UNLOCK(pmap);
4268 	}
4269 small_mappings:
4270 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4271 		pmap = PV_PMAP(pv);
4272 		PMAP_LOCK(pmap);
4273 		pmap->pm_stats.resident_count--;
4274 		pte1p = pmap_pte1(pmap, pv->pv_va);
4275 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4276 		    "a 1mpage in page %p's pv list", __func__, m));
4277 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4278 		opte2 = pte2_load_clear(pte2p);
4279 		pmap_tlb_flush(pmap, pv->pv_va);
4280 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4281 		    __func__, pmap, pv->pv_va));
4282 		if (pte2_is_wired(opte2))
4283 			pmap->pm_stats.wired_count--;
4284 		if (opte2 & PTE2_A)
4285 			vm_page_aflag_set(m, PGA_REFERENCED);
4286 
4287 		/*
4288 		 * Update the vm_page_t clean and reference bits.
4289 		 */
4290 		if (pte2_is_dirty(opte2))
4291 			vm_page_dirty(m);
4292 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4293 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4294 		free_pv_entry(pmap, pv);
4295 		PMAP_UNLOCK(pmap);
4296 	}
4297 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4298 	sched_unpin();
4299 	rw_wunlock(&pvh_global_lock);
4300 	vm_page_free_pages_toq(&free, false);
4301 }
4302 
4303 /*
4304  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4305  *  good coding style, a.k.a. 80 character line width limit hell.
4306  */
4307 static __inline void
4308 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4309     struct spglist *free)
4310 {
4311 	vm_paddr_t pa;
4312 	vm_page_t m, mt, mpt2pg;
4313 	struct md_page *pvh;
4314 
4315 	pa = pte1_pa(pte1);
4316 	m = PHYS_TO_VM_PAGE(pa);
4317 
4318 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4319 	    __func__, m, m->phys_addr, pa));
4320 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4321 	    m < &vm_page_array[vm_page_array_size],
4322 	    ("%s: bad pte1 %#x", __func__, pte1));
4323 
4324 	if (pte1_is_dirty(pte1)) {
4325 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4326 			vm_page_dirty(mt);
4327 	}
4328 
4329 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4330 	pvh = pa_to_pvh(pa);
4331 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4332 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4333 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4334 			if (TAILQ_EMPTY(&mt->md.pv_list))
4335 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4336 	}
4337 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4338 	if (mpt2pg != NULL)
4339 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4340 }
4341 
4342 /*
4343  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4344  *  good coding style, a.k.a. 80 character line width limit hell.
4345  */
4346 static __inline void
4347 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4348     struct spglist *free)
4349 {
4350 	vm_paddr_t pa;
4351 	vm_page_t m;
4352 	struct md_page *pvh;
4353 
4354 	pa = pte2_pa(pte2);
4355 	m = PHYS_TO_VM_PAGE(pa);
4356 
4357 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4358 	    __func__, m, m->phys_addr, pa));
4359 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4360 	    m < &vm_page_array[vm_page_array_size],
4361 	    ("%s: bad pte2 %#x", __func__, pte2));
4362 
4363 	if (pte2_is_dirty(pte2))
4364 		vm_page_dirty(m);
4365 
4366 	pmap->pm_stats.resident_count--;
4367 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4368 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4369 		pvh = pa_to_pvh(pa);
4370 		if (TAILQ_EMPTY(&pvh->pv_list))
4371 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4372 	}
4373 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4374 }
4375 
4376 /*
4377  *  Remove all pages from specified address space this aids process
4378  *  exit speeds. Also, this code is special cased for current process
4379  *  only, but can have the more generic (and slightly slower) mode enabled.
4380  *  This is much faster than pmap_remove in the case of running down
4381  *  an entire address space.
4382  */
4383 void
4384 pmap_remove_pages(pmap_t pmap)
4385 {
4386 	pt1_entry_t *pte1p, pte1;
4387 	pt2_entry_t *pte2p, pte2;
4388 	pv_entry_t pv;
4389 	struct pv_chunk *pc, *npc;
4390 	struct spglist free;
4391 	int field, idx;
4392 	int32_t bit;
4393 	uint32_t inuse, bitmask;
4394 	boolean_t allfree;
4395 
4396 	/*
4397 	 * Assert that the given pmap is only active on the current
4398 	 * CPU.  Unfortunately, we cannot block another CPU from
4399 	 * activating the pmap while this function is executing.
4400 	 */
4401 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4402 	    ("%s: non-current pmap %p", __func__, pmap));
4403 #if defined(SMP) && defined(INVARIANTS)
4404 	{
4405 		cpuset_t other_cpus;
4406 
4407 		sched_pin();
4408 		other_cpus = pmap->pm_active;
4409 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4410 		sched_unpin();
4411 		KASSERT(CPU_EMPTY(&other_cpus),
4412 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4413 	}
4414 #endif
4415 	SLIST_INIT(&free);
4416 	rw_wlock(&pvh_global_lock);
4417 	PMAP_LOCK(pmap);
4418 	sched_pin();
4419 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4420 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4421 		    __func__, pmap, pc->pc_pmap));
4422 		allfree = TRUE;
4423 		for (field = 0; field < _NPCM; field++) {
4424 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4425 			while (inuse != 0) {
4426 				bit = ffs(inuse) - 1;
4427 				bitmask = 1UL << bit;
4428 				idx = field * 32 + bit;
4429 				pv = &pc->pc_pventry[idx];
4430 				inuse &= ~bitmask;
4431 
4432 				/*
4433 				 * Note that we cannot remove wired pages
4434 				 * from a process' mapping at this time
4435 				 */
4436 				pte1p = pmap_pte1(pmap, pv->pv_va);
4437 				pte1 = pte1_load(pte1p);
4438 				if (pte1_is_section(pte1)) {
4439 					if (pte1_is_wired(pte1))  {
4440 						allfree = FALSE;
4441 						continue;
4442 					}
4443 					pte1_clear(pte1p);
4444 					pmap_remove_pte1_quick(pmap, pte1, pv,
4445 					    &free);
4446 				}
4447 				else if (pte1_is_link(pte1)) {
4448 					pte2p = pt2map_entry(pv->pv_va);
4449 					pte2 = pte2_load(pte2p);
4450 
4451 					if (!pte2_is_valid(pte2)) {
4452 						printf("%s: pmap %p va %#x "
4453 						    "pte2 %#x\n", __func__,
4454 						    pmap, pv->pv_va, pte2);
4455 						panic("bad pte2");
4456 					}
4457 
4458 					if (pte2_is_wired(pte2))   {
4459 						allfree = FALSE;
4460 						continue;
4461 					}
4462 					pte2_clear(pte2p);
4463 					pmap_remove_pte2_quick(pmap, pte2, pv,
4464 					    &free);
4465 				} else {
4466 					printf("%s: pmap %p va %#x pte1 %#x\n",
4467 					    __func__, pmap, pv->pv_va, pte1);
4468 					panic("bad pte1");
4469 				}
4470 
4471 				/* Mark free */
4472 				PV_STAT(pv_entry_frees++);
4473 				PV_STAT(pv_entry_spare++);
4474 				pv_entry_count--;
4475 				pc->pc_map[field] |= bitmask;
4476 			}
4477 		}
4478 		if (allfree) {
4479 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4480 			free_pv_chunk(pc);
4481 		}
4482 	}
4483 	tlb_flush_all_ng_local();
4484 	sched_unpin();
4485 	rw_wunlock(&pvh_global_lock);
4486 	PMAP_UNLOCK(pmap);
4487 	vm_page_free_pages_toq(&free, false);
4488 }
4489 
4490 /*
4491  *  This code makes some *MAJOR* assumptions:
4492  *  1. Current pmap & pmap exists.
4493  *  2. Not wired.
4494  *  3. Read access.
4495  *  4. No L2 page table pages.
4496  *  but is *MUCH* faster than pmap_enter...
4497  */
4498 static vm_page_t
4499 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4500     vm_prot_t prot, vm_page_t mpt2pg)
4501 {
4502 	pt2_entry_t *pte2p, pte2;
4503 	vm_paddr_t pa;
4504 	struct spglist free;
4505 	uint32_t l2prot;
4506 
4507 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4508 	    (m->oflags & VPO_UNMANAGED) != 0,
4509 	    ("%s: managed mapping within the clean submap", __func__));
4510 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4511 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4512 
4513 	/*
4514 	 * In the case that a L2 page table page is not
4515 	 * resident, we are creating it here.
4516 	 */
4517 	if (va < VM_MAXUSER_ADDRESS) {
4518 		u_int pte1_idx;
4519 		pt1_entry_t pte1, *pte1p;
4520 		vm_paddr_t pt2_pa;
4521 
4522 		/*
4523 		 * Get L1 page table things.
4524 		 */
4525 		pte1_idx = pte1_index(va);
4526 		pte1p = pmap_pte1(pmap, va);
4527 		pte1 = pte1_load(pte1p);
4528 
4529 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4530 			/*
4531 			 * Each of NPT2_IN_PG L2 page tables on the page can
4532 			 * come here. Make sure that associated L1 page table
4533 			 * link is established.
4534 			 *
4535 			 * QQQ: It comes that we don't establish all links to
4536 			 *      L2 page tables for newly allocated L2 page
4537 			 *      tables page.
4538 			 */
4539 			KASSERT(!pte1_is_section(pte1),
4540 			    ("%s: pte1 %#x is section", __func__, pte1));
4541 			if (!pte1_is_link(pte1)) {
4542 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4543 				    pte1_idx);
4544 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4545 			}
4546 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4547 		} else {
4548 			/*
4549 			 * If the L2 page table page is mapped, we just
4550 			 * increment the hold count, and activate it.
4551 			 */
4552 			if (pte1_is_section(pte1)) {
4553 				return (NULL);
4554 			} else if (pte1_is_link(pte1)) {
4555 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4556 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4557 			} else {
4558 				mpt2pg = _pmap_allocpte2(pmap, va,
4559 				    PMAP_ENTER_NOSLEEP);
4560 				if (mpt2pg == NULL)
4561 					return (NULL);
4562 			}
4563 		}
4564 	} else {
4565 		mpt2pg = NULL;
4566 	}
4567 
4568 	/*
4569 	 * This call to pt2map_entry() makes the assumption that we are
4570 	 * entering the page into the current pmap.  In order to support
4571 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4572 	 * But that isn't as quick as pt2map_entry().
4573 	 */
4574 	pte2p = pt2map_entry(va);
4575 	pte2 = pte2_load(pte2p);
4576 	if (pte2_is_valid(pte2)) {
4577 		if (mpt2pg != NULL) {
4578 			/*
4579 			 * Remove extra pte2 reference
4580 			 */
4581 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4582 			mpt2pg = NULL;
4583 		}
4584 		return (NULL);
4585 	}
4586 
4587 	/*
4588 	 * Enter on the PV list if part of our managed memory.
4589 	 */
4590 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4591 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4592 		if (mpt2pg != NULL) {
4593 			SLIST_INIT(&free);
4594 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4595 				pmap_tlb_flush(pmap, va);
4596 				vm_page_free_pages_toq(&free, false);
4597 			}
4598 
4599 			mpt2pg = NULL;
4600 		}
4601 		return (NULL);
4602 	}
4603 
4604 	/*
4605 	 * Increment counters
4606 	 */
4607 	pmap->pm_stats.resident_count++;
4608 
4609 	/*
4610 	 * Now validate mapping with RO protection
4611 	 */
4612 	pa = VM_PAGE_TO_PHYS(m);
4613 	l2prot = PTE2_RO | PTE2_NM;
4614 	if (va < VM_MAXUSER_ADDRESS)
4615 		l2prot |= PTE2_U | PTE2_NG;
4616 	if ((prot & VM_PROT_EXECUTE) == 0)
4617 		l2prot |= PTE2_NX;
4618 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4619 		/*
4620 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4621 		 * is set. QQQ: For more info, see comments in pmap_enter().
4622 		 */
4623 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4624 	}
4625 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4626 
4627 	return (mpt2pg);
4628 }
4629 
4630 void
4631 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4632 {
4633 
4634 	rw_wlock(&pvh_global_lock);
4635 	PMAP_LOCK(pmap);
4636 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4637 	rw_wunlock(&pvh_global_lock);
4638 	PMAP_UNLOCK(pmap);
4639 }
4640 
4641 /*
4642  *  Tries to create 1MB page mapping.  Returns TRUE if successful and
4643  *  FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
4644  *  blocking, (2) a mapping already exists at the specified virtual address, or
4645  *  (3) a pv entry cannot be allocated without reclaiming another pv entry.
4646  */
4647 static boolean_t
4648 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4649 {
4650 	pt1_entry_t *pte1p;
4651 	vm_paddr_t pa;
4652 	uint32_t l1prot;
4653 
4654 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4655 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4656 	pte1p = pmap_pte1(pmap, va);
4657 	if (pte1_is_valid(pte1_load(pte1p))) {
4658 		CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
4659 		    va, pmap);
4660 		return (FALSE);
4661 	}
4662 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4663 		/*
4664 		 * Abort this mapping if its PV entry could not be created.
4665 		 */
4666 		if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
4667 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4668 			    __func__, va, pmap);
4669 			return (FALSE);
4670 		}
4671 	}
4672 	/*
4673 	 * Increment counters.
4674 	 */
4675 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4676 
4677 	/*
4678 	 * Map the section.
4679 	 *
4680 	 * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
4681 	 *      made readonly?
4682 	 */
4683 	pa = VM_PAGE_TO_PHYS(m);
4684 	l1prot = PTE1_RO | PTE1_NM;
4685 	if (va < VM_MAXUSER_ADDRESS)
4686 		l1prot |= PTE1_U | PTE1_NG;
4687 	if ((prot & VM_PROT_EXECUTE) == 0)
4688 		l1prot |= PTE1_NX;
4689 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4690 		/*
4691 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4692 		 * is set. QQQ: For more info, see comments in pmap_enter().
4693 		 */
4694 		cache_icache_sync_fresh(va, pa, PTE1_SIZE);
4695 	}
4696 	pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
4697 
4698 	pmap_pte1_mappings++;
4699 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4700 	    pmap);
4701 	return (TRUE);
4702 }
4703 
4704 /*
4705  *  Maps a sequence of resident pages belonging to the same object.
4706  *  The sequence begins with the given page m_start.  This page is
4707  *  mapped at the given virtual address start.  Each subsequent page is
4708  *  mapped at a virtual address that is offset from start by the same
4709  *  amount as the page is offset from m_start within the object.  The
4710  *  last page in the sequence is the page with the largest offset from
4711  *  m_start that can be mapped at a virtual address less than the given
4712  *  virtual address end.  Not every virtual page between start and end
4713  *  is mapped; only those for which a resident page exists with the
4714  *  corresponding offset from m_start are mapped.
4715  */
4716 void
4717 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4718     vm_page_t m_start, vm_prot_t prot)
4719 {
4720 	vm_offset_t va;
4721 	vm_page_t m, mpt2pg;
4722 	vm_pindex_t diff, psize;
4723 
4724 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4725 	    __func__, pmap, start, end, m_start, prot));
4726 
4727 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4728 	psize = atop(end - start);
4729 	mpt2pg = NULL;
4730 	m = m_start;
4731 	rw_wlock(&pvh_global_lock);
4732 	PMAP_LOCK(pmap);
4733 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4734 		va = start + ptoa(diff);
4735 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4736 		    m->psind == 1 && sp_enabled &&
4737 		    pmap_enter_pte1(pmap, va, m, prot))
4738 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4739 		else
4740 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4741 			    mpt2pg);
4742 		m = TAILQ_NEXT(m, listq);
4743 	}
4744 	rw_wunlock(&pvh_global_lock);
4745 	PMAP_UNLOCK(pmap);
4746 }
4747 
4748 /*
4749  *  This code maps large physical mmap regions into the
4750  *  processor address space.  Note that some shortcuts
4751  *  are taken, but the code works.
4752  */
4753 void
4754 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4755     vm_pindex_t pindex, vm_size_t size)
4756 {
4757 	pt1_entry_t *pte1p;
4758 	vm_paddr_t pa, pte2_pa;
4759 	vm_page_t p;
4760 	vm_memattr_t pat_mode;
4761 	u_int l1attr, l1prot;
4762 
4763 	VM_OBJECT_ASSERT_WLOCKED(object);
4764 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4765 	    ("%s: non-device object", __func__));
4766 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4767 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4768 			return;
4769 		p = vm_page_lookup(object, pindex);
4770 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4771 		    ("%s: invalid page %p", __func__, p));
4772 		pat_mode = p->md.pat_mode;
4773 
4774 		/*
4775 		 * Abort the mapping if the first page is not physically
4776 		 * aligned to a 1MB page boundary.
4777 		 */
4778 		pte2_pa = VM_PAGE_TO_PHYS(p);
4779 		if (pte2_pa & PTE1_OFFSET)
4780 			return;
4781 
4782 		/*
4783 		 * Skip the first page. Abort the mapping if the rest of
4784 		 * the pages are not physically contiguous or have differing
4785 		 * memory attributes.
4786 		 */
4787 		p = TAILQ_NEXT(p, listq);
4788 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4789 		    pa += PAGE_SIZE) {
4790 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4791 			    ("%s: invalid page %p", __func__, p));
4792 			if (pa != VM_PAGE_TO_PHYS(p) ||
4793 			    pat_mode != p->md.pat_mode)
4794 				return;
4795 			p = TAILQ_NEXT(p, listq);
4796 		}
4797 
4798 		/*
4799 		 * Map using 1MB pages.
4800 		 *
4801 		 * QQQ: Well, we are mapping a section, so same condition must
4802 		 * be hold like during promotion. It looks that only RW mapping
4803 		 * is done here, so readonly mapping must be done elsewhere.
4804 		 */
4805 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4806 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4807 		PMAP_LOCK(pmap);
4808 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4809 			pte1p = pmap_pte1(pmap, addr);
4810 			if (!pte1_is_valid(pte1_load(pte1p))) {
4811 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4812 				pmap->pm_stats.resident_count += PTE1_SIZE /
4813 				    PAGE_SIZE;
4814 				pmap_pte1_mappings++;
4815 			}
4816 			/* Else continue on if the PTE1 is already valid. */
4817 			addr += PTE1_SIZE;
4818 		}
4819 		PMAP_UNLOCK(pmap);
4820 	}
4821 }
4822 
4823 /*
4824  *  Do the things to protect a 1mpage in a process.
4825  */
4826 static void
4827 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4828     vm_prot_t prot)
4829 {
4830 	pt1_entry_t npte1, opte1;
4831 	vm_offset_t eva, va;
4832 	vm_page_t m;
4833 
4834 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4835 	KASSERT((sva & PTE1_OFFSET) == 0,
4836 	    ("%s: sva is not 1mpage aligned", __func__));
4837 
4838 	opte1 = npte1 = pte1_load(pte1p);
4839 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4840 		eva = sva + PTE1_SIZE;
4841 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4842 		    va < eva; va += PAGE_SIZE, m++)
4843 			vm_page_dirty(m);
4844 	}
4845 	if ((prot & VM_PROT_WRITE) == 0)
4846 		npte1 |= PTE1_RO | PTE1_NM;
4847 	if ((prot & VM_PROT_EXECUTE) == 0)
4848 		npte1 |= PTE1_NX;
4849 
4850 	/*
4851 	 * QQQ: Herein, execute permission is never set.
4852 	 *      It only can be cleared. So, no icache
4853 	 *      syncing is needed.
4854 	 */
4855 
4856 	if (npte1 != opte1) {
4857 		pte1_store(pte1p, npte1);
4858 		pmap_tlb_flush(pmap, sva);
4859 	}
4860 }
4861 
4862 /*
4863  *	Set the physical protection on the
4864  *	specified range of this map as requested.
4865  */
4866 void
4867 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4868 {
4869 	boolean_t pv_lists_locked;
4870 	vm_offset_t nextva;
4871 	pt1_entry_t *pte1p, pte1;
4872 	pt2_entry_t *pte2p, opte2, npte2;
4873 
4874 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4875 	if (prot == VM_PROT_NONE) {
4876 		pmap_remove(pmap, sva, eva);
4877 		return;
4878 	}
4879 
4880 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4881 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4882 		return;
4883 
4884 	if (pmap_is_current(pmap))
4885 		pv_lists_locked = FALSE;
4886 	else {
4887 		pv_lists_locked = TRUE;
4888 resume:
4889 		rw_wlock(&pvh_global_lock);
4890 		sched_pin();
4891 	}
4892 
4893 	PMAP_LOCK(pmap);
4894 	for (; sva < eva; sva = nextva) {
4895 		/*
4896 		 * Calculate address for next L2 page table.
4897 		 */
4898 		nextva = pte1_trunc(sva + PTE1_SIZE);
4899 		if (nextva < sva)
4900 			nextva = eva;
4901 
4902 		pte1p = pmap_pte1(pmap, sva);
4903 		pte1 = pte1_load(pte1p);
4904 
4905 		/*
4906 		 * Weed out invalid mappings. Note: we assume that L1 page
4907 		 * page table is always allocated, and in kernel virtual.
4908 		 */
4909 		if (pte1 == 0)
4910 			continue;
4911 
4912 		if (pte1_is_section(pte1)) {
4913 			/*
4914 			 * Are we protecting the entire large page?  If not,
4915 			 * demote the mapping and fall through.
4916 			 */
4917 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4918 				pmap_protect_pte1(pmap, pte1p, sva, prot);
4919 				continue;
4920 			} else {
4921 				if (!pv_lists_locked) {
4922 					pv_lists_locked = TRUE;
4923 					if (!rw_try_wlock(&pvh_global_lock)) {
4924 						PMAP_UNLOCK(pmap);
4925 						goto resume;
4926 					}
4927 					sched_pin();
4928 				}
4929 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4930 					/*
4931 					 * The large page mapping
4932 					 * was destroyed.
4933 					 */
4934 					continue;
4935 				}
4936 #ifdef INVARIANTS
4937 				else {
4938 					/* Update pte1 after demotion */
4939 					pte1 = pte1_load(pte1p);
4940 				}
4941 #endif
4942 			}
4943 		}
4944 
4945 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4946 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4947 
4948 		/*
4949 		 * Limit our scan to either the end of the va represented
4950 		 * by the current L2 page table page, or to the end of the
4951 		 * range being protected.
4952 		 */
4953 		if (nextva > eva)
4954 			nextva = eva;
4955 
4956 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
4957 		    sva += PAGE_SIZE) {
4958 			vm_page_t m;
4959 
4960 			opte2 = npte2 = pte2_load(pte2p);
4961 			if (!pte2_is_valid(opte2))
4962 				continue;
4963 
4964 			if ((prot & VM_PROT_WRITE) == 0) {
4965 				if (pte2_is_managed(opte2) &&
4966 				    pte2_is_dirty(opte2)) {
4967 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4968 					vm_page_dirty(m);
4969 				}
4970 				npte2 |= PTE2_RO | PTE2_NM;
4971 			}
4972 
4973 			if ((prot & VM_PROT_EXECUTE) == 0)
4974 				npte2 |= PTE2_NX;
4975 
4976 			/*
4977 			 * QQQ: Herein, execute permission is never set.
4978 			 *      It only can be cleared. So, no icache
4979 			 *      syncing is needed.
4980 			 */
4981 
4982 			if (npte2 != opte2) {
4983 				pte2_store(pte2p, npte2);
4984 				pmap_tlb_flush(pmap, sva);
4985 			}
4986 		}
4987 	}
4988 	if (pv_lists_locked) {
4989 		sched_unpin();
4990 		rw_wunlock(&pvh_global_lock);
4991 	}
4992 	PMAP_UNLOCK(pmap);
4993 }
4994 
4995 /*
4996  *	pmap_pvh_wired_mappings:
4997  *
4998  *	Return the updated number "count" of managed mappings that are wired.
4999  */
5000 static int
5001 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5002 {
5003 	pmap_t pmap;
5004 	pt1_entry_t pte1;
5005 	pt2_entry_t pte2;
5006 	pv_entry_t pv;
5007 
5008 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5009 	sched_pin();
5010 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5011 		pmap = PV_PMAP(pv);
5012 		PMAP_LOCK(pmap);
5013 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5014 		if (pte1_is_section(pte1)) {
5015 			if (pte1_is_wired(pte1))
5016 				count++;
5017 		} else {
5018 			KASSERT(pte1_is_link(pte1),
5019 			    ("%s: pte1 %#x is not link", __func__, pte1));
5020 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5021 			if (pte2_is_wired(pte2))
5022 				count++;
5023 		}
5024 		PMAP_UNLOCK(pmap);
5025 	}
5026 	sched_unpin();
5027 	return (count);
5028 }
5029 
5030 /*
5031  *	pmap_page_wired_mappings:
5032  *
5033  *	Return the number of managed mappings to the given physical page
5034  *	that are wired.
5035  */
5036 int
5037 pmap_page_wired_mappings(vm_page_t m)
5038 {
5039 	int count;
5040 
5041 	count = 0;
5042 	if ((m->oflags & VPO_UNMANAGED) != 0)
5043 		return (count);
5044 	rw_wlock(&pvh_global_lock);
5045 	count = pmap_pvh_wired_mappings(&m->md, count);
5046 	if ((m->flags & PG_FICTITIOUS) == 0) {
5047 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5048 		    count);
5049 	}
5050 	rw_wunlock(&pvh_global_lock);
5051 	return (count);
5052 }
5053 
5054 /*
5055  *  Returns TRUE if any of the given mappings were used to modify
5056  *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5057  *  mappings are supported.
5058  */
5059 static boolean_t
5060 pmap_is_modified_pvh(struct md_page *pvh)
5061 {
5062 	pv_entry_t pv;
5063 	pt1_entry_t pte1;
5064 	pt2_entry_t pte2;
5065 	pmap_t pmap;
5066 	boolean_t rv;
5067 
5068 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5069 	rv = FALSE;
5070 	sched_pin();
5071 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5072 		pmap = PV_PMAP(pv);
5073 		PMAP_LOCK(pmap);
5074 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5075 		if (pte1_is_section(pte1)) {
5076 			rv = pte1_is_dirty(pte1);
5077 		} else {
5078 			KASSERT(pte1_is_link(pte1),
5079 			    ("%s: pte1 %#x is not link", __func__, pte1));
5080 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5081 			rv = pte2_is_dirty(pte2);
5082 		}
5083 		PMAP_UNLOCK(pmap);
5084 		if (rv)
5085 			break;
5086 	}
5087 	sched_unpin();
5088 	return (rv);
5089 }
5090 
5091 /*
5092  *	pmap_is_modified:
5093  *
5094  *	Return whether or not the specified physical page was modified
5095  *	in any physical maps.
5096  */
5097 boolean_t
5098 pmap_is_modified(vm_page_t m)
5099 {
5100 	boolean_t rv;
5101 
5102 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5103 	    ("%s: page %p is not managed", __func__, m));
5104 
5105 	/*
5106 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5107 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5108 	 * is clear, no PTE2s can have PG_M set.
5109 	 */
5110 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5111 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5112 		return (FALSE);
5113 	rw_wlock(&pvh_global_lock);
5114 	rv = pmap_is_modified_pvh(&m->md) ||
5115 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5116 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5117 	rw_wunlock(&pvh_global_lock);
5118 	return (rv);
5119 }
5120 
5121 /*
5122  *	pmap_is_prefaultable:
5123  *
5124  *	Return whether or not the specified virtual address is eligible
5125  *	for prefault.
5126  */
5127 boolean_t
5128 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5129 {
5130 	pt1_entry_t pte1;
5131 	pt2_entry_t pte2;
5132 	boolean_t rv;
5133 
5134 	rv = FALSE;
5135 	PMAP_LOCK(pmap);
5136 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5137 	if (pte1_is_link(pte1)) {
5138 		pte2 = pte2_load(pt2map_entry(addr));
5139 		rv = !pte2_is_valid(pte2) ;
5140 	}
5141 	PMAP_UNLOCK(pmap);
5142 	return (rv);
5143 }
5144 
5145 /*
5146  *  Returns TRUE if any of the given mappings were referenced and FALSE
5147  *  otherwise. Both page and 1mpage mappings are supported.
5148  */
5149 static boolean_t
5150 pmap_is_referenced_pvh(struct md_page *pvh)
5151 {
5152 
5153 	pv_entry_t pv;
5154 	pt1_entry_t pte1;
5155 	pt2_entry_t pte2;
5156 	pmap_t pmap;
5157 	boolean_t rv;
5158 
5159 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5160 	rv = FALSE;
5161 	sched_pin();
5162 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5163 		pmap = PV_PMAP(pv);
5164 		PMAP_LOCK(pmap);
5165 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5166 		if (pte1_is_section(pte1)) {
5167 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5168 		} else {
5169 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5170 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5171 		}
5172 		PMAP_UNLOCK(pmap);
5173 		if (rv)
5174 			break;
5175 	}
5176 	sched_unpin();
5177 	return (rv);
5178 }
5179 
5180 /*
5181  *	pmap_is_referenced:
5182  *
5183  *	Return whether or not the specified physical page was referenced
5184  *	in any physical maps.
5185  */
5186 boolean_t
5187 pmap_is_referenced(vm_page_t m)
5188 {
5189 	boolean_t rv;
5190 
5191 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5192 	    ("%s: page %p is not managed", __func__, m));
5193 	rw_wlock(&pvh_global_lock);
5194 	rv = pmap_is_referenced_pvh(&m->md) ||
5195 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5196 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5197 	rw_wunlock(&pvh_global_lock);
5198 	return (rv);
5199 }
5200 
5201 /*
5202  *	pmap_ts_referenced:
5203  *
5204  *	Return a count of reference bits for a page, clearing those bits.
5205  *	It is not necessary for every reference bit to be cleared, but it
5206  *	is necessary that 0 only be returned when there are truly no
5207  *	reference bits set.
5208  *
5209  *	As an optimization, update the page's dirty field if a modified bit is
5210  *	found while counting reference bits.  This opportunistic update can be
5211  *	performed at low cost and can eliminate the need for some future calls
5212  *	to pmap_is_modified().  However, since this function stops after
5213  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5214  *	dirty pages.  Those dirty pages will only be detected by a future call
5215  *	to pmap_is_modified().
5216  */
5217 int
5218 pmap_ts_referenced(vm_page_t m)
5219 {
5220 	struct md_page *pvh;
5221 	pv_entry_t pv, pvf;
5222 	pmap_t pmap;
5223 	pt1_entry_t  *pte1p, opte1;
5224 	pt2_entry_t *pte2p, opte2;
5225 	vm_paddr_t pa;
5226 	int rtval = 0;
5227 
5228 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5229 	    ("%s: page %p is not managed", __func__, m));
5230 	pa = VM_PAGE_TO_PHYS(m);
5231 	pvh = pa_to_pvh(pa);
5232 	rw_wlock(&pvh_global_lock);
5233 	sched_pin();
5234 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5235 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5236 		goto small_mappings;
5237 	pv = pvf;
5238 	do {
5239 		pmap = PV_PMAP(pv);
5240 		PMAP_LOCK(pmap);
5241 		pte1p = pmap_pte1(pmap, pv->pv_va);
5242 		opte1 = pte1_load(pte1p);
5243 		if (pte1_is_dirty(opte1)) {
5244 			/*
5245 			 * Although "opte1" is mapping a 1MB page, because
5246 			 * this function is called at a 4KB page granularity,
5247 			 * we only update the 4KB page under test.
5248 			 */
5249 			vm_page_dirty(m);
5250 		}
5251 		if ((opte1 & PTE1_A) != 0) {
5252 			/*
5253 			 * Since this reference bit is shared by 256 4KB pages,
5254 			 * it should not be cleared every time it is tested.
5255 			 * Apply a simple "hash" function on the physical page
5256 			 * number, the virtual section number, and the pmap
5257 			 * address to select one 4KB page out of the 256
5258 			 * on which testing the reference bit will result
5259 			 * in clearing that bit. This function is designed
5260 			 * to avoid the selection of the same 4KB page
5261 			 * for every 1MB page mapping.
5262 			 *
5263 			 * On demotion, a mapping that hasn't been referenced
5264 			 * is simply destroyed.  To avoid the possibility of a
5265 			 * subsequent page fault on a demoted wired mapping,
5266 			 * always leave its reference bit set.  Moreover,
5267 			 * since the section is wired, the current state of
5268 			 * its reference bit won't affect page replacement.
5269 			 */
5270 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5271 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5272 			    !pte1_is_wired(opte1)) {
5273 				pte1_clear_bit(pte1p, PTE1_A);
5274 				pmap_tlb_flush(pmap, pv->pv_va);
5275 			}
5276 			rtval++;
5277 		}
5278 		PMAP_UNLOCK(pmap);
5279 		/* Rotate the PV list if it has more than one entry. */
5280 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5281 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5282 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5283 		}
5284 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5285 			goto out;
5286 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5287 small_mappings:
5288 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5289 		goto out;
5290 	pv = pvf;
5291 	do {
5292 		pmap = PV_PMAP(pv);
5293 		PMAP_LOCK(pmap);
5294 		pte1p = pmap_pte1(pmap, pv->pv_va);
5295 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5296 		    ("%s: not found a link in page %p's pv list", __func__, m));
5297 
5298 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5299 		opte2 = pte2_load(pte2p);
5300 		if (pte2_is_dirty(opte2))
5301 			vm_page_dirty(m);
5302 		if ((opte2 & PTE2_A) != 0) {
5303 			pte2_clear_bit(pte2p, PTE2_A);
5304 			pmap_tlb_flush(pmap, pv->pv_va);
5305 			rtval++;
5306 		}
5307 		PMAP_UNLOCK(pmap);
5308 		/* Rotate the PV list if it has more than one entry. */
5309 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5310 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5311 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5312 		}
5313 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5314 	    PMAP_TS_REFERENCED_MAX);
5315 out:
5316 	sched_unpin();
5317 	rw_wunlock(&pvh_global_lock);
5318 	return (rtval);
5319 }
5320 
5321 /*
5322  *	Clear the wired attribute from the mappings for the specified range of
5323  *	addresses in the given pmap.  Every valid mapping within that range
5324  *	must have the wired attribute set.  In contrast, invalid mappings
5325  *	cannot have the wired attribute set, so they are ignored.
5326  *
5327  *	The wired attribute of the page table entry is not a hardware feature,
5328  *	so there is no need to invalidate any TLB entries.
5329  */
5330 void
5331 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5332 {
5333 	vm_offset_t nextva;
5334 	pt1_entry_t *pte1p, pte1;
5335 	pt2_entry_t *pte2p, pte2;
5336 	boolean_t pv_lists_locked;
5337 
5338 	if (pmap_is_current(pmap))
5339 		pv_lists_locked = FALSE;
5340 	else {
5341 		pv_lists_locked = TRUE;
5342 resume:
5343 		rw_wlock(&pvh_global_lock);
5344 		sched_pin();
5345 	}
5346 	PMAP_LOCK(pmap);
5347 	for (; sva < eva; sva = nextva) {
5348 		nextva = pte1_trunc(sva + PTE1_SIZE);
5349 		if (nextva < sva)
5350 			nextva = eva;
5351 
5352 		pte1p = pmap_pte1(pmap, sva);
5353 		pte1 = pte1_load(pte1p);
5354 
5355 		/*
5356 		 * Weed out invalid mappings. Note: we assume that L1 page
5357 		 * page table is always allocated, and in kernel virtual.
5358 		 */
5359 		if (pte1 == 0)
5360 			continue;
5361 
5362 		if (pte1_is_section(pte1)) {
5363 			if (!pte1_is_wired(pte1))
5364 				panic("%s: pte1 %#x not wired", __func__, pte1);
5365 
5366 			/*
5367 			 * Are we unwiring the entire large page?  If not,
5368 			 * demote the mapping and fall through.
5369 			 */
5370 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5371 				pte1_clear_bit(pte1p, PTE1_W);
5372 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5373 				    PAGE_SIZE;
5374 				continue;
5375 			} else {
5376 				if (!pv_lists_locked) {
5377 					pv_lists_locked = TRUE;
5378 					if (!rw_try_wlock(&pvh_global_lock)) {
5379 						PMAP_UNLOCK(pmap);
5380 						/* Repeat sva. */
5381 						goto resume;
5382 					}
5383 					sched_pin();
5384 				}
5385 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5386 					panic("%s: demotion failed", __func__);
5387 #ifdef INVARIANTS
5388 				else {
5389 					/* Update pte1 after demotion */
5390 					pte1 = pte1_load(pte1p);
5391 				}
5392 #endif
5393 			}
5394 		}
5395 
5396 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5397 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5398 
5399 		/*
5400 		 * Limit our scan to either the end of the va represented
5401 		 * by the current L2 page table page, or to the end of the
5402 		 * range being protected.
5403 		 */
5404 		if (nextva > eva)
5405 			nextva = eva;
5406 
5407 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5408 		    sva += PAGE_SIZE) {
5409 			pte2 = pte2_load(pte2p);
5410 			if (!pte2_is_valid(pte2))
5411 				continue;
5412 			if (!pte2_is_wired(pte2))
5413 				panic("%s: pte2 %#x is missing PTE2_W",
5414 				    __func__, pte2);
5415 
5416 			/*
5417 			 * PTE2_W must be cleared atomically. Although the pmap
5418 			 * lock synchronizes access to PTE2_W, another processor
5419 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5420 			 */
5421 			pte2_clear_bit(pte2p, PTE2_W);
5422 			pmap->pm_stats.wired_count--;
5423 		}
5424 	}
5425 	if (pv_lists_locked) {
5426 		sched_unpin();
5427 		rw_wunlock(&pvh_global_lock);
5428 	}
5429 	PMAP_UNLOCK(pmap);
5430 }
5431 
5432 /*
5433  *  Clear the write and modified bits in each of the given page's mappings.
5434  */
5435 void
5436 pmap_remove_write(vm_page_t m)
5437 {
5438 	struct md_page *pvh;
5439 	pv_entry_t next_pv, pv;
5440 	pmap_t pmap;
5441 	pt1_entry_t *pte1p;
5442 	pt2_entry_t *pte2p, opte2;
5443 	vm_offset_t va;
5444 
5445 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5446 	    ("%s: page %p is not managed", __func__, m));
5447 
5448 	/*
5449 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5450 	 * set by another thread while the object is locked.  Thus,
5451 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5452 	 */
5453 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5454 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5455 		return;
5456 	rw_wlock(&pvh_global_lock);
5457 	sched_pin();
5458 	if ((m->flags & PG_FICTITIOUS) != 0)
5459 		goto small_mappings;
5460 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5461 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5462 		va = pv->pv_va;
5463 		pmap = PV_PMAP(pv);
5464 		PMAP_LOCK(pmap);
5465 		pte1p = pmap_pte1(pmap, va);
5466 		if (!(pte1_load(pte1p) & PTE1_RO))
5467 			(void)pmap_demote_pte1(pmap, pte1p, va);
5468 		PMAP_UNLOCK(pmap);
5469 	}
5470 small_mappings:
5471 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5472 		pmap = PV_PMAP(pv);
5473 		PMAP_LOCK(pmap);
5474 		pte1p = pmap_pte1(pmap, pv->pv_va);
5475 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5476 		    " a section in page %p's pv list", __func__, m));
5477 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5478 		opte2 = pte2_load(pte2p);
5479 		if (!(opte2 & PTE2_RO)) {
5480 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5481 			if (pte2_is_dirty(opte2))
5482 				vm_page_dirty(m);
5483 			pmap_tlb_flush(pmap, pv->pv_va);
5484 		}
5485 		PMAP_UNLOCK(pmap);
5486 	}
5487 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5488 	sched_unpin();
5489 	rw_wunlock(&pvh_global_lock);
5490 }
5491 
5492 /*
5493  *	Apply the given advice to the specified range of addresses within the
5494  *	given pmap.  Depending on the advice, clear the referenced and/or
5495  *	modified flags in each mapping and set the mapped page's dirty field.
5496  */
5497 void
5498 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5499 {
5500 	pt1_entry_t *pte1p, opte1;
5501 	pt2_entry_t *pte2p, pte2;
5502 	vm_offset_t pdnxt;
5503 	vm_page_t m;
5504 	boolean_t pv_lists_locked;
5505 
5506 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5507 		return;
5508 	if (pmap_is_current(pmap))
5509 		pv_lists_locked = FALSE;
5510 	else {
5511 		pv_lists_locked = TRUE;
5512 resume:
5513 		rw_wlock(&pvh_global_lock);
5514 		sched_pin();
5515 	}
5516 	PMAP_LOCK(pmap);
5517 	for (; sva < eva; sva = pdnxt) {
5518 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5519 		if (pdnxt < sva)
5520 			pdnxt = eva;
5521 		pte1p = pmap_pte1(pmap, sva);
5522 		opte1 = pte1_load(pte1p);
5523 		if (!pte1_is_valid(opte1)) /* XXX */
5524 			continue;
5525 		else if (pte1_is_section(opte1)) {
5526 			if (!pte1_is_managed(opte1))
5527 				continue;
5528 			if (!pv_lists_locked) {
5529 				pv_lists_locked = TRUE;
5530 				if (!rw_try_wlock(&pvh_global_lock)) {
5531 					PMAP_UNLOCK(pmap);
5532 					goto resume;
5533 				}
5534 				sched_pin();
5535 			}
5536 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5537 				/*
5538 				 * The large page mapping was destroyed.
5539 				 */
5540 				continue;
5541 			}
5542 
5543 			/*
5544 			 * Unless the page mappings are wired, remove the
5545 			 * mapping to a single page so that a subsequent
5546 			 * access may repromote.  Since the underlying L2 page
5547 			 * table is fully populated, this removal never
5548 			 * frees a L2 page table page.
5549 			 */
5550 			if (!pte1_is_wired(opte1)) {
5551 				pte2p = pmap_pte2_quick(pmap, sva);
5552 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5553 				    ("%s: invalid PTE2", __func__));
5554 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5555 			}
5556 		}
5557 		if (pdnxt > eva)
5558 			pdnxt = eva;
5559 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5560 		    sva += PAGE_SIZE) {
5561 			pte2 = pte2_load(pte2p);
5562 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5563 				continue;
5564 			else if (pte2_is_dirty(pte2)) {
5565 				if (advice == MADV_DONTNEED) {
5566 					/*
5567 					 * Future calls to pmap_is_modified()
5568 					 * can be avoided by making the page
5569 					 * dirty now.
5570 					 */
5571 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5572 					vm_page_dirty(m);
5573 				}
5574 				pte2_set_bit(pte2p, PTE2_NM);
5575 				pte2_clear_bit(pte2p, PTE2_A);
5576 			} else if ((pte2 & PTE2_A) != 0)
5577 				pte2_clear_bit(pte2p, PTE2_A);
5578 			else
5579 				continue;
5580 			pmap_tlb_flush(pmap, sva);
5581 		}
5582 	}
5583 	if (pv_lists_locked) {
5584 		sched_unpin();
5585 		rw_wunlock(&pvh_global_lock);
5586 	}
5587 	PMAP_UNLOCK(pmap);
5588 }
5589 
5590 /*
5591  *	Clear the modify bits on the specified physical page.
5592  */
5593 void
5594 pmap_clear_modify(vm_page_t m)
5595 {
5596 	struct md_page *pvh;
5597 	pv_entry_t next_pv, pv;
5598 	pmap_t pmap;
5599 	pt1_entry_t *pte1p, opte1;
5600 	pt2_entry_t *pte2p, opte2;
5601 	vm_offset_t va;
5602 
5603 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5604 	    ("%s: page %p is not managed", __func__, m));
5605 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5606 	KASSERT(!vm_page_xbusied(m),
5607 	    ("%s: page %p is exclusive busy", __func__, m));
5608 
5609 	/*
5610 	 * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
5611 	 * cleared. If the object containing the page is locked and the page
5612 	 * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
5613 	 * set.
5614 	 */
5615 	if ((m->flags & PGA_WRITEABLE) == 0)
5616 		return;
5617 	rw_wlock(&pvh_global_lock);
5618 	sched_pin();
5619 	if ((m->flags & PG_FICTITIOUS) != 0)
5620 		goto small_mappings;
5621 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5622 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5623 		va = pv->pv_va;
5624 		pmap = PV_PMAP(pv);
5625 		PMAP_LOCK(pmap);
5626 		pte1p = pmap_pte1(pmap, va);
5627 		opte1 = pte1_load(pte1p);
5628 		if (!(opte1 & PTE1_RO)) {
5629 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5630 			    !pte1_is_wired(opte1)) {
5631 				/*
5632 				 * Write protect the mapping to a
5633 				 * single page so that a subsequent
5634 				 * write access may repromote.
5635 				 */
5636 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5637 				pte2p = pmap_pte2_quick(pmap, va);
5638 				opte2 = pte2_load(pte2p);
5639 				if ((opte2 & PTE2_V)) {
5640 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5641 					vm_page_dirty(m);
5642 					pmap_tlb_flush(pmap, va);
5643 				}
5644 			}
5645 		}
5646 		PMAP_UNLOCK(pmap);
5647 	}
5648 small_mappings:
5649 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5650 		pmap = PV_PMAP(pv);
5651 		PMAP_LOCK(pmap);
5652 		pte1p = pmap_pte1(pmap, pv->pv_va);
5653 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5654 		    " a section in page %p's pv list", __func__, m));
5655 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5656 		if (pte2_is_dirty(pte2_load(pte2p))) {
5657 			pte2_set_bit(pte2p, PTE2_NM);
5658 			pmap_tlb_flush(pmap, pv->pv_va);
5659 		}
5660 		PMAP_UNLOCK(pmap);
5661 	}
5662 	sched_unpin();
5663 	rw_wunlock(&pvh_global_lock);
5664 }
5665 
5666 
5667 /*
5668  *  Sets the memory attribute for the specified page.
5669  */
5670 void
5671 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5672 {
5673 	pt2_entry_t *cmap2_pte2p;
5674 	vm_memattr_t oma;
5675 	vm_paddr_t pa;
5676 	struct pcpu *pc;
5677 
5678 	oma = m->md.pat_mode;
5679 	m->md.pat_mode = ma;
5680 
5681 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5682 	    VM_PAGE_TO_PHYS(m), oma, ma);
5683 	if ((m->flags & PG_FICTITIOUS) != 0)
5684 		return;
5685 #if 0
5686 	/*
5687 	 * If "m" is a normal page, flush it from the cache.
5688 	 *
5689 	 * First, try to find an existing mapping of the page by sf
5690 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5691 	 * flushes the cache.
5692 	 */
5693 	if (sf_buf_invalidate_cache(m, oma))
5694 		return;
5695 #endif
5696 	/*
5697 	 * If page is not mapped by sf buffer, map the page
5698 	 * transient and do invalidation.
5699 	 */
5700 	if (ma != oma) {
5701 		pa = VM_PAGE_TO_PHYS(m);
5702 		sched_pin();
5703 		pc = get_pcpu();
5704 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5705 		mtx_lock(&pc->pc_cmap_lock);
5706 		if (pte2_load(cmap2_pte2p) != 0)
5707 			panic("%s: CMAP2 busy", __func__);
5708 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5709 		    vm_memattr_to_pte2(ma)));
5710 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5711 		pte2_clear(cmap2_pte2p);
5712 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5713 		sched_unpin();
5714 		mtx_unlock(&pc->pc_cmap_lock);
5715 	}
5716 }
5717 
5718 /*
5719  *  Miscellaneous support routines follow
5720  */
5721 
5722 /*
5723  *  Returns TRUE if the given page is mapped individually or as part of
5724  *  a 1mpage.  Otherwise, returns FALSE.
5725  */
5726 boolean_t
5727 pmap_page_is_mapped(vm_page_t m)
5728 {
5729 	boolean_t rv;
5730 
5731 	if ((m->oflags & VPO_UNMANAGED) != 0)
5732 		return (FALSE);
5733 	rw_wlock(&pvh_global_lock);
5734 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5735 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5736 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5737 	rw_wunlock(&pvh_global_lock);
5738 	return (rv);
5739 }
5740 
5741 /*
5742  *  Returns true if the pmap's pv is one of the first
5743  *  16 pvs linked to from this page.  This count may
5744  *  be changed upwards or downwards in the future; it
5745  *  is only necessary that true be returned for a small
5746  *  subset of pmaps for proper page aging.
5747  */
5748 boolean_t
5749 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5750 {
5751 	struct md_page *pvh;
5752 	pv_entry_t pv;
5753 	int loops = 0;
5754 	boolean_t rv;
5755 
5756 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5757 	    ("%s: page %p is not managed", __func__, m));
5758 	rv = FALSE;
5759 	rw_wlock(&pvh_global_lock);
5760 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5761 		if (PV_PMAP(pv) == pmap) {
5762 			rv = TRUE;
5763 			break;
5764 		}
5765 		loops++;
5766 		if (loops >= 16)
5767 			break;
5768 	}
5769 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5770 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5771 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5772 			if (PV_PMAP(pv) == pmap) {
5773 				rv = TRUE;
5774 				break;
5775 			}
5776 			loops++;
5777 			if (loops >= 16)
5778 				break;
5779 		}
5780 	}
5781 	rw_wunlock(&pvh_global_lock);
5782 	return (rv);
5783 }
5784 
5785 /*
5786  *	pmap_zero_page zeros the specified hardware page by mapping
5787  *	the page into KVM and using bzero to clear its contents.
5788  */
5789 void
5790 pmap_zero_page(vm_page_t m)
5791 {
5792 	pt2_entry_t *cmap2_pte2p;
5793 	struct pcpu *pc;
5794 
5795 	sched_pin();
5796 	pc = get_pcpu();
5797 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5798 	mtx_lock(&pc->pc_cmap_lock);
5799 	if (pte2_load(cmap2_pte2p) != 0)
5800 		panic("%s: CMAP2 busy", __func__);
5801 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5802 	    vm_page_pte2_attr(m)));
5803 	pagezero(pc->pc_cmap2_addr);
5804 	pte2_clear(cmap2_pte2p);
5805 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5806 	sched_unpin();
5807 	mtx_unlock(&pc->pc_cmap_lock);
5808 }
5809 
5810 /*
5811  *	pmap_zero_page_area zeros the specified hardware page by mapping
5812  *	the page into KVM and using bzero to clear its contents.
5813  *
5814  *	off and size may not cover an area beyond a single hardware page.
5815  */
5816 void
5817 pmap_zero_page_area(vm_page_t m, int off, int size)
5818 {
5819 	pt2_entry_t *cmap2_pte2p;
5820 	struct pcpu *pc;
5821 
5822 	sched_pin();
5823 	pc = get_pcpu();
5824 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5825 	mtx_lock(&pc->pc_cmap_lock);
5826 	if (pte2_load(cmap2_pte2p) != 0)
5827 		panic("%s: CMAP2 busy", __func__);
5828 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5829 	    vm_page_pte2_attr(m)));
5830 	if (off == 0 && size == PAGE_SIZE)
5831 		pagezero(pc->pc_cmap2_addr);
5832 	else
5833 		bzero(pc->pc_cmap2_addr + off, size);
5834 	pte2_clear(cmap2_pte2p);
5835 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5836 	sched_unpin();
5837 	mtx_unlock(&pc->pc_cmap_lock);
5838 }
5839 
5840 /*
5841  *	pmap_copy_page copies the specified (machine independent)
5842  *	page by mapping the page into virtual memory and using
5843  *	bcopy to copy the page, one machine dependent page at a
5844  *	time.
5845  */
5846 void
5847 pmap_copy_page(vm_page_t src, vm_page_t dst)
5848 {
5849 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5850 	struct pcpu *pc;
5851 
5852 	sched_pin();
5853 	pc = get_pcpu();
5854 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5855 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5856 	mtx_lock(&pc->pc_cmap_lock);
5857 	if (pte2_load(cmap1_pte2p) != 0)
5858 		panic("%s: CMAP1 busy", __func__);
5859 	if (pte2_load(cmap2_pte2p) != 0)
5860 		panic("%s: CMAP2 busy", __func__);
5861 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5862 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5863 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5864 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5865 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5866 	pte2_clear(cmap1_pte2p);
5867 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5868 	pte2_clear(cmap2_pte2p);
5869 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5870 	sched_unpin();
5871 	mtx_unlock(&pc->pc_cmap_lock);
5872 }
5873 
5874 int unmapped_buf_allowed = 1;
5875 
5876 void
5877 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5878     vm_offset_t b_offset, int xfersize)
5879 {
5880 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5881 	vm_page_t a_pg, b_pg;
5882 	char *a_cp, *b_cp;
5883 	vm_offset_t a_pg_offset, b_pg_offset;
5884 	struct pcpu *pc;
5885 	int cnt;
5886 
5887 	sched_pin();
5888 	pc = get_pcpu();
5889 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5890 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5891 	mtx_lock(&pc->pc_cmap_lock);
5892 	if (pte2_load(cmap1_pte2p) != 0)
5893 		panic("pmap_copy_pages: CMAP1 busy");
5894 	if (pte2_load(cmap2_pte2p) != 0)
5895 		panic("pmap_copy_pages: CMAP2 busy");
5896 	while (xfersize > 0) {
5897 		a_pg = ma[a_offset >> PAGE_SHIFT];
5898 		a_pg_offset = a_offset & PAGE_MASK;
5899 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5900 		b_pg = mb[b_offset >> PAGE_SHIFT];
5901 		b_pg_offset = b_offset & PAGE_MASK;
5902 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5903 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5904 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5905 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5906 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5907 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5908 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5909 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5910 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5911 		bcopy(a_cp, b_cp, cnt);
5912 		a_offset += cnt;
5913 		b_offset += cnt;
5914 		xfersize -= cnt;
5915 	}
5916 	pte2_clear(cmap1_pte2p);
5917 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5918 	pte2_clear(cmap2_pte2p);
5919 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5920 	sched_unpin();
5921 	mtx_unlock(&pc->pc_cmap_lock);
5922 }
5923 
5924 vm_offset_t
5925 pmap_quick_enter_page(vm_page_t m)
5926 {
5927 	struct pcpu *pc;
5928 	pt2_entry_t *pte2p;
5929 
5930 	critical_enter();
5931 	pc = get_pcpu();
5932 	pte2p = pc->pc_qmap_pte2p;
5933 
5934 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5935 
5936 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5937 	    vm_page_pte2_attr(m)));
5938 	return (pc->pc_qmap_addr);
5939 }
5940 
5941 void
5942 pmap_quick_remove_page(vm_offset_t addr)
5943 {
5944 	struct pcpu *pc;
5945 	pt2_entry_t *pte2p;
5946 
5947 	pc = get_pcpu();
5948 	pte2p = pc->pc_qmap_pte2p;
5949 
5950 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
5951 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
5952 
5953 	pte2_clear(pte2p);
5954 	tlb_flush(pc->pc_qmap_addr);
5955 	critical_exit();
5956 }
5957 
5958 /*
5959  *	Copy the range specified by src_addr/len
5960  *	from the source map to the range dst_addr/len
5961  *	in the destination map.
5962  *
5963  *	This routine is only advisory and need not do anything.
5964  */
5965 void
5966 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
5967     vm_offset_t src_addr)
5968 {
5969 	struct spglist free;
5970 	vm_offset_t addr;
5971 	vm_offset_t end_addr = src_addr + len;
5972 	vm_offset_t nextva;
5973 
5974 	if (dst_addr != src_addr)
5975 		return;
5976 
5977 	if (!pmap_is_current(src_pmap))
5978 		return;
5979 
5980 	rw_wlock(&pvh_global_lock);
5981 	if (dst_pmap < src_pmap) {
5982 		PMAP_LOCK(dst_pmap);
5983 		PMAP_LOCK(src_pmap);
5984 	} else {
5985 		PMAP_LOCK(src_pmap);
5986 		PMAP_LOCK(dst_pmap);
5987 	}
5988 	sched_pin();
5989 	for (addr = src_addr; addr < end_addr; addr = nextva) {
5990 		pt2_entry_t *src_pte2p, *dst_pte2p;
5991 		vm_page_t dst_mpt2pg, src_mpt2pg;
5992 		pt1_entry_t src_pte1;
5993 		u_int pte1_idx;
5994 
5995 		KASSERT(addr < VM_MAXUSER_ADDRESS,
5996 		    ("%s: invalid to pmap_copy page tables", __func__));
5997 
5998 		nextva = pte1_trunc(addr + PTE1_SIZE);
5999 		if (nextva < addr)
6000 			nextva = end_addr;
6001 
6002 		pte1_idx = pte1_index(addr);
6003 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6004 		if (pte1_is_section(src_pte1)) {
6005 			if ((addr & PTE1_OFFSET) != 0 ||
6006 			    (addr + PTE1_SIZE) > end_addr)
6007 				continue;
6008 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6009 			    (!pte1_is_managed(src_pte1) ||
6010 			    pmap_pv_insert_pte1(dst_pmap, addr,
6011 			    pte1_pa(src_pte1)))) {
6012 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6013 				    ~PTE1_W;
6014 				dst_pmap->pm_stats.resident_count +=
6015 				    PTE1_SIZE / PAGE_SIZE;
6016 				pmap_pte1_mappings++;
6017 			}
6018 			continue;
6019 		} else if (!pte1_is_link(src_pte1))
6020 			continue;
6021 
6022 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6023 
6024 		/*
6025 		 * We leave PT2s to be linked from PT1 even if they are not
6026 		 * referenced until all PT2s in a page are without reference.
6027 		 *
6028 		 * QQQ: It could be changed ...
6029 		 */
6030 #if 0 /* single_pt2_link_is_cleared */
6031 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6032 		    ("%s: source page table page is unused", __func__));
6033 #else
6034 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6035 			continue;
6036 #endif
6037 		if (nextva > end_addr)
6038 			nextva = end_addr;
6039 
6040 		src_pte2p = pt2map_entry(addr);
6041 		while (addr < nextva) {
6042 			pt2_entry_t temp_pte2;
6043 			temp_pte2 = pte2_load(src_pte2p);
6044 			/*
6045 			 * we only virtual copy managed pages
6046 			 */
6047 			if (pte2_is_managed(temp_pte2)) {
6048 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6049 				    PMAP_ENTER_NOSLEEP);
6050 				if (dst_mpt2pg == NULL)
6051 					goto out;
6052 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6053 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6054 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6055 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6056 					/*
6057 					 * Clear the wired, modified, and
6058 					 * accessed (referenced) bits
6059 					 * during the copy.
6060 					 */
6061 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6062 					temp_pte2 |= PTE2_NM;
6063 					pte2_store(dst_pte2p, temp_pte2);
6064 					dst_pmap->pm_stats.resident_count++;
6065 				} else {
6066 					SLIST_INIT(&free);
6067 					if (pmap_unwire_pt2(dst_pmap, addr,
6068 					    dst_mpt2pg, &free)) {
6069 						pmap_tlb_flush(dst_pmap, addr);
6070 						vm_page_free_pages_toq(&free,
6071 						    false);
6072 					}
6073 					goto out;
6074 				}
6075 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6076 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6077 					break;
6078 			}
6079 			addr += PAGE_SIZE;
6080 			src_pte2p++;
6081 		}
6082 	}
6083 out:
6084 	sched_unpin();
6085 	rw_wunlock(&pvh_global_lock);
6086 	PMAP_UNLOCK(src_pmap);
6087 	PMAP_UNLOCK(dst_pmap);
6088 }
6089 
6090 /*
6091  *	Increase the starting virtual address of the given mapping if a
6092  *	different alignment might result in more section mappings.
6093  */
6094 void
6095 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6096     vm_offset_t *addr, vm_size_t size)
6097 {
6098 	vm_offset_t pte1_offset;
6099 
6100 	if (size < PTE1_SIZE)
6101 		return;
6102 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6103 		offset += ptoa(object->pg_color);
6104 	pte1_offset = offset & PTE1_OFFSET;
6105 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6106 	    (*addr & PTE1_OFFSET) == pte1_offset)
6107 		return;
6108 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6109 		*addr = pte1_trunc(*addr) + pte1_offset;
6110 	else
6111 		*addr = pte1_roundup(*addr) + pte1_offset;
6112 }
6113 
6114 void
6115 pmap_activate(struct thread *td)
6116 {
6117 	pmap_t pmap, oldpmap;
6118 	u_int cpuid, ttb;
6119 
6120 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6121 
6122 	critical_enter();
6123 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6124 	oldpmap = PCPU_GET(curpmap);
6125 	cpuid = PCPU_GET(cpuid);
6126 
6127 #if defined(SMP)
6128 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6129 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6130 #else
6131 	CPU_CLR(cpuid, &oldpmap->pm_active);
6132 	CPU_SET(cpuid, &pmap->pm_active);
6133 #endif
6134 
6135 	ttb = pmap_ttb_get(pmap);
6136 
6137 	/*
6138 	 * pmap_activate is for the current thread on the current cpu
6139 	 */
6140 	td->td_pcb->pcb_pagedir = ttb;
6141 	cp15_ttbr_set(ttb);
6142 	PCPU_SET(curpmap, pmap);
6143 	critical_exit();
6144 }
6145 
6146 /*
6147  *  Perform the pmap work for mincore.
6148  */
6149 int
6150 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6151 {
6152 	pt1_entry_t *pte1p, pte1;
6153 	pt2_entry_t *pte2p, pte2;
6154 	vm_paddr_t pa;
6155 	bool managed;
6156 	int val;
6157 
6158 	PMAP_LOCK(pmap);
6159 retry:
6160 	pte1p = pmap_pte1(pmap, addr);
6161 	pte1 = pte1_load(pte1p);
6162 	if (pte1_is_section(pte1)) {
6163 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6164 		managed = pte1_is_managed(pte1);
6165 		val = MINCORE_SUPER | MINCORE_INCORE;
6166 		if (pte1_is_dirty(pte1))
6167 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6168 		if (pte1 & PTE1_A)
6169 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6170 	} else if (pte1_is_link(pte1)) {
6171 		pte2p = pmap_pte2(pmap, addr);
6172 		pte2 = pte2_load(pte2p);
6173 		pmap_pte2_release(pte2p);
6174 		pa = pte2_pa(pte2);
6175 		managed = pte2_is_managed(pte2);
6176 		val = MINCORE_INCORE;
6177 		if (pte2_is_dirty(pte2))
6178 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6179 		if (pte2 & PTE2_A)
6180 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6181 	} else {
6182 		managed = false;
6183 		val = 0;
6184 	}
6185 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6186 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6187 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6188 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6189 			goto retry;
6190 	} else
6191 		PA_UNLOCK_COND(*locked_pa);
6192 	PMAP_UNLOCK(pmap);
6193 	return (val);
6194 }
6195 
6196 void
6197 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6198 {
6199 	vm_offset_t sva;
6200 	uint32_t l2attr;
6201 
6202 	KASSERT((size & PAGE_MASK) == 0,
6203 	    ("%s: device mapping not page-sized", __func__));
6204 
6205 	sva = va;
6206 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6207 	while (size != 0) {
6208 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6209 		va += PAGE_SIZE;
6210 		pa += PAGE_SIZE;
6211 		size -= PAGE_SIZE;
6212 	}
6213 	tlb_flush_range(sva, va - sva);
6214 }
6215 
6216 void
6217 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6218 {
6219 	vm_offset_t sva;
6220 
6221 	KASSERT((size & PAGE_MASK) == 0,
6222 	    ("%s: device mapping not page-sized", __func__));
6223 
6224 	sva = va;
6225 	while (size != 0) {
6226 		pmap_kremove(va);
6227 		va += PAGE_SIZE;
6228 		size -= PAGE_SIZE;
6229 	}
6230 	tlb_flush_range(sva, va - sva);
6231 }
6232 
6233 void
6234 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6235 {
6236 
6237 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6238 }
6239 
6240 
6241 /*
6242  *  Clean L1 data cache range by physical address.
6243  *  The range must be within a single page.
6244  */
6245 static void
6246 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6247 {
6248 	pt2_entry_t *cmap2_pte2p;
6249 	struct pcpu *pc;
6250 
6251 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6252 	    ("%s: not on single page", __func__));
6253 
6254 	sched_pin();
6255 	pc = get_pcpu();
6256 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6257 	mtx_lock(&pc->pc_cmap_lock);
6258 	if (pte2_load(cmap2_pte2p) != 0)
6259 		panic("%s: CMAP2 busy", __func__);
6260 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6261 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6262 	pte2_clear(cmap2_pte2p);
6263 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6264 	sched_unpin();
6265 	mtx_unlock(&pc->pc_cmap_lock);
6266 }
6267 
6268 /*
6269  *  Sync instruction cache range which is not mapped yet.
6270  */
6271 void
6272 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6273 {
6274 	uint32_t len, offset;
6275 	vm_page_t m;
6276 
6277 	/* Write back d-cache on given address range. */
6278 	offset = pa & PAGE_MASK;
6279 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6280 		len = min(PAGE_SIZE - offset, size);
6281 		m = PHYS_TO_VM_PAGE(pa);
6282 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6283 		  __func__, pa));
6284 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6285 	}
6286 	/*
6287 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6288 	 * on given physical address is to invalidate all i-cache.
6289 	 */
6290 	icache_inv_all();
6291 }
6292 
6293 void
6294 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6295 {
6296 
6297 	/* Write back d-cache on given address range. */
6298 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6299 		dcache_wb_pou(va, size);
6300 	} else {
6301 		uint32_t len, offset;
6302 		vm_paddr_t pa;
6303 		vm_page_t m;
6304 
6305 		offset = va & PAGE_MASK;
6306 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6307 			pa = pmap_extract(pmap, va); /* offset is preserved */
6308 			len = min(PAGE_SIZE - offset, size);
6309 			m = PHYS_TO_VM_PAGE(pa);
6310 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6311 				__func__, pa));
6312 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6313 		}
6314 	}
6315 	/*
6316 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6317 	 * on given physical address is to invalidate all i-cache.
6318 	 */
6319 	icache_inv_all();
6320 }
6321 
6322 /*
6323  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6324  *  depends on the fact that given range size is a power of 2.
6325  */
6326 CTASSERT(powerof2(NB_IN_PT1));
6327 CTASSERT(powerof2(PT2MAP_SIZE));
6328 
6329 #define IN_RANGE2(addr, start, size)	\
6330     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6331 
6332 /*
6333  *  Handle access and R/W emulation faults.
6334  */
6335 int
6336 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6337 {
6338 	pt1_entry_t *pte1p, pte1;
6339 	pt2_entry_t *pte2p, pte2;
6340 
6341 	if (pmap == NULL)
6342 		pmap = kernel_pmap;
6343 
6344 	/*
6345 	 * In kernel, we should never get abort with FAR which is in range of
6346 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6347 	 * and print out a useful abort message and even get to the debugger
6348 	 * otherwise it likely ends with never ending loop of aborts.
6349 	 */
6350 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6351 		/*
6352 		 * All L1 tables should always be mapped and present.
6353 		 * However, we check only current one herein. For user mode,
6354 		 * only permission abort from malicious user is not fatal.
6355 		 * And alignment abort as it may have higher priority.
6356 		 */
6357 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6358 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6359 			    __func__, pmap, pmap->pm_pt1, far);
6360 			panic("%s: pm_pt1 abort", __func__);
6361 		}
6362 		return (KERN_INVALID_ADDRESS);
6363 	}
6364 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6365 		/*
6366 		 * PT2MAP should be always mapped and present in current
6367 		 * L1 table. However, only existing L2 tables are mapped
6368 		 * in PT2MAP. For user mode, only L2 translation abort and
6369 		 * permission abort from malicious user is not fatal.
6370 		 * And alignment abort as it may have higher priority.
6371 		 */
6372 		if (!usermode || (idx != FAULT_ALIGN &&
6373 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6374 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6375 			    __func__, pmap, PT2MAP, far);
6376 			panic("%s: PT2MAP abort", __func__);
6377 		}
6378 		return (KERN_INVALID_ADDRESS);
6379 	}
6380 
6381 	/*
6382 	 * A pmap lock is used below for handling of access and R/W emulation
6383 	 * aborts. They were handled by atomic operations before so some
6384 	 * analysis of new situation is needed to answer the following question:
6385 	 * Is it safe to use the lock even for these aborts?
6386 	 *
6387 	 * There may happen two cases in general:
6388 	 *
6389 	 * (1) Aborts while the pmap lock is locked already - this should not
6390 	 * happen as pmap lock is not recursive. However, under pmap lock only
6391 	 * internal kernel data should be accessed and such data should be
6392 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6393 	 * then a mapping of data which has caused it must be fixed. Further,
6394 	 * all new mappings are always made with A bit set and the bit can be
6395 	 * cleared only on managed mappings.
6396 	 *
6397 	 * (2) Aborts while another lock(s) is/are locked - this already can
6398 	 * happen. However, there is no difference here if it's either access or
6399 	 * R/W emulation abort, or if it's some other abort.
6400 	 */
6401 
6402 	PMAP_LOCK(pmap);
6403 #ifdef INVARIANTS
6404 	pte1 = pte1_load(pmap_pte1(pmap, far));
6405 	if (pte1_is_link(pte1)) {
6406 		/*
6407 		 * Check in advance that associated L2 page table is mapped into
6408 		 * PT2MAP space. Note that faulty access to not mapped L2 page
6409 		 * table is caught in more general check above where "far" is
6410 		 * checked that it does not lay in PT2MAP space. Note also that
6411 		 * L1 page table and PT2TAB always exist and are mapped.
6412 		 */
6413 		pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6414 		if (!pte2_is_valid(pte2))
6415 			panic("%s: missing L2 page table (%p, %#x)",
6416 			    __func__, pmap, far);
6417 	}
6418 #endif
6419 #ifdef SMP
6420 	/*
6421 	 * Special treatment is due to break-before-make approach done when
6422 	 * pte1 is updated for userland mapping during section promotion or
6423 	 * demotion. If not caught here, pmap_enter() can find a section
6424 	 * mapping on faulting address. That is not allowed.
6425 	 */
6426 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6427 		PMAP_UNLOCK(pmap);
6428 		return (KERN_SUCCESS);
6429 	}
6430 #endif
6431 	/*
6432 	 * Accesss bits for page and section. Note that the entry
6433 	 * is not in TLB yet, so TLB flush is not necessary.
6434 	 *
6435 	 * QQQ: This is hardware emulation, we do not call userret()
6436 	 *      for aborts from user mode.
6437 	 */
6438 	if (idx == FAULT_ACCESS_L2) {
6439 		pte1 = pte1_load(pmap_pte1(pmap, far));
6440 		if (pte1_is_link(pte1)) {
6441 			/* L2 page table should exist and be mapped. */
6442 			pte2p = pt2map_entry(far);
6443 			pte2 = pte2_load(pte2p);
6444 			if (pte2_is_valid(pte2)) {
6445 				pte2_store(pte2p, pte2 | PTE2_A);
6446 				PMAP_UNLOCK(pmap);
6447 				return (KERN_SUCCESS);
6448 			}
6449 		} else {
6450 			/*
6451 			 * We got L2 access fault but PTE1 is not a link.
6452 			 * Probably some race happened, do nothing.
6453 			 */
6454 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
6455 			    __func__, pmap, far);
6456 			PMAP_UNLOCK(pmap);
6457 			return (KERN_SUCCESS);
6458 		}
6459 	}
6460 	if (idx == FAULT_ACCESS_L1) {
6461 		pte1p = pmap_pte1(pmap, far);
6462 		pte1 = pte1_load(pte1p);
6463 		if (pte1_is_section(pte1)) {
6464 			pte1_store(pte1p, pte1 | PTE1_A);
6465 			PMAP_UNLOCK(pmap);
6466 			return (KERN_SUCCESS);
6467 		} else {
6468 			/*
6469 			 * We got L1 access fault but PTE1 is not section
6470 			 * mapping. Probably some race happened, do nothing.
6471 			 */
6472 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
6473 			    __func__, pmap, far);
6474 			PMAP_UNLOCK(pmap);
6475 			return (KERN_SUCCESS);
6476 		}
6477 	}
6478 
6479 	/*
6480 	 * Handle modify bits for page and section. Note that the modify
6481 	 * bit is emulated by software. So PTEx_RO is software read only
6482 	 * bit and PTEx_NM flag is real hardware read only bit.
6483 	 *
6484 	 * QQQ: This is hardware emulation, we do not call userret()
6485 	 *      for aborts from user mode.
6486 	 */
6487 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6488 		pte1 = pte1_load(pmap_pte1(pmap, far));
6489 		if (pte1_is_link(pte1)) {
6490 			/* L2 page table should exist and be mapped. */
6491 			pte2p = pt2map_entry(far);
6492 			pte2 = pte2_load(pte2p);
6493 			if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6494 			    (pte2 & PTE2_NM)) {
6495 				pte2_store(pte2p, pte2 & ~PTE2_NM);
6496 				tlb_flush(trunc_page(far));
6497 				PMAP_UNLOCK(pmap);
6498 				return (KERN_SUCCESS);
6499 			}
6500 		} else {
6501 			/*
6502 			 * We got L2 permission fault but PTE1 is not a link.
6503 			 * Probably some race happened, do nothing.
6504 			 */
6505 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
6506 			    __func__, pmap, far);
6507 			PMAP_UNLOCK(pmap);
6508 			return (KERN_SUCCESS);
6509 		}
6510 	}
6511 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6512 		pte1p = pmap_pte1(pmap, far);
6513 		pte1 = pte1_load(pte1p);
6514 		if (pte1_is_section(pte1)) {
6515 			if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
6516 				pte1_store(pte1p, pte1 & ~PTE1_NM);
6517 				tlb_flush(pte1_trunc(far));
6518 				PMAP_UNLOCK(pmap);
6519 				return (KERN_SUCCESS);
6520 			}
6521 		} else {
6522 			/*
6523 			 * We got L1 permission fault but PTE1 is not section
6524 			 * mapping. Probably some race happened, do nothing.
6525 			 */
6526 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
6527 			    __func__, pmap, far);
6528 			PMAP_UNLOCK(pmap);
6529 			return (KERN_SUCCESS);
6530 		}
6531 	}
6532 
6533 	/*
6534 	 * QQQ: The previous code, mainly fast handling of access and
6535 	 *      modify bits aborts, could be moved to ASM. Now we are
6536 	 *      starting to deal with not fast aborts.
6537 	 */
6538 	PMAP_UNLOCK(pmap);
6539 	return (KERN_FAILURE);
6540 }
6541 
6542 #if defined(PMAP_DEBUG)
6543 /*
6544  *  Reusing of KVA used in pmap_zero_page function !!!
6545  */
6546 static void
6547 pmap_zero_page_check(vm_page_t m)
6548 {
6549 	pt2_entry_t *cmap2_pte2p;
6550 	uint32_t *p, *end;
6551 	struct pcpu *pc;
6552 
6553 	sched_pin();
6554 	pc = get_pcpu();
6555 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6556 	mtx_lock(&pc->pc_cmap_lock);
6557 	if (pte2_load(cmap2_pte2p) != 0)
6558 		panic("%s: CMAP2 busy", __func__);
6559 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6560 	    vm_page_pte2_attr(m)));
6561 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6562 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6563 		if (*p != 0)
6564 			panic("%s: page %p not zero, va: %p", __func__, m,
6565 			    pc->pc_cmap2_addr);
6566 	pte2_clear(cmap2_pte2p);
6567 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6568 	sched_unpin();
6569 	mtx_unlock(&pc->pc_cmap_lock);
6570 }
6571 
6572 int
6573 pmap_pid_dump(int pid)
6574 {
6575 	pmap_t pmap;
6576 	struct proc *p;
6577 	int npte2 = 0;
6578 	int i, j, index;
6579 
6580 	sx_slock(&allproc_lock);
6581 	FOREACH_PROC_IN_SYSTEM(p) {
6582 		if (p->p_pid != pid || p->p_vmspace == NULL)
6583 			continue;
6584 		index = 0;
6585 		pmap = vmspace_pmap(p->p_vmspace);
6586 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6587 			pt1_entry_t pte1;
6588 			pt2_entry_t *pte2p, pte2;
6589 			vm_offset_t base, va;
6590 			vm_paddr_t pa;
6591 			vm_page_t m;
6592 
6593 			base = i << PTE1_SHIFT;
6594 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6595 
6596 			if (pte1_is_section(pte1)) {
6597 				/*
6598 				 * QQQ: Do something here!
6599 				 */
6600 			} else if (pte1_is_link(pte1)) {
6601 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6602 					va = base + (j << PAGE_SHIFT);
6603 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6604 						if (index) {
6605 							index = 0;
6606 							printf("\n");
6607 						}
6608 						sx_sunlock(&allproc_lock);
6609 						return (npte2);
6610 					}
6611 					pte2p = pmap_pte2(pmap, va);
6612 					pte2 = pte2_load(pte2p);
6613 					pmap_pte2_release(pte2p);
6614 					if (!pte2_is_valid(pte2))
6615 						continue;
6616 
6617 					pa = pte2_pa(pte2);
6618 					m = PHYS_TO_VM_PAGE(pa);
6619 					printf("va: 0x%x, pa: 0x%x, h: %d, w:"
6620 					    " %d, f: 0x%x", va, pa,
6621 					    m->hold_count, m->wire_count,
6622 					    m->flags);
6623 					npte2++;
6624 					index++;
6625 					if (index >= 2) {
6626 						index = 0;
6627 						printf("\n");
6628 					} else {
6629 						printf(" ");
6630 					}
6631 				}
6632 			}
6633 		}
6634 	}
6635 	sx_sunlock(&allproc_lock);
6636 	return (npte2);
6637 }
6638 
6639 #endif
6640 
6641 #ifdef DDB
6642 static pt2_entry_t *
6643 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6644 {
6645 	pt1_entry_t pte1;
6646 	vm_paddr_t pt2pg_pa;
6647 
6648 	pte1 = pte1_load(pmap_pte1(pmap, va));
6649 	if (!pte1_is_link(pte1))
6650 		return (NULL);
6651 
6652 	if (pmap_is_current(pmap))
6653 		return (pt2map_entry(va));
6654 
6655 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6656 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6657 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6658 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6659 #ifdef SMP
6660 		PMAP3cpu = PCPU_GET(cpuid);
6661 #endif
6662 		tlb_flush_local((vm_offset_t)PADDR3);
6663 	}
6664 #ifdef SMP
6665 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6666 		PMAP3cpu = PCPU_GET(cpuid);
6667 		tlb_flush_local((vm_offset_t)PADDR3);
6668 	}
6669 #endif
6670 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6671 }
6672 
6673 static void
6674 dump_pmap(pmap_t pmap)
6675 {
6676 
6677 	printf("pmap %p\n", pmap);
6678 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6679 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6680 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6681 }
6682 
6683 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6684 {
6685 
6686 	pmap_t pmap;
6687 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6688 		dump_pmap(pmap);
6689 	}
6690 }
6691 
6692 static int
6693 pte2_class(pt2_entry_t pte2)
6694 {
6695 	int cls;
6696 
6697 	cls = (pte2 >> 2) & 0x03;
6698 	cls |= (pte2 >> 4) & 0x04;
6699 	return (cls);
6700 }
6701 
6702 static void
6703 dump_section(pmap_t pmap, uint32_t pte1_idx)
6704 {
6705 }
6706 
6707 static void
6708 dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6709 {
6710 	uint32_t i;
6711 	vm_offset_t va;
6712 	pt2_entry_t *pte2p, pte2;
6713 	vm_page_t m;
6714 
6715 	va = pte1_idx << PTE1_SHIFT;
6716 	pte2p = pmap_pte2_ddb(pmap, va);
6717 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6718 		pte2 = pte2_load(pte2p);
6719 		if (pte2 == 0)
6720 			continue;
6721 		if (!pte2_is_valid(pte2)) {
6722 			printf(" 0x%08X: 0x%08X", va, pte2);
6723 			if (!invalid_ok)
6724 				printf(" - not valid !!!");
6725 			printf("\n");
6726 			continue;
6727 		}
6728 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6729 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6730 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6731 		if (m != NULL) {
6732 			printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
6733 			    m->hold_count, m->wire_count, m->flags);
6734 		} else {
6735 			printf("\n");
6736 		}
6737 	}
6738 }
6739 
6740 static __inline boolean_t
6741 is_pv_chunk_space(vm_offset_t va)
6742 {
6743 
6744 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6745 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6746 		return (TRUE);
6747 	return (FALSE);
6748 }
6749 
6750 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6751 {
6752 	/* XXX convert args. */
6753 	pmap_t pmap = (pmap_t)addr;
6754 	pt1_entry_t pte1;
6755 	pt2_entry_t pte2;
6756 	vm_offset_t va, eva;
6757 	vm_page_t m;
6758 	uint32_t i;
6759 	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6760 
6761 	if (have_addr) {
6762 		pmap_t pm;
6763 
6764 		LIST_FOREACH(pm, &allpmaps, pm_list)
6765 			if (pm == pmap) break;
6766 		if (pm == NULL) {
6767 			printf("given pmap %p is not in allpmaps list\n", pmap);
6768 			return;
6769 		}
6770 	} else
6771 		pmap = PCPU_GET(curpmap);
6772 
6773 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6774 	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6775 
6776 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6777 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6778 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6779 
6780 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6781 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6782 		if (pte1 == 0)
6783 			continue;
6784 		va = i << PTE1_SHIFT;
6785 		if (va >= eva)
6786 			break;
6787 
6788 		if (pte1_is_section(pte1)) {
6789 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6790 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6791 			dump_section(pmap, i);
6792 		} else if (pte1_is_link(pte1)) {
6793 			dump_link_ok = TRUE;
6794 			invalid_ok = FALSE;
6795 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6796 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6797 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6798 			    va, pte1, pte2, m);
6799 			if (is_pv_chunk_space(va)) {
6800 				printf(" - pv_chunk space");
6801 				if (dump_pv_chunk)
6802 					invalid_ok = TRUE;
6803 				else
6804 					dump_link_ok = FALSE;
6805 			}
6806 			else if (m != NULL)
6807 				printf(" w:%d w2:%u", m->wire_count,
6808 				    pt2_wirecount_get(m, pte1_index(va)));
6809 			if (pte2 == 0)
6810 				printf(" !!! pt2tab entry is ZERO");
6811 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6812 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6813 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6814 			printf("\n");
6815 			if (dump_link_ok)
6816 				dump_link(pmap, i, invalid_ok);
6817 		} else
6818 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6819 	}
6820 }
6821 
6822 static void
6823 dump_pt2tab(pmap_t pmap)
6824 {
6825 	uint32_t i;
6826 	pt2_entry_t pte2;
6827 	vm_offset_t va;
6828 	vm_paddr_t pa;
6829 	vm_page_t m;
6830 
6831 	printf("PT2TAB:\n");
6832 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6833 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6834 		if (!pte2_is_valid(pte2))
6835 			continue;
6836 		va = i << PT2TAB_SHIFT;
6837 		pa = pte2_pa(pte2);
6838 		m = PHYS_TO_VM_PAGE(pa);
6839 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6840 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6841 		if (m != NULL)
6842 			printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
6843 			    m->hold_count, m->wire_count, m->flags, m->pindex);
6844 		printf("\n");
6845 	}
6846 }
6847 
6848 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6849 {
6850 	/* XXX convert args. */
6851 	pmap_t pmap = (pmap_t)addr;
6852 	pt1_entry_t pte1;
6853 	pt2_entry_t pte2;
6854 	vm_offset_t va;
6855 	uint32_t i, start;
6856 
6857 	if (have_addr) {
6858 		printf("supported only on current pmap\n");
6859 		return;
6860 	}
6861 
6862 	pmap = PCPU_GET(curpmap);
6863 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6864 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6865 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6866 
6867 	start = pte1_index((vm_offset_t)PT2MAP);
6868 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6869 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6870 		if (pte1 == 0)
6871 			continue;
6872 		va = i << PTE1_SHIFT;
6873 		if (pte1_is_section(pte1)) {
6874 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6875 			    !!(pte1 & PTE1_S));
6876 			dump_section(pmap, i);
6877 		} else if (pte1_is_link(pte1)) {
6878 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6879 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6880 			    pte1, pte2);
6881 			if (pte2 == 0)
6882 				printf("  !!! pt2tab entry is ZERO\n");
6883 		} else
6884 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6885 	}
6886 	dump_pt2tab(pmap);
6887 }
6888 #endif
6889